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Introduction

What is Sentiment Analysis?

Sentiment Analysis is a subfield of Computational Linguistics
concerned with extracting emotions from text
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Introduction

Applications
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Introduction

Applications - Political Blogs
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Introduction

Applications - Political Blogs

• Tracking opinions on issues

• Tracking which issues are held emotionally

• Tracking subjectivity of bloggers
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Introduction

Political Blogs - Challenges

• Identifying opinion holder

• Associating opinions with issue

• Identifying public figures and legislation
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Introduction

Applications - Product Reviews
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Introduction

Product Reviews - Challenges

• Identifying aspects of product

• Associating opinions with aspects of product

• Identifying Fake Reviews

• No canonical form
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Introduction

Applications - Financial News
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Introduction

Financial News - Challenges

• Identifying the equity in the article (think commodities)

• Associating entities with market symbols

• Specialized financial terms with distinct sentiment

• Articles rarely only about one equity
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Introduction

Applications - Brand Tracking
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Introduction

Brand Tracking - Challenges

• Text likely to be unstructured

• Identifying Brand

• Identifying Opinion Holder/Demographic
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Introduction

Goals

• Give a broad overview of the field

• Showcase the best current tools and approaches
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Introduction

Caveats

• There are no good R code/libraries to do this (yet)

• This talk is biased towards my domains

• No one in this area really knows what they are doing
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Introduction

History
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Introduction

History

• Grew out of Web integration Field

• Started as extension of knowledge extraction

• This is why field sometimes called Opinion Mining

• Also why papers as likely to occur in ACL as in WWW

• Many early algorithms are extraction patterns

• Field was still largely academic
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Introduction

Then something happened
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Introduction

Unique Challenges in Sentiment Analysis
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Introduction

Opinions are not Facts
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Introduction

Order Matters

• Sentences at end of article have stronger influence on sentiment

• Sentences at beginning of article have stronger influence on sentiment

• Irrelevant sentences influence sentiment of document.
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Introduction

Order Matters - Valience Shifts

The camera is reasonable,but there are far better ones at this price
The meal could have been better,though still tasty.
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Introduction

Sentiment Orientation

• shifts in sentiment noted by special words

• special words usually have no sentiment of their own

• sentiment though consistent in each phrase
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Introduction

Sentiment Orientation - continued

• Naive method misses these shifts

• Bag of Words model fails here
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Introduction

Opinions polarize
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Introduction
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Introduction

Opinions have context

Small screen
Small carbon footprint
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Introduction

Opinions need to be normalized
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Introduction

People disagree on what words mean
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Basics of NLP

Basics of Natural Language Processing
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Basics of NLP

Introduction to NLP

• Computational Linguistics in centered in Frequency Counts

• Frequency Counts become statistic through which we reason

• This statistic has flaws but still useful
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Basics of NLP

Stemming

It is useful to combine words with a common root.
When counting terms this groups words that denote the same term
This is done by dropping the end

sleeping
sleeper
sleeps

 sleep
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Basics of NLP

Stopwords

It is important to remove common words as they dominate all counts
Common words in English:

a, the, an, is, be, could, there

Most NLP libraries packaged with a list of stopwords
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Basics of NLP

Sometimes words will need to more finely processed
The following tools exist in most NLP packages
I prefer the Stanford NLP software suite
http://nlp.stanford.edu/software/index.shtml
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Basics of NLP

Parsing
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Basics of NLP

Parsing

• Structure also derivable by parsing sentences

• Treat text like programming language

• Algorithms can then convert text into Tree

• Algorithms exist to learn grammar

• Very Heavyweight
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Basics of NLP

Shallow Parsing
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Basics of NLP

Shallow Parsing

• Less heavy to use than a full parser

• Processes words into phrases

• Training Chunking parser significantly easier/faster

• Requires having words tagged with their part of speech
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Basics of NLP

Part of Speech tagging
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Basics of NLP

POS tagging

• Simplest operation to perform on words

• All NLP libraries support this operation

• Provides lightweight metadata

• Very common word feature

• Used by nearly all more complex NLP techniques
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Basics of NLP

Dependency Parsing
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Basics of NLP

Dependency Parsing

• Traditional Treebank Parsing is a bit bureaucratic

• Hides relations words have with each in sentence

• Dependency Parsing provides a lightweight alternative

• Alternative has looser representation, more language agnostic

• More readily captures which words modify each other
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Basics of NLP

Wordnet

• Words can be related by how similar they are

• Words are similar if they mean similar things

• Words are similar is they are a type of another word

• Words can have many meanings

• Wordnet is a hand curated ontology that annotates these relations
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Basics of NLP

Wordnet synsets
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Basics of NLP

Wordnet concept network
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Basics of NLP

Topic Modeling

Topic Modeling is a way to group and categorize documents
Usually unsupervised approach
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Basics of NLP

CTM - Coorelated Topic Models
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Basics of NLP

CTM - Coorelated Topic Models

• CTMs model the underlying topics within a document

• They differ from earlier approaches in capturing correlations between
topics

• Give superior performance compared to other unsupervised models

• Available for use as an R package in CRAN (topicmodels)
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Basics of NLP

Named Entity Recognition

The purpose of NER is to extract out and label phrases in a sentence

Bill Clinton arrived at the United Nations Building in Manhattan.
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Basic Techniques for Sentiment Analysis

Sentiment Definitions
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Basic Techniques for Sentiment Analysis

Opinion

A vector denoting representing an opinion
with values positive, negative, or neutral gradings
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Basic Techniques for Sentiment Analysis

Opinion Holder

The agent an opinion belongs to.
This mostly relevant in political blogs
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Basic Techniques for Sentiment Analysis

Item Features

Facets of the object that are readily available
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Basic Techniques for Sentiment Analysis

Sentiment Features

Facets of the object that an opinion may be subscribed.
These are usually hard to tease out of the text
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Basic Techniques for Sentiment Analysis

1. Gather a Seed set
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Basic Techniques for Sentiment Analysis

Opinion corpora available at:

• Wiebe’s corpora http://www.cs.pitt.edu/mpqa/

• Sentiwordnet: http://sentiwordnet.isti.cnr.it/

• Personal dictionaries (available on request)
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Basic Techniques for Sentiment Analysis

Gathering initial seed words

• Wiebe’s work comes with subjectivity scores in addition to sentiment

• Sentiwordnet was autogenerated, quality could be better

• Personal dictionaries hand generated, small but good quality
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Basic Techniques for Sentiment Analysis

2. Learn sentiment of unknown words
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Basic Techniques for Sentiment Analysis

Learn sentiment - Supervised
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Basic Techniques for Sentiment Analysis

Learn sentiment - Supervised

• Get a large collection of them labeled

• Use this collection as is
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Basic Techniques for Sentiment Analysis

Learn sentiment - Unsupervised - Turney

• Use Turney’s Method

• Calculate Pointwise Mutual Information between every word and the
seed words ’excellent’ ’poor’

SO(w) = lg
(hits(w NEAR excellent)hits(excellent)

hits(w NEAR poor)hits(poor)

)
where hits(w NEAR y) = number of times w is within 10 words of the y
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Basic Techniques for Sentiment Analysis

Learn sentiment - Unsupervised - Twitter

• Use Turney’s Method with Twitter

• Calculate Pointwise Mutual Information between every word and
whenever it appears with _̈ or ¨̂ within a tweet

• This method has the advantage of being multilingual, other kinds of
smiles aside
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Basic Techniques for Sentiment Analysis

Learn sentiment - Unsupervised - Wordnet

• Use wordnet to walk random paths from start word until arriving at a
seed word

• Average across sentiments of all seed words arrived at
• This method is the fastest and most accurate
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Basic Techniques for Sentiment Analysis

3. Apply rules to simplify document
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Basic Techniques for Sentiment Analysis

• Rules make words more independent

• Rewrites make it less likely to misclassify a phrase
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Basic Techniques for Sentiment Analysis

4. Identify opinion phrases

Rob Zinkov () A Taste of Sentiment Analysis May 26th, 2011 66 / 105



Basic Techniques for Sentiment Analysis

• Shallow Parse the document into chunks

• Remove chunks with mostly neutral words
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Basic Techniques for Sentiment Analysis

Alternatively, extract with some rules
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Basic Techniques for Sentiment Analysis

5. Extend sentiment to phrases and sentences
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Basic Techniques for Sentiment Analysis

• Ultimately, sentiment is for phrases and sentences

• Use sentiment on individual words as priors

• Sentiment is based on joint probability across words in phrase

• Use Naive Bayes or a Markov Model as needed
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Basic Techniques for Sentiment Analysis

6. Aggregate sentiments for display
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Basic Techniques for Sentiment Analysis

Group phrases based on what you want the sentiment

• Entities

• Topics

• Sentiment Features

• Item Features

• Users
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Basic Techniques for Sentiment Analysis

8. Generating Summary
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Basic Techniques for Sentiment Analysis

Generating Summary

• Largely only relevant when you returning text

• Rate all sentences based on readability

• Return snippet of text for each group with sentiment vector attached
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Basic Techniques for Sentiment Analysis

Summary

1 Gather a seed set

2 Learn sentiment of unknown words

3 Apply rules to simplify document

4 Identify opinion phrases

5 Extend sentiment to phrases and document

6 Aggregate sentiments for display

7 Generate summary
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Advanced Techniques for Sentiment Analysis

Anaphora Resolution

• Many articles refer entities by their name only a few times

• Opinions will usually co-occur with an anaphora of the entity
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Advanced Techniques for Sentiment Analysis

Anaphora Resolution

• Simplest solution, replace all anaphora with their referent

• Trickier solution, aggregate all opinions associated with anaphora later

• Other options?
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Advanced Techniques for Sentiment Analysis

Sentiment Analysis is fundamentally a Discriminative
Learning Task
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Advanced Techniques for Sentiment Analysis

Conditional Random Fields

• Sentiment is clearly affected by its surrounding context

• Sentiment is also affected by orientation shifting words

• Why not make these connections explicit in our model?

• Conditional Random Fields (CRFs) are a flexible way of representing
these connections.
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Advanced Techniques for Sentiment Analysis

Conditional Random Fields

In a CRF, we represent posterior probability of a set of sentiments given
the underlying text. A is a collection of cliques in the graph of connections.

p(y |x) =
1

Z

∏
A

ΨA(xA, yA)

ΨA(xA, yA) = exp

{∑
k

θAk fAk(xA, yA)

}
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Advanced Techniques for Sentiment Analysis

Linear Chain CRFs

If we assume the sentiment of any given word only depends on the
previous, the formula simplifies to

p(y |x) =
1

Z

t∏
exp

{∑
k

θk fk(xt , yt , yt−1)

}
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Advanced Techniques for Sentiment Analysis

Linear Chain CRFs are best understood as a discriminative version of
Hidden Markov Models
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Advanced Techniques for Sentiment Analysis

Skip-chain CRFs

But we can assume sentiment depends on words much further away

We can now connect entities to each other and connect phrases explicitly
separated by a sentiment shifting word.
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Advanced Techniques for Sentiment Analysis

CRFs - Conclusions

• CRFs allow us to add context to opinion

• Properly used they can handle the connections between sentiments on
phrases as well as words

• CRFs allow us to link arbitrary features of words and labels to each
other

Rob Zinkov () A Taste of Sentiment Analysis May 26th, 2011 84 / 105



Advanced Techniques for Sentiment Analysis

Extensions
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Advanced Techniques for Sentiment Analysis

Extensions - Time Series

Just order your documents in time, and can plot changes in sentiment
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Advanced Techniques for Sentiment Analysis

Extensions - Time Series

• This one tends to get used with financial data and monitoring brands

• Requires having access to lots of articles to make sense

• There can be sparsity issues so apply proper shrinkage
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Advanced Techniques for Sentiment Analysis

Beyond Positive and Negative

We can be more subtle
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Advanced Techniques for Sentiment Analysis

Sarcasm

If you deal with Product Review this is helpful
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Advanced Techniques for Sentiment Analysis

Sarcasm is best detected through punctuation and capitalization features
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Advanced Techniques for Sentiment Analysis

Detecting Fake Reviews

• Fake Reviews are best treated as a classification task

• Collect enough and use frequency counts for features

• This is useful in production deployments and simple to implement
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Advanced Techniques for Sentiment Analysis

Multilingual Sentiment Analysis

• Sentiment does not translate well

• Words that mean the same thing can not correspond wrt sentiment

• Retrain for each new language you wish to support
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Advanced Techniques for Sentiment Analysis

Word-sense disambiguation

• This is largely not worth the effort

• Using the first sense of the word gives comparable performance to
more sophisticated approaches

• Exception: domain specific corpus where word is unlikely to be the
first sense. Use specialized dictionaries for this case
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Advanced Techniques for Sentiment Analysis

Comparisons

• Sometimes opinions are stated relevant two separate entities

• Superlatives are a special case of this

• Treat these as a ranking problem and handle as a separate problem

• Merge sentiments during aggregation

R is much better than SPSS
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Further Questions

Lingering Questions
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Further Questions

What keeps me from doing this in R?
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Further Questions

Further Questions - Large Data

• Text analysis is hard to do in R

• R has memory limits

• Using Hadoop or BigMemory usually means giving up many libraries

• tm.plugins.distributed helps a bit

• snow and OpenMPI gives mixed results
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Further Questions

Further Questions - Metadata

Is there a lightweight metadata format?
Index Offset Property Value

2 10 POS NP

35 5 Sentiment Positive

17 7 POS JJ

51 20 Chunk NULL

20 8 Entity Person

2 45 Sentence NULL
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Further Questions

Further Questions - Model Files

• Not enough of the tools take model files

• Model files are needed for tokenization,sentence splitting, pos
tagging, chunking

• Without easy support for model files, multilingual support is difficult

• Without easy support, impossible to train better models as data
becomes available
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Further Questions

Further Questions - Rule Files

• No standard on preprocessing rules

• DSL required for them

• Is this something we need to provide?

• Until better techniques come around, essential for any performance
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Further Questions

Theoretical Formulation

• Can these techniques be made less hacky?

• Dependency Parses provide much of the structure for tracking
sentiment orientation

• Can structure be handled in a more unsupervised manner?
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Further Questions

References

Best starting point:
Sentiment Analysis and Subjectivity by Bing Liu
http://www.cs.uic.edu/ liub/FBS/NLP-handbook-sentiment-analysis.pdf

Rob Zinkov () A Taste of Sentiment Analysis May 26th, 2011 102 / 105



Further Questions

References (More)

• Joint Extraction of Entities and Relations for Opinion Recognition
(Choi 2006)

• Mining Opinion Features in Customer Reviews (Liu 2004)

• A Holistic Lexicon-Based Approach to Opinion Mining (Deng 2008)

• I Cant Recommend This Paper Highly Enough (Dillard thesis)

• Entity Discovery and Assignment for Opinion Mining Applications
(Deng 2009)

• Extracting Product Features and Opinions from Reviews (Popescu
2005)
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Further Questions

Conclusions

• Sentiment Analysis is a relatively young area

• Still plenty of ideas to be explored

• Widely applicable

• Really fun
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Further Questions

Questions?
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