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Abstract

American options are different to European style options in that the contract buyer has the
right to exercise the option at any time on or before maturity . The freedom to exercise an
American option whenever the holder wishes, introduces a boundary problem to solving the
Black-Scholes equation popularly used to price the European options. The contract holder
will ideally, of course, only exercise the option prior to the expiry date if the present payoff
at time t exceeds the discounted expectation of the possible future values of the option from
time t to T. So, only if what the holder of the options gets out of exercising early exceeds the
market’s view of the expected future return in keeping the option alive, early exercise of the
options will take place. Otherwise, he or she will continue to hold on to the option. At every
time t there will be a region of values of the underlying whereby it is best to exercise the
option (Exercise region) and a complimentary region whereby it is best to keep the option
(Free region). There will also be a particular value S(t) of the underlying stock which defines
the optimal exercise boundary separating the two regions. In this paper, we evaluate the
early exercise boundary using an efficient method developed by Ait Sahlia and Lai (1999)

in R and provide numerical results and graphs.



1 Introduction

The problem of pricing an American option is not as simple as pricing an European one. It has

a large literature consisting of relentless researches and propositions to efficiently calculate the

price of an American option. Binomial Asset Pricing Model developed for discrete-time pricing

of derivatives can be used to evaluate the price of an American option. But in the continuous

time frame where the gaps between two successive time points are infinitesimally small, the

computation of prices becomes tedious. A significant advancement in the pricing of American

option has evolved with the integral representation of the difference between the American option

and the European one due to Kim (1990), Jacka (1991), and Carr, Jarrow, and Myneni

(1992) . The integral representation ( as shown mathematically, later) is accurate but involves

finding the boundary function first , before calculating the price of the American option. While

Huang, Subrahmanyam, and Yu (1996) proposed to approximate the integrands in both

the integral premium representation formula and the integral equation of the boundary function

by piece-wise constant functions, Ju (1998) proposed to approximate the boundary by a piece-

wise exponential function. The method employed by Ju was very significant, as that lead to an

increase in efficiency in calculating American option prices as compared to any other method

which was existing at that point of time.

Ait Sahlia and Lai (1999) went on to bring significant improvements upon the method

employed by Ju. Although Sahlia and Lai used the same idea as proposed by Ju, they just

introduced ingenious transformations of variables with which the calculation of the early exer-

cise boundary becomes much simpler as the piecewise exponential functions employed by Ju get

converted into linear functions after the transformations are applied. Their results also support

Ju’s findings strongly. Moreover, instead of approximating the boundary between successive

time points using an usual step function approximation, Sahlia and Lai proposed to linearly

interpolate the boundary between two successive time points. These transformations and lin-

ear interpolation technique which have been used by Sahlia and Lai as improvements on Ju’s

technique lead to significant speed in calculation of results and accurate approximations as well.

The next section describes the basic background of the American option pricing based on

which all the researches stand. We, mathematically show what are the conditions required to

be satisfied in order to calculate the price of an American option, starting from a insight with

the famous Binomial Asset Pricing Model. Later on, we become more specific and explain in

details the numerical technique employed by Sahlia and Lai. We provide computation results

using their technique in R. Finally, we summarize and conclude.

2 Problem Background

Pricing of American options invariably involves approximating the early exercise boundary for

optimal exercise of the options. So, our first important question lies in how to decide when to
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exercise the American option optimally. At the onset we see a simplistic setting on the famous

Binomial Asset Pricing Model given by Cox, Ross and Rubinstein (1979). The significance

of this model and hence its enduring popularity is its method of evaluating the underlying

over time. Although this uses a discrete-time model of the underlying prices over time, this is

nonetheless very important to have a helpful insight in understanding how the price process of

an option develops from time to time.

2.1 The Binomial Asset Pricing Model

The Binomial Model is a model adequately solving the problem of pricing derivative securities.

In this model we assume that the stock price moves either up or down at any given point of

time. Thus, if the stock price is So currently, then at the next point of time its price will either

be uSo or dSo . d and u are two positive numbers with,

0 < d < 1 < u

The above inequality makes sense . This is because d < 1 ensures that the stock price can

become less at the next point of time , while u > 1 ensures that the stock price can become

greater as well. Also, to be more precise, the values d and u satisfy the following inequality,

d < 1 + r < u

where r is the risk free rate of return ( from bank, say) . The above inequality is obvious because

if 1 + r is greater than u , then it means that the return on the money market is always risklessly

greater than that on the stock and hence no one would ever want to invest in the stock. Also

d < 1 has been justified earlier and hence d cannot be greater than 1 + r until and unless r is

negative which does not make any sense. With this setting , we proceed to explain how the

Binomial Asset Pricing Model evaluates the price of European options. We would then extend

it to American options with the supermatingale property as will be explained later.

We denote the upward stock movement by head ( H ) of a coin toss , while the downward

movement by tail ( T ). Thus, for a stock which is currently priced in the market at So, it would

become uSo if the toss results in head or dSo if the toss results in tail. If the strike price of the

European call option is K, then at time point one, the pay off is (uSo −K) if the coin toss results

in head and zero otherwise. Thus the value of the option at time point one can be written as,

V1(w) = max(S1(w)−K, 0)

where S1(w) is uSo if w = H and dSo otherwise. Thus, we see that the payoff of the option at

the next time point basically depends on the stock price at that point. The price of the option is

formulated by this model very logically with this notion in mind. Logically, the option writer at

the time of writing the option must hold an amount of money which would generate an amount

required to pay off the contract holder at the expiration date in case favorable situation crops up
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( ST > K for call option and ST < K for put option). However, the option writer is not certain

as to what the stock price will be at the expiration date. And thus the concept of expected

stock prices comes up. Also, since the position of the option writer now becomes a risky one

after writing off the option, he would try to hedge himself against possible losses in the future.

In the process of doing so, he buys some shares of the stock so that at the expiration date if

the stock prices go above K and the call option is exercised he is able to hedge himself with the

stocks that he owns. For put options too, this logic holds correspondingly. The most important

thing at this point of time is to decide the price that he would charge for writing off the option

or to be more precise, what is the price of the option?

For evaluating the price of the option the binomial model takes up a very simple, yet an

ingenious technique. At any given point of time, the option writer should hold such an amount

which when invested in the money market would give him a return at the next point of time that

would exactly equal the expected stock price at the latter point of time. With this framework, if

the option price is taken to be Vo and the number of shares bought to hedge is ∆o at the initial

point of time, then the value of the portfolio initially is (V0 −∆0S0) where this quantity can be

negative. Basically this is the amount that he has in the money market. Thus at time point 1

the value of the portfolio would be

X1(w) = ∆0S1(w) + (1 + r)(V0 −∆0S0)

where w = {H,T}. Putting the two different values of w that it can take and equating them to

the value of the option accordingly at time point 1, we get two equations as shown below,

V1(H) = ∆0S1(H) + (1 + r)(V0 −∆0S0)

V1(T ) = ∆0S1(T ) + (1 + r)(V0 −∆0S0)

Solving these two equations gives the values of ∆0 and V0 as follows,

∆0 =
V1(H)− V1(T )
S1(H)− S1(T )

V0 =
1

1 + r
[
1 + r − d
u− d

V1(H) +
u− 1− r
u− d

V1(T )]

This is the arbitrage price for the European option with payoff V1 at time point 1. If we assume

p = 1+r−d
u−d and q = u−1−r

u−d i.e. q = 1 − p , then we can rewrite the solution for V0 as,

V0 =
1

1 + r
[pV1(H) + qV1(T )]

where p and q represent the risk-neutral probabilities. The probabilities p and q do not represent

the actual probability of the movement of stock prices, but they can be just thought as risk-
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neutral probability measure giving the expected value of the option at a future point of time.

Extending this framework and logic to any point of time k we get the pattern,

Vk−1 =
1

1 + r
[
1 + r − d
u− d

Vk(H) +
u− 1− r
u− d

Vk(T )]

where the price of the option at the (k − 1)th point of time is given as the discounted value of the

expected payoff of the option at time point k. Thus, evaluating the price for European option

using Binomial model seems extremely intuitive, logical and clear. The price of the option has

to be such so that option writer is able to payoff the holder at time of maturity in case the

latter exercises. In order to achieve this position, at any point of time he observes all the stock

price movements and hedges his position accordingly maintaining the exact amount which just

equals the discounted expected payoff value at the next point of time. Thus he is able to be in

a position to payoff at the time of maturity and hedge himself as well.

2.2 Stopping Times and American Options

An American option gives the holder the right to exercise at any point of time on or before the

maturity date. Because of this early exercise feature an American option is at least as valuable as

its European counterpart. However, the American call option paying no dividends has the same

price as the European call option. In other cases the value of the early exercise premium can be

substantial.We will primarily be dealing with put options. We saw in case of European options

under the Binomial Model that the discounted price process is a martingale (the expected value

of the stock prices tends to remain unchanged) where,

Vk−1 =
1

1 + r
[
1 + r − d
u− d

Vk(H) +
u− 1− r
u− d

Vk(T )]

and thus the price of the option could be written as,

V0 = E[
VT

(1 + r)T
]

which means that the price of the option is the discounted expected price of the option at the

time of maturity T. However, unlike European options the price process for American options

obeys supermartingale property. This is due to the fact that an American option can be exercised

at any point of time on or before the maturity date and it is at least as much valuable as the

payoff associated with its immediate exercise. This means that if the option holder sees that the

expected stock price underlying the option is going to fall (in case of an American put), then he

would exercise the option now and would be better off. Previously, we saw that at any point of

time the option writer holds that much amount of money which can generate an amount exactly

equaling the expected payoff at the immediate next point of time. Here, in case of American

options at any point of time he needs to have the maximum of the immediate payoff and the

discounted expected payoff for the next point of time. Assuming that the payoff for exercising
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at any point of time k is equal to g(x)where x represents the current price of the underlying, we

mathematically express the above statement as follows,

Vk−1(x) = max{ 1
1 + r

[pVk(ux) + qVk(dx)], gk−1(x)}

where gk−1(x) is the value of the option if exercised immediately.

Although the logic and intuition more or less seems similar to the one used for evaluating

the prices of European options, there is a subtle difference at the starting point of the two

approaches. Unlike European options where we had fixed maturity and exercise date, it was

simple to develop such a portfolio which at any point of time is just as worth as the discounted

payoff of the option at the next time period and subsequently developed the notion of risk-

neutral pricing, here in case of American options we begin with a risk-neutral pricing formula

and it can be shown that this price is the smallest initial capital that is required to develop a

portfolio in order to hedge one’s position from time to time. Since an American option can be

exercised at any point of time , the owner would always try to exercise it at such a point of time

so that he reaps the maximum benefit. Mathematical formulation of this requires the concept

of Stopping Times.

Mathematically, a stopping time Γ is a random variable taking value in [0,∞] and satisfying

{Γ ≤ t} ∈ F (t) for all t≤0

F (t) is a set of sigma algebra which can be thought of as the set of information available till

time point t. Intuitively, this means that the owner of the American option can exercise it at

any time point t based on a strategy that takes into account only the information available at

time t i.e. the information about the stock price movements till time point t. There can be

various ways in which a stopping time is defined. It seems logical that the price of the American

option has to be such so that it is the maximum of the present discounted values of all possible

future payoffs. To express it mathematically, we write,

v∗(x) = max
Γ∈T

E[e−rΓ(K − S(Γ))]

where T is the set of all stopping times. The equation means that the owner of the option should

choose the exercise strategy that maximizes this expected payoff discounted back to time zero

and thus we define the price to be the maximum over the discounted expected payoffs at all

possible stopping times. It turns out to be that v∗ is the initial capital required for an agent

to hedge a short position in the American put regardless of the exercise strategy of the owner

of the put. Thus this is the price of the American put. It is clear from the above discussion

that for pricing an American option it is essential to find out the optimal stopping time or the

optimal exercise time which would then enable us to price the American option. We would first

see how a perpetual American put ( infinite maturity time ) is priced.
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In a perpetual American put there is no expiration date beyond which it cannot be exercised

and hence this makes every date like every other date. What this means is that the price of

a perpetual American put cannot depend on the time scale but only on the stock price at any

given point of time. To be precise, this means that the owner should exercise the option as

soon as the value of the stock reaches a particular level. So our next question lies in how to

decide what is that optimum level of the stock price to which when it falls, the option should

be exercised. Thus, here our stopping time is of the form,

ΓL = min[t≥0; S(t) = L] (1)

where ΓL is set equal to infinity if the stock price never reaches the level L. We have to consider

only L < K (since, we are considering an American put ). Thus, if the stock level reaches L

then the option is exercised and the owner receives (K − L). Thus, the price of the option or

the discounted value of the payoff of the option from the exercise point of time to the time point

zero is given by,

vL(S(0)) = (K − L)E(e−rΓL) for all S(0)≥L. (2)

It can be shown that the if at the time of signing the contract the stock price is x then the

price of the option or rather, the solution to the above equation is given by,

vL(x) =

K − x, if 0≤x≤L,

(K − L)( xL)
2r
σ2 if x ≥ L

(3)

It can be shown graphically, that the optimum level, L at which, when the stock price reaches

the option should be exercised is

L∗ =
2r

2r + σ2
K (4)

where K is the strike price.

Analytical characterization shows that the price of the option in the two regions 0≤x≤L and

x≥L match with each other at x = L and the price functions in the two regions are differentiable

at L as well. The second derivative of vL(x), however, has a jump at x = L . In particular the

function vL(x) is found to satisfy the following conditions,

v(x)≥(K − x)+ for all x≥0, (5)

rv(x) − rxv′(x) − 1
2
σ2x2v′′(x) ≥0 for all x≥0, (6)

and

for each x≥0, equality holds in either of the above two equations. (7)
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Equation (7) is particularly important as the equations (5) and (6) do not necessarily imply

the existence of such an early exercise boundary. The equation (7) ensures that there exist two

distinct regions, S or the stopping set and C or the continuation set given by,

S = [x≥0; vL∗(x) = (K − x)+] (8)

and

C = [x≥0; vL∗(x) > (K − x)+] (9)

respectively. If the stock price x ∈ C then equality holds in equation (6). This means that the

price of the option at that point of time which is the maximum of the immediate payoff and the

discounted expected payoff at the next point of time equals the latter. Thus it is beneficial for

the owner to wait and hold the option. When x ∈ S then inequality holds in equation (6) which

technically means that the discounted expected payoff of the next period of time is lesser than

the immediate payoff. Thus, in this case the option is said to have reached its intrinsic value

and its optimal for the owner to exercise the option. If, however he fails to exercise the option,

then the option writer can consume the extra amount.

Extending the case of the perpetual American put to a finite expiration American put the

equations (5) , (6) and (7) or the complementarity conditions get modified to,

v(t, x)≥(K − x)+ for all t ∈ [0, T ], x≥0, (10)

rv(t, x) − vt(t, x) − rxvx(t, x) − 1
2
σ2x2vxx(t, x) ≥0 for all t [0, T ), x≥0, (11)

and

for each t ∈[0, T )x≥0, equality holds in either of the above two equations. (12)

Just like the perpetual American put, here too the owner has to wait until the stock price reaches

some pre-determined level. However, now this is a function of time (T − t), unlike perpetual

American put where it was independent of time. This is intuitively clear because at time point

T the owner will exercise only if the stock price is below K ( the strike price). Thus we see

that at each point of time over the life of the option there exists a particular value of the stock

price i.e. x = L(T − t) such that if the stock price is below that level then the owner should

exercise , otherwise he should continue holding the option. So, our concern finally boils down

to evaluating this optimum level at each point of time which acts as a boundary between the

stopping set and the continuation set.

Extensive literature exists on calculating efficiently this early exercise boundary of Ameri-

can options. However, the evaluation of boundary using the an integral representation of the

7



difference between the American option and its European counterpart as given by Kim (1990)

,Jacka (1991),and Carr, Jarrow, and Myneni (1992) has led to considerable research

modifying and improving upon their proposed technique. One such efficient modification and

transformation has been carried out by Ait Sahlia (1999) and Lai (1999) which significantly

simplifies the problem of approximating the early exercise boundary and hence an easy evalua-

tion of the American option prices.

The next section presents the technique, rather the ingenious transformations made by Ait

Sahlia (1999) and Lai (1999) in the Ju’s exponential piecewise approximation technique for

the early exercise boundary. It is followed by our numerical computations (using their technique)

in R which give close approximations to the results obtained by them.

3 Numerical Method to Evaluate the Early Exercise Boundary

The main motivation towards solving the early exercise boundary using advanced and developed

techniques lie behind the idea of the proposition of the integral difference between the American

option and its European counterpart made by Kim (1990) ,Jacka (1991),and Carr,Jarrow,

and Myneni (1992) . Specifically the integral representation formula is,

U(t, P ) = UE(t, P ) +
∫ T

t
[rKe−r(Γ−t)N(−d2(P,BΓ,Γ− t)) − µPe−µ(Γ−t)N(−d1(P,BΓ,Γ− t))]dΓ

(13)

where,

UE(t, P ) = Ke−r(T−t)N(−d2(P,K, T − t)) − Pe−µ(T−t)N(−d1(P,K, T − t))

where,

d1(x, y,Γ) =
ln(xy ) + (r − µ + 1

2σ
2)Γ

σ
√

Γ
and

d2(x, y,Γ) = d1(x, y,Γ) − σ
√

Γ

Since U(t, Bt) = K − Bt, it follows from integral 13 that the boundary Bt satisfies the

integral equation,

K −Bt = UE(t, P ) +
∫ T

t
[rKe−r(Γ−t)N(−d2(Bt, BΓ,Γ− t)) − µBte

−µ(Γ−t)N(−d1(Bt, BΓ,Γ− t))]dΓ

(14)

Kim (1990) proposed to solve this integral by approximating it with step function. The

method presented by Ait Sahlia (1999) and Lai (1999) is a numerical improvement upon
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Ju’s method of solving the integral (14) ( by piecewise exponential function ) using suitable

transformations under which the piecewise exponential boundary BΓ becomes a piecewise linear

function. The transformations introduced by them after assuming ρ = r
σ2 and α = µ

r are,

s = σ2(t− T ) (15)

and

z = log(
P

K
) − (ρ− αρ− 1

2
)s (16)

Here, r is the risk free rate of return, while σ and µ are the volatility and dividend rate of

the underlying stock respectively. With these transformations, what we now have to find is the

function z̄(s) at various values of s ( which is in turn a function of t ) and linearly interpolate

the function z̄(s) between the successive values of s. We substitute Bt by Kez̄(s) + (ρ − αρ − 1
2

)s.

Under these transformations and substitutions equation (14) gets expressed in a simpler form.

For details about the integral equation and its rearrangement for numerical computations, one

can refer to the paper by Ait Sahlia and Lai (1999). The mathematical formulation and

working out of the expressions can be seen in the above mentioned paper. We, however, will

present here only the brief outline of the idea behind solving the integral equations with the

transformations mentioned.

The time period of the option ( say T ) is divided into a set of discrete time points. The

idea is to evaluate the z̄(s) at the various points of s ( which is a function of t). Having

calculated the values at discrete time points we linearly interpolate the value of z̄(s) between

successive time points to get the value in a continuous time set. After evaluating the value of

z̄(s) at various points of s we can get the value of Bt only by substituting the value of z̄(s) in

Kez̄(s) + (ρ − αρ − 1
2

)s over the various intervals of s where the function z̄(s) has been linearly

interpolated accordingly. We solve the integral equation on a grid of time points or the s values.

For calculating the value of the function z̄(s) at the mth value of s , we take into account all

the z̄(s) values at the previous s values. The value of z̄(s) at each time point s is obtained

by solving a non-linear equation as shown in the paper by Ait Sahlia and Lai (1999). The

solution at each time point is obtained recursively, having declared a candidate value for the

solution at the start of recursion and then obtaining the value of z̄(s) for which the non-linear

equations attain zero value or is beyond some pre-specified tolerance level. For details about

the non-linear equation, its evaluation and solution, the paper by Ait Sahlia and Lai (1999)

can be referred to as mentioned earlier.

The next section shows our evaluation of the early exercise boundary by the technique given

by Ait Sahlia and Lai (1999). We provide numerical results and graphs obtained in R which

seem quite acceptable with the results cited in the paper by Ait Sahlia and Lai (1999).
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4 Results and Discussion

We use even spacing in the choice of grid points i.e we divide the time interval [0 , T ] or the

range of s [−σ2T , 0] ( since, s = σ2(t− T ) ) into intervals of equal length. We can choose δ,

a small value, which is the gap between any two successive s values. The number of intervals

in which the range of s gets divided is given by n = σ2T
δ . The tolerance level used by us for

solving the boundary ( using a non-linear equation) is 10−4.

The following tables and the corresponding graphs show our computation results for the

early exercise boundary i.e. z̄(s) at various values of s using the method given by Ait Sahlia

and Lai (1999).

Table 1: α = 1.2, ρ = 0.5, σ2 = 0.01, T = 30 and δ = 10−2 :
−s z̄(s)

0.03 -0.3915193

0.06 -0.4979153

0.09 -0.5706395

0.12 -0.6277348

0.15 -0.6756809

0.18 -0.7184308

0.21 -0.7565337

0.24 -0.7919107

0.27 -0.824343

0.30 -0.8547986

The above table shows the value of z̄(s) at only ten different values of s although the com-

putation has been done for thirty ( n = σ2T
δ = 30, in this case) different values of s. Figure

(1), the graph corresponding to the inputs for the above computed table is provided.

We change the value of δ from 10−2 to 5×10−3 and obtain the following table.

Table 2: α = 1.2, ρ = 0.5, σ2 = 0.01, T = 30 and δ = 5×10−3 :
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Figure 1: α = 1.2, ρ = 0.5, σ2 = 0.01, T = 30 and δ = 10−2

−s z̄(s)

0.03 -0.3974470

0.06 -0.4987005

0.09 -0.569923

0.12 -0.6269421

0.15 -0.675415

0.18 -0.7176445

0.21 -0.7561635

0.24 -0.7910882

0.27 -0.8235218

0.30 -0.854013

The above table shows the value of z̄(s) at only ten different values of s (as earlier) al-

though the computation has been done for sixty ( n = σ2T
δ = 60, in this case) different values

of s. Figure (2), the graph corresponding to the inputs for the above computed table is provided.

Figure (2) attempts to show that as δ become smaller i.e. the distance between the successive

time points decreases (δ = 5×10−3 here), the exercise boundary becomes smoother. Nonethe-

less, the boundary is already quite accurate with δ = 10−2. Thus, in our case it suffices to take

δ = 10−2 without making it any smaller.

We use δ = 5×10−3 here and change the value of α to 0.8 to obtain the following table.

Table 3: α = 0.8, ρ = 0.5, σ2 = 0.01, T = 30 and δ = 5×10−3 :
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Figure 2: Plot of z̄(s) against s with α = 1.2, ρ = 0.5, σ2 = 0.01, T = 30 and δ = 5×10−3

−s z̄(s)

0.03 -0.2659134

0.06 -0.4210514

0.09 -0.481041

0.12 -0.5261339

0.15 -0.5650311

0.18 -0.5994227

0.21 -0.6304025

0.24 -0.6587024

0.27 -0.6848577

0.30 -0.7091025

The above table shows the value of z̄(s) at only ten different values of s, as earlier, although

the computation has been done for sixty ( n = σ2T
δ = 60, in this case) different values of s.

Here, there is a minor difference with the previous two tables. In the previous two cases the

value of α was 1.2 and for α > 1 we initialize z̄(0) as ln(α), whereas for α≤1, we initialize z̄(0)

as zero. This matter has just been highlighted and is of no major significance. The exercise

boundary for the previous cases as well as this case appear to be of the same shape, with only

difference being that, with decreasing values of α the boundary moves up, though it looks al-

most same as far as its shape is concerned. This basically means that, as α becomes smaller ,

or the dividend becomes smaller (α = µ/r), the stock price level at which the option should be

exercised at any point of time increases i.e. the early exercise boundary moves up. Figure (3) is

the graph corresponding to the inputs for the above computed table.
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Figure 3: Plot of z̄(s) against s with α = 0.8, ρ = 0.5, σ2 = 0.01, T = 30 and δ = 5×10−3

The following table produces the output for α = 0.001 with the remaining parameters left

unchanged.

Table 4: α = 0.001, ρ = 0.5, σ2 = 0.01, T = 30 and δ = 5×10−3 :
−s z̄(s)

0.03 -0.2288506

0.06 -0.3186725

0.09 -0.3529692

0.12 -0.3792697

0.15 -0.4013473

0.18 -0.4202262

0.21 -0.4365501

0.24 -0.4508725

0.27 -0.4636028

0.30 -0.47503

The above table again shows the value of z̄(s) at only ten different values of s, as earlier,

although the computation has been done for sixty ( n = σ2T
δ = 60, in this case) different

values of s. However, this result is of significance and hence has been provided. Previously

we presented tables with α = 1.2 and α = 0.8, both of which means there is a finite rate of

dividend ( α = µ
r ). However, we might be interested in computing the boundary when there

is no dividend at all. There is a bit of problem with the computation here, when α = 0 as

explanations follow.

The lower bound for z̄(s) as shown by Sahlia and Lai is given by,
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z̄l(s) = − [ρ(1− α)− 1
2

]s − ln[
θ

(θ − 1)
] (17)

where,

θ = − [ρ(1− α)− 1
2

] − ([ρ(1− α)− 1
2

]2 + 2ρ)0.5 (18)

From equations (17) and (18) it can be seen that if ρ equals 0.5 and α equals 0 then the lower

bound of z̄(s) for any s attains −∞ ( For θ, we take the negative root in equation (18). This

is because the upper bound is given by z̄u(s) = − [ρ(1− α)− 1
2 ]s − [lnα]+ and the lower

bound has to be smaller than the upper bound). This results in a difficulty in computation of

the exercise boundary. Nonetheless, it can be calculated with some modifications in our code

which we will not carry out for our computation. However, we, in the above table, showed the

values of z̄(s) for α = 0.001. Our objective in calculating the boundary for α = 0.001 is to show

that without the modifications required for the particular case with the lower bound attaining

infinity,we can leave that as a special case and continue employing our code for small value

of α and get satisfactory results. Below, the graph corresponding to the inputs for the above

computed table is provided.

Figure 4: Plot of z̄(s) against s with α = 0.001, ρ = 0.5, σ2 = 0.01, T = 30 and δ = 5×10−3

5 Extensions and Generalizations

In this section we will consider some extensions and generalizations of what we have done. We

have carried out the computation using the technique given by Sahlia and Lai, in a simplistic
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manner. We have calculated the value of the function z̄(s) for different values of s i.e. we have

calculated in the transformed co-ordinates. One can easily substitute the value of z̄(s) in Bt by

Kez̄(s) + (ρ − αρ − 1
2

)s, to get the exercise boundary in the original co-ordinates. Also, having

calculated the boundary ( in original co-ordinates), one can find out the actual price of the

American option which is infact the motivation behind all the research. We have only shown

that our computation results for z̄(s) agree with the findings by Sahlia and Lai approximately,

as that is sufficient to verify our computation results with those of Sahlia and Lai. Knowing

the exercise boundary and the price of the option, one can find the hedge parameters as well.

Nonetheless, the details of these are clearly stated in the paper by Ait Sahlia and Lai (1999),

which one can refer to.

6 Conclusion

The transformations applied by Sahlia and Lai to linearize the exponential piecewise functions

for approximating the early exercise boundary is of particular significance. Although the method

of solving the integral equation by piecewise exponential function, as shown by Ju (1998) is

ingenious in its own way, improving the accuracy and computation speed over any other existing

methods till then, the transformations proposed by Ait Sahlia and Lai (1999) simplify the

computation all the more, thus improving the technique further and supporting Ju’s findings as

well at the same time. The idea to linearly interpolate the boundary, instead of using typical

step-wise functions between successive time points is also of major significance. Our computation

uses a simple, logical technique of using recursions to solve the non-linear equation. All these

lead to an efficient approximation to the early exercise boundary that involves finding its values

at few time points and linearly interpolating between them.
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