Modeling Ordinal Categorical Data tutorial

Modeling Ordinal Categorical Data

Alan Agresti
Distinguished Professor Emeritus
Department of Statistics

University of Florida, USA

Presented for Vienna University of Economics and Business
May 21, 2013




Ordinal categorical responses
e Patient quality of life (excellent, good, fair, poor)

e Political philosophy (very liberal, slightly liberal, moderate,

slightly conservative, very conservative)
e Government spending (too low, about right, too high)

e Categorization of an inherently continuous variable, such as
body mass index, BMI = weight(kg)/[height(m)]Q,
measured as (< 18.5, 18.5-25, 25-30, > 30)

for (underweight, normal weight, overweight, obese)

For ordinal response variable y with ¢ categories, our focus is on

modeling how

P(y:j)7 j:1727'°'7c7

depends on explanatory variables @, which can be categorical

and/or quantitative.

The models treat observations on y at fixed  as multinomial.




Outline

1: Logistic Regression Using Cumulative Logits

(“proportional odds” model, non-proportional odds)

2: Other Ordinal Models

(adjacent-category logits, continuation-ratio logits, cumulative

probits and complementary log-log)

These notes are extracted from a two-day short course that I've

presented at Padova, Firenze, and Groningen.




Focus of tutorial
The primary methods for modeling ordinal categorical responses

Emphasis on concepts, examples of use, complicating issues,

rather than theory, derivations, or technical details

Examples included of how to fit models using SAS, R, Stata
(thanks, Kat Chzhen for Stata), but output is provided to

enhance interpretation, not to teach software.

For R for ordinal models, Thomas Yee’'s VGAM library is

especially useful; see
www.stat.auckland.ac.nz/ ~yee/VGAM.

Joseph Lang’s R function mph.fit (link at

www.stat.ufl.edu/ ~aa/ordinal/ord.html )
fits some nonstandard models, must be requested from him at
U. of lowa (jblang@iowa.uiowa.edu). Also useful is detailed R
tutorial by Laura Thompson to accompany my book
Categorical Data Analysis, linked at R section of
www.stat.ufl.edu/ ~aal/cda/cda.html

— This lecture assumes some familiarity with basic categorical data

methods (contingency tables, logistic regression).

— Lecture based on material in Analysis of Ordinal Categorical
Data, 2nd ed., Wiley, 2010




1. Logistic Regression Using Cumulative Logits

y an ordinal response (c categories)

x an explanatory variable

Model P(y < j), j=1,2,---,c— 1, using logits

logit[ P(y < j)] log[P(y < j)/P(y > j)]

a;j + Pz, j=1,...,c—1

This is called a cumulative logit model.

As in ordinary logistic regression, effects described by odds ratios.
Here, we compare odds of being below vs. above any point on the

response scale (cumulative odds ratios).

For fixed 7, looks like ordinary logistic regression for binary
response (below 7, above 7).

See figure on next page for ¢ = 4 categories.




Model satisfies

Ply<jl|z)/Ply>j|z)
Ply<jlz2)/P(y>j|z2)

for all 7 (Proportional odds property)

— 5(151 — 56’2)

e (3 = cumulative log odds ratio for 1-unit increase in predictor

e Model assumes effect (3 is identical for every “cutpoint” for

cumulative probability, 9 =1, --- ,c— 1
Logistic regression is special case ¢ = 2

Software for maximum likelihood (ML) fitting includes R
functions vglm in VGAM library and polr (proportional odds
logistic regression) in MASS library, SAS (PROC LOGISTIC,
PROC GENMOD), Stata programs ologit, oglm, SPSS program

plum.




Example: Detecting trend in dose response

Effect of intravenous medication doses on patients with
subarachnoid hemorrhage trauma

Treatment

Group (x)

Glasgow Outcome Scale (y)

Death

Veget.

State

Major

Disab.

Minor

Disab.

Good

Recov.

Placebo
Low dose
Med dose

High dose

59 (28%)
48 (25%)
44 (21%)
43 (22%)

25

21
14
4

46
44
54
49

48
47
64
58

32 (15%)
30 (16%)
31 (15%)
41 (21%)

Some indication that chance of death decreases as dose increases.

Model with linear effect of dose on cumulative logits for outcome

(assigning scores x = 1, 2, 3, 4 to ordinal x),

logit| P(y < j)] = o + B

has ML estimate 3 = —0.176 (SE = 0.056)

Likelihood-ratio test of Hy 3 = 0 has test statistic = 9.6 (df =1, P
= 0.002), based on twice difference in maximized log likelihoods

compared to simpler model with 5 = 0.




R for modeling dose-response data, using vgim() in VGAM library

> trauma <- read.table("trauma.dat”, header=TRUE)
> trauma
dose yl y2 y3 y4 y5
1 59 25 46 48 32
2 48 21 44 47 30
3 44 14 54 64 31
4 43 4 49 58 41
> library(VGAM)
> fit <- vglm(cbind(yl,y2,y3,y4,y5) ~ dose,
family=cumulative(parallel=TRUE), data=trauma)
> summary(fit)

Coefficients:

Value Std. Error t value
(Intercept):1 -0.71917 0.15881 -4.5285
(Intercept):2 -0.31860 0.15642 -2.0368
(Intercept):3 0.69165 0.15793 4.3796
(Intercept):4 2.05701 0.17369 11.8429
dose -0.17549 0.05632 -3.1159

Residual Deviance: 18.18245 on 11 degrees of freedom
Log-likelihood: -48.87282 on 11 degrees of freedom
Number of Iterations: 4

> fitted(fit) # estimated multinomial response prob’s

yl y2 y3 y4
1 0.2901506 0.08878053 0.2473198 0.2415349 0.1322142
2 0.2553767 0.08321565 0.2457635 0.2619656 0.1536786
3 0.2234585 0.07701184 0.2407347 0.2808818 0.1779132
4 0.1944876 0.07043366 0.2325060 0.2975291 0.2050436

> vgim(cbind(yl,y2,y3,y4,y5) © 1, # null model
family=cumulative(parallel=TRUE), data=trauma)

Coefficients:
(Intercept):1 (Intercept):2 (Intercept):3 (Intercept):

-1.1423167 -0.7459897 0.2506811 1.6064484
Degrees of Freedom: 16 Total; 12 Residual
Residual Deviance: 27.79488
Log-likelihood: -53.67903

> 1 - pchisq(2 *(53.67903 - 48.87282) , df=1)
[1] 0.001932658 # P-value for likelihood-ratio test of no do se effect

Note: propodds() is another possible family for vglm; it defaults to cumulative(reverse = TRUE, link = "logit”, parallel = TRUE)




R for modeling dose-response data using polr() in MASS library, for

which response must be an ordered factor

> trauma2 <- read.table("trauma2.dat", header=TRUE)
> traumaz2
dose response count
1 59
25
46
48
32
48

20 4 5 41
> y <- factor(trauma2$response)

> fit.clogit <- polr(y ~ dose, data=trauma2, weight=count)
> summary(fit.clogit)

Re-fitting to get Hessian

Coefficients:
Value Std. Error t value
dose 0.1754816 0.05671224 3.094245

Intercepts:

Value Std. Error t value
1|2 -0.7192 0.1589 -4.5256
2|3 -0.3186 0.1569 -2.0308
3|4 0.6917 0.1597 4.3323
4]5 2.0570 0.1751 11.7493

Residual Deviance: 2461.349

> fitted(fit.clogit)

1 2 3 4
1 0.2901467 0.08878330 0.2473217 0.2415357 0.1322126
2 0.2901467 0.08878330 0.2473217 0.2415357 0.1322126

20 0.1944866 0.07043618 0.2325084 0.2975294 0.2050394

Note: This uses the model formula logit[ P (y < j)] = o B’ & based on a latent variable model (p. 18 of these notes),

for which ,@ has opposite sign.




SAS for cumulative logit modeling of dose-response data

data trauma;

input dose outcome count @@;

datalines;

1159 1225 1346 1448 15 32

2148 2221 2344 2447 2530

3144 3214 3354 3464 3531

4143 42 4 4349 4458 4541

proc logistic; freq count; * proportional odds cumulative logit model,
model outcome = dose / aggregate scale=none;

run;

SOME OUTPUT:

Deviance and Pearson Goodness-of-Fit Statistics
Criterion Value DF Value/DF Pr > ChiSq
Deviance 18.1825 11 1.6530 0.0774
Pearson 15.8472 11 1.4407 0.1469

Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 9.6124 1 0.0019
Score 9.4288 0.0021
Wald 9.7079 0.0018

Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -0.7192 0.1588 20.5080 <.0001
Intercept 2 -0.3186 0.1564 4.1490 0.0417
Intercept 3 0.6916 0.1579 19.1795 <.0001
Intercept 4 2.0570 0.1737 140.2518 <.0001
dose -0.1755 0.0563 9.7079 0.0018

1
1
1
1




Stata for modeling trauma data

Note: This uses parameterization

ogt[P(y < 5)] = aj — B/

generated by latent variable model. For some details about the use of the ologit function, see
www.ats.ucla.edu/stat/stata/output/stata_ologit_out put.htm
and

www.stata.com/help.cgi?ologit

*Uusing grouped count data
. infile dose yl y2 y3 y4 y5 using trauma.txt in 2/5, clear
(eof not at end of obs)
(4 observations read)

. gen groupid=_n

. reshape long vy, i(groupid)
(note: j =12 3 405)

Data -> long

Number of obs.
Number of variables
j variable (5 values)
Xij variables:

. rename y count
. rename _jy

. list

+
| groupid y
|




. ologit y dose [fw=count]

Ordered logistic regression

Log likelihood = -1230.6744

y |
+

Coef.

Std. Err.

dose |
+

1754861

.0567122

/cutl |
/cut2 |
/cut3 |
/cutd |

-.7191664

-.3186011
.6916531
2.057009

.1589164

.1568861
.1596505
1750751

3.09

/I counts are used as frequency wei

Number of obs

LR chi2(1)
Prob > chi2

Pseudo R2

P>|z|

0.002

[95% Conf. Interval]

.0643322

.28664

-1.030637

-.6260921
378744
1.713868

-.407696

-.0111101
1.004562
2.40015




Goodness-of-fit statistics:

Pearson X2 =15.8
deviance G? = 18.2

(df =16 — 5=11)
P-values = 0.15 and 0.18

Model seems to fit adequately

Odds ratio interpretation: For dose ¢ + 1, estimated odds of
outcome < j (instead of > j) equal exp(—0.176) = 0.84 times
estimated odds for dose 7; equivalently, for dose ¢ + 1, estimated
odds of outcome > j (instead of < j) equal exp(0.176) = 1.19

times estimated odds for dose 7.

95% confidence interval for exp(— () is

60.176i1.96(0.056) — (107’ 133)

e Cumulative odds ratio for dose levels (rows) 1 and 4 equals

6(4—1)0.176 — 1.69




Any equally-spaced scores (e.g. 0, 10, 20, 30) for dose provide

same fitted values and same test statistics (different 5, S F).

Unequally-spaced scores more natural in many cases (e.g.,
doses may be 0, 125, 250, 500). “Sensitivity analysis” usually
shows substantive results don’'t depend much on that choice,

unless data highly unbalanced (e.g., Graubard and Korn 1987).

The cumulative logit model uses ordinality of y without

assigning category scores.

Alternative analysis treats dose as factor, using indicator
variables. Double the log-likelihood increases only 0.13, df =
2. With 34 = 0:

B, =0.52, By = 0.40, B3 =0.20 (SF =0.18 each)

Testing Hy: 81 = B2 = B3 = B4 gives likelihood-ratio (LR)
stat. =9.8 (df =3, P =0.02).

Using ordinality often increases power (focused on df = 1).




R for modeling dose-response data, with dose as a factor, using the

vglm function in the VGAM library:

attach(trauma)

library(VGAM)

fit2 <- vglm(cbind(yl,y2,y3,y4,y5) ~ factor(dose),
family=cumulative(parallel=TRUE), data=trauma)

> summary(fit2)
Coefficients:
Estimate Std. Error 2z value

(Intercept):1 -0.91880 0.13204 -6.95875
(Intercept):2 -0.51826 0.12856 -4.03122
(Intercept):3 0.49215 0.12841 3.83255
(Intercept):4 1.85785 0.14527 12.78927
factor(dose)2 -0.11756 0.17843 -0.65885
factor(dose)3 -0.31740 0.17473 -1.81649
factor(dose)4 -0.52077 0.17795 -2.92657

Residual deviance: 18.04959 on 9 degrees of freedom
Log-likelihood: -48.80638 on 9 degrees of freedom
Number of iterations: 4

> 1 - pchisq(2 *(53.67903 - 48.80638), df=3)
[1] 0.02086 # P-value for likelihood-ratio test of no dose ef




SAS for modeling dose-response data, with dose as a factor using
a CLASS statement to create indicator predictors for first three

categories

data trauma;

input dose outcome count @@;

datalines;

1159 1225 1346 1448 15 32
2148 2221 2344 2447 25 30
3144 3214 3354 3464 3531
4143 42 4 4349 4458 45 41

proc logistic; freq count; class dose / param=ref; * treat dose as factor;
model outcome = dose / aggregate scale=none;
run;

SOME OUTPUT WITH DOSE AS A FACTOR:

Deviance and Pearson Goodness-of-Fit Statistics
Criterion Value DF Value/DF Pr > ChiSq
Deviance 18.0496 2.0055 0.0346
Pearson 15.7881 1.7542 0.0714

Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 9.7453 3 0.0209
Score 9.5583 0.0227
Wald 9.8440 0.0199

Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -1.4396 0.1416 103.3943 <.0001
Intercept 2 -1.0390 0.1369 57.6363 <.0001
Intercept 3 -0.0286 0.1317 0.0472 0.8280
Intercept 4 1.3371 0.1428 87.7207 <.0001
dose 0.5208 0.1779 8.5641 0.0034
dose 0.4032 0.1820 4.9072 0.0267
dose 0.2034 0.1779 1.3071 0.2529




Checking goodness of fit for contingency tables

e With nonsparse contingency table data, can check goodness of
fit using Pearson X2, deviance G? comparing observed cell

counts to expected frequency estimates.

e At setting ¢ of predictor with n; = Z;Zl N5 multinomial
observations, expected frequency estimates equal

A

fij =niPly=17), j=1,...,c

® Pearson test statistic is

x2=%" (mij — fiij)°

i

2,7
Deviance (likelihood-ratio test statistic for testing that model

holds against unrestricted alternative) is

- 22”@] log (nw>

Hij
df = No. multinomial parameters — no. model parameters

e \With sparse data, continuous predictors, can use such

measures to compare nested models.




Other properties of cumulative logit models

e Model extends to multiple explanatory variables,

logit| P(y < j)] = aj + Brx1 + -+ + Bray

that can be qualitative (i.e., factors) or quantitative

(use indicator variables for factors)

e For subject 7 with values a; on a set of explanatory variables,

estimated conditional distribution function is

e Can motivate proportional odds structure by a regression
model for underlying continuous latent variable
(Anderson and Philips 1981, McKelvey and Zavoina 1975)




observed ordinal response

underlying continuous latent variable,

y* = ﬁ’a: + € where € has cdf (G with mean 0. Thresholds

(cutpoints) —00 = g < 1 < ... < . = 00 such that
y=7 if a1 <y < ay
Then, at fixed @ (see figure on next page)
Ply<j)=Py" <qa;) =Py -p'z<a; - Bz
=Ple<a; — Bz
— Model G™'[P(y<j|x)=a;— B
with G~ a link function. Get cumulative logit model when GG =

logistic cdf (G_1 — logit). So, cumulative logit model fits well

when regression model holds for underlying logistic response.

Note: The model is often expressed as

ogit P(y < j)] = a; — B'.

Then, Bj > ( has usual interpretation of ‘positive’ effect

(Stata ologit and SPSS use this parameterization. Same fit,

estimates, as using o; + 3z, except sign of 3)




Note: This derivation suggests such models are designed to detect
shifts in location (center), not dispersion (spread), at different

settings of explanatory variables.

This model and most others in this tutorial imply that conditional

distributions of y at different settings of explanatory variables are

stochastically ordered; i.e., the cdf at one setting is always above

or always below the cdf at another level.




Other properties of cumulative logit models (continued)

e Can use similar model with alternative “cumulative link”

ink[P(y; < )] = a; — B'a;

of cumulative prob.s (McCullagh 1980); e.g., cumulative probit
model (link fn. = inverse of standard normal cdf) applies

naturally when underlying regression model has normal y*.

Effects (3 invariant to choice and number of response
categories (If model holds for given response categories, holds

with same (3 when response scale collapsed in any way).

For subject z, let (y;1, - . - , Y;c) be binary indicators of the
response, where y;; = 1 when response in category j. For
independent multinomial observations at values x; of the

explanatory variables for subject z, the likelihood function is

__exp(ay—1 + B'zi)
_1 -+ exp(aj -+ ,8/33@) 1+ exp(ozj_l -+ ,B’wz-




Model fitting and inference

e Model fitting requires iterative methods. Log likelihood is
concave (Pratt 1981). To get standard errors,
Newton-Raphson inverts observed information matrix
—0°L(B)/0B,08, (e.g., SAS PROC GENMOD)
Fisher scoring inverts expected information matrix
E(—0*L(B)/98.,98) (e.g., R vglm function,

SAS PROC LOGISTIC).

McCullagh (1980) provided Fisher scoring algorithm for

cumulative link models.

Inference uses standard methods for testing H: Bj =0

(likelihood-ratio, Wald, score tests) and inverting tests of Hy:

B; = fBjo to get confidence intervals for [3;.

A~

Wald: 2z = Bj;gjo ,or z2 ~ 2 poorest method for small 1 or

extremely large estimates (infinite being a special case)

A

Likelihood-ratio: —2([L(B,) — L(B3)] ~ x?




Alternative ways of summarizing effects
e Some researchers find odds ratios difficult to interpret.

e Can compare probabilities or cumulative prob’s for y directly,

such as comparing P(y = 1) or P(y = ¢) at maximum and

minimum values of a predictor (at means of other predictors).

Summary measures of predictive power include

(1) R? for regression model for underlying latent response

variable (McKelvey and Zavoina 1975, provided by Stata)

(2) correlation between 4y and estimated mean of conditional
dist. of y from model fit, based on scores {v; } for y

(mimics multiple correlation).

(3) concordance index (probability that observations with

different outcomes are concordant with predictions)




Checking fit (general case) and selecting a model

e Lack of fit may result from omitted predictors (e.g., interaction
between predictors), violation of proportional odds assumption,
wrong link function. Often, lack of fit results when there are

dispersion as well as location effects.

Can check particular aspects of fit using likelihood-ratio test to
compare to more complex models (test statistic = change in

deviance).

Some software (e.g., PROC LOGISTIC) provides score test of

proportional odds assumption, by comparing model to more

general “non-proportional odds model” with effects {3, }. This

test applicable also when X2, G? don't apply, but is liberal
(i.e., P(Type | error) too high). LR test also possible, except
when more general model has cumulative probabilities

out-of-order.

When model with proportional odds structure fails, we can use
estimated effects in non-proportional odds model (e.g., using
vglm function in R or by fitting binary logistic model to each

collapsing) to describe effects more fully.

Even if proportional odds model has lack of fit, it may usefully
summarize “first-order effects” and have good power for testing

H: no effect, because of its parsimony




Cumulative logit models without proportional odds

Generalized model permits effects of explanatory variables to differ

for different cumulative logits,

Iogit[P(yi < ])] — —|—,8j$7;, 7=1,...,c—1.

Each predictor has ¢ — 1 parameters, allowing different effects for
logit| P(y; < 1), logit| P(y; < 2)], ..., logit[P(y; < c—1)].

Even if this model fits better, for reasons of parsimony a simple

model with proportional odds structure is sometimes preferable.

e Effects of explanatory variables easier to summarize and

interpret.

With large n, small P-value in test of proportional odds

assumption may reflect statistical, not practical, significance.

Effect estimators using simple model are biased but may have
smaller MSE than estimators from more complex model, and
tests may have greater power, especially when more complex

model has many more parameters.

Is variability in effects great enough to make it worthwhile to

use more complex model?




R for modeling dose-response data without proportional odds,

using vgim() in VGAM library without parallel=TRUE option

trauma <- read.table("trauma.dat", header=TRUE)
trauma
dose yl y2 y3 y4 y5
1 59 25 46 48 32
2 48 21 44 47 30
3 44 14 54 64 31
4 43 4 49 58 41
library(VGAM)
fit2 <- vglm(cbind(y1,y2,y3,y4,y5) ~ dose, family=cumul ative, data=trauma)
summary(fit2)

Coefficients:

Value Std. Error t value
(Intercept):1 -0.864585  0.194230 -4.45133
(Intercept):2 -0.093747  0.178494 -0.52521
(Intercept):3 0.706251  0.175576 4.02248
(Intercept):4 1.908668  0.238380 8.00684
dose:1 -0.112912  0.072881 -1.54926
dose:2 -0.268895  0.068319 -3.93585
dose:3 -0.182341  0.063855 -2.85555
dose:4 -0.119255  0.084702 -1.40793

Residual Deviance: 3.85163 on 8 degrees of freedom
Log-likelihood: -41.70741 on 8 degrees of freedom

> 1 - pchisq(deviance(fit)-deviance(fit2),
df=df.residual(fit)-df.residual(fit2))
[1] 0.002487748

The improvement in fit is statistically significant, but perhaps not substantively significant;

effect of dose is moderately negative for each cumulative probability.




Example: Religious fundamentalism by region (2006 GSS data)

Yy = Religious Beliefs

T = Region Fundamentalist Moderate Liberal

Northeast 92 (14%) 352 (52%) 234 (34%)
Midwest 274 (27%) 399 (40%) 326 (33%)
South 739 (44%) 536 (32%) 412 (24%)
West/Mountain 192 (20%) 423 (44%) 355 (37%)

Create indicator variables {r; } for region and consider model

logit| P(y < j)] = aj + B1r1 + Bare + B33

Score test of proportional odds assumption compares with model
having separate {Bz} for each logit, that is, 3 extra parameters.
SAS (PROC LOGISTIC) reports:

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq
93.0162 3




SAS for cumulative logit modeling, assuming proportional odds, of

GSS religion and region data

data religion;

input region fund count;

datalines;

92
352
234
274
399
326
739
536
412
192
423
355

W NEFE, WDNPEFPEP WDNE WDNPRP

1
1
1
2
2
2
3
3
3
4
4
4

proc genmod; weight count; class region;

model fund =

run;

region / dist=multinomial link=clogit Irci typ

proc logistic; weight count; class region / param=ref;

model fund =

run;

region / aggregate scale=none;

GENMOD output:

Parameter
Interceptl
Intercept?2
region
region
region
region

Analysis Of Parameter Estimates

Likelihood Ratio
Standard 95% Confidence Chi-
DF Estimate Error Limits Square
1 -1.2618 0.0632 -1.3863 -1.1383 398.10
1 0.4729 0.0603 0.3548 0.5910 61.56
-0.0698 0.0901 -0.2466 0.1068 0.60
0.2688 0.0830 0.1061 0.4316 10.48
0.8897 0.0758 0.7414 1.0385 137.89
0.0000 0.0000 0.0000 0.0000




R for religion and region data, using vglm() for cumulative logit

modeling with and without proportional odds structure

religion <- read.table("religion_region.dat",header= TRUE)
> religion
region yl y2 y3
1 92 352 234
2 274 399 326
3 739 536 412
4 192 423 355
rl < -ifelse(region==1,1,0); r2 <-ifelse(region==2,1,0 ); r3 <-ifelse(region==3,1,0)
cbind(rl,r2,r3)
r1r2
1] 1 0 O
2] 0 1 O
3] 0 0 1
4] 0 0 O
> library(VGAM)
> fit.po <- vglm(cbind(yl,y2,y3) = rl+r2+r3,
family=cumulative(parallel=TRUE),data=religion)
> summary(fit.po)
Coefficients:
Value Std. Error t value
(Intercept):1 -1.261818  0.064033 -19.70584
(Intercept):2 0.472851  0.061096  7.73948
ri -0.069842  0.093035 -0.75071
r2 0.268777  0.083536  3.21750
r3 0.889677  0.075704 11.75211
Residual Deviance: 98.0238 on 3 degrees of freedom
Log-likelihood: -77.1583 on 3 degrees of freedom
> fit.npo <- vgim(cbind(yl,y2,y3) = rl+r2+r3, family=cumu lative,religion)
> summary(fit.npo)
Coefficients:
Value Std. Error t value
(Intercept):1 -1.399231  0.080583 -17.36377
(Intercept):2 0.549504  0.066655  8.24398
ri:1 -0.452300  0.138093 -3.27532
r1:2 0.090999 0.104731  0.86888
r2:1 0.426188  0.107343  3.97032
r2:2 0.175343  0.094849  1.84866
r3:1 1.150175 0.094349 12.19065
r3:2 0.580174  0.087490  6.63135
Residual Deviance: -5.1681e-13 on 0 degrees of freedom
Log-likelihood: -28.1464 on O degrees of freedom
> 1 - pchisq(deviance(fit.po)-deviance(fit.npo),
df=df.residual(fit.po)-df.residual(fit.npo))
[1] 4.134028e-21




Stata for modeling religion and region data, for cumulative logit

modeling with and without proportional odds

. infile region y1 y2 y3 using region.txt in 2/5, clear
(eof not at end of obs)
(4 observations read)

. list
+

| region

+

. gen groupid=_n
. reshape long vy, i(groupid)
(note: j =12 3)

Data

Number of obs.
Number of variables
j variable (3 values)
Xij variables:

. rename y count
. rename _j vy
. list
+ +
| groupid 'y region count |




412 |
192 |

423 |
355 |

. tab region, gen(reg) // create dummy indicators for region

region | Freq. Percent Cum.
+

25.00 25.00
25.00 50.00
25.00 75.00
25.00 100.00

+
Total | 12 100.00

*check the proportional odds assumption
. omodel logit y regl reg2 reg3 reg4 [fw=count]

Ordered logit estimates Number of obs
LR chi2(3)
Prob > chi2
Log likelihood = -4622.4007 Pseudo R2

vy | Coef. Std. Err. P>|z]| [95% Conf. Interval]

+
regl | .0698393 .0901259 0.438 -.1068042
reg2 | -.2687773 .0830439 0.001 -.4315402
reg3 | -.8896776 .0757644 0.000 -1.038173

.2464828

-.1060143
-.741182

+
_cutl | -1.261818 .0632411 (Ancillary parameters)
_cut2 | 4728514  .0602666

Approximate likelihood-ratio test of proportionality of o
across response categories:
chi2(3) = 98.78
Prob > chi2 = 0.0000




*model WITHOUT PROPORTIONAL ODDS ASSUMPTION

>
. gologit2 y regl reg2 reg3 reg4 [fw=count]

Generalized Ordered Logit Estimates

Log likelihood = -4573.3888

y | Coef.

Std. Err.

I
regl |
reg2 |
reg3 |

_cons |
+

4523001
-.4261876
-1.150175

1.399231

1073435
.0943489

3.28
-3.97
-12.19

17.36

.1380932

.0805834

I
regl |
reg2 |
reg3 |

_cons |

-.090999
-.1753435
-.5801736
-.5495045

1047314
.0948488
.0874895
.0666552

4334
304.51
0.0000

0.0322

Number of obs
LR chi2(6)
Prob > chi2
Pseudo R2

P>|z| [95% Conf. Intervall

1229577
-.2157982
-.9652542

1.557172

.1816424
-.636577
-1.335095

1.241291

0.001
0.000
0.000

0.000

1142709
.0105567
-.4086973
-.4188627

-.2962688
-.3612436

-.75165
-.6801463




Model assuming proportional odds has (with 54 = 0)
(B1, Ba, B3) = (—0.07,0.27,0.89)

For more general model,

(81, B2, B3) = (—0.45, 0.43, 1.15) for logit| P(Y < 1)]
(B1, B2, B3) = (0.09, 0.18, 0.58) for logit[ P(Y < 2)].

Change in sign of Bl reflects lack of stochastic ordering of regions

1 and 4; their cdf’'s don’t always have same order.

Compared to resident of West, a Northeast resident is less likely to
be fundamentalist (see 31 = —0.45 < 0 for logit[P(Y < 1)])
but slightly more likely to be fundamentalist or moderate and slightly
less likely to be liberal (see 31 = 0.09 > 0 for logit[ P(Y < 2))).

Peterson and Harrell (1990) proposed partial proportional odds
model falling between proportional odds model and more general

model,

logit| P(y; < j)] = o + 6/:131- -+ 'y;uz-, j=1,...,c—1.




2. Other Ordinal Models
a. Models using adjacent-category logits (ACL)

log[P(y; = §)/P(y: = j +1)] = o + B'x;

Odds uses adjacent categories, whereas in cumulative logit
model it uses entire response scale, so interpretations use

local odds ratios instead of cumulative odds ratios.

Model also has proportional odds structure, for these logits

(effect 3 same for each cutpoint 7).

Effects in paired-category logit models such as ACL are
estimable with retrospective studies (e.g., case-control) that
sample & conditional on ¥, but not with models such as
cumulative logit that group categories together

(Mukherjee and Liu 2008).




e Anderson (1984) noted that if

(x|y=7) ~ N(u;, %)

Ply=j|=)
Ply=j+1|=)

:Oéj —|—,8;$

log

:Bj = E_l(l{j — Nj+1)

Equally-spaced means imply ACL model holds with same

effects for each logit.

ACL and cumulative logit models with proportional odds
structure fit well in similar situations and provide similar
substantive results (both imply stochastic orderings of

conditional distributions of y at different predictor values)

Which to use? Cumulative logit extends inference to underlying
continuum and is invariant with respect to choice of response
categories. ACL gives effects in terms of fixed categories,
which is preferable to provide interpretations for given
categories rather than underlying continuum, and those effects

are estimable with retrospective studies.




ACL model effects for any pair of response categories

Since for j < k,

—> = log( & )+log (Wjﬂ
Tj+1 |

ACL model log [Wﬁﬁ%)] =a; + 0Oz

implies paired-category logistic model

log [:ﬁg] - kz_;la + B8k —

so log odds ratios multiplied by (k — 7).

Model equivalently can be expressed in terms of baseline-category
logits (BCL), which with baseline c are

log (ﬂ) log (@) ..., log (Wc_l)
ﬂ-C 7TC

ACL model in terms of category probabilities is




Example: Stem Cell Research and Religious Fundamentalism

(from 2006 General Social Survey)

Stem Cell Research

Religious Definitely Probably Probably Definitely
Gender Beliefs Fund Fund Not Fund Not Fund

Female Fundamentalist 34 (22%) 67 (43%) 30 (19%) 25 (16%)
Moderate 41 (25%) 83 (52%) 23 (14%) 14 (9%)
Liberal 58 (39%) 63 (43%) 15 (10%) 12 (8%)

Fundamentalist 21 (19%) 52 (46%) 24 (21%) 15 (13%)
Moderate 30 (27%) 52 (47%) 18 (16%) 11 (10%)
Liberal 64 (45%) 50 (36%) 16 (11%) 11 (8%)

For gender g (1 = females, 0 = males) and religious beliefs treated
quantitatively with x = (1, 2, 3), ACL model

log(mj/mjv1) = aj + Brx + Bag

IS equivalent to BCL model

log(mj/ma) = a; + B1(4 — )z + B2(4 — J)g




R: vgim() function in VGAM library has adjacent-categories logit

model as a model option.

> stemcell <- read.table("scresrch.dat",header=TRUE)
> stemcell
religion gender vyl y2 y3 y4
0 21 52 24 15
34 67 30 25
30 52 18 11
41 83 23 14
64 50 16 11
1 58 63 15 12
fitadj <- vglm(cbind(yl,y2,y3,y4) ~ religion + gender,
family=acat(reverse=TRUE, parallel=TRUE), data=stemce
> summary(fit.ad))

Coefficients:

Value Std. Error t value
(Intercept):1 -0.95090  0.142589 -6.66880
(Intercept):2 0.55734  0.145084 3.84147
(Intercept):3 -0.10656  0.164748 -0.64680
religion 0.26681  0.047866 5.57410
gender -0.01412  0.076706 -0.18408

Number of linear predictors: 3

Residual Deviance: 11.99721 on 13 degrees of freedom
Log-likelihood: -48.07707 on 13 degrees of freedom

> fitted(fit.ad])
yl y2 y3 y4
0.2177773 0.4316255 0.1893146 0.16128261
0.2138134 0.4297953 0.1911925 0.16519872
0.2975956 0.4516958 0.1517219 0.09898673
0.2931825 0.4513256 0.1537533 0.10173853
0.3830297 0.4452227 0.1145262 0.05722143
0.3784551 0.4461609 0.1163995 0.05898444




SAS: Can fit with PROC NLMIXED, which permits specifying the

log-likelihood to be maximized, here Il statement and expressing

model as baseline-category logit model.

data stemcell;
input religion gender yl1 y2 y3 y4,
datalines;
0 21 52 24 15

34 67 30 25

30 52 18 11

41 83 23 14

64 50 16 11

58 63 15 12

/ = Adjacent-categories logit model with proportional odds */
proc nimixed data=stemcell;

etal = alphal + alpha2 + alpha3 + 3 *petal *religion + 3  *beta2 *gender;
eta2 = alpha2 + alpha3 + 2  xbetal *religion + 2  xbeta2 *gender;
eta3 = alpha3 + betal =religion + beta2 * gender;

p4 1/ (1 + exp(etal) + exp(eta2) + exp(etal));

pl exp(etal) =*p4;

p2 exp(eta2) =*p4;

p3 exp(etad) =*p4;

II'="yl =log(pl) + y2 +log(p2) + y3 =*log(p3) + y4 =*log(p4);

model y1 = general(ll);

run;

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > || Alpha Lower  Upper
alphal -0.9509 0.1426 6 -6.67 0.0006 0.05 -1.2998 -0.6020
alpha2 0.5573 0.1451 6 3.84 0.0085 0.05 0.2023 0.9123
alpha3 -0.1066 0.1648 6 -0.65 0.5417 0.05 -0.5097 0.2966
betal 0.2668 0.04787 6 5.57 0.0014 0.05 0.1497 0.3839
beta2 -0.01412 0.07671 6 -0.18 0.8600 0.05 -0.2018 0.1736




For moderates, estimated odds of (definitely fund) vs. (probably
fund) are exp(0.2668) = 1.31 times estimated odds for
fundamentalists, whereas estimated odds of (definitely fund)
vs. (definitely not fund) are exp[3(0.2668)] = 2.23 times the

estimated odds for fundamentalists, for each gender.

Ordinal models with trend in location display strongest
association with most extreme categories. e.g., for liberals,
estimated odds of (definitely fund) vs. (definitely not) are
exp[2(3)(0.2668)] = 4.96 times estimated odds for

fundamentalists, for each gender.

Model describes 18 multinomial probabilities (3 for each

religion X gender combination) using 5 parameters. Deviance

G? = 12.00, df = 18 — 5 = 13 (P-value = 0.53).
Similar substantive results with cumulative logit model.

Religious beliefs effect larger (Bl = 0.488, SE = 0.080),

since refers to entire response scale. However, statistical

significance similar, with (31 /SE) > 5 for each model.




Adjacent-Categories Logit Models with Nonproportional Od ds

e As in cumulative logit case, model of proportional odds form fits

poorly when there are substantive dispersion effects,

The more general non-proportional odds form is

log[P(y; = 7)/P(y; = j + 1)] = a; + B’

Unlike cumulative logit model, this model does not have
structural problem that cumulative probabilities may be out of

order.

Models lose ordinal advantage of parsimony, but effects still

have ordinal nature, unlike BCL models.

Can fit general ACL model with software for BCL model,

converting its {B;} estimates to Bj — BJ* = A;‘Jrl, since

o () =os (32) s (22
7Tj—i—1 Tc Te

or using specialized software such as vglm function in R
without “PARALLEL = TRUE” option.




Example: Data on stemcell research that had been fitted with ACL

model of proportional odds form

vglm(cbind(yl,y2,y3,y4) ~ religion + gender,
family=acat(reverse=TRUE, parallel=FALSE), data=stem

yl y2 y3 y4
0.1875000 0.4642857 0.2142857 0.13392857
0.2179487 0.4294872 0.1923077 0.16025641
0.2702703 0.4684685 0.1621622 0.09909910
0.2546584 0.5155280 0.1428571 0.08695652
0.4539007 0.3546099 0.1134752 0.07801418
0.3918919 0.4256757 0.1013514 0.08108108

Call:
vgim(formula = chind(yl, y2, y3, y4) ~ religion + gender,
family = acat(reverse = TRUE, parallel = FALSE), data = stemc

Coefficients:
(Intercept):1 (Intercept):2 (Intercept):3 religion:1 re
-1.24835878 0.47098433 0.42740812 0.43819661
religion:3 gender:1 gender:2 gender:3
0.01192302  -0.13683357 0.18706754  -0.16093003

Degrees of Freedom: 18 Total; 9 Residual
Residual Deviance: 5.675836
Log-likelihood: -44.91638

ell)

ligion:2
0.25962043

We then get separate effects of religion and of gender for each
logit. The change in the deviance is 11.997 — 5.676 = 6.32
basedondf=13 — 9 = 4 (P =0.18), so simpler model is

adequate (and simpler to interpret).




b. Models using continuation-ratio logits

log[P(yZ :])/P(yl >+ 1)]7 J=1,.,¢c—1, or
log|P(y: =7 +1)/P(y: <J)], J ne—1

letw; =Ply=j]y>j)=—

Then

log ( m ) — loglu;/(1 - wy)],

7Tj+1_|_..._|_ﬂ'c

e Of interest when a sequential mechanism determines the

response outcome (Tutz 1991) or for grouped survival data

e Simple model with proportional odds structure is

logitjw; ()] = a; +Bx, j=1,....c—1,

e More general model logitjw;(x)] = a; + ,8;:13

has fit equivalent to fit of ¢ — 1 separate binary logit models,

because multinomial factors into binomials,

bin[l, y;1; wi(®e;)]---bin[l —y;1 — - —Y; c—25 Yic—15 We—1(23)]




Example: Tonsil Size and Streptococcus

Tonsil Size

Carrier  Not enlarged Enlarged Greatly Enlarged

Yes 19 (26%) 29 (40%) 24 (33%)

No 497 (37%) 560 (42%) 269 (20%)

Let x = whether carrier of Streptococcus pyogenes (1 = yes, 0 = no)
Continuation-ratio logit model fits well (deviance 0.01, df = 1):

1 T2

]:Ozl—l—ﬁaz, log[

log[ ]zongrﬁaz

7T2‘|‘7T3 73

hasBA = —0.528 (S E = 0.196). Model estimates an assumed
common value exp(—0.528) = 0.59 for cumulative odds ratio

from first part of model and for local odds ratio from second part.

e.g., given that tonsils were enlarged, for carriers, estimated odds
of response enlarged rather than greatly enlarged were 0.59 times

estimated odds for non-carriers.

By contrast, cumulative logit model estimates

exp(—0.6025) = 0.55 for each cumulative odds ratio, and ACL
model estimates exp(—0.429) = 0.65 for each local odds ratio.
(Both these models also fit well: Deviances 0.30, 0.24, df = 1.)




R: VGAM library has continuation-ratio logit model option in vgim()

function

> tonsils <- read.table("tonsils.dat",header=TRUE)
> tonsils
carrier yl1 y2 y3
1 19 29 24
0 497 560 269
library(VGAM)
fit.cratio <- vglm(cbind(yl,y2,y3) = carrier,
family=cratio(reverse=FALSE, paralle|=TRUE), data=ton
> summary(fit.cratio)

Coefficients:

Value Std. Error t value
(Intercept):1 0.51102  0.056141  9.1025
(Intercept):2 -0.73218  0.072864 -10.0486
carrier 0.52846 0.197747 2.6724

Residual Deviance: 0.00566 on 1 degrees of freedom
Log-likelihood: -11.76594 on 1 degrees of freedom

> fitted(fit.cratio)

yl y2 y3
1 0.2612503 0.4068696 0.3318801
2 0.3749547 0.4220828 0.2029625

> fit2.cratio <- vglm(cbind(y1,y2,y3) = carrier,
family=sratio(parallel=TRUE), data=tonsils)

Note: family=cratio parameterizes as reciprocal, so 3 has opposite

sign; will get correct sign using family=sratio as shown at end of

code.




SAS: Fit continuation-ratio logit models using procedures for binary
logistic regression

data tonsils; * look at data as indep. binomials;

input stratum carrier success failure; n = success + failure
datalines;

1119 53

1 0 497 829

2129 24

2 0 560 269

proc genmod data=tonsils; class stratum;
model success/n = stratum carrier / dist=binomial link=log it Irci type3;

Likelihood Ratio
Standard 95% Confidence Chi-
Parameter Estimate Error Limits Square
Intercept 0.7322 0.0729 0.5905 0.8762 100.99
stratum -1.2432 0.0907  -1.4220  -1.0662 187.69
stratum 0.0000 0.0000 0.0000 0.0000
carrier -0.5285 0.1979 -0.9218 -0.1444 7.13

LR Statistics For Type 3 Analysis
Chi-
Source DF Square Pr > ChiSq
carrier 1 7.32

Or, can fit directly using PROC NLMIXED

data tonsil;

input carrier yl y2 y3;

datalines;

119 29 24

0 497 560 269

proc nlmixed data=tonsil,

etal = alphal + beta =*carrier; eta2 = alpha2 + beta * carrier;
pl exp(etal)/(1+exp(etal));

p2 = exp(eta2)/((1+exp(etal)) * (1+exp(eta?)));
p3 = 1-pl-p2;

II'=yl =xlog(pl) + y2 +log(p2) + y3 =*log(p3);
model y1 = general(ll);

run;




Stata for modeling tonsil inflammation data

. infile carrier y1 y2 y3 using tonsils.txt in 2/3, clear

(eof not at end of obs)
(2 observations read)

. list

+ +
| carrier yl y2

|

1 19 29
0 497 560
+

. gen groupid=_n

. reshape long vy, i(groupid)
(note: j =12 3)

Data

y3 |

24 |
269 |

Number of obs.
Number of variables
j variable (3 values)
Xij variables:

. rename y count
. rename _jy

. list

+ +
| groupid 'y  carrier

count |




. tab carrier y [fw=count], row

carrier |

269 | 1,326
37.48 42.23 2029 |  100.00

19 24 |
26.39 40.28 3333 |  100.00

516 293 | 1,398
36.91 42.13 20.96 | 100.00

. ologit y carrier [fw=count] // ordered logit model

Ordered logistic regression Number of obs

LR chi2(1)

Prob > chi2
Log likelihood = -1477.7474 Pseudo R2

y | Coef. Std. Err. P>|z| [95% Conf. Interval]
+

carrier | .6026492 2274158 2.65 0.008 1569224 1.048376
+

fcutl | -.5085091 .0563953 -.6190418
fcut2 | 1.36272 .0673406 1.230735

-.3979763
1.494705

. ocratio y carrier [fw=count] // continuation ratio model

Continuation-ratio logit Estimates Number of obs = 2280

chi2(1) = 7.32
Prob > chi2 = 0.0068

Log Likelihood = -1477.599 Pseudo R2 = 0.0025

vy Coef. Std. Err. P>|z]| [95% Conf. Interval]

+

carrier | .5284613 197904 2.67 0.008 .1405766 .916346

_cutl | -.5110188  .0561416

(Ancillary parameters)
_cut2 | .7321801 .0728583




c. Cumulative Probit Models

Denote cdf of standard normal by .

Cumulative probit model is

1 Py<i)]=a;+Bz, j=1,...,c—1

Recall that in binary response case with single predictor and
B > 0, this says that as a function of x, P(y = 1) looks like a

normal cdf for some p, o.

As in proportional odds models (logit link), effect 3 is same for

each cumulative probability.

(Here, not appropriate to call this a “proportional odds” model,

because interpretations do not apply to odds or odds ratios.)




Properties

Motivated by underlying normal regression model for latent
variable y* with constant o.

(o = 1 gives standard normal for link function).

Then, coefficient 0y, of xj, has interpretation that a unit

increase in xj, corresponds to change in E(y*) of By

standard deviations, keeping fixed other predictor values.

Logistic and normal cdfs having same mean and standard
deviation look similar, so cumulative probit models and

cumulative logit models fit well in similar situations.

Standard logistic distribution G(y) = €¥ /(1 + e¥) has mean
0 and standard deviation 7T/\/§ — 1.8. The ML estimates
from cumulative logit models tend to be about 1.6 to 1.8 times

ML estimates from cumulative probit models.

Quality of fit and statistical significance essentially same for
cumulative probit and cumulative logit models. Both imply
stochastic orderings at different @ levels and are designed to

detect location rather than dispersion effects.




Example: Religious fundamentalism by highest educational

degree

(GSS data from 1972 to 2006, huge n, example chosen to show
difficulty of discriminating between logit and probit even with

enormous sample sizes.)

Religious Beliefs

Highest Degree Fundamentalist Moderate Liberal

Less than high school 4913 (43%) 4684 (41%) 1905 (17%)
High school 8189 (32%) 11196 (44%) 6045 (24%)
Junior college 728 (29%) 1072 (43%) 679 (27%)
Bachelor 1304 (20%) 2800 (43%) 2464 (38%)
Graduate 495 (16%) 1193 (39%) 1369 (45%)

For cumulative link model
link|[P(y < j)] = o + Ba;

using scores {x; = i} for highest degree,

B = —0.206 (SE = 0.0045) for probit link

A

b =—0.345 (SE = 0.0075) for logit link




R: vgim() function in VGAM library has cumulative probit model

option

fundamentalism <- read.table("fundamentalism.dat",he ader=TRUE)
fundamentalism
degree vyl y2 y3
0 4913 4684 1905
1 8189 11196 6045
2 728 1072 679
3 1304 2800 2468
4 495 1193 1369
library(VGAM)
fit.cprobit <- vgim(cbind(y1,y2,y3) = degree,
family=cumulative(link=probit, parallel=TRUE), data=f undamentalism)

summary(fit.cprobit)

Call:
vgim(formula = chind(yl, y2, y3) ~ degree, family = cumulati ve(link = probit,
parallel = TRUE), data=fundamentalism)

Coefficients:

Value Std. Error t value
(Intercept):1 -0.22398 0.0079908 -28.030
(Intercept):2 0.94001 0.0086768 108.336
degree -0.20594 0.0044727 -46.044

Names of linear predictors: probit(P[Y<=1]), probit(P[Y<
Residual Deviance: 48.70723 on 7 degrees of freedom

> vgim(cbind(yl,y2,y3) ~ degree,
family=cumulative(link=logit, parallel=TRUE), data=fu ndamentalism)

Coefficients:
(Intercept):1 (Intercept):2 degree
-0.3520540 1.5498053 -0.3446603

Degrees of Freedom: 10 Total; 7 Residual
Residual Deviance: 45.3965




SAS: PROC GENMOD and LOGISTIC fit cumulative probit

data religion;

input degree religion count;
datalines;
0 1 4913
0 2 4684

4 3 1369

logistic; weight count;

model religion = degree [/ link=probit aggregate scale=none
logistic; weight count; class degree / param=ref;

model religion = degree [/ link=probit aggregate scale=none

Score Test for the Equal Slopes Assumption
Chi-Square DF Pr > ChiSq
0.2452 1 0.6205

Deviance and Pearson Goodness-of-Fit Statistics
Value DF Value/DF
48.7072 7 6.9582
48.9704 7 6.9958

Criterion
Deviance
Pearson

Pr > ChiSq
<.0001
<.0001

Criterion
-2 Log L

Intercept Only
105528.77

Intercept and Covariates
103389.09

Standard Wald

Parameter
Intercept 1
Intercept 2
degree

Estimate
-0.2240
0.9400
-0.2059

Criterion
Deviance
Pearson

Parameter
Intercept 1
Intercept 2
degree
degree
degree
degree

Value
5.1606
5.1616

Estimate
-1.0169
0.1478
0.8298
0.5599
0.4639
0.1695

Error
0.00799
0.00868
0.00447

DF Value/DF

4
4

Standard
Error
0.0210
0.0206
0.0231
0.0217
0.0303
0.0247

Chi-Square Pr > ChiSq

785.6659 <.0001

11736.5822 <.0001
2120.0908

Pr > ChiSq
0.2712
0.2711

1.2902
1.2904

Wald
Chi-Square Pr > ChiSq
2355.5732 <.0001

51.3520 <.0001
1289.2450 <.0001
666.9138 <.0001
234.1537 <.0001
47.0787 <.0001




Stata for cumulative logit and probit modeling of religious beliefs

. infile degree yl y2 y3 using religion.txt in 2/6, clear
(eof not at end of obs)
(5 observations read)

. list

. gen groupid=_n

. reshape long vy, i(groupid)
(note: j =1 2 3)

Data -> long

Number of obs.
Number of variables
j variable (3 values)
Xij variables:

. rename y count
. rename _j vy

. list

+ +
| groupid y degree count |

4913
4684
1905
8189
11196

6045




. ologit y degree [fw=count] // ordered logit

Ordered logistic regression

Log likelihood = -51692.888

vy Coef. Std. Err.
+

degree | .3446603 .0075309 45.77

+
fcutl | -.352054 .0130676
feut2 | 1.549805 .0149954

. oprobit y degree [fw=count] // ordered probit

Ordered probit regression

Log likelihood = -51694.544

vy | Coef. Std. Err.
+

degree | .2059429 .0044745 46.03

+
fcutl | -.2239807 .0079956
fcut2 | .9400106 .0086789

Number of obs 49040
LR chi2(1) 2142.99
Prob > chi2 0.0000
Pseudo R2 0.0203

P>|z| [95% Conf. Intervall

0.000 .3299 .3594205

-.3776659  -.3264421
1.520415 1.579196

Number of obs 49040
LR chi2(1) 2139.68
Prob > chi2 0.0000
Pseudo R2 0.0203

P>|z| [95% Conf. Intervall

0.000 1971731 2147128

-.2396517  -.2083096
.9230003 .957021




e From probitﬁA = —0.200, for category increase in highest

degree, mean of underlying response on religious beliefs

estimated to decrease by 0.21 standard deviations.

From IogitﬁA = —0.345, estimated odds of response in
fundamentalist rather than liberal direction multiply by
exp(—0.345) = 0.71 for each category increase in degree.
e.g., estimated odds of fundamentalist rather than moderate or
liberal for those with less high school education are

1/ exp|4(—0.345)] = 4.0 times estimated odds for those

with graduate degree.

For each category increase in highest degree, mean of

underlying response on religious beliefs estimated to decrease
by 0.345 /(7 /+/3) = 0.19 standard deviations.

Goodness of fit?
Cumulative probit: Deviance = 48.7 (df = 7)

Cumulative logit: Deviance = 45.4 (df = 7)

Either link treating education as factor passes goodness-of-fit test,

but fit not practically different than with simpler linear trend model.
e.g., Probit deviance = 5.2, logit deviance = 2.4 (df = 4)
Probit 31 = 0.83, By = 0.56, B3 = 0.46, 8, = 0.17, 35 = 0




d. Cumulative Log-Log Links

Logit and probit links have symmetric S shape, in sense that

P(y < j) approaches 1.0 at same rate as it approaches 0.0.

Model with complementary log-log link

log{—1log[l — P(y <j)|} = a; + B'x

approaches 1.0 at faster rate than approaches 0.0. It and

corresponding log-log link,

log{—log[P(y < j)]},
based on underlying skewed distributions (extreme value) with cdf
of form G(y) = exp{— exp[—(y — a)/b]}.
e Model with complementary log-log link has interpretation that
Py > j | xwithzp = z4+1) = P(y > j | @ with ), = z)PPx)
e Most software provides complementary log-log link, but can fit

model with log-log link by reversing order of categories and

using complementary log-log link.




Example: Life table for gender and race

(These are population percentages, not counts, so we use model

for description but not inference)

Males Females

Life Length White  Black White  Black

0-20 1.3 2.6 0.9 1.8
20-40 2.8 4.9 1.3 2.4
40-50 3.2 5.6 1.9 3.7
50-65 12.2 20.1 8.0 12.9
Over 65 80.5 66.8 87.9 79.2

Source: 2008 Statistical Abstract of the United States

For gender g (1 = female; O = male), race r (1 = black; 0 = white),

and life length v, consider model

log{—1log[l — P(y < j)|} = aj + B1g + Bar

Good fit with this model or a cumulative logit model or a cumulative

probit model (S E values irrelevant)




R: vgim() function in VGAM library has cumulative complementary

log-log model option

life <- read.table("lifetable.dat",header=TRUE)
life
gender race yl y2 y3 y4 y5

0 13 28 32 122 805

1 26 49 56 201 668

0 9 13 19 80 879

118 24 37 129 792

library(VGAM)
fit.cloglog <- vgim(cbind(yl,y2,y3,y4,y5) ~ gender+rac
family=cumulative(link=cloglog, parallel=TRUE),data=

> summary(fit.cloglog)

Call:
vgim(formula = chind(yl, y2, y3, y4, y5) ~ gender + race,
family = cumulative(link = cloglog, parallel = TRUE), data =

Coefficients:

Value Std. Error t value
(Intercept):1 -4.21274  0.133834 -31.4773
(Intercept):2 -3.19223  0.091148 -35.0225
(Intercept):3 -2.58210  0.076360 -33.8147
(Intercept):4 -1.52163  0.062317 -24.4176
gender -0.53827  0.070332 -7.6533
race 0.61071  0.070898  8.6139




SAS: Use PROC GENMOD or LOGISTIC for complementary
log-log link

data lifetab;
input sex $ race $ age count;
datalines;
m w 20 13
fw20 9
m b 20 26
fb20 18

m w 100 805
f w 100 879
m b 100 668
f b 100 792

proc logistic; freq count; class sex race / param=ref;
model age = sex race / link=cloglog aggregate scale=none;

run;
proc genmod; freq count; class sex race;

model age = sex race [/ dist=multinomial link=CCLL Irci type3
run;

The GENMOD Procedure

Analysis Of Parameter Estimates
Likelihood Ratio

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square
Interceptl 1 -4.2127 0.1338 -4.4840 -3.9587 991.04
Intercept2 -3.1922 0.0911  -3.3741  -3.0168  1226.85
Intercept3 -2.5821 0.0764 -2.7340 -2.4347 1143.60
Intercept4 -1.5216 0.0623 -1.6458 -1.4015 596.43
sex -0.5383 0.0703 -0.6769  -0.4011 58.57
sex 0.0000 0.0000 0.0000 0.0000
race 0.6107 0.0709 0.4725 0.7506 74.20
race 0.0000 0.0000 0.0000 0.0000




Stata for comp. log-log link modeling of life table data

infle gender race yl y2 y3 y4 y5 using ltable.txt in 2/5, clea
(eof not at end of obs)
(4 observations read)

. gen groupid=_n

. reshape long vy, i(groupid)
(note: j =1 2 3 45)

Data

Number of obs.
Number of variables
j variable (5 values)
Xij variables:

. rename y percent
. rename _jy

. gen count=percent *10

. tab gender y if race==0 [fw=count], row

|
gender | 5 | Total
+
805 | 1,000
80.50 | 100.00
+
879 | 1,000
87.90 | 100.00
+
1,684 | 2,000
84.20 | 100.00

. tab gender y if race==1 [fw=count], row




frequency |
| row percentage |

* cumulative complementary log log model
. ocratio y gender race [fw=count], link(cloglog) cumulati

Ordered cloglog Estimates

Log Likelihood = -2917.397

vy | Coef. Std. Err. P>|z]|

+
gender | .5382685 .0703365 7.65 0.000
race | -.6107102 .0708956 -8.61  0.000

+

5 | Total

+

668 | 1,000
66.80 |  100.00

+

792 | 1,000
79.20 | 100.00

1,460 |

73.00 | 100.00

ve

Number of obs =

chi2(2)
Prob >
Pseudo

= 13
chi2 = 0.
R2 =

[95% Conf. Interval]

4004115
-.749663

.6761254
-4717574

-4.21274 .1338366 (Ancillary parameters)

I

| -3.19223  .1228357
| -2.582102  .1161383
| -1.521633 .0906746

2,000

15430
6.22
0000
0.0228




gender effect estimate 57 = —0.538

race effect estimate S5 = 0.611

Gender effect described by :

)] exp(0.538)

Ply>jlg=0,r)=[Ply>jlg=1r

Given race, proportion of men living longer than a fixed time equals

proportion for women raised to exp(0.538) = 1.71 power.

Given gender, proportion of blacks living longer than a fixed time

equals proportion for whites raised to exp(0.611) = 1.84 power.

Cumulative logit model with proportional odds structure:
gender effect = —0.604, race effect = 0.685.

If {2 denotes odds of living longer than some fixed time for white

women, then estimated odds of living longer than that time are

exp(—0.604)Q = 0.5552 for white men
exp(—0.685)Q = 0.5052 for black women
exp(—0.604 — 0.685)€2 = 0.28¢2 for black men




Extensions to Clustered and Multivariate Data

e Marginal models : Generalized estimating equations (GEE)

methods extend to ordinal responses, such as for cumulative

logit models (Lipsitz et al. 1994, Touloumis et al. 2013).

R: multgee package has ordLORgee function that can fit
cumulative link and adjacent-categories logit models, based on
using local odds ratios to describe working association
structure. Also, can use repolr function in repolr library for

proportional odds version of cumulative logit model.

SAS: PROC GENMOD, but only with “independence working

correlation structure.”

Random effects models : Can include random effects in the
various types of ordinal logit models (Hedeker and Gibbons
1994, Tutz and Hennevogl 1996, Agresti and Natarajan 2001).

R: cImm function in ordinal package fits cumulative logit

models with random effects, using Laplace approximation.

SAS: PROC NLMIXED uses Gauss-Hermite quadrature for ML
fitting of random effects models, extending PROC MIXED to

handle non-normal response and link functions of GLMs.




Summary of Ordinal Modeling

® Logistic regression for binary responses extends in various
ways to handle ordinal responses: Use logits for cumulative
probabilities, adjacent-response categories, or a mix

(continuation-ratio logits).

Other ordinal multinomial models include cumulative link

models (e.g., probit).

Which model to use? Apart from certain types of data in which
grouped response models are invalid (e.g., cumulative logits
with case-control data or effects varying among logits), we may

consider

(1) how we want to summarize effects (e.g., cumulative prob’s

with cumulative logit, individual category prob’s with ACL)
and

(2) do we want a connection with an underlying latent variable
model (natural with cumulative logit and other cumulative link

models)?




Software for Modeling Ordinal Data

SAS

e PROC FREQ provides large-sample and small-sample tests of
independence in two-way tables, measures of association and

their estimated SEs.

PROC GENMOD fits multinomial cumulative link models and
Poisson loglinear models , and it can perform GEE analyses for
marginal models as well as Bayesian model fitting for binomial

and Poisson data.
PROC LOGISTIC fits cumulative link models.

PROC NLMIXED and PROC GLIMMIX fit models with random
effects. PROC NLMIXED can also fit other generalized

nonlinear models.

PROC CATMOD can fit baseline-category logit models by ML,

and hence adjacent-category logit models.

See Categorical Data Analysis Using SAS, 3rd ed., by M.
Stokes, C. S. Davis, and G. G. Koch (2012) for more details

about using SAS for categorical data analyses.




R (and S-Plus)

e A detailed discussion of the use of R for models for categorical
data is available on-line in the free manual prepared by Laura
Thompson to accompany Agresti (2002). A link to this manual
IS at
www.stat.ufl.edu/ ~ aa/cda/software.html
Specialized R functions available from various R libraries. Prof.

Thomas Yee at Univ. of Auckland provides VGAM for vector

generalized linear and additive models

(www.stat.auckland.ac.nz/ ~yee/VGAM).

In VGAM, the vglim function fits wide variety of models.
Possible models include the cumulative logit model (family
function cumulative) with proportional odds or partial
proportional odds or nonproportional odds, cumulative link
models (family function cumulative) with or without common
effects for each cutpoint, adjacent-categories logit models
(family function acat), and continuation-ratio logit models

(family functions cratio and sratio).




e Many other R functions can fit cumulative logit and other
cumulative link models. Thompson’s manual (p. 121) describes
the polr function from the MASS library, used in these notes for

the dose-response data (p. 19).

multgee package has ordLORgee function that can fit
cumulative link and adjacent-categories logit models, based on
using local odds ratios to describe working association
structure. The package repolr contains a function repolr for
repeated proportional odds logistic regression. The package

geepack contains a function ordgee for ordinal GEE analyses,

but a PhD student of mine and | have found it to be very

unreliable (often gives incorrect results, such as for example in

Thompson manual).

The clmm function in the ordinal package can fit cumulative
logit models with random effects. The package gimmAK
contains a function cumlogitRE for using MCMC to fit such

models.

R function mph.fit prepared by Joe Lang at Univ. of lowa can fit
many models for contingency tables that are difficult to fit with
ML, such as mean response models, global odds ratio models,

marginal models for contingency tables.




Stata

e The ologit program
(www.stata.com/help.cgi?ologit

cumulative logit models, also using GEE.

The oprobit program
(www.stata.com/help.cgi?oprobit ) fits

cumulative probit models.

Continuation-ratio logit models can be fitted with the ocratio
module (Www.stata.com/search.cgi?query=
ocratio ) and with the seglogit module. The ocratio module

also fits models with complementary log-log link.

The GLLAMM module (www.gllamm.org ) can fit a very

wide variety of models, including cumulative logit models with
random effects. See
www.stata.com/search.cgi?query=gllamm




SPSS

e On ANALYZE menu, choose REGRESSION option and
ORDINAL suboption to get ORDINAL REGRESSION menu for
fitting cumulative link model. Clicking on Options, you can
request link functions such as logit, probit, complementary
log-log. Clicking on Output, you can request test of parallelism

(i.e., proportional odds for logit link).

GENLOG function in SPSS can fit adjacent-categories logit

models.

For GEE methods, on ANALYZE menu, select GENERALIZED
LINEAR MODELS option and GENERALIZED ESTIMATING
EQUATIONS (GEE) suboption. On GEE window, click on

Repeated and select form for working correlation model, and

click on Type of Model to specify model for ordinal logistic or

probit response.
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