On the Estimation of Credit Exposures Using Regression-Based Monte-Carlo Simulation

Robert Schöftner

UBS AG

October 16, 2009

at

Department of Statistics and Mathematics
WU Wien
The opinions expressed in this presentation are those of the author and do not represent the ones of UBS AG or any affiliates. The risk control principles presented are not necessarily used by UBS AG or any of its affiliates. This presentation does not provide a comprehensive description of concepts and methods used in risk control at UBS AG.
Introduction

Exposure Framework
- Market Exposure
- Credit Exposure

The Exposure Algorithm
- Avoiding Simulations within Simulations
- American Option
- The Algorithm
- Decomposition and Truncation Scheme

Credit Exposure Examples
- Convertible Bond
- Cancelable Interest Rate Swap
- Variance Swap

Conclusion
Broader Background: Market & Credit Risk Aggregation

- General motivation: firmwide risk aggregation of market and credit risks - Top-Down vs. Bottom-Up Approach
- Top-Down approach is based on the concept of Copulas and specifies dependence at risk type level
Bottom-Up Approach

- Bottom-up methodology captures dependence at an elementary risk driver level
- Several steps that need to be considered:
 1. identification of risk factors;
 2. use of historical data to determine the relationships between risk drivers;
 3. simulation of the most appropriate model for the risk factors.
- Appropriate risk drivers
 - for market risk: equity prices, interest rates, swap rates, bond prices, FX rates, commodity prices, credit spreads, ...
 - for credit risk: default trends and rates, expected default frequencies (EDFs), credit spreads, recovery rates, macroeconomic variables, ...
Implications: consistent valuation for all type of products accounting for dependencies among risk drivers is needed; as well as a proper definition of a joint bottom-up loss variable for market and credit risk.
Risk management function has advanced significantly in recent years.

Three credit risk components: default indicator, exposure at default, loss given default.

Problem: to quantify credit exposure for complex products with no analytical (closed-form) solution in a scenario consistent way.

Our approach: modified version of least-squares Monte-Carlo technique by Longstaff and Schwartz (2001).
Notation

- Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ be a filtered probability space with underlying stochastic process $(X_t)_{t \geq 0}$, $X_t \in \mathbb{R}^d$, $\mathcal{F}_t = \sigma(X_s, 0 \leq s \leq t)$, \mathbb{P} is physical prob. measure, assume there exists EMM $\mathbb{Q} \sim \mathbb{P}$
- $V_t, t \geq 0$: value of a financial product over time
- $NPV_t = \mathbb{E}^\mathbb{Q}[Cashflows(t, T)|\mathcal{F}_t]$: net present value of outstanding cash flows to some counterparty,
 $Cashflows(t, T), 0 \leq t \leq T$: a claim’s discounted net cash flow between time t and T.
- Distinction between market and credit risk exposure
Definition (Market Exposure)

We define market exposure ME_t at time t as the future market value of the product, i.e.

$$ME_t = V_t, \quad t \geq 0.$$

Moreover, the time-t maximum likely market exposure (MLME) at some confidence level α is given by

$$MLME_t^\alpha = \inf \{x : P[ME_t > x] \leq 1 - \alpha\}. \quad (1)$$

Then the expected market exposure (EME) at time t as seen from time zero is given by

$$EME_t = E_P[ME_t] = E_P[ME_t | F_0]. \quad (2)$$
Credit Exposure

Definition (Credit Exposure)

We define the credit exposure CE_t at time t to a counterparty as its zero-floored expected discounted outstanding cash flows, i.e.

$$CE_t = \max(\NPV_t, 0), \quad t \geq 0. \quad (3)$$

Analogously to (1) and (2), we define

$$MLCE_t^\alpha = \inf\{x : \mathbb{P}[CE_t > x] \leq 1 - \alpha\} \quad t \geq 0,$$

and

$$ECE_t = \mathbb{E}^\mathbb{P}[CE_t] \quad t \geq 0.$$
MC-simulation has become the favorite tool for pricing complex financial instruments.

Calculation of future exposures: rather easy for products with closed-form solution; simulate underlying risk drivers X_t under \mathbb{P} (scenarios) and insert them into the corresponding formulas for V_t or NPV_t (pricing).

If there is no closed-form solution \rightarrow computational infeasible, due to additional simulations (under \mathbb{Q}) for pricing.

Solution: approximate conditional expectations for V_t or NPV_t.
Avoiding Simulations within Simulations

American Option
The Algorithm
Decomposition and Truncation Scheme

Pricing simulations
Scenario simulations
The American put option price V_t at time t is calculated according to

$$V_t = \sup_{\tau \geq t} \mathbb{E}^Q \left[e^{-\int_t^\tau r_s ds} (K - S_{\tau}) | \mathcal{F}_t \right],$$

with optimal stopping times $\tau \in \mathcal{T}$

LSMC: Estimate optimal stopping time τ^* by backward induction comparing at each point in time the intrinsic value I_t (exercise value) and the extrinsic value F_t (continuation value),

For the purpose of modeling exposures, we also need to account for the change of measure $\frac{dQ}{dP}$
American Option
The Algorithm
Decomposition and Truncation Scheme

Figure: American put exposure comparison of LSMC pricing algorithm
Exposure Algorithm

- Additional Notation:
 \(C_{\text{Cashflows}}(t, T) = D(t, T)h(X_T) \) single cash-flow with discount factor: \(D(t, T) = e^{-\int_t^T r_s ds} \)
 payoff function: \(h(X_t) \)
 zero-coupon bond prices: \(B(t, T) = \mathbb{E}_Q^Q[D(t, T)|\mathcal{F}_t] \)
 change of measure density: \(M_t := \frac{dQ}{dP}\bigg|_{\mathcal{F}_t} \)

Algorithm (Exposure algorithm)

1. Simulate \(L \) independent paths \(X^{(l)}_{t_k},\ k = 0, \ldots, K,\ l = 1, \ldots, L, \) of the underlying process under the \(\mathbb{P} \) probability.
Algorithm (Exposure Algorithm cont.)

(2) At terminal date $t_K = T$, set $V^{(l)}_T = h(X^{(l)}_T)$ for $l = 1, \ldots, L$, and define the stopping time $\tau_K := T$.

(3) Apply backward induction, i.e. $k + 1 \rightarrow k$ for $k = K - 1, \ldots, 1$

(a) estimate extrinsic or continuation values

$$F_{t_k}^{(l)} = B^{(l)}(t_k, \tau_{k+1})\tilde{F}_{t_k}^{(l)} \text{ for } l = 1, \ldots, L,$$

where $\tilde{F}_{t_k}^{(l)}$ is estimated by regressing discounted measure-rebased values

$$\frac{D^{(l)}(t_k, \tau_{k+1})}{B^{(l)}(t_k, \tau_{k+1})} \frac{M^{(l)}_{\tau_{k+1}}}{M^{(l)}_{t_k}} V^{(l)}_{\tau_{k+1}}$$

on appropriate basis functions;
Algorithm (Exposure Algorithm cont.)

(3) (b) define a new stopping time \(\tau_{k}^{(l)} \) according to the stopping rule; e.g. for the American option
\[
\tau_{k}^{(l)} = \min\{ m \in \{ k, k + 1, \ldots, K \} | I_{t_m}^{(l)} \geq F_{t_m}^{(l)} , I_{t_m}^{(l)} > 0 \};
\]
(c) for each path \(l = 1, \ldots, L \) set \(NPV_{t_k}^{(l)} = \max\{ I_{t_k}^{(l)} , F_{t_k}^{(l)} \} \) and \(NPV_{t_m}^{(l)} = 0 \) for \(t_m > \tau_{k}^{(l)} \).

(4) Calculate the estimated exposure at time \(t = 0 \) by
\[
NPV_{0} = \sum_{1 \leq l \leq L} D^{(l)}(0, \tau_{1}) M_{\tau_{1}}^{(l)} V_{\tau_{1}}^{(l)} / L .
\]

(5) Set \(CE_{t}^{(l)} = \max(NPV_{t}^{(l)} , 0) \) for the estimated credit exposures.
Deomposition and Truncation

- Let D_1, \ldots, D_d be a partition of the state-space of X_T
- Assuming interest rates to be zero, the continuation value at time t is given by $F_t = \mathbb{E}^\mathbb{P}[\frac{M_T}{M_t} h(X_T) | \mathcal{F}_t]$.
- Applying Bayes theorem we can decompose the continuation value:

$$F_t = \sum_{i=1}^{d} \mathbb{E}^\mathbb{P}[\frac{M_T}{M_t} h(X_T) | X_T \in D_i, \mathcal{F}_t] \cdot \mathbb{P}[X_T \in D_i | \mathcal{F}_t].$$

- Truncation of I by setting minimum and maximum values for this partition
- Decomposition of II can be achieved by multi-nominal regression techniques
Convertible Bond

- Setup: Convertible bond with multiple exercise decisions (voluntary and forced conversion, put and call options)
- Underlying stochastic driver: dividend paying stock with dynamics

\[dS_t = (\mu - \delta)S_t dt + \sigma S_t dW_t^P \quad S_0 = 100 \]

- Exercise can take place at each point in time; maturity: 2 years.
2Y Convertible Bond Exposures

Convertible Bond Exposure

Cumulative Distributions of 3M, 6M, 1Y and 2Y Exposure
Cancelable Interest Rate Swaps

- A callable (putable) swap is an interest rate swap (IRS), where the fixed rate payer (receiver) has the right, but not the obligation to terminate the contract at pre-determined dates during the swaps lifetime.

- Specification: short-rate r_t is governed by a two-factor Vasicek model.

- 5-year cancelable IRS contract, which can be exercised each half a year.
5Y Cancelable Interest Rate Swaps

Callable Interest Rate Swap

Putable Interest Rate Swap

Robert Schöftner Estimation of Credit Exposures
Variance Swap

- A standard variance swap pays off the difference between the annualized realized variance σ^2_R and a pre-specified strike K.
- Additional feature: capped by $\sigma^2_{Cap} = 0.075$; i.e. the payoff becomes
 $$\min \left(\frac{1}{T} \int_0^T \nu_s ds, \sigma^2_{Cap} \right) - K,$$
 where ν_t denotes the instantaneous variance rate, $K = 0.05$.
- ν_t is modelled by Heston model with stochastic central tendency.
2Y Capped Variance Swap

![Diagram showing 2Y Capped Variance Swap Exposure]

Cumulative Distributions of 3M, 6M, 1Y and 2Y Exposure

![Diagram showing cumulative distributions]

Robert Schöftner
Estimation of Credit Exposures
Conclusion

- Presented approach allows to estimate credit exposures without closed-form formulas by backward induction.
- The algorithm incorporates change of measure technique, and partitions the state space of the payoff function.
- Practical feature: simple and easy to implement.
- However, comparison of performance with other techniques such as non-parametric approaches using Malliavin calculus are desirable.
References

