Identification and Clustering of Discretely Observed Diffusion Processes

S.M. Iacus
University of Milan
(joint work with A. De Gregorio)

Wien University, 6 March 2009
Diffusion processes/SDEs: why, when, where.

Part I: identification of SDE’s via pseudo ϕ-divergences

Part II: clustering of SDE’s via Markov Operator Distance
(Very) Roughly speaking, given a smooth, non stochastic dynamical system \(X_t = X(t) \), its evolution with respect to time can be represented as

\[
\frac{dX_t}{dt} = b(X_t) \quad \text{or in differential form} \quad dX_t = b(X_t)dt
\]

A stochastic differential equation models the noise (or the stochastic part) of this system by adding the variation of some stochastic process to the above dynamics, e.g. the Wiener process

\[
dX_t = b(X_t)dt + \sigma(X_t)dW_t
\]

i.e.

\text{deterministic trend + stochastic noise}
In this talk the statistical model is the parametric family of diffusion process solutions of the SDE

\[dX_t = b(\alpha, X_t) dt + \sigma(\beta, X_t) dw_t, \quad X_0 = x_0, \]

\[\theta = (\alpha, \beta) \in \Theta_\alpha \times \Theta_\beta = \Theta, \] where \(\Theta_\alpha \subset \mathbb{R}^p \) and \(\Theta_\beta \subset \mathbb{R}^q \).

The drift and diffusion coefficients are known up to \(\alpha \) and \(\beta \) and such that the solution of the SDE exists and the process is also ergodic.

We will consider hypotheses testing via \(\phi \)-divergences and clustering based on discrete time observations from \(X \).
Every time we pass from a static analysis to a dynamic one, modeling via SDEs appears to be effective.
Every time we pass from a static analysis to a dynamic one, modeling via SDEs appears to be effective.

Although we can think of using standard time series approach (AR, ARIMA, etc) stochastic differential equations assume that the stochastic process evolves continuously.
Every time we pass from a static analysis to a dynamic one, modeling via SDEs appears to be effective.

Although we can think of using standard time series approach (AR, ARIMA, etc) stochastic differential equations assume that the stochastic process evolves continuously.

In both cases observations come at discrete time. While this is not a problem for time series analysis, additional care is needed for discretely observed continuous time processes. This is a relatively new field of statistics (1993 - today)
Every time we pass from a static analysis to a dynamic one, modeling via SDEs appears to be effective.

Although we can think of using standard time series approach (AR, ARIMA, etc) stochastic differential equations assume that the stochastic process evolves continuously.

In both cases observations come at discrete time. While this is not a problem for time series analysis, additional care is needed for discretely observed continuous time processes. This is a relatively new field of statistics (1993 - today)

Next is an example from economics where discrete vs continuous time modeling matters
In time series analysis, Granger causality is synonym of “ability to predict with minimal variance”. Assume we are given a target time series Y_t, Y_{t-1}, \ldots and the information \mathcal{F}_t generated by two other times series X_t, X_{t-1}, \ldots and Z_t, Z_{t-1}, \ldots.
In time series analysis, Granger causality is synonym of “ability to predict with minimal variance”. Assume we are given a target time series Y_t, Y_{t-1}, \ldots and the information \mathcal{F}_t generated by two other times series X_t, X_{t-1}, \ldots and Z_t, Z_{t-1}, \ldots.

The process X_t is said to “Granger cause” Y_t with respect to \mathcal{F}_t if the variance of the optimal linear predictor of Y_{t+h} based on \mathcal{F}_t has smaller variance than the optimal linear predictor based on Z_t, Z_{t-1}, \ldots.
In time series analysis, Granger causality is synonym of “ability to predict with minimal variance”. Assume we are given a target time series \(Y_t, Y_{t-1}, \ldots \) and the information \(F_t \) generated by two other times series \(X_t, X_{t-1}, \ldots \) and \(Z_t, Z_{t-1}, \ldots \).

The process \(X_t \) is said to “Granger cause” \(Y_t \) with respect to \(F_t \) if the variance of the optimal linear predictor of \(Y_{t+h} \) based on \(F_t \) has smaller variance than the optimal linear predictor based on \(Z_t, Z_{t-1}, \ldots \).

In other words, \(X_t \) is Granger causal for \(Y_t \) if \(X_t \) helps predict \(Y_t \) at some stage in the future.
Granger causality

Usually a VAR model is used to test Granger causality

\[
\begin{bmatrix}
Y_t \\
Z_t \\
X_t
\end{bmatrix} = \begin{bmatrix}
\mu_1 \\
\mu_2 \\
\mu_3
\end{bmatrix} + \sum_{i=1}^{k} \left\{ \begin{bmatrix}
A_{11}^i \\
A_{21}^i \\
A_{31}^i
\end{bmatrix} \begin{bmatrix}
Y_{t-i} \\
Z_{t-i} \\
X_{t-i}
\end{bmatrix} + \begin{bmatrix}
\epsilon_{1t} \\
\epsilon_{2t} \\
\epsilon_{3t}
\end{bmatrix} \right\}
\]
Usually a VAR model is used to test Granger causality

\[
\begin{bmatrix}
 Y_t \\
 Z_t \\
 X_t
\end{bmatrix} = \begin{bmatrix}
 \mu_1 \\
 \mu_2 \\
 \mu_3
\end{bmatrix} + \sum_{i=1}^{k} \begin{bmatrix}
 A_{11}^i & A_{12}^i & A_{13}^i \\
 A_{21}^i & A_{22}^i & A_{23}^i \\
 A_{31}^i & A_{32}^i & A_{33}^i
\end{bmatrix} \begin{bmatrix}
 Y_{t-i} \\
 Z_{t-i} \\
 X_{t-i}
\end{bmatrix} + \begin{bmatrix}
 \epsilon_{1t} \\
 \epsilon_{2t} \\
 \epsilon_{3t}
\end{bmatrix}
\]

\(X_t\) does not Granger cause \(Y_t\) with respect to the information generated by \(Z_t\) if

\[A_{13}^i = A_{23}^i = 0 \quad \text{and/or} \quad A_{13}^i = A_{12}^i = 0\]

i.e. \(A^i\) is lower triangular
Unfortunately, it is not unusual to obtain that “X_t Granger cause Y_t” and “Y_t Granger cause X_t” even if it makes sense to expect causality in one direction only.
Unfortunately, it is not unusual to obtain that “X_t Granger cause Y_t” and “Y_t Granger cause X_t” even if it makes sense to expect causality in one direction only.

According to McCrorie & Chambers (2006) and others, this “spurious Granger causality is only a consequence of the intervals in which economic data are generated being finer than the econometrician’s sampling interval.”
Unfortunately, it is not unusual to obtain that “X_t Granger cause Y_t” and “Y_t Granger cause X_t” even if it makes sense to expect causality in one direction only.

According to McCrorie & Chambers (2006) and others, this “spurious Granger causality is only a consequence of the intervals in which economic data are generated being finer than the econometrician’s sampling interval.”

In essence, the underlying process (and causality) evolve continuously rather than discretely.
McCrorie and Chambers (2006) proposed the continuous version of the VAR model

$$dX(t) = A(\theta)X(t)dt + dW_t$$

where $X(t)$ is a n-dimensional diffusion process (i.e. the components of $X(t)$ may be Y_t, X_t, and Z_t in the previous notation), $A(\theta)$ is a $n \times n$ matrix and θ parameters on which tests will be performed and $W(t)$ is a multidimensional Brownian motion.
Discrete sampling of the above continuous time model leads to observations

\[X_i = X(t_i), \quad t_i = i\Delta, \quad i = 0, \ldots, n, \quad n\Delta = T \]

which solve exactly the so-called Euler scheme

\[X_i = F(\theta)X_{i-1} + \Delta \epsilon_i, \quad i = 1, \ldots, n \]

where \(\epsilon \) is a white noise and

\[F(\theta) = e^{A(\theta)}, \quad \text{Var}(\epsilon) = \Omega(\theta) = \int_0^1 e^{rA(\theta)} \sum e^{rA(\theta)'} \, dr \]
Discrete sampling of the above continuous time model leads to observations $X_i = X(t_i), t_i = i\Delta, i = 0, \ldots, n, n\Delta = T$ which solve exactly the so-called Euler scheme

$$X_i = F(\theta)X_{i-1} + \Delta\epsilon_i, \quad i = 1, \ldots, n$$

where ϵ is a white noise and

$$F(\theta) = e^{A(\theta)}, \quad \text{Var}(\epsilon) = \Omega(\theta) = \int_0^1 e^{rA(\theta)} \sum e^{rA(\theta)'} dr$$

Assuming the above continuous time model instead of the classical time series approach can greatly improve testing of Granger causality (see McCrorie and Chambers, 2006)
In pharmacokinetic/pharmacodynamic (PK/PD) models we have

\[y_{ij}, \quad i = 1, \ldots, N, \quad j = 1, \ldots, n_i \]

repeated measures on the \(i \)-th individual at time point \(t_{ij} \)

\(N \) = number of individuals
\(n_i \) = number of measurements for individual \(i \)

The response is modeled as a NLME model

\[y_{ij} = f(x_i(t_{ij}), d_i(t_{ij}), \phi_i) + \epsilon_{ij} \]
\[y_{ij} = f(x_i(t_{ij}), d_i(t_{ij}), \phi_i) + \epsilon_{ij} \]

\(x_i(\cdot) \): \(i \)-th individual state variables (e.g. the amount of drug in the PK experiment)
Non Linear Mixed Effects model

\[y_{ij} = f(x_i(t_{ij}), d_i(t_{ij}), \phi_i) + \epsilon_{ij} \]

- \(x_i(\cdot) \): \(i \)-th individual state variables (e.g. the amount of drug in the PK experiment)
- \(d_i(\cdot) \): a vector of inputs (e.g. dose administration)
- \(\phi_i \): vector of individual parameters
- \(\epsilon_{ij} \): model residuals
- \(t_{ij} \): time of the measurement
\[y_{ij} = f(x_i(t_{ij}), d_i(t_{ij}), \phi_i) + \epsilon_{ij} \]

- \(x_i(\cdot) \): \(i \)-th individual state variables (e.g. the amount of drug in the PK experiment)
- \(d_i(\cdot) \): a vector of inputs (e.g. dose administration)
- \(\phi_i \): vector of individual parameters
- \(\epsilon_{ij} \): model residuals
- \(t_{ij} \): time of the measurement

There is a second stage model for \(\phi \), not relevant to this discussion.
\[y_{ij} = f(x_i(t_{ij}), d_i(t_{ij}), \phi_i) + \epsilon_{ij} \]

The PK dynamics is usually assumed to be regulated by the ordinary differential equation (ODE)

\[\frac{dx_i(t)}{dt} = g(x_i(t), d_i(t), \phi_i) \]
The PK dynamics is usually assumed to be regulated by the ordinary differential equation (ODE)

\[
\frac{dx_i(t)}{dt} = g(x_i(t), d_i(t), \phi_i)
\]

but applications (Overgaard et al., 2005) shows that this model is inadequate and to capture deviations from the ODE model, the SDEs approach has been proposed (expressed in differential form)

\[
dx_i(t) = g(x_i(t), d_i(t), \phi_i)dt + \sigma_w dW_t
\]

\(\sigma_w\) may be a function of \(x, d, t\) and some other parameters
Divergences are measure of discrepancy between statistical models and ϕ-divergences are defined as follows:

$$D_\phi(\theta, \theta_0) = \int_X p(\theta_0, x) \phi \left(\frac{p(\theta, x)}{p(\theta_0, x)} \right) \mu(dx)$$

$$= \mathbf{E}_{\theta_0} \phi \left(\frac{p(X, \theta)}{p(X, \theta_0)} \right)$$

and the minimal requirement on the function ϕ is: $\phi(1) = 0$
The ϕ-divergences were introduced by Csiszár (1963) and studied extensively later in Liese and Vajda (1987).

They include most of known other divergences. We discuss some examples in the following.
The \(\alpha \)-divergences (Csiszár, 1967, Amari, 1985) are defined as

\[
D_\alpha(\theta, \theta_0) = D_{\phi_\alpha}(\theta, \theta_0)
\]

with

\[
\phi_\alpha(x) = \frac{4 \left(1 - x^{\frac{1+\alpha}{2}} \right)}{1 - \alpha^2}, \quad -1 < \alpha < 1
\]

They are such that \(D_\alpha(\theta_0, \theta) = D_{-\alpha}(\theta, \theta_0) \).
The α-divergences include some special cases.

For example, for $\alpha \to -1$, D_{-1} is the well-known Kullback-Leibler divergence

$$D_{-1}(\theta, \theta_0) = D_{KL}(\theta, \theta_0) = -E_{\theta_0}\left\{ \log \left(\frac{p(X, \theta)}{p(X, \theta_0)} \right) \right\}$$

For $\alpha \to 0$, the Hellinger distance (see, e.g., Beran, 1977, Simpson, 1989) can be derived

$$d_H(\theta, \theta_0) = \frac{1}{2} E \left(\sqrt{p(X, \theta)} - \sqrt{p(X, \theta_0)} \right)^2$$
The α-divergence is also equivalent to the Rényi’s divergence (Rényi, 1961)

\[
R_\alpha(\theta, \theta_0) = \frac{1}{1 - \alpha} \log E_{\theta_0} \left(\frac{p(X, \theta)}{p(X, \theta_0)} \right) ^\alpha
\]

Again

\[
D_{KL}(\theta, \theta_0) = \lim_{\alpha \to 1} R_\alpha(\theta, \theta_0)
\]

\[
d_H(\theta, \theta_0) = 1 - \exp \left\{ \frac{1}{2} R_{\frac{1}{2}}(\theta, \theta_0) \right\}
\]
Liese and Vajda (1987) generalized Rényi divergences to all real orders $\alpha \neq 0, 1$

$$D_\alpha(\theta, \theta_0) = \frac{1}{\alpha(\alpha - 1)} \log E_{\theta_0} \left(\frac{p(X, \theta)}{p(X, \theta_0)} \right)^\alpha$$

only for $\alpha = \frac{1}{2}$ the divergence is symmetric

$$D_{\frac{1}{2}}(\theta_0, \theta) = D_{\frac{1}{2}}(\theta, \theta_0) = 4 \log \int \sqrt{p(x, \theta)p(\theta_0, x)} \mu(dx)$$

[known as Bhattacharyya (1946) divergence], otherwise

$$D_\alpha(\theta_0, \theta) = D_{1-\alpha}(\theta, \theta_0)$$
Examples: power divergences

The transformation

\[\psi(R_\alpha) = \frac{\exp\{(\alpha - 1)R_\alpha - 1\}}{(1 - \alpha)} \]

coinsides with the power-divergence introduced by Cressie and Read (1984)

Power divergences \(D_{\phi_{\lambda}} \) can be obtained directly from the \(\phi \)-divergences choosing

\[\phi_{\lambda}(x) = \frac{x^{\lambda+1} - \lambda(x - 1) - x}{\lambda(\lambda + 1)}, \quad \lambda \in \mathbb{R} - \{0, -1\} \]

...and so forth
Summary of ϕ-divergences (see Pardo, 2006)

<table>
<thead>
<tr>
<th>$\phi(x)$ with $x = p(\theta, \cdot)/p(\theta_0, \cdot)$</th>
<th>Divergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \log x - x + 1$</td>
<td>Kullback-Leibler</td>
</tr>
<tr>
<td>$- \log x - 1$</td>
<td>Minimum Discrimination Information</td>
</tr>
<tr>
<td>$(x - 1) \log x$</td>
<td>J-divergence</td>
</tr>
<tr>
<td>$\frac{1}{2} (x - 1)^2$</td>
<td>Pearson, Kagan</td>
</tr>
<tr>
<td>$\frac{(x-1)^2}{(x+1)^2}$</td>
<td>Balakrishnan & Sanghvi</td>
</tr>
<tr>
<td>$x^s + s(x-1) + 1 / 1 - s$, $s \neq 1$</td>
<td>Rathie & Kannappan</td>
</tr>
<tr>
<td>$\frac{1-x}{2} - \left(\frac{1+x-r}{2}\right)^{-1/r}$, $r > 0$</td>
<td>Harmonic mean (Mathai & Rathie)</td>
</tr>
<tr>
<td>$\frac{(1-x)^2}{2(a+(1-a)x)}$, $0 \leq a \leq 1$</td>
<td>Rukhin</td>
</tr>
<tr>
<td>$ax \log x - (ax+1-a) \log(ax+1-a) / a(1-a)$, $a \neq 0, 1$</td>
<td>Lin</td>
</tr>
<tr>
<td>$\frac{x^\lambda + 1 - x - \lambda(x-1)}{\lambda(\lambda+1)}$, $\lambda \neq 0, -1$</td>
<td>Cressie & Read</td>
</tr>
<tr>
<td>$</td>
<td>1 - x^a</td>
</tr>
<tr>
<td>$</td>
<td>1 - x</td>
</tr>
</tbody>
</table>
Divergences can be used in both hypotheses testing and estimation (see, e.g. Pardo, 2006), here we consider hypotheses testing problems.

For a given sample of n i.i.d. observations X_1, \ldots, X_n, under standard regularity assumptions on the model and on ϕ, the standard result is that, under $H_0 : \theta = \theta_0$

$$2nD_{\phi}(\hat{\theta}_n, \theta_0) \Rightarrow \chi^2_d$$

where $\hat{\theta}_n = \hat{\theta}_n(X_1, \ldots, X_n)$ is \sqrt{n}-consistent and asymptotically gaussian estimator of θ and d is the dimension of θ
For continuous time observations from diffusion processes, Vajda (1990) considered the model

$$dX(t) = -b(t)X_t dt + \sigma(t)dW_t$$

and derived explicit formulas for the Rényi divergence.
For continuous time observations from diffusion processes, Vajda (1990) considered the model

$$dX(t) = -b(t)X_t dt + \sigma(t) dW_t$$

and derived explicit formulas for the Rényi divergence.

Küchler and Sørensen (1997) and Morales et al. (2004) contain several results on the generalized likelihood ratio test statistics and Rényi statistics for exponential families of diffusions.
For continuous time observations from diffusion processes, Vajda (1990) considered the model

$$dX(t) = -b(t)X_t dt + \sigma(t)dW_t$$

and derived explicit formulas for the Rényi divergence.

Küchler and Sørensen (1997) and Morales et al. (2004) contain several results on the generalized likelihood ratio test statistics and Rényi statistics for exponential families of diffusions.

Explicit derivations of the Rényi information on the invariant law of ergodic diffusion processes have been presented in De Gregorio and I. (2008).
For continuous time small diffusion processes f-unbiased information criteria have been derived in Uchida and Yoshida (2004) by means of Malliavin calculus. For mixing processes in Uchida and Yoshida (2001).
For continuous time small diffusion processes \(f \)-unbiased information criteria have been derived in Uchida and Yoshida (2004) by means of Malliavin calculus. For mixing processes in Uchida and Yoshida (2001) Rivas et al. (2005) derived Rényi divergences for discrete time observations from the model \(\mathrm{d}X_t = a\, \mathrm{d}t + b\, \mathrm{d}W_t \) where \(a \) and \(b \) are two scalars.
For continuous time small diffusion processes f-unbiased information criteria have been derived in Uchida and Yoshida (2004) by means of Malliavin calculus. For mixing processes in Uchida and Yoshida (2001)

Rivas et al. (2005) derived Rényi divergences for discrete time observations from the model $dX_t = adt + bdW_t$ where a and b are two scalars

Akaike Information Criteria for discretely observed diffusion processes was derived by Uchida and Yoshida (2005)

Negri and Nishiyama (2008) propose a nonparametric test based on score marked empirical process for continuous time observations of ergodic diffusions and Masuda et al. (2008) analyzed the discrete time case. Lee and Wee (2008) considered the parametric version of this test for a simplified ergodic model. Negri and Nishiyama (2007) studied the same test for continuous and discrete time observations from small diffusion processes.
Aït-Sahalia (1996), Giet and Lubrano (2008) and Chen et al. (2008) proposed tests based on the several distances between parametric and nonparametric estimation of the invariant density of discretely observed ergodic diffusion processes.
Aït-Sahalia (1996), Giet and Lubrano (2008) and Chen et al. (2008) proposed tests based on the several distances between parametric and nonparametric estimation of the invariant density of discretely observed ergodic diffusion processes.

(Up to our knowledge) No other option exists for parametric hypotheses testing based on divergences for discretely observed diffusions processes, and this was the motivation for this work.
Consider again the ϕ-divergence

$$D_\phi(\theta, \theta_0) = E_{\theta_0} \phi \left(\frac{p(X, \theta)}{p(X, \theta_0)} \right)$$

where $p(X, \theta)$ is the likelihood of the process X under θ.

Let $\phi(\cdot)$ be such that $\phi(1) = 0$. When they exist, define $C_\phi = \phi'(1)$ and $K_\phi = \phi''(1)$.
Consider again the ϕ-divergence

$$D_\phi(\theta, \theta_0) = E_{\theta_0} \phi \left(\frac{p(X, \theta)}{p(X, \theta_0)} \right)$$

where $p(X, \theta)$ is the likelihood of the process X under θ.

Let $\phi(\cdot)$ be such that $\phi(1) = 0$. When they exist, define $C_\phi = \phi'(1)$ and $K_\phi = \phi''(1)$.

In order to get additional properties, in the i.i.d. case $\phi(x)$ is assumed to be convex or decreasing in $x \in (0, 1)$ and increasing for $x > 1$. These conditions are very convenient in the presence of exponential families. We do not ask for these conditions in our framework.
We assume that the process X_t is ergodic for every θ with invariant law μ_θ. The process X_t is observed at discrete times $t_i = i\Delta_n, i = 0, 1, 2, \ldots, n$, where Δ_n is the length of the steps. We denote the observations by $X_n := \{X_i = X_{t_i}\}_{0 \leq i \leq n}$.

The asymptotic is $\Delta_n \to 0, n\Delta_n \to \infty$ and $n\Delta_n^2 \to 0$ as $n \to \infty$.

Given $\tilde{\theta}_n$ a consistent and asymptotically gaussian estimator for θ, we propose the following test statistics based on the pseudo ϕ-divergence

$$D_\phi(\tilde{\theta}_n, \theta_0) = \phi \left(\frac{f_n(X_n, \tilde{\theta}_n)}{f_n(X_n, \theta_0)} \right)$$

to test $H_0 : \theta = \theta_0$ against $H_1 : \theta \neq \theta_0$.

Here $f_n(\cdot, \theta)$ is an the approximate likelihood of the observed diffusion.

Notice: there is no expect value! Hence, “pseudo” ϕ-divergences
We need an estimator \(\tilde{\theta}_n \) such that:

\[
\Gamma^{-1/2}(\tilde{\theta}_n - \theta_0) \xrightarrow{d} N(0, \mathcal{I}(\theta_0)^{-1})
\]

where \(\mathcal{I}(\theta_0) \) the Fisher information matrix, positive definite and invertible at \(\theta_0 \)

\[
\mathcal{I}(\theta_0) = \begin{pmatrix}
(\mathcal{I}_b^{kj}(\theta_0))_{k,j=1,...,p} & 0 \\
0 & (\mathcal{I}_\sigma^{kj}(\theta_0))_{k,j=1,...,q}
\end{pmatrix}
\]

with

\[
\mathcal{I}_b^{kj}(\theta_0) = \int \frac{1}{\sigma^2(\beta_0, x)} \frac{\partial b(\alpha_0, x)}{\partial \alpha_k} \frac{\partial b(\alpha_0, x)}{\partial \alpha_j} \mu_{\theta_0}(dx)
\]

\[
\mathcal{I}_\sigma^{kj}(\theta_0) = 2 \int \frac{1}{\sigma^2(\beta_0, x)} \frac{\partial \sigma(\beta_0, x)}{\partial \beta_k} \frac{\partial \sigma(\beta_0, x)}{\partial \beta_j} \mu_{\theta_0}(dx)
\]

and \(\Gamma \) the \((p + q) \times (p + q)\) matrix

\[
\Gamma = \begin{pmatrix}
\frac{1}{n\Delta_n} I_p & 0 \\
0 & \frac{1}{n} I_q
\end{pmatrix}
\]

with \(I_p \) is the \(p \times p \) identity matrix.
As in Uchida and Yoshida (2005), consider the following approximation of the likelihood

\[f_n(\theta) = \exp \{ u_n(\theta) \} , \quad u_n(\theta) = \sum_{k=1}^{n} u(\Delta_n, X_{i-1}, X_i, \theta) \]

where

\[u(t, x, y, \theta) = -\frac{1}{2} \log(2\pi t) - \log \sigma(y, \beta) - \frac{S^2(x, y, \beta)}{2t} + H(x, y, \theta) + t\tilde{g}(x, y, \theta) , \]

with

\[S(x, y, \beta) = \int_x^y \frac{du}{\sigma(u, \beta)} , \quad H(x, y, \theta) = \int_x^y \frac{B(u, \theta)}{\sigma(u, \beta)} du \]

\[\tilde{g}(x, y, \theta) = -\frac{1}{2} \left\{ C(x, \theta) + C(y, \theta) + \frac{1}{3} B(x, \theta) B(y, \theta) \right\} \]

\[C(x, \theta) = \frac{1}{2} B^2(x, \theta) + \frac{1}{2} B_x(x, \theta) \sigma(x, \beta) , \quad B(x, \theta) = \frac{b(x, \alpha)}{\sigma(x, \beta)} - \frac{1}{2} \sigma_x(x, \beta) \]
We consider the approximated maximum likelihood estimator $\hat{\theta}_n$ based on the locally Gaussian approximation (see, e.g. Yoshida, 1992), i.e.

$$\hat{\theta}_n = \arg \max_{\theta} \ell_n(\theta)$$

with

$$\ell_n(\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi \Delta_n \sigma^2(X_{i-1}, \theta)}} \exp \left\{ -\frac{1}{2} \frac{(X_i - X_{i-1} - b(X_{i-1}, \theta) \Delta_n)^2}{\Delta_n \sigma^2(X_{i-1}, \theta)} \right\}$$

The estimator $\hat{\theta}_n$ satisfies previous convergence assumptions for $\tilde{\theta}_n$.
Regularity conditions on the process

i) There exists a constant C such that

$$|b(\alpha_0, x) - b(\alpha_0, y)| + |\sigma(\beta_0, x) - \sigma(\beta_0, y)| \leq C|x - y|.$$

ii) $\inf_{\beta, x} \sigma^2(\beta, x) > 0$.

iii) The process X is ergodic for every θ with invariant probability measure μ_θ. All polynomial moments of μ_θ are finite.

iv) For all $m \geq 0$ and for all θ, $\sup_t E|X_t|^m < \infty$.

v) For every θ, the coefficients $b(\alpha, x)$ and $\sigma(\beta, x)$ are five times differentiable with respect to x and the derivatives are polynomial growth in x, uniformly in θ.

vi) The coefficients $b(\alpha, x)$ and $\sigma(\beta, x)$ and all their partial derivatives respect to x up to order 2 are three times differentiable respect to θ for all x in the state space. All derivatives respect to θ are polynomial growth in x, uniformly in θ.
Conditions on the approximation and identifiability

Let $i = 0, 1, 2, 3$ and ∂^i_θ the partial i-th derivative with respect to θ and similarly for x,

i) $\partial^i_\theta \tilde{h}(x, \theta) = O(|x|^2)$ as $x \to \infty$.

ii) $\inf_x \partial^i_\theta \tilde{h}(x, \theta) > -\infty$

iii) $\sup_\theta \sup_x |\partial^i_\theta \partial^5_x \tilde{h}(x, \theta)| \leq M < \infty$.

iv) There exists $\gamma > 0$ such that for every θ and $j = 1, \ldots, 4$, $|\partial^i_\theta \partial^j_x \tilde{B}(x, \theta)| = O(|\tilde{B}(x, \theta)|^\gamma)$ as $|x| \to \infty$.

When the coefficients $b(\alpha, x) = b(\alpha_0, x)$ and $\sigma^2(\beta, x) = \sigma^2(\beta_0, x)$ for μ_θ a.s. for all x, then $\alpha = \alpha_0$ and $\beta = \beta_0$.
Main result \[C_\phi = \phi'(1), \quad K_\phi = \phi''(1) \]

Theorem: Under \(H_0 : \theta = \theta_0 \) and the asymptotic \(n\Delta_n^2 \to 0, \Delta_n \to 0, \quad n\Delta_n = T \to \infty \) the pseudo-\(\phi \) divergence test statistics is such that

\[
\mathbb{D}_\phi(\hat{\theta}_n, \theta_0) \xrightarrow{d} \frac{1}{2}(C_\phi \xi_{p+q} + (C_\phi + K_\phi)\xi_{p+q}^2)
\]

where \(\xi_{p+q} \sim \chi^2_{p+q} \)
Main result \[C_\phi = \phi'(1), K_\phi = \phi''(1) \]

Theorem: Under \(H_0 : \theta = \theta_0 \) and the asymptotic \(n\Delta_n^2 \to 0, \Delta_n \to 0, n\Delta_n = T \to \infty \) the pseudo-\(\phi \) divergence test statistics is such that

\[
D_\phi(\hat{\theta}_n, \theta_0) \overset{d}{\to} \frac{1}{2}(C_\phi \xi_{p+q} + (C_\phi + K_\phi)\xi_{p+q}^2)
\]

where \(\xi_{p+q} \sim \chi_{p+q}^2 \)

Remind that, in the i.i.d. case we have \(2nD_\phi(\hat{\theta}_n, \theta_0) \Rightarrow \chi_d^2 \)

Notice: the limit distribution does not depend on \(\phi \) in the i.i.d. In our approach it does and one can try to characterize the limit. In particular, we can study the power function of the test analytically under contiguous alternatives (not shown here).
For example, consider the α-divergences

$$
\phi_\alpha(x) = \frac{4 \left(1 - x^{\frac{1+\alpha}{2}}\right)}{1 - \alpha^2}
$$

and the limit as $\alpha \to -1$, i.e. the Kullback-Leibler divergence, we have

$$
\phi(x) = \lim_{\alpha \to -1} \phi_\alpha(x) = -\log(x)
$$

for which $C_\phi = -1$ and $K_\phi = 1$. Hence

$$
\mathbb{D}_{Kull}(\hat{\theta}_n, \theta_0) = \mathbb{D}_\phi(\hat{\theta}_n, \theta_0) \xrightarrow{d} \frac{1}{2} (C_\phi \xi_{p+q} + (C_\phi + K_\phi) \xi_{p+q}^2)
$$

reduces to the standard result of the i.i.d. setting.
Idea of the proof

The proof is obtained by means of the δ-method up to second order.

These lemmas are needed to prove convergence

$$\Gamma^{1/2} \nabla_\theta \log \ell_n(X_n, \theta_0) \xrightarrow{p} N(0, \mathcal{I}(\theta_0))$$ \hspace{1cm} (Kessler, 1997)

$$\Gamma^{1/2} \nabla_\theta \log f_n(X_n, \theta_0) = \Gamma^{1/2} \nabla_\theta \log \ell_n(X_n, \theta_0) + \mathcal{O}_p(1)$$ \hspace{1cm} (Uchida & Yoshida, 2005)

$$\Gamma^{1/2} \nabla^2_\theta \log f_n(X_n, \theta_0) \Gamma^{1/2} \xrightarrow{p} -\mathcal{I}(\theta_0)$$ \hspace{1cm} (Uchida & Yoshida, 2005)

So the result hold for any approximation of the likelihood f_n and appropriate estimator provided that the above lemmas can be proved.

Almost all likelihood approximations available in the literature for SDE’s satisfy the assumptions.
\(\alpha \)-divergences

\[
\mathbb{D}_\alpha(\hat{\theta}_n, \theta_0) = \phi_\alpha \left(\frac{f_n(X_n, \hat{\theta}_n)}{f_n(X_n, \theta_0)} \right)
\]

with \(\phi_\alpha(x) = 4(1 - x^{\frac{1+\alpha}{2}})/(1 - \alpha^2) \), with \(C_\alpha = \frac{2}{\alpha - 1} \) and \(K_\phi = 1 \). With \(\alpha \in \{-0.99, -0.90, -0.75, -0.50, -0.25, -0.10\} \);

power-divergences of order \(\lambda \)

\[
\mathbb{D}_\lambda(\hat{\theta}_n, \theta_0) = \phi_\lambda \left(\frac{f_n(X_n, \hat{\theta}_n)}{f_n(X_n, \theta_0)} \right)
\]

with \(\phi_\lambda(x) = (x^{\lambda+1} - x - \lambda(x - 1))/(\lambda(\lambda + 1)) \), with \(C_\lambda = 0, K_\lambda = 1 \). With \(\lambda \in \{-0.99, -1.20, -1.50, -1.75, -2.00, -2.50\} \);

generalized likelihood ratio test statistic

\[
\mathbb{D}_{\log}(\hat{\theta}_n, \theta_0) = -\log \left(\frac{f_n(X_n, \hat{\theta}_n)}{f_n(X_n, \theta_0)} \right)
\]
The Vasicek (VAS) model: \(dX_t = \kappa (\alpha - X_t) dt + \sigma dW_t \), where, in finance, \(\sigma \) is interpreted as volatility, \(\alpha \) is the long-run equilibrium value of the process and \(\kappa \) is the speed of reversion. Let

\[
\theta_0 = (\kappa_0, \alpha_0, \sigma_0^2) = (0.85837, 0.089102, 0.0021854)
\]

we consider three different sets of hypotheses for the parameters

<table>
<thead>
<tr>
<th>model</th>
<th>(\theta = (\kappa, \alpha, \sigma^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAS_0</td>
<td>((\kappa_0, \alpha_0, \sigma_0^2))</td>
</tr>
<tr>
<td>VAS_1</td>
<td>((4 \cdot \kappa_0, \alpha_0, 4 \cdot \sigma_0^2))</td>
</tr>
<tr>
<td>VAS_2</td>
<td>((\frac{1}{4} \kappa_0, \alpha_0, \frac{1}{4} \cdot \sigma_0^2))</td>
</tr>
</tbody>
</table>
The Cox-Ingersoll-Ross (CIR) model: \[dX_t = \kappa(\alpha - X_t)dt + \sigma \sqrt{X_t}dW_t. \] Let \[\theta_0 = (\kappa_0, \alpha_0, \sigma_0^2) = (0.89218, 0.09045, 0.032742) \]

we consider different sets of hypotheses for the parameters

<table>
<thead>
<tr>
<th>model</th>
<th>(\theta = (\kappa, \alpha, \sigma^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIR(_0)</td>
<td>((\kappa_0, \alpha_0, \sigma_0^2))</td>
</tr>
<tr>
<td>CIR(_1)</td>
<td>(\left(\frac{1}{2} \cdot \kappa_0, \alpha_0, \frac{1}{2} \cdot \sigma_0^2 \right))</td>
</tr>
<tr>
<td>CIR(_2)</td>
<td>(\left(\frac{1}{4} \cdot \kappa_0, \alpha_0, \frac{1}{4} \cdot \sigma_0^2 \right))</td>
</tr>
</tbody>
</table>

This model has a transition density of \(\chi^2 \)-type, hence local gaussian approximation is less likely to hold for non negligible values of \(\Delta_n \).

The parameters of the above models, have been chosen according to Pritsker (1998) and Chen et al. (2008), in particular VAS\(_0\) corresponds to the model estimated by Aït-Sahalia (1996) for real interest rates data.
The empirical level of the test is calculated as the number of times the test rejects the null hypothesis under the true model, i.e.

\[
\hat{\alpha}_n = \frac{1}{M} \sum_{i=1}^{M} \mathbf{1}\{D_{\phi} > c_{\alpha}\} \quad \text{under} \quad H_0
\]

where \(\mathbf{1}_A \) is the indicator function of set \(A \), \(M = 10,000 \) is the number of simulations and \(c_{\alpha} \) is the \((1 - \alpha)\% \) quantile of the proper distribution. Similarly we calculate the power of the test under alternative models as

\[
\hat{\beta}_n = \frac{1}{M} \sum_{i=1}^{M} \mathbf{1}\{D_{\phi} > c_{\alpha}\} \quad \text{under} \quad H_1
\]
Plan of the talk

- Diffusions
- Granger causality
- NLME
- Part I: Examples
 - i.i.d. setup
 - Hypotheses testing
 - Main result
- Simulations
- Part II
- Simulations
- NYSE data
- References

Vasicek. Alpha-div. of order a, $a = -0.99 = \text{GLRT}$

<table>
<thead>
<tr>
<th>model (α, n)</th>
<th>$a = -0.99$</th>
<th>$a = -0.90$</th>
<th>$a = -0.75$</th>
<th>$a = -0.50$</th>
<th>$a = -0.25$</th>
<th>$a = -0.10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAS$_0$ (0.01, 50)</td>
<td>0.01</td>
<td>0.10</td>
<td>0.39</td>
<td>0.62</td>
<td>0.73</td>
<td>0.77</td>
</tr>
<tr>
<td>VAS$_1$ (0.01, 50)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_2$ (0.01, 50)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_0$ (0.05, 50)</td>
<td>0.04</td>
<td>0.12</td>
<td>0.39</td>
<td>0.62</td>
<td>0.73</td>
<td>0.77</td>
</tr>
<tr>
<td>VAS$_1$ (0.05, 50)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_2$ (0.05, 50)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

VAS$_0$ (0.01, 100)	0.01	0.10	0.39	0.63	0.74	0.78
VAS$_1$ (0.01, 100)	1.00	1.00	1.00	1.00	1.00	1.00
VAS$_2$ (0.01, 100)	1.00	1.00	1.00	1.00	1.00	1.00
VAS$_0$ (0.05, 100)	0.04	0.11	0.40	0.63	0.74	0.78
VAS$_1$ (0.05, 100)	1.00	1.00	1.00	1.00	1.00	1.00
VAS$_2$ (0.05, 100)	1.00	1.00	1.00	1.00	1.00	1.00

VAS$_0$ (0.01, 500)	0.02	0.18	0.61	0.83	0.90	0.92
VAS$_1$ (0.01, 500)	1.00	1.00	1.00	1.00	1.00	1.00
VAS$_2$ (0.01, 500)	1.00	1.00	1.00	1.00	1.00	1.00
VAS$_0$ (0.05, 500)	0.07	0.20	0.61	0.83	0.90	0.92
VAS$_1$ (0.05, 500)	1.00	1.00	1.00	1.00	1.00	1.00
VAS$_2$ (0.05, 500)	1.00	1.00	1.00	1.00	1.00	1.00
Vasicek. Power-div. of order λ

<table>
<thead>
<tr>
<th>model (α, n)</th>
<th>$\lambda = -0.99$</th>
<th>$\lambda = -1.20$</th>
<th>$\lambda = -1.50$</th>
<th>$\lambda = -1.75$</th>
<th>$\lambda = -2.00$</th>
<th>$\lambda = -2.50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAS$_0$ (0.01, 50)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>VAS$_1$ (0.01, 50)</td>
<td>0.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_2$ (0.01, 50)</td>
<td>0.40</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_0$ (0.05, 50)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>VAS$_1$ (0.05, 50)</td>
<td>0.67</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_2$ (0.05, 50)</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_0$ (0.01, 100)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>VAS$_1$ (0.01, 100)</td>
<td>0.23</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_2$ (0.01, 100)</td>
<td>0.88</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_0$ (0.05, 100)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>VAS$_1$ (0.05, 100)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_2$ (0.05, 100)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_0$ (0.01, 500)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>VAS$_1$ (0.01, 500)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_2$ (0.01, 500)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_0$ (0.05, 500)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>VAS$_1$ (0.05, 500)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>VAS$_2$ (0.05, 500)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
CIR. Alpha-div. of order \(a, a = -0.99 = \text{GLRT} \)

<table>
<thead>
<tr>
<th>model ((\alpha, n))</th>
<th>(a = -0.99)</th>
<th>(a = -0.90)</th>
<th>(a = -0.75)</th>
<th>(a = -0.50)</th>
<th>(a = -0.25)</th>
<th>(a = -0.10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIR(_0) (0.01, 50)</td>
<td>0.01</td>
<td>0.14</td>
<td>0.54</td>
<td>0.77</td>
<td>0.85</td>
<td>0.87</td>
</tr>
<tr>
<td>CIR(_1) (0.01, 50)</td>
<td>0.80</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR(_2) (0.01, 50)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR(_0) (0.05, 50)</td>
<td>0.05</td>
<td>0.16</td>
<td>0.54</td>
<td>0.77</td>
<td>0.85</td>
<td>0.87</td>
</tr>
<tr>
<td>CIR(_1) (0.05, 50)</td>
<td>0.94</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR(_2) (0.05, 50)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR(_0) (0.01, 100)</td>
<td>0.01</td>
<td>0.13</td>
<td>0.49</td>
<td>0.71</td>
<td>0.79</td>
<td>0.82</td>
</tr>
<tr>
<td>CIR(_1) (0.01, 100)</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR(_2) (0.01, 100)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR(_0) (0.05, 100)</td>
<td>0.04</td>
<td>0.15</td>
<td>0.49</td>
<td>0.71</td>
<td>0.79</td>
<td>0.82</td>
</tr>
<tr>
<td>CIR(_1) (0.05, 100)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR(_2) (0.05, 100)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR(_0) (0.01, 500)</td>
<td>0.00</td>
<td>0.06</td>
<td>0.28</td>
<td>0.54</td>
<td>0.69</td>
<td>0.74</td>
</tr>
<tr>
<td>CIR(_1) (0.01, 500)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR(_2) (0.01, 500)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR(_0) (0.05, 500)</td>
<td>0.02</td>
<td>0.08</td>
<td>0.28</td>
<td>0.54</td>
<td>0.69</td>
<td>0.74</td>
</tr>
<tr>
<td>CIR(_1) (0.05, 500)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR(_2) (0.05, 500)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
CIR. Power-div. of order λ

<table>
<thead>
<tr>
<th>Model (α, n)</th>
<th>$\lambda = -0.99$</th>
<th>$\lambda = -1.20$</th>
<th>$\lambda = -1.50$</th>
<th>$\lambda = -1.75$</th>
<th>$\lambda = -2.00$</th>
<th>$\lambda = -2.50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIR$_0$ (0.01, 50)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>CIR$_1$ (0.01, 50)</td>
<td>0.00</td>
<td>0.06</td>
<td>0.52</td>
<td>0.75</td>
<td>0.86</td>
<td>0.94</td>
</tr>
<tr>
<td>CIR$_2$ (0.01, 50)</td>
<td>0.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR$_0$ (0.05, 50)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>CIR$_1$ (0.05, 50)</td>
<td>0.00</td>
<td>0.23</td>
<td>0.70</td>
<td>0.85</td>
<td>0.92</td>
<td>0.96</td>
</tr>
<tr>
<td>CIR$_2$ (0.05, 50)</td>
<td>0.06</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR$_0$ (0.01, 100)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>CIR$_1$ (0.01, 100)</td>
<td>0.00</td>
<td>0.56</td>
<td>0.96</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR$_2$ (0.01, 100)</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR$_0$ (0.05, 100)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>CIR$_1$ (0.05, 100)</td>
<td>0.00</td>
<td>0.83</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR$_2$ (0.05, 100)</td>
<td>0.97</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR$_0$ (0.01, 500)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>CIR$_1$ (0.01, 500)</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR$_2$ (0.01, 500)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR$_0$ (0.05, 500)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>CIR$_1$ (0.05, 500)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIR$_2$ (0.05, 500)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
The power divergences are, on average, better than the generalized likelihood ratio test in terms of both empirical level $\hat{\alpha}$ and power $\hat{\beta}$ for the models considered and under the selected alternatives.

The α-divergence do not behave very well and only approximate the GLR test at most (i.e. always worse than GLRT).

For the CIR study, all test statistics have, in general, lower power under the alternative CIR$_1$ than under CIR$_2$.

Power divergences are yet the best test statistics in both cases (CIR and VAS), for $\lambda = (-1.20, -1.50, -1.75)$
The package sde for the R statistical environment is freely available at http://cran.R-Project.org.

It contains the function sdeDiv which implements the ϕ-divergence test statistics.
We consider the model

\[dX_t = (\theta_{i1} - \theta_{i2}X_t)dt + \theta_{i3}\sqrt{X_t}dW_t, \quad i = 0, 1 \]

with (as, in Pritsker, 1998, and Chen et al., 2008)

\[\theta_0 = (0.0807, 0.8922, 0.1809) \]
\[\theta_1 = (0.0403, 0.8922, 0.1279) \]

\[
\text{theta0 <- c(0.0807, 0.8922, 0.1809)} \\
\text{theta1 <- c(0.0403, 0.8922, 0.1279)}
\]

We simulate under \(H_1 : \theta = \theta_1 \) and test for \(H_0 : \theta = \theta_0 \)

\[
\text{set.seed(123)} \\
\text{X <- sde.sim(X0=rsCIR(1, theta1), N=5000, delta=1e-3, model="CIR", theta=theta1)}
\]
after setting up model description

```r
b <- function(x,theta) theta[1]-theta[2]*x  # drift coefficient
b.x <- function(x,theta) -theta[2]

s <- function(x,theta) theta[3]*sqrt(x) # diffusion coefficient
s.x <- function(x,theta) theta[3]/(2*sqrt(x))
s.xx <- function(x,theta) -theta[3]/(4*x^1.5)

we choose the power divergences

lambda <- -1.75
myphi <- expression((x^(lambda+1) -x -lambda*(x-1))/(lambda*(lambda+1)))

\[ \phi(x) = \frac{x^{\lambda+1} - x - \lambda(x-1)}{\lambda(\lambda + 1)} \]
We run the test. Should reject $H_0$

```r
dsdeDiv(X=X, theta0 = theta0, phi = myphi, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx,
 method="L-BFGS-B", lower=rep(1e-3,3), guess=c(1,1,1))
```

estimated parameters
0.04041047 1.298524 0.1290066

Testing $H_0$ against $H_1$

$H_0$: 0.0807 0.8922 0.1809
$H_1$: 0.04041047 1.298524 0.1290066

Divergence statistic: $2.8492e+151$ (p-value=0)
Likelihood ratio test statistic: 930.69 (p-value=1.9486e-201)
We run the test. Should reject $H_0$

\[
sdeDiv(X=X, \text{theta0} = \text{theta0}, \phi = \text{myphi}, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx, \\
\quad \text{method="L-BFGS-B", lower=rep(1e-3,3), guess=c(1,1,1))}
\]

estimated parameters
0.04041047 1.298524 0.1290066

Testing $H_0$ against $H_1$

$H_0$: 0.0807 0.8922 0.1809
$H_1$: 0.04041047 1.298524 0.1290066

Divergence statistic: $2.8492e+151$ (p-value=0)
Likelihood ratio test statistic: 930.69 (p-value=1.9486e-201)

$H_0$ successfully rejected! Both by power-divergence and GLRT.
Now we run the test for $H_0 = H_1$, should not reject

```r
sdeDiv(X=X, theta0 = theta1, phi = myphi, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx,
 method="L-BFGS-B", lower=rep(1e-3,3), guess=c(1,1,1))
```

estimated parameters
0.04041047 1.298524 0.1290066

Testing H0 against H1

H0: 0.0403 0.8922 0.1279
H1: 0.04041047 1.298524 0.1290066

Divergence statistic: 8.7511 (p-value=0.24091)
Likelihood ratio test statistic: 6.883 (p-value=0.075723)
Now we run the test for $H_0 = H_1$, should not reject

\[
\text{sdeDiv}(X=X, \theta_0 = \theta_1, \phi = \text{myphi}, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx, \text{method}="L-BFGS-B", \text{lower}=\text{rep}(1e^{-3},3), \text{guess}=\text{c}(1,1,1))
\]

estimated parameters
\[
0.04041047 \ 1.298524 \ 0.1290066
\]

Testing $H_0$ against $H_1$

$H_0$: 0.0403 0.8922 0.1279

$H_1$: 0.04041047 1.298524 0.1290066

Divergence statistic: 8.7511 (p-value=0.24091)
Likelihood ratio test statistic: 6.883 (p-value=0.075723)

clearly $H_0$ not rejected at 5% by power divergences. Not rejected also by GLRT with suspect $p$-value.
Consider again the nonparametric family of ergodic diffusion process

\[ dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad 0 \leq t \leq T, \]

Let

\[ s(x) = \exp \left\{ -2 \int_{x_0}^{x} \frac{b(y)}{\sigma^2(y)} dy \right\} \quad \text{and} \quad m(x) = \frac{1}{\sigma^2(x)s(x)}. \]

be the **scale** and **speed** measures. \( x_0 \in [a, b], [a, b] \) the state space of \( X \).
Consider again the nonparametric family of ergodic diffusion process

\[ dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad 0 \leq t \leq T, \]

Let

\[ s(x) = \exp\left\{ -2 \int_{x_0}^{x} \frac{b(y)}{\sigma^2(y)} dy \right\} \quad \text{and} \quad m(x) = \frac{1}{\sigma^2(x) s(x)}. \]

be the scale and speed measures. \( x_0 \in [a, b], [a, b] \) the state space of \( X \).

Then, the invariant measure of \( X \) is

\[ \mu_{b,\sigma}(x) = \frac{m(x)}{M}, \quad \text{with} \quad M = \int m(x)dx, \]
The discretized observations $X_i$ form a Markov process and all the mathematical properties are embodied in the so-called *transition operator*

$$P_{\Delta} f(x) = \mathbb{E}\{f(X_i)|X_{i-1} = x\}$$

with $f$ is a generic function, e.g. $f(x) = x^k$.

Notice that $P_{\Delta}$ depends on the transition density between $X_i$ and $X_{i-1}$, so we put explicitly the dependence on $\Delta$ in the notation.

Luckily, there is no need to deal with the transition density, we can estimate $P_{\Delta}$ directly and fully non parametrically.

We assume $n\Delta_n^2 \rightarrow 0$, $\Delta_n \rightarrow 0$, $n\Delta_n = T \rightarrow \infty$. 
For a given $L^2$-orthonormal basis $\{\phi_j, j \in J\}$ of $L^2([a, b])$, where $J$ is an index set, following Gobet et al. (2004) it is possible to obtain an estimator $\hat{P}_\Delta$ of $< P_\Delta \phi_j, \phi_k >_{\mu_{b,\sigma}}$ with entries

$$(\hat{P}_\Delta)_{j,k}(X) = \frac{1}{2N} \sum_{i=1}^{N} \{ \phi_j(X_{i-1})\phi_k(X_i) + \phi_k(X_{i-1})\phi_j(X_i) \}, \quad j, k \in J$$

The terms $(\hat{P}_\Delta)_{j,k}$ are approximations of $< P_\Delta \phi_j, \phi_k >_{\mu_{b,\sigma}}$, that is, the action of the transition operator on the state space of $X$ with respect of the unknown scalar product $< \cdot, \cdot >_{\mu_{b,\sigma}}$.

Remind that $\mu_{b,\sigma}$ is the unknown invariant distribution of the process depending on the unknown drift $b(\cdot)$ and diffusion $\sigma(\cdot)$ coefficients but we don’t need to specify them.
Then, $\hat{P}_\Delta$ can be used as “proxy” of the probability structure of the model.

Our proposal is to use the distance between two estimated Markov Operators

$$d_{MO}(X,Y) = \sum_{j,k \in J} [(\hat{P}_\Delta)_{j,k}(X) - (\hat{P}_\Delta)_{j,k}(Y)]^2$$

In our examples, we compare $d_{MO}$ against

- the Euclidean distance $d_{EUC}$
- the Short-Time-Series distance $d_{STS}$
- and the Dynamic Time Warping distance $d_{DTW}$
We simulate 10 paths $X_i$, $i = 1, \ldots, 10$, according to the combinations of drift $b_i$ and diffusion coefficients $\sigma_i$, $i = 1, \ldots, 4$ presented in the following table

<table>
<thead>
<tr>
<th>$b_i(x)$</th>
<th>$\sigma_1(x)$</th>
<th>$\sigma_2(x)$</th>
<th>$\sigma_3(x)$</th>
<th>$\sigma_4(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_1(x)$</td>
<td>$X_{10}$, $X_1$</td>
<td></td>
<td></td>
<td>$X_5$</td>
</tr>
<tr>
<td>$b_2(x)$</td>
<td></td>
<td>$X_{2,3}$</td>
<td></td>
<td>$X_4$</td>
</tr>
<tr>
<td>$b_3(x)$</td>
<td></td>
<td></td>
<td>$X_{6,7}$</td>
<td></td>
</tr>
<tr>
<td>$b_4(x)$</td>
<td></td>
<td></td>
<td></td>
<td>$X_8$</td>
</tr>
</tbody>
</table>

where

$$b_1(x) = 1 - 2x, \quad b_2(x) = 1.5(0.9 - x), \quad b_3(x) = 1.5(0.5 - x), \quad b_4(x) = 5(0.05 - x)$$

$$\sigma_1(x) = 0.5 + 2x(1 - x), \quad \sigma_2(x) = \sqrt{0.55x(1 - x)}$$

$$\sigma_3(x) = \sqrt{0.1x(1 - x)}, \quad \sigma_4(x) = \sqrt{0.8x(1 - x)}$$

The process $X_9 = 1 - X_1$, hence it has drift $-b_1(x)$ and the same quadratic variation of $X_1$ and $X_{10}$. 
Simulated diffusions

Trajectories
Dendrograms

Markov Operator Distance

Euclidean Distance

STS Distance

DTW Distance
Multidimensional scaling

![Multidimensional scaling graph](image)
We consider the time series of daily closing quotes, from 2006-01-03 to 2007-12-31, for the following 20 financial assets:

- Microsoft Corporation (MSOFFT in the plots)
- Dell Inc. (DELL)
- Hewlett-Packard Co. (HP)
- Motorola Inc. (MOTO)
- Electronic Arts Inc. (EA)
- Borland Software Corp. (BORL)
- Symantec Corporation (SYMATEC)
- Merrill Lynch & Co., Inc. (MLINCH)
- Citigroup Inc. (CITI)
- Goldman Sachs Group Inc. (GSACHS)
- Advanced Micro Devices Inc. (AMD)
- Intel Corporation (INTEL)
- Sony Corp. (SONY)
- Nokia Corp. (NOKIA)
- LG Display Co., Ltd. (LG)
- Koninklijke Philips Electronics NV (PHILIPS)
- JPMorgan Chase & Co (JMP)
- Deutsche Bank AG (DB)
- Bank of America Corporation (BAC)
- Exxon Mobil Corp. (EXXON)

Quotes come from NYSE/NASDAQ. Source Yahoo.com.
Real Data from NYSE

Financial Time Series
Multidimensional scaling (MO)
Multidimensional scaling (STS)
Multidimensional scaling (DTW)
Data clustered according to MO distance

Financial Time Series (MO)
Data clustered according to EUC distance

Financial Time Series (EUC)
Data clustered according to STS distance

Financial Time Series (STS)
Data clustered according to DTW distance
The package sde for the R statistical environment is freely available at http://cran.R-Project.org.

It contains the function MOdist which calculates the Markov Operator distance and returns a dist object.

```r
data(quotes)

d <- MOdist(quotes)
cl <- hclust(d)
groups <- cutree(cl, k=4)
plot(quotes, col=groups)

cmd <- cmdscale(d)
plot(cmd, col=groups)
text(cmd, labels(d) , col=groups)
```


Bhattacharyya, A. (1946) On some analogues to the amount of information and their uses in statistical estimation, Sankhya, 8, 1-14.


