Statistical and computational aspects of nested Archimedean copulas and beyond

Marius Hofert

2013-10-18
1 Copulas

Definition: A copula C is a distribution function with $U[0,1]$ margins.

Theorem 1.1 (Sklar (1959))

$H(x_1, \ldots, x_d) = C(F_1(x_1), \ldots, F_d(x_d)), \ (x_1, \ldots, x_d) \in \mathbb{R}^d$

“⇒” Decomposition (estimation, goodness-of-fit)

+ Investigating dependencies $(F_1(X_1), \ldots, F_d(X_d)) \sim C$

+ Numerics: reduce dimension of parameter space

“⇐” Composition (finance, sampling, stress testing)

+ Framework for constructing distributions

+ Financial and Insurance Mathematics: Realistic, flexible models

Example: $C(u) = t_{\nu,P}(t_{\nu}^{-1}(u_1), \ldots, t_{\nu}^{-1}(u_d))$ (t copula; numerics!)

© 2013 Marius Hofert | TU Munich
2 Archimedean copulas

Archimedean copula with generator ψ:

$$C(u) = \psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d))$$

2.1 Properties

+ C is explicit (if ψ^{-1} is)
+ Properties of C can be expressed in terms of ψ
+ $\lambda_L \neq \lambda_U$ possible
+ Examples: AMH, Clayton, Frank, Gumbel, Joe, opC, …
 - symmetry
Question: When is \(C(u) = \psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d)) \) a copula?

Answer: \(C \) is a copula in any dimension \(d \) \(\iff \) \(\psi \) is completely monotone.

Theorem 2.1 (Bernstein (1928))
\[
\psi \text{ c.m., } \psi(0) = 1 \iff \psi(t) = \mathcal{L}S[F](t) = \int_0^\infty \exp(-tv) dF(v)
\]

\(\Rightarrow \) Mixture representation:
\[
C(u) = \psi\left(\sum_{j=1}^d \psi^{-1}(u_j)\right) = \int_0^\infty \prod_{j=1}^d \exp(-v\psi^{-1}(u_j)) dF(v)
\]

\(\Rightarrow \) Stochastic representation + Marshall-Olkin:
\[
V \sim F = \mathcal{L}S^{-1}[\psi] \Rightarrow U = \left(\psi\left(\frac{E_1}{V}\right), \ldots, \psi\left(\frac{E_d}{V}\right)\right)^\top \sim C
\]

Fast to sample, independently of \(d \).
Comparison in the “best-case scenario” (Clayton):

Run time in s for 10 000 random vectors

- Conditional distribution method
- Marshall–Olkin algorithm
2.2 Density evaluation

Statistical challenge: Compute the log-density of a Gumbel copula

General formula for \(c \) (trivial):

\[
C(u) = \psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d))
\]

\[
\Rightarrow \quad c(u) = (-1)^d \psi^{(d)} \left(\sum_{j=1}^{d} \psi^{-1}(u_j) \right) \cdot \prod_{j=1}^{d} -\left(\psi^{-1}\right)'(u_j).
\]

Mathematical challenge: Find \((-1)^d \psi^{(d)}\), \(\psi(t) = \exp(-t^\alpha) \), \(\alpha = 1/\theta \).

Hofert et al. (2012):

\[
(-1)^d \psi^{(d)}(t) = \frac{\psi(t)}{t^d} P(t^\alpha), \quad P(x) = \sum_{k=1}^{d} a_{dk}^G(\alpha) x^k,
\]

\[
a_{dk}^G(\alpha) = (-1)^{d-k} \sum_{j=k}^{d} \alpha^j s(d, j) S(j, k) = \frac{d!}{k!} \sum_{j=1}^{k} \binom{k}{j} \binom{\alpha j}{d} (-1)^{d-j}
\]
Numerical challenge: Computing \((-1)^d \psi^{(d)}(t)\), then \(\log(\cdot)\) fails!
One Idea: exp-log-trick

\[
\log P(x) = \log \sum_{k=1}^{d} \exp(b_k), \quad b_k = \log(a_{dk}^G(\alpha)x^k)
\]

\[
= \log \left(\exp(b_{\text{max}}) \cdot \sum_{k=1}^{d} \exp(b_k - b_{\text{max}}) \right)
\]

\[
= b_{\text{max}} + \log \sum_{k=1}^{d} \exp(b_k - b_{\text{max}})
\]

Advantages: 1) summands are in \((0, 1]\)

2) we can work in log-scale

3) can apply a similar trick to \(\log a_{dk}^G(\alpha)\)

...the actual implementation is more difficult, though.
The **exp-log-trick** is not ideal for all t, d, α. Other methods are:

1) exp-log-trick + $a_{dk}^G(\alpha)$ via
 - direct (direct);
 - horner (Horner’s scheme);
 - $a_{dk}^G(\alpha) = \frac{p_{01}^j(d; k)d!}{k!}$ and other methods (Rmpfr).

2) $P(x) = (-1)^{d-1}x \sum_{j=1}^{d} \left(s(d, j) \sum_{k=0}^{j-1} S(j, k + 1)(-x)^k \right) \alpha^j$
 - stirling (direct; inner sum via Horner’s scheme);
 - stirling.horner (Horner’s scheme twice).

3) $P(x) = \sum_{j=1}^{d} s_j \exp(\log|\alpha j|_d) + j \log x + x - \log(j!) + \log F_{\text{Poi}}^x(d - j)$
 - pois.direct (direct);
 - pois (exp-log-trick).

⇒ A good **default chooses** between these based on t, d, α and run time.
Software challenge: How to check results for correctness? CASs fail!

Example: $\psi^{(50)}(15) = ? \ (\theta = 5/4; \text{correct answer: } 1056.94)$

- Maple 14: 10628, -29800,… (chaotic; sign wrong; slow)
- Mathematica 8: – (aborted after 10 min)
- MATLAB 7.11.0: ✓ ($d = 100$: aborted after several min)
- Sage 4.7.1: – (aborted after 10 min) ⇒ rarely numerically stable

Note: This is only one evaluation! It has to be done…

1) $n (= 100)$ times for computing the log-likelihood once
2) $m (= 10)$ times for computing MLEs
3) $B (= 1000)$ times within a bootstrap
4) $N (= 1000)$ times to (numerically) show bootstrap convergence
5) for various n, d, θ…

⇒ Parallel computing (more on that later)
Run time aside, what about Monte Carlo?

\[
\log((-1)^d \psi(d)(t)) \approx \log\left(\frac{1}{m} \sum_{k=1}^{m} V_k^d \exp(-V_k t)\right) = \log\left(\frac{1}{m} \sum_{k=1}^{m} \exp(b_k)\right)
\]

⇒ Apply exp-log-trick with \(b_k = d \log(V_k) - V_k t\).

Question: Besides increasing run time, does this work? Yes and No!

Clayton: Assume \(\tau = 0.5\) and \(u = (u, \ldots, u)\)^\top. If \(u\) is small, then \(t = \sum_{j=1}^{d} \psi^{-1}(u_j) = d \psi^{-1}(u)\) is large.

Problem: \(b_k\) is so small that \(e^{b_k} = e^{b_k - b_{\text{max}}} = 0\).

Note: \(\exp(-746) == 0\) is TRUE!

Solution: Pseudo-observations!
Extensions to more general/flexible models:

1) Outer power Archimedean copulas: \(\tilde{\psi}(t) = \psi(t^{1/\beta}), \beta \geq 1 \)

\[
(-1)^d \tilde{\psi}^{(d)}(t) = \frac{P(t^{1/\beta})}{t^d}, \quad P(x) = \sum_{k=1}^{d} a_{dk}^G (1/\beta) \psi^{(k)}(x)(-x)^k
\]

2) Khoudraji-transformed Archimedean copulas (special case of Liebscher):

\[
C(u) = C_{\psi}(u_1^{\alpha_1}, \ldots, u_d^{\alpha_d}) \prod(u_1^{1-\alpha_1}, \ldots, u_d^{1-\alpha_d})
\]

\[
c(u) = \sum_{J \subseteq \{1, \ldots, d\}} \psi(|J|) \left(\sum_{j=1}^{d} \psi^{-1}(u_j^{\alpha_j}) \right) \prod_{j \in J} \alpha_j (\psi^{-1})'(u_j^{\alpha_j}) \prod_{j \notin J} (1 - \alpha_j) u_j^{-\alpha_j}
\]

3) Archimedean Sibuya copulas: \(C(u) = \frac{\psi_{\Psi} \left(\sum_{j=1}^{d} f(S_j^-(u_j)) \right)}{\prod_{j=1}^{d} \psi_{\Psi} \left(f(S_j^-(u_j)) \right)} \prod(u)
\]

4) Kendall distribution function: \(K(t) = \sum_{k=0}^{d-1} \frac{\psi^{(k)}(\psi^{-1}(t))}{k!} (-\psi^{-1}(t))^k
\]

5) Nested Archimedean copulas: \(C(u) = C_0(C_1(u_1), \ldots, C_S(u_S)) \)
If you pay attention to the numerics...

- \(l(\theta; u_1, \ldots, u_n) \) -log-likelihood of a Gumbel copula

Profile likelihood plot for \(\theta \)

- \(n = 20 \) \(d = 100 \) \(\theta_0 = 2 \) \(\tau(\theta_0) = 0.5 \)
- **Striking (numerical) result:**\[\text{MSE} \propto \frac{1}{nd} \]

(known margins)

- See Hofert et al. (2013)
3 Nested Archimedean copulas

Idea: Plug Archimedean copulas into each other

\[C(u) = C_0(u_1, C_1(u_2, u_3)) = \psi_0(\psi_0^{-1}(u_1) + \psi_0^{-1}(\psi_1(\psi_1^{-1}(u_2) + \psi_1^{-1}(u_3)))) \]

⇒ Partial asymmetries

Question: When is it a copula?

Theorem 3.1 (Joe (1997), McNeil (2008))

\[\psi_{01}' = (\psi_0^{-1} \circ \psi_1)' \text{ completely monotone} \Rightarrow C \text{ is a copula} \]

⇒ New generator: \(\psi_{01}(t; \nu) = \exp(-\nu \psi_{01}(t)) = \mathcal{LS}[F_{01}(\cdot; \nu)](t) \).
Idea: $\psi_{01}(t; v) = \exp(-v\psi_{0}^{-1}(\psi_1(t))), \ G(u; v) = \exp(-v\psi_{0}^{-1}(u))$

Then

$$C(u) = \psi_{0}(\psi_{0}^{-1}(u_1) + \psi_{0}^{-1}(\psi_1(\psi_{1}^{-1}(u_2) + \psi_{1}^{-1}(u_3))))$$

$$= \int_{0}^{\infty} \exp(-v\psi_{0}^{-1}(u_1)) \exp(-v\psi_{0}^{-1}(\psi_1(\psi_{1}^{-1}(u_2) + \psi_{1}^{-1}(u_3)))) \ dF_0(v)$$

$$= \int_{0}^{\infty} G(u_1; v) \psi_{01}(\psi_{1}^{-1}(u_2) + \psi_{1}^{-1}(u_3); v) \ dF_0(v)$$

$$= \int_{0}^{\infty} G(u_1; v) \psi_{01}(\psi_{01}^{-1}(G(u_2; v); v) + \psi_{01}^{-1}(G(u_3; v); v); v) \ dF_0(v)$$

$$= \int_{0}^{\infty} G(u_1; v) C_{01}(G(u_2; v), G(u_3; v); v) \ dF_0(v)$$

⇒ If C_{01} is a copula, so is C

Examples: AMH \circ C (c.m.), but also F \circ C ($d = 3$)

AB (2009): “… ψ_{01} must have completely monotone derivatives…”
3.1 Stochastic representation and sampling

\(C(u) = C_0(u_1, C_1(u_2, u_3), C_2(u_4, C_3(u_5, u_6, u_7))) : \)

\[
\begin{align*}
&\left(\psi_0 \left(\frac{E_1}{V_0} \right), \psi_1 \left(\frac{E_2}{V_{01}} \right), \psi_1 \left(\frac{E_3}{V_{01}} \right), \psi_2 \left(\frac{E_4}{V_{02}} \right), \psi_3 \left(\frac{E_5}{V_{23}} \right), \psi_3 \left(\frac{E_6}{V_{23}} \right), \psi_3 \left(\frac{E_7}{V_{23}} \right) \right) \\
\text{where} & \quad V_0 \sim \mathcal{L}S^{-1}[\psi_0] \\
& \quad V_{01}|V_0 \sim \mathcal{L}S^{-1}[\psi_{01}(\cdot ; V_0)] \\
& \quad V_{02}|V_0 \sim \mathcal{L}S^{-1}[\psi_{02}(\cdot ; V_0)] \\
& \quad V_{23}|V_{02} \sim \mathcal{L}S^{-1}[\psi_{23}(\cdot ; V_{02})]
\end{align*}
\]

\(\Rightarrow \) McNeil (2008), Hofert (2012), R package copula
Overview: Sampling 100 000 $U \sim C = C_0(\cdot, C_1(\cdot))$

\Rightarrow Fast enough for large-scale simulations (see Hofert and Scherer (2011)).

Function evaluations and $\text{Exp}(1)$ are more relevant than F_0 and F_{01}.
3.2 Application to credit risk

Intensity-based default model:

\[p_i(t) = \exp\left(-\int_0^t \lambda_i(s) \, ds\right) \]

\[\tau_i = \inf\{t \geq 0 : p_i(t) \leq U_i\} \]

Note: \(\lambda_U = 0 \Rightarrow \) (Almost) no joint defaults!

Copulas for the triggers \(U \):

1) Li (2000): Gaussian (Sibuya (1959): \(\lambda_U = 0 \))

2) Schönbucher and Schubert (2001): Archimedean (\(\lambda_U > 0 \))

3) Hofert and Scherer (2011): nested Archimedean (\(\lambda_U > 0 \), hierarchies)
3.3 Densities of nested Archimedean copulas

In the literature (AB (2009)):

“... Not even for an EAC it is straightforward to derive the density... For the NAC it is even harder...”

Poor man’s approach: $C(u) = C_0(C_1(u_1, u_2), C_2(u_3, u_4))$

$$c(u) = (\psi_1^{-1})'(u_1)(\psi_1^{-1})'(u_2) \left\{ (\psi_0^{-1})'(C_1)\psi_1'[\psi_1^{-1}(u_1) + \psi_1^{-1}(u_2)] \right\}^2$$

$$\frac{\partial^2}{\partial u_4 \partial u_3} \psi''_0[\psi_0^{-1}(C_1) + \psi_0^{-1}(C_2)] + (\psi_0^{-1})''(C_1)\{\psi_1'[\psi_1^{-1}(u_1) + \psi_1^{-1}(u_2)]\}^2$$

$$+ (\psi_0^{-1})'(C_1)\psi''_1[\psi_1^{-1}(u_1) + \psi_1^{-1}(u_2)] \right) \frac{\partial^2}{\partial u_4 \partial u_3} \psi'_0[\psi_0^{-1}(C_1) + \psi_0^{-1}(C_2)]$$

\Rightarrow Two more to go... 😞
Statistical challenge: Compute the log-density of NACs

\[C(u) = C_0(C_1(u_1), \ldots, C_{d_0}(u_{d_0})), \quad \text{where} \]

\[C_s(u_s) = \psi_s(\psi_s^{-1}(u_{s1}) + \cdots + \psi_s^{-1}(u_{sd_s})) = \psi_s(t_s(u_s)). \]

Idea:

\[
C(u) = \int_0^\infty \exp \left(-v_0 \sum_{s=1}^{d_0} \dot{\psi}_{0s}(t_s(u_s)) \right) dF_0(v_0) \\
= \int_0^\infty \prod_{s=1}^{d_0} \psi_{0s}(t_s(u_s); v_0) dF_0(v_0),
\]

where \(\dot{\psi}_{0s} = \psi_0^{-1} \circ \psi_s \) and \(\psi_{0s}(t; v_0) = \exp(-v_0 \dot{\psi}_{0s}(t)) \). Therefore,

\[
c(u) = \int_0^\infty \prod_{s=1}^{d_0} \psi_{0s}^{(d_s)}(t_s(u_s); v_0) dF_0(v_0) \cdot \prod_{s=1}^{d_0} \prod_{j=1}^{d_s} (\psi_s^{-1})'(u_{sj}).
\]

Tasks: Find \(\psi_{0s}^{(d_s)}(\cdot; v_0) \) and compute \(\int_0^\infty \ldots dF_0(v_0) \).
Theorem 3.2 (Hofert and Pham (2013))

1) Let \(a_{s,nk}(t) = B_{n,k}(\psi_{0s}'(t), \ldots, \psi_{0s}^{(n-k+1)}(t)) \). Then
\[
\psi_{0s}^{(n)}(t; v_0) = \psi_{0s}(t; v_0) \sum_{k=1}^{n} a_{s,nk}(t)(-v_0)^k.
\]

2) Let \(b_{d,k}^{d_0}(t(u)) = \sum_{j \in Q_{d,k}^{d_0}} \prod_{s=1}^{d_0} a_{s,d_s j_s}(t_s(u_s)) \), where
\[
Q_{d,k}^{d_0} = \left\{ j \in \mathbb{N}^{d_0} : \sum_{s=1}^{d_0} j_s = k, j_s \leq d_s, \ s \in \{1, \ldots, d_0\} \right\}.
\]
Then
\[
c(u) = \left(\sum_{k=d_0}^{d} b_{d,k}^{d_0}(t(u))\psi_{0}^{(k)}(\psi_{0}^{-1}(C(u)))) \right) \cdot \prod_{s=1}^{d_0} \prod_{j=1}^{d_s} (\psi_{s}^{-1})'(u_{sj}).
\]

A picture is worth a thousand words...
-log-likelihood of a nested Gumbel copula $C(u) = C_0(u_1, C_1(u_2, u_3))$:

\[C(u) = C_0(u_1, C_1(u_2, u_3)) \quad n = 100 \quad \tau(\theta_0) = 0.25 \quad \tau(\theta_1) = 0.5 \]
-log-likelihood of a nested Gumbel copula \(C(u) = C_0(u_1, C_1(u_2, \ldots, u_{10})) \):

\[
C(u) = C_0(u_1, C_1(u_2, \ldots, u_{10})) \quad n = 100 \quad \tau(\theta_0) = 0.25 \quad \tau(\theta_1) = 0.5
\]

\[
C(u) = C_0(u_1, C_1(u_2, \ldots, u_{10})) \quad n = 100 \quad \tau(\theta_0) = 0.25 \quad \tau(\theta_1) = 0.5
\]
3.4 Graphical goodness-of-fit

\[C_0(C_1(u_1, u_2), C_2(u_3, u_4, u_5)) \] (Gumbel with \(\tau_0 = 0.2, \tau_1 = 0.4, \tau_2 = 0.6 \))
Pairwise Rosenblatt transformed pseudo-observations
to test H_0^c: C is t

- SMI log-returns
- 2011-09-09–2012-03-28 (141d)
- MLE for ν
 (pairw. tau for P)
- demo(gof_graph)

pp-values: minimum: 0.084; global (Bonferroni/Holm): 1
4 Large-scale simulation studies

- joint work with Martin Mächler (SfS)
- **simsalapar** (*simulations simplified and launched parallel*)
- For students (master/PhD), researchers (new models), practitioners (time constraints, validating internal models)

A simulation consists of the following parts:

1) **Setup:**
 - Scientific problem/question
 - Translating it to R (determining **input variables** and their “type”)
 - Implementing the main, problem specific function (**doOne()**)

2) **Conducting the simulation:** sequentially? in **parallel**? nodes or cores?

3) **Analyzing the results:** Computing and presenting statistics (with tables or **graphics**)

© 2013 Marius Hofert | TU Munich
Example: Computing VaR_α via Monte Carlo

Consider the value of a portfolio of stocks $S_{t,1}, \ldots, S_{t,d}$

$$V_t = \sum_{j=1}^{d} \beta_j S_{t,j}.$$

In terms of the risk-factor changes

$$X_{t+1,j} = \log(\frac{S_{t+1,j}}{S_{t,j}})$$

the one period ahead loss is

$$L_{t+1} = -(V_{t+1} - V_t) = - \sum_{j=1}^{d} w_{t,j}(\exp(X_{t+1,j}) - 1), \quad w_{t,j} = \beta_j S_{t,j}.$$

Scientific problem: Compute $\text{VaR}_\alpha(L_{t+1})$ via Monte Carlo under various setups and investigate its behavior.

Translating this...
To R:

<table>
<thead>
<tr>
<th>Variable</th>
<th>expression</th>
<th>type</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.sim</td>
<td>N_{sim}</td>
<td>N</td>
<td>32</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>grid</td>
<td>64, 256</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>grid</td>
<td>5, 20, 100, 500</td>
</tr>
<tr>
<td>varWgts</td>
<td>w</td>
<td>frozen</td>
<td>1, 1, 1, 1</td>
</tr>
<tr>
<td>qF</td>
<td>F^{-1}</td>
<td>frozen</td>
<td>qF</td>
</tr>
<tr>
<td>family</td>
<td>C</td>
<td>grid</td>
<td>Clayton, Gumbel</td>
</tr>
<tr>
<td>tau</td>
<td>τ</td>
<td>grid</td>
<td>0.25, 0.50</td>
</tr>
<tr>
<td>alpha</td>
<td>α</td>
<td>inner</td>
<td>0.950, 0.990, 0.999</td>
</tr>
</tbody>
</table>

```r
require("simsalapar")
varList ← varlist(  
  n.sim = list(type="N", expr = quote(N["sim"])), value = 32),  # replications
  n = list(type="grid", value = c(64, 256)),  # sample size
  d = list(type="grid", value = c(5, 20, 100, 500)),  # dimension and weights
  varWgts = list(type="frozen", expr = quote(bold(w))),
    value = list("5"=1, "20"=1, "100"=1, "500"=1)),
  qF = list(type="frozen", expr = quote(F^{-1})), value=list(qF=qnorm)),  # margins
  family=list(type="grid", expr = quote(C)), value = c("Clayton", "Gumbel")),  # C
  tau = list(type="grid", value = c(0.25, 0.5)),  # Kendall's \tau
  alpha = list(type="inner", value = c(0.95, 0.99, 0.999)))  # confidence levels

toLatex(varList)  # method for constructing the above table
```

© 2013 Marius Hofert | TU Munich
The workhorse: (Computation for one set of variables)

doOne \leftarrow \text{function}(n, d, qF, family, tau, alpha, \text{varWgts}, \text{names=}FALSE) \\
\{
 ## checks (and load required packages here for parallel computing later on)
 w \leftarrow \text{varWgts}[\text{as.character}(d)] \\
 \text{stopifnot}(\text{require}(\text{copula}), \# \text{load 'copula}') \\
 \text{sapply(list}(w, alpha, tau, d), \text{is.numeric})) \# \text{sanity checks}

 ## simulate risk-factor changes (if defined outside doOne(), use
 ## doOne \leftarrow \text{local}{\ldots}) \text{construction as in some of simsalapar's demos)
 \text{simRFC} \leftarrow \text{function}(n, d, qF, family, tau) \{ \\
 ## define the copula of the risk factor changes
 theta \leftarrow \text{getAcop}(\text{family}@iTau}(\text{tau}) \# \text{determine copula parameter}
 \text{cop} \leftarrow \text{onacopulaL}(\text{family}, \text{list}(\text{theta}, 1:d)) \# \text{define the copula}
 ## sample the meta-copula-model for the risk-factor changes X
 qF(\text{rCopula}(n, \text{cop})) \# \text{simulate via Sklar's Theorem}
 \}
 \text{X} \leftarrow \text{simRFC}(n, d=d, qF=qF[\text{"qF"}], \text{family=}\text{family}, \text{tau=}\text{tau}) \# \text{simulate X}

 ## compute the losses and estimate VaR_alpha(L)
 \text{L} \leftarrow \text{-rowSums(\text{expm1}(X) * matrix(rep}(w, \text{length.out}=d),
 nrow=n, ncol=d, byrow=TRUE)) \# \text{losses}
 \text{quantile}(L, \text{probs=}\text{alpha}, \text{names=}\text{names}) \# \text{empirical quantile as VaR estimate}
\}
The magic:

doapply(), ..., doMclapply(), doClusterApply()

subjob()
doCallWE()
doOne()

do*: calls subjob() sequentially or in parallel (nodes or cores!)

subjob(): computes a sub-job (line in virtual grid), .Random.seed

doCallWE(): catching warnings, errors, run time

doOne(): computing a value (for one set of variables; numeric array)

res ← doClusterApply(varList, sfile="res.rds", doOne=doOne, names=TRUE) # same interface
Extract results (value, errors, warnings, run times):

1. `val ← getArray(res)` # array of values
2. `err ← getArray(res, "error")` # array of error indicators
3. `warn ← getArray(res, "warning")` # array of warning indicators
4. `time ← getArray(res, "time")` # array of user times in ms

A quick look at the errors:

```r
> ftable(100 * err, row.vars=c("family", "d"), col.vars=c("tau", "n")) # % of errors
```

<table>
<thead>
<tr>
<th>family</th>
<th>d</th>
<th>tau 0.25</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>64 256</td>
<td>64 256</td>
</tr>
<tr>
<td>Clayton</td>
<td>5</td>
<td>0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Gumbel</td>
<td>5</td>
<td>0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0 0 0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

(Much) more sophisticated tools...
ft ← ftable(fres, row.vars = c("family", "n", "d"), col.vars = c("tau", "alpha"))
tabL ← toLatex(ft, vList = varList, fontsize = "scriptsize", caption = "...")

<table>
<thead>
<tr>
<th>C</th>
<th>n</th>
<th>d</th>
<th>(\alpha)</th>
<th>0.25</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95%</td>
<td>99%</td>
<td>99.9%</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td>Claydon</td>
<td>64</td>
<td>5</td>
<td>3.1 (0.4)</td>
<td>3.8 (0.4)</td>
<td>4.0 (0.5)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10.6 (1.4)</td>
<td>13.5 (1.5)</td>
<td>14.8 (2.2)</td>
<td>14.2 (1.6)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>46.1 (9.1)</td>
<td>63.5 (11.6)</td>
<td>68.5 (13.6)</td>
<td>70.7 (8.6)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>224.8 (50.6)</td>
<td>307.8 (61.5)</td>
<td>336.0 (66.8)</td>
<td>350.0 (40.5)</td>
</tr>
<tr>
<td>256</td>
<td>5</td>
<td>3.2 (0.2)</td>
<td>4.1 (0.2)</td>
<td>4.4 (0.2)</td>
<td>3.9 (0.2)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10.9 (1.0)</td>
<td>15.3 (1.2)</td>
<td>17.0 (0.9)</td>
<td>15.3 (0.7)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>49.0 (5.5)</td>
<td>72.1 (7.7)</td>
<td>82.5 (4.8)</td>
<td>76.0 (3.4)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>240.4 (27.0)</td>
<td>349.7 (35.3)</td>
<td>408.5 (24.3)</td>
<td>378.8 (17.4)</td>
</tr>
<tr>
<td>Gumbel</td>
<td>64</td>
<td>5</td>
<td>2.7 (0.3)</td>
<td>3.3 (0.4)</td>
<td>3.4 (0.5)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.3 (1.1)</td>
<td>9.4 (1.2)</td>
<td>10.1 (1.5)</td>
<td>12.2 (0.6)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>26.0 (4.2)</td>
<td>35.8 (4.7)</td>
<td>38.5 (5.6)</td>
<td>57.7 (5.1)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>117.2 (12.5)</td>
<td>154.4 (19.0)</td>
<td>167.5 (18.2)</td>
<td>288.2 (18.0)</td>
</tr>
<tr>
<td>256</td>
<td>5</td>
<td>2.7 (0.2)</td>
<td>3.3 (0.2)</td>
<td>3.7 (0.2)</td>
<td>3.4 (0.2)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.4 (0.5)</td>
<td>9.9 (0.8)</td>
<td>11.5 (0.9)</td>
<td>12.5 (0.4)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>27.8 (2.8)</td>
<td>38.4 (3.1)</td>
<td>44.7 (3.2)</td>
<td>60.4 (2.3)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>126.8 (10.3)</td>
<td>171.9 (11.2)</td>
<td>202.3 (13.5)</td>
<td>299.1 (13.7)</td>
</tr>
</tbody>
</table>
- `mayplot()`
- more visible than with tables
- new theoretical insights
- a lot more “behind the scenes”
Outlook: The Λ_U inversion problem

Federico Degen (Head Risk Modeling and Quantification, Zurich):

Question: How to construct a four-dimensional distribution with matrix of pairwise upper tail dependence coefficients

$$
\Lambda_U = \begin{pmatrix}
1 & 0 & 0 & \alpha \\
0 & 1 & 0 & \alpha \\
0 & 0 & 1 & \alpha \\
\alpha & \alpha & \alpha & 1
\end{pmatrix}, \quad \alpha \in (0, 1)
$$

Joe (1997) \Rightarrow There is no such model for $\alpha > 1/2$.

Open problems:
- ...Is this bound sharp? How does it extend to general d?
- ...How does it change for different Λ_U?
- ...How can one construct a corresponding d-dimensional copula?
Interesting connection with **hierarchical copulas**:

\[
\Lambda_U = \begin{pmatrix}
1 & 0 & 0 & \alpha \\
0 & 1 & 0 & \alpha \\
0 & 0 & 1 & \alpha \\
\alpha & \alpha & \alpha & 1
\end{pmatrix}, \quad \alpha \in (0, 1).
\]

Idea: \(C(u) = C_0(C_1(u_1, u_2, u_3), u_4) \) with \(\lambda_U = \alpha \) and \(\lambda_U = 0 \) \(\Rightarrow \) \(\Lambda_U! \)

Note:

- **No** model with \(\lambda_U < \lambda_U \) is known.
- **Deeper problem:** When is \(C(u) = C_0(C_1(u_1), \ldots, C_{d_0}(u_{d_0})) \) a valid copula?
- Numerical tests indicate: **Not necessarily**, but it can…
- What about **densities**? Connection with Hofert and Pham (2013)?
Other research projects

QRM:
- Superadditivity of VaR in portfolios of bonds (Alexander J. McNeil)

EVT:
- OpRisk model depending on time and covariates; data from Willis Re (Valérie Chavez-Demoulin, Paul Embrechts) ⇒ QRM, demo("game")
- Densities of EVC (Gabriel Doyon)

Dependence modeling:
- GoF ($d \gg 2$) via radial parts (Johanna Nešlehová, Christian Genest)
- Tilted Archimedean copulas (Johanna Ziegel)
- Multi-frailty copulas (Alexander J. McNeil)

R packages: copula, simsalapar; contributing to QRM, mvtnorm
Thank you for your attention