Measuring systemic risk: The Indirect Contagion Index

Rama Cont
Imperial College London
CNRS

Eric Schaanning
RiskLab Switzerland, ETH Zürich
Norges Bank

Wirtschaftsuniversität Wien
January 2018
Disclaimer

This presentation should not be reported as representing the views of Norges Bank. The views expressed are those of the authors only and do not necessarily reflect those of Norges Bank.

Based on:
Rama Cont and Eric Schaanning (2016)
Measuring systemic risk: The Indirect Contagion Index
1. Endogenous risk and price-mediated contagion

2. Modeling fire sales

3. Monitoring systemic risk: The Indirect Contagion Index

4. Scenario design

5. Conclusion
Indirect exposures

Consider two institutions (A) and (B).

- A and B hold a common financial asset (1). A holds an illiquid asset (2) that B does not hold. Notional exposure of B to (2) is zero.
- However, in the event of a large shock to the value of the illiquid asset (2), A may be forced to sell some of its financial assets, pushing down its market price, resulting in a market loss for the bank B.
- So: B experiences a loss following a large shock to the illiquid asset: B has an (indirect) exposure to an asset it does not hold!
- Magnitude of this indirect exposure is directly linked to the overlap between B and institutions holding this asset.
- Large diversified institutions increase overlaps across system and become nodes for price-mediated contagion.
Indirect exposures

Consider two institutions (A) and (B).

- A and B hold a common financial asset (1). A holds an illiquid asset (2) that B does not hold. Notional exposure of B to (2) is zero.

- However, in the event of a large shock to the value of the illiquid asset (2), A may be forced to sell some of its financial assets, pushing down its market price, resulting in a market loss for the bank B.
Indirect exposures

Consider two institutions (A) and (B).

- A and B hold a common financial asset (1). A holds an illiquid asset (2) that B does not hold. Notional exposure of B to (2) is zero.

- However, in the event of a large shock to the value of the illiquid asset (2), A may be forced to sell some of its financial assets, pushing down its market price, resulting in a market loss for the bank B.

- So: B experiences a loss following a large shock to the illiquid asset: B has an (indirect) exposure to an asset it does not hold!
Indirect exposures

Consider two institutions (A) and (B).

- A and B hold a common financial asset (1). A holds an illiquid asset (2) that B does not hold. Notional exposure of B to (2) is zero.

- However, in the event of a large shock to the value of the illiquid asset (2), A may be forced to sell some of its financial assets, pushing down its market price, resulting in a market loss for the bank B.

- So: B experiences a loss following a large shock to the illiquid asset: B has an (indirect) exposure to an asset it does not hold!

- Magnitude of this indirect exposure is directly linked to the overlap between B and institutions holding this asset.

- Large diversified institutions increase overlaps across system and become nodes for price-mediated contagion.
Losses arising from indirect exposures

Figure: Losses of HSBC and Banco Santander as a function of losses in the Southern European real estate sector.
Objectives and questions

- How can we quantify the exposure to price-mediated contagion?
Objectives and questions

- How can we quantify the exposure to price-mediated contagion?
- Is price-mediated contagion likely to be an important vector of contagion in the stress scenarios that we consider?
Objectives and questions

- How can we quantify the exposure to price-mediated contagion?
- Is price-mediated contagion likely to be an important vector of contagion in the stress scenarios that we consider?
- Given institutions’ portfolio holdings, are the stress scenarios that we consider the right ones?
Objectives and questions

• How can we quantify the exposure to price-mediated contagion?
• Is price-mediated contagion likely to be an important vector of contagion in the stress scenarios that we consider?
• Given institutions’ portfolio holdings, are the stress scenarios that we consider the right ones?
• How can we **quantify** the notion of “interconnectedness" for Global systemically important banks (GSIBs)?
Objectives and questions

- How can we quantify the exposure to price-mediated contagion?
- Is price-mediated contagion likely to be an important vector of contagion in the stress scenarios that we consider?
- Given institutions’ portfolio holdings, are the stress scenarios that we consider the right ones?
- How can we quantify the notion of “interconnectedness" for Global systemically important banks (GSIBs)?
- Can regulators disseminate a metric that would allow institutions to quantify their exposures to price-mediated contagion?
Bank stress tests and interconnectedness assessments

- Bank stress tests have become an essential component of bank supervision (EU-wide EBA stress tests, Dodd-Frank tests (DFAST, CCAR)).

- *Static balance sheet assumption:* Stress tests assume 'passive' behaviour by banks.

- BCBS 2015: “Stress tests conducted by bank supervisors still lack a genuine macro-prudential component”: “endogenous reactions to initial stress, loss amplification mechanisms and feedback effects” are missing.

- Currently “interconnectedness” in the GSIB methodology is based on (i) intra-financial system assets, (ii) intra-financial system liabilities, (iii) securities outstanding.
Channels of loss amplification in the financial system

1. Counterparty Risk: balance sheet contagion through asset devaluation

2. Funding channel: balance sheet contagion through withdrawal of funding (bank runs by depositors, institutional bank runs by lenders)
Channels of loss amplification in the financial system

1. **Counterparty Risk**: balance sheet contagion through asset devaluation

2. **Funding channel**: balance sheet contagion through withdrawal of funding (bank runs by depositors, institutional bank runs by lenders)

3. **Feedback effects from fire sales**: loss contagion through mark-to-market losses in common asset holdings

Research on financial networks and their use in macroprudential regulation has focused on direct contagion mechanisms (1+2). Regulatory measures have focused on 1 (large exposure limits, central clearing, CVA, ring-fencing) or 2 (LCR, NSFR).
Modeling fire sales
Systemic stress testing with endogenous effects

Ingredients:

1. Data: Portfolio holdings of financial institutions by asset class:
 - N institutions, K illiquid asset classes, M marketable asset classes
 - $N \times (M + K)$ portfolio matrix (network)
Systemic stress testing with endogenous effects

Ingredients:

1. Data: Portfolio holdings of financial institutions by asset class: \(N \) institutions, \(K \) illiquid asset classes, \(M \) marketable asset classes \(\rightarrow N \times (M + K) \) portfolio matrix (network).

2. Portfolio constraints: capital ratio, leverage ratio, liquidity ratio,... \(\rightarrow \) range of admissible portfolios ("safety zone").
Systemic stress testing with endogenous effects

Ingredients:

1. **Data**: Portfolio holdings of financial institutions by asset class: \(N \) institutions, \(K \) illiquid asset classes, \(M \) marketable asset classes \(\rightarrow N \times (M + K) \) portfolio matrix (network).

2. **Portfolio constraints**: capital ratio, leverage ratio, liquidity ratio, ... \(\rightarrow \) range of admissible portfolios ("safety zone").

3. **Reaction function**: reaction of a bank when its portfolio exits the admissible region (deleveraging/ rebalancing).
Systemic stress testing with endogenous effects

Ingredients:

1. **Data**: Portfolio holdings of financial institutions by asset class: N institutions, K illiquid asset classes, M marketable asset classes $\rightarrow N \times (M + K)$ portfolio matrix (network).

2. **Portfolio constraints**: capital ratio, leverage ratio, liquidity ratio,... \rightarrow range of admissible portfolios ("safety zone").

3. **Reaction function**: reaction of a bank when its portfolio exits the admissible region (deleveraging/rebalancing).

4. **Market impact function**: market prices react to portfolio rebalancing.
Systemic stress testing with endogenous effects

Ingredients:

1. Data: Portfolio holdings of financial institutions by asset class: N institutions, K illiquid asset classes, M marketable asset classes $\rightarrow N \times (M + K)$ portfolio matrix (network)

2. **Portfolio constraints**: capital ratio, leverage ratio, liquidity ratio,... \rightarrow range of admissible portfolios ("safety zone").

3. **Reaction function**: reaction of a bank when its portfolio exits the admissible region (deleveraging/ rebalancing)

4. **Market impact function**: market prices react to portfolio rebalancing

5. Mark-to-market accounting: transmits market impact to all institutions \rightarrow may lead to feedback if market losses large
Balance sheets: illiquid and marketable assets

<table>
<thead>
<tr>
<th>Illiquid assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential mortgage exposures</td>
</tr>
<tr>
<td>Commercial real estate exposure</td>
</tr>
<tr>
<td>Retail exposures: Revolving credits, SME, Other</td>
</tr>
<tr>
<td>Indirect sovereign exposures in the trading book</td>
</tr>
<tr>
<td>Defaulted exposures</td>
</tr>
<tr>
<td>Residual exposures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marketable assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate bonds</td>
</tr>
<tr>
<td>Sovereign debt</td>
</tr>
<tr>
<td>Derivatives</td>
</tr>
<tr>
<td>Institutional client exposures: interbank, CCPs,...</td>
</tr>
</tbody>
</table>

Table: Stylized representation of asset classes in bank balance sheets.
(Data: European Banking Authority)
• Illiquid holdings of institution i: $\Theta^i := \sum_{\kappa=1}^{K} \Theta^{i\kappa}$.
• Marketable Securities held by i: $\Pi^i := \sum_{\mu=1}^{M} \Pi^{i\mu}$.
• Equity (Tier 1 capital): C^i
• Illiquid holdings of institution i: $\Theta^i := \sum_{\kappa=1}^{K} \Theta^{i\kappa}$.

• Marketable Securities held by i: $\Pi^i := \sum_{\mu=1}^{M} \Pi^{i\mu}$.

• Equity (Tier 1 capital): C^i

• Financial institutions are subject to various one-sided portfolio constraints: leverage ratio, capital ratio, liquidity ratio.

• Leverage ratio of i:

$$\lambda^i = \frac{\text{Assets}(i)}{C^i} = \frac{\Theta^i + \Pi^i}{C^i} \leq \lambda_{\text{max}}$$
• Illiquid holdings of institution i: $\Theta^i := \sum_{\kappa=1}^{K} \Theta^i_{\kappa}.$
• Marketable Securities held by i: $\Pi^i := \sum_{\mu=1}^{M} \Pi^i_{\mu}.$
• Equity (Tier 1 capital): C^i
• Financial institutions are subject to various one-sided portfolio constraints: leverage ratio, capital ratio, liquidity ratio.
• Leverage ratio of i:

\[
\lambda^i = \frac{\text{Assets}(i)}{C^i} = \frac{\Theta^i + \Pi^i}{C^i} \leq \lambda_{\text{max}}
\]

• A stress scenario is defined by a vector $\epsilon \in [0, 1]^K$ whose components ϵ_{κ} are the percentage shocks to asset class κ.
• Initial/Direct loss of portfolio i: $L^i(\epsilon) = \epsilon.\Theta^i = \sum_{\kappa} \Theta^i_{\kappa} \epsilon_{\kappa}$
Deleveraging

Deleveraging assumption: if following a loss L^i in asset values the leverage of bank i exceeds the constraint

$$\lambda^i = \frac{\Theta^i + \Pi^i - L^i}{C^i - L^i} > \lambda_{\text{max}}$$

bank deleverages by selling a proportion $\Gamma^i \in [0, 1]$ of assets in order to restore a leverage ratio $\lambda_b^i \leq \lambda_{\text{max}}$:

$$\left(1 - \Gamma^i\right)\Pi^i + \Theta^i - L^i \leq \lambda_b^i \leq \lambda_{\text{max}} \Rightarrow \Gamma^i = \frac{C^i(\lambda^i - \lambda_b^i)}{\Pi^i}1_{\lambda^i > \lambda_{\text{max}}''}$$
Deleveraging in response to a loss

Figure: Percentage of marketable asset deleveraged in response to a shock to assets (circles) for a leverage constraint of 20. Leverage targeting (dotted blue) would lead to a linear response.
Market impact function
Market impact function and market depth

The impact of a total distressed liquidation volume q is modelled by a *level-dependent market impact function*

$$
\Psi_{\mu}(q, S) = \left(1 - \frac{B_{\mu}}{S}\right) \left(1 - \exp \left(-\frac{q}{D_{\mu}}\right)\right),
$$

• $S \geq B_{\mu}$ where B_{μ} is the price-floor
• $D_{\mu} = cADV_{\mu} \sigma_{\mu} \sqrt{\tau}$,
• $c \approx 0.25$, a coefficient to make Ψ_{μ} consistent with empirical estimates of the linear impact model for small volumes q.
• τ is the liquidation horizon

Measuring systemic risk R. Cont and E. Schaanning
Market impact function and market depth

The impact of a total distressed liquidation volume \(q \) is modelled by a *level-dependent market impact function*

\[
\Psi_\mu(q, S) = \left(1 - \frac{B_\mu}{S}\right) \left(1 - \exp\left(-\frac{q}{D_\mu}\right)\right),
\]

where

\[
D_\mu = c \frac{ADV_\mu}{\sigma_\mu} \sqrt{\tau},
\]

- \(S \geq B_\mu \) where \(B_\mu \) is the price-floor
- \(ADV \): average daily volume, \(\sigma_\mu \): daily volatility of asset
- \(c \approx 0.25 \), a coefficient to make \(\Psi_\mu \) consistent with empirical estimates of the linear impact model for small volumes \(q \).
- \(\tau \) is the liquidation horizon
Estimated market depth
Market impact and feedback effects

Total liquidation in asset μ at k-th round: $q^\mu = \sum_{j=1}^{N} \prod_{k}^{j,\mu} \Gamma^j_{k+1}$

Market impact: $\frac{\Delta S^\mu}{S^\mu} = -\psi^\mu(q^\mu)$,

Impact/ inverse demand function: $\psi^\mu > 0, \psi^\mu' > 0, \psi^\mu(0) = 0$.
Market impact and feedback effects

Total liquidation in asset μ at k-th round: $q^\mu = \sum_{j=1}^{N} \Pi_{k}^j,\mu \Gamma_{k+1}^j$

Market impact: $\frac{\Delta S^\mu}{S^\mu} = -\psi_\mu(q^\mu)$,

Impact/ inverse demand function: $\psi_\mu > 0, \psi'_\mu > 0, \psi_\mu(0) = 0$.

Price move at k-th iteration of fire sales:

$$S_{k+1}^\mu = S_k^\mu \left(1 - \psi_\mu \left(\sum_{j=1}^{N} \Pi_{k}^j,\mu \Gamma_{k+1}^j \right) \right)$$,
Market impact and feedback effects

Total liquidation in asset μ at k-th round:

$$q^\mu = \sum_{j=1}^{N} \Pi_{k}^j \Gamma_{k+1}^j$$

Market impact :

$$\Delta S^\mu \over S^\mu = -\Psi_\mu (q^\mu),$$

Impact/ inverse demand function:

$$\Psi_\mu > 0, \Psi'_\mu > 0, \Psi_\mu (0) = 0.$$

Price move at k-th iteration of fire sales:

$$S_{k+1}^\mu = S_k^\mu \left(1 - \Psi_\mu \left(\sum_{j=1}^{N} \Pi_{k}^j \Gamma_{k+1}^j \right) \right),$$

$$\Pi_{k+1}^i,^\mu = \left(1 - \Gamma_{k+1}^i \right)$$

Non-liquidated assets

$$\left(1 - \Psi_\mu \left(\sum_{j=1}^{N} \Pi_{k}^j \Gamma_{k+1}^j \right) \right)$$

Price impact on remaining holdings

Previous value

Measuring systemic risk

R. Cont and E. Schaanning
Fire sales losses

- Mark to market loss:

\[M_{k+1}^i := \sum_{\mu=1}^{M} \left((1 - r_{k+1}) \prod_{k}^{i\mu} - \prod_{k+1}^{i\mu} \right) \]

\[= (1 - r_{k+1}) \sum_{\mu=1}^{M} \prod_{k}^{i\mu} \psi_{\mu} \left(\sum_{j=1}^{N} \prod_{k}^{j\mu} \Gamma_{k+1}^{j} \right) \]
Fire sales losses

- Mark to market loss:

\[
M^i_{k+1} := \sum_{\mu=1}^{M} \left((1 - \Gamma_{k+1}^i) \Pi_k^i - \Pi_{k+1}^i \right)
= (1 - \Gamma_{k+1}^i) \sum_{\mu=1}^{M} \Pi_k^i \psi_\mu \left(\sum_{j=1}^{N} \Pi_k^j \Gamma_{k+1}^j \right)
\]

- Realised loss (implementation shortfall / slippage):

\[
R^i_{k+1} := \alpha \Gamma_{k+1}^i \sum_{\mu=1}^{M} \Pi_k^i \psi_\mu \left(\sum_{j=1}^{N} \Pi_k^j \Gamma_{k+1}^j \right)
\]
Fire sales losses

- Mark to market loss:

\[
M_{k+1}^i := \sum_{\mu=1}^{M} \left((1 - \Gamma_{k+1}^i) \prod_{k}^{i,\mu} - \prod_{k+1}^{i,\mu} \right)
\]

\[
= (1 - \Gamma_{k+1}^i) \sum_{\mu=1}^{M} \prod_{k}^{i,\mu} \psi_{\mu} \left(\sum_{j=1}^{N} \prod_{k}^{j,\mu} \Gamma_{k+1}^j \right)
\]

- Realised loss (implementation shortfall / slippage):

\[
R_{k+1}^i := \alpha \Gamma_{k+1}^i \sum_{\mu=1}^{M} \prod_{k}^{i,\mu} \psi_{\mu} \left(\sum_{j=1}^{N} \prod_{k}^{j,\mu} \Gamma_{k+1}^j \right)
\]

- Fire sales loss:

\[
L_{k}^i = (1 - (1 - \alpha) \Gamma_{k+1}^i) \sum_{\mu=1}^{M} \prod_{k}^{i,\mu} \psi_{\mu} \left(\sum_{j=1}^{N} \prod_{k}^{j,\mu} \Gamma_{k+1}^j \right)
\]
Estimated fire-sales losses EBA scenario
Monitoring systemic risk: The Indirect Contagion Index
Bipartite network of asset holdings

Indirect exposures across institutions through common asset holdings
Portfolio overlaps as drivers of price-mediated contagion

For $\alpha = 1$ and $\Psi_{\mu}(x) = \frac{x}{D_{\mu}}$ with $D_{\mu} = c \frac{ADV_{\mu}}{\sigma_{\mu}} \sqrt{\tau}$, the indirect loss of bank i resulting from deleveraging by other banks becomes:

$$L^i = \sum_{j=1}^{N} \sum_{\mu=1}^{M} \frac{\Pi_{i\mu} \Pi_{j\mu}}{D_{\mu}} \Gamma^j = \sum_{j=1}^{N} \Omega_{ij} \Gamma^j,$$

where Ω_{ij} is the \textit{liquidity-weighted overlap} between portfolios i and j (Cont & Wagalath 2013):

$$\Omega_{ij} = \sum_{\mu=1}^{M} \frac{\Pi_{i\mu} \Pi_{j\mu}}{D_{\mu}}$$

$D_{\mu} = $ market depth for asset μ

$\Omega_{ij} = $ exposure of marketable assets of i to deleveraging by j.

\Rightarrow loss contagion = contagion process on network defined by $[\Omega_{ij}]$
Indirect contagion

The first round fire-sales losses across the banking system are thus given by

$$ Floss = \Omega \Gamma. $$

When the liquidity-weighted overlap network is close to a 1-factor model

$$ \Omega \approx \lambda_1 uu^\top, $$

then the first round fire sales loss of i is

$$ \log(Floss^i) = \log(\lambda_1 u_i \sum_{j=1}^{N} u_j \Gamma_j(\epsilon)), $$

and we expect a slope 1 when regressing the log fire-sales losses on the log ICI:

$$ \log(Floss^i) = 1 \times \log(u_i) + \log(\lambda_1) + \log(< u, \Gamma(\epsilon) >). $$
Indirect Contagion Index Construction

1. Collect portfolio holdings $\Pi_{i,\mu}$ by asset class for each financial institution in the network, at the granularity level corresponding to bank stress tests.

2. Estimate a market depth parameter $D_{\mu} \propto \frac{ADV_{\mu}}{\sigma_{\mu}}$ for each asset class.
Indirect Contagion Index Construction

1. Collect portfolio holdings $\Pi_{i,\mu}$ by asset class for each financial institution in the network, at the granularity level corresponding to bank stress tests.

2. Estimate a market depth parameter $D_\mu \propto \frac{ADV_\mu}{\sigma_\mu}$ for each asset class.

3. Check that $\Omega_{ij} \geq 0$ and that Ω is irreducible.
Indirect Contagion Index Construction

1. Collect portfolio holdings $\Pi^{i,\mu}$ by asset class for each financial institution in the network, at the granularity level corresponding to bank stress tests.

2. Estimate a market depth parameter $D_\mu \propto \frac{ADV_\mu}{\sigma_\mu}$ for each asset class.

3. Check that $\Omega_{ij} \geq 0$ and that Ω is irreducible.

4. Compute the “Perron eigenvector" $u = (u_i, i = 1...N)$ of the matrix of liquidity-weighted overlaps $\Omega(\Pi) = \Pi D^{-1}\Pi^\top$ (SVD of $\Pi \sqrt{D^{-1}}$).

The Indirect Contagion Index is the Perron eigenvector, $\text{ICI} = u$, whose component $\text{ICI}(i) = u_i$ provides a measure of centrality of the node i in the network whose links are weighted by the overlap matrix Ω.

Measuring systemic risk R. Cont and E. Schaanning
Indirect Contagion Index Construction

1. Collect portfolio holdings $\Pi_{i,\mu}$ by asset class for each financial institution in the network, at the granularity level corresponding to bank stress tests.

2. Estimate a market depth parameter $D_\mu \propto \frac{ADV_\mu}{\sigma_\mu}$ for each asset class.

3. Check that $\Omega_{ij} \geq 0$ and that Ω is irreducible.

4. Compute the “Perron eigenvector" $u = (u_i, i = 1...N)$ of the matrix of liquidity-weighted overlaps $\Omega(\Pi) = \Pi D^{-1} \Pi^T$ (SVD of $\Pi \sqrt{D^{-1}}$).

5. The Indirect Contagion Index is the Perron eigenvector, $ICI = u$, whose component $ICI(i) = u_i$ provides a measure of centrality of the node i in the network whose links are weighted by the overlap matrix Ω.
Principal component analysis of portfolio holdings

Figure: European banking system: Eigenvalues of matrix of liquidity-weighted overlaps. Source: EBA (public)
The Indirect Contagion Index (EBA 2016)
The EU indirect contagion network (2016)
Portfolio overlaps, Ω_{ij}, across EU banks (EBA 2016)
Figure: Bank-level fire-sales losses regressed on the ICI.
Figure: Bank-level fire-sales losses regressed on the ICI.
Table: Regression of bank-level fire-sales losses on the Indirect Contagion Index for all banks.

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th>Round 2</th>
<th>Round 3</th>
<th>Round 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>0.684***</td>
<td>0.762***</td>
<td>0.594***</td>
<td>0.100</td>
<td>0.490***</td>
</tr>
<tr>
<td></td>
<td>(0.072)</td>
<td>(0.052)</td>
<td>(0.047)</td>
<td>(0.168)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>Intercept</td>
<td>10.85***</td>
<td>11.39***</td>
<td>11.12***</td>
<td>9.06***</td>
<td>11.4***</td>
</tr>
<tr>
<td></td>
<td>(0.190)</td>
<td>(0.130)</td>
<td>(0.128)</td>
<td>(0.411)</td>
<td>(0.106)</td>
</tr>
<tr>
<td>n</td>
<td>51</td>
<td>49</td>
<td>32</td>
<td>16</td>
<td>51</td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.64</td>
<td>0.82</td>
<td>0.83</td>
<td>-0.04</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Table: Regressing fire-sales losses on the ICI. *** denotes significance $p < 10^{-4}$.
Figure: Slope of the regression of fire-sales losses on the ICI, as a function of the shock size and market depth.
Figure: R^2 of the regression of fire-sales losses on the ICI, as a function of the shock size and market depth.
Robustness checks

Nominal overlaps. Perron eigenvector of

$$\Omega_{Nominal} = \Pi \Pi^\top.$$
Robustness checks

Nominal overlaps. Perron eigenvector of

$$\Omega_{Nominal} = \Pi \Pi^\top.$$

Cosine Similarity. [Getmansky et al., 2016], Portfolio weights:

$$w_i := \frac{1}{\sum_{\mu=1}^{M} \Pi_{i,\mu} (\Pi_{i,1}, \ldots, \Pi_{i,M})^\top}.$$

Cosine similarity: Perron eigenvector of $\Omega_{C.S.}$ given by

$$\Omega_{C.S.}^{ij} = \frac{\langle w_i, w_j \rangle}{\|w_i\|_2 \|w_j\|_2} \in [-1, 1].$$
Robustness checks

Nominal overlaps. Perron eigenvector of

\[
\Omega_{Nominal} = \Pi \Pi^T.
\]

Cosine Similarity. [Getmansky et al., 2016], Portfolio weights:

\[
w_i := \frac{1}{\sum_{\mu=1}^{M} \Pi_{i,\mu}} (\Pi_{i,1}, \ldots, \Pi_{i,M})^T.
\]

Cosine similarity: Perron eigenvector of $\Omega_{C.S.}$ given by

\[
\Omega_{C.S.}^{ij} = \frac{\langle w_i, w_j \rangle}{\|w_i\|_2 \|w_j\|_2} \in [-1, 1].
\]

Size.

\[
size = \frac{(\Pi^1, \ldots, \Pi^N)}{\|(\Pi^1, \ldots, \Pi^N)\|_2},
\]

where $\Pi^i := \sum_{\mu=1}^{M} \Pi_{i,\mu}$.

Measuring systemic risk R. Cont and E. Schaanning
Similarity between overlap measures

<table>
<thead>
<tr>
<th></th>
<th>ICI</th>
<th>Nom. Ov.</th>
<th>Cos. Sim.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICI</td>
<td>1</td>
<td>0.68 (0.85)</td>
<td>-0.13 (-0.22)</td>
<td>0.60 (0.80)</td>
</tr>
<tr>
<td>Nom. Ov.</td>
<td>1</td>
<td>-0.14 (-0.22)</td>
<td>0.78 (0.92)</td>
<td></td>
</tr>
<tr>
<td>Cos. Sim.</td>
<td></td>
<td></td>
<td></td>
<td>-0.17 (-0.26)</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Table: Similarity between the various overlap measures: The bold numbers are rank-correlations (Kendall’s τ), while the numbers in brackets are linear correlations (Spearman’s ρ).
Price-mediated contagion

Modeling fire sales

Indirect Contagion Index

Scenario design

Conclusion

Measuring systemic risk

R. Cont and E. Schaanning
Liquidity-weighted overlaps
Nominal overlaps
\[\log_{10}(FSLoss^i) = b_1 \log_{10}(X) + b_0 + \epsilon \]

Table: Regression of bank losses on the Indirect Contagion Index and other measures \((X)\) for all banks. First round only.
\[\log_{10}(FSLoss^i) = b_1 \log_{10}(ICI) + b_2 \log_{10}(N.Ov.) + b_3 \log_{10}(Size) + b_0 + \epsilon. \]

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Estimate</th>
<th>Std. dev.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICI</td>
<td>0.22***</td>
<td>(0.062)</td>
<td>9.34E-4</td>
</tr>
<tr>
<td>Nominal Overlap</td>
<td>0.22***</td>
<td>(0.080)</td>
<td>5.97E-3</td>
</tr>
<tr>
<td>Size</td>
<td>22***</td>
<td>(7.09)</td>
<td>3.20E-3</td>
</tr>
<tr>
<td>Intercept</td>
<td>-147***</td>
<td>(51)</td>
<td>5.90E-3</td>
</tr>
</tbody>
</table>

n = 51 adj. \(R^2 = 0.84 \)
Global systemically important banks

<table>
<thead>
<tr>
<th>Category (and weighting)</th>
<th>Individual indicator</th>
<th>Indicator weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-jurisdictional activity (20%)</td>
<td>Cross-jurisdictional claims</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Cross-jurisdictional liabilities</td>
<td>10%</td>
</tr>
<tr>
<td>Size (20%)</td>
<td>Total exposures as defined for use in the Basel III leverage ratio</td>
<td>20%</td>
</tr>
<tr>
<td>Interconnectedness (20%)</td>
<td>Intra-financial system assets</td>
<td>6.67%</td>
</tr>
<tr>
<td></td>
<td>Intra-financial system liabilities</td>
<td>6.67%</td>
</tr>
<tr>
<td></td>
<td>Securities outstanding</td>
<td>6.67%</td>
</tr>
<tr>
<td>Substitutability/financial institution infrastructure (20%)</td>
<td>Assets under custody</td>
<td>6.67%</td>
</tr>
<tr>
<td></td>
<td>Payments activity</td>
<td>6.67%</td>
</tr>
<tr>
<td></td>
<td>Underwritten transactions in debt and equity markets</td>
<td>6.67%</td>
</tr>
<tr>
<td>Complexity (20%)</td>
<td>Notional amount of over-the-counter (OTC) derivatives</td>
<td>6.67%</td>
</tr>
<tr>
<td></td>
<td>Level 3 assets</td>
<td>6.67%</td>
</tr>
<tr>
<td></td>
<td>Trading and available-for-sale securities</td>
<td>6.67%</td>
</tr>
</tbody>
</table>

Figure: BCBS GSIB Indicator measurement approach. Source: Basel Committee on Banking Supervision (2013).
“Spillover"-ICI: Discount self-inflicted losses

Consider a portfolio network given by:

\[
\begin{pmatrix}
1000 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
100 & 1100 & 100 & 100 & 100 & 100 & 100 & 100
\end{pmatrix}
\]

\[\Pi = \Pi^\top\]

\[D = (1000, 2000)^\top.\]

- Compute \(\Omega = \Pi D^{-1} \Pi^\top \), as before.
- Compute the principal (largest) eigenvalue and the corresponding eigenvector (the "Perron eigenvector") of \(\Omega_0 := \Omega - \text{diag}(\Omega_{11}, \ldots, \Omega_{NN}) \).
ICI and **ICI**$_0$

Figure: Illustrative example showing how the **ICI**$_0$ discounts self-inflicted losses compared to the losses caused for other participants relative to the **ICI**.
ICI_0
Scenario design
Motivation

• Currently, the starting point for stress scenario design is often based on macroeconomic- and broader financial developments.
• The stress test scenario is often defined in terms of macroeconomic variables, which banks map to specific risk factors.
• Portfolio holdings and exposures do not play a large role, if any, in constructing the scenario.
Motivation

- Currently, the starting point for stress scenario design is often based on macroeconomic- and broader financial developments.
- The stress test scenario is often defined in terms of macroeconomic variables, which banks map to specific risk factors.
- Portfolio holdings and exposures do not play a large role, if any, in constructing the scenario.

Reverse stress testing and scenario design: First collect portfolio holdings and identify the main exposures/vulnerabilities. This has two advantages:

- For a given scenario, we can assess how “close" it is to a worst-case scenario in terms of contagion effects.
- The scenario can be designed such that particular weaknesses of the system are tested. This ensures that the scenario is “relevant".
Worst-case contagion scenario

Assume that the deleveraging of institutions is proportional to their resilience $R_i \in [0, 1]$. The weakest bank has resilience $R_i = 1$; a bank which is “fully" resilient and generates no fire sales has $R_i = 0$.
Worst-case contagion scenario

Assume that the deleveraging of institutions is proportional to their resilience $R_i \in [0, 1]$. The weakest bank has resilience $R_i = 1$; a bank which is “fully” resilient and generates no fire sales has $R_i = 0$. View Ω as a map from deleveraging proportions/shock to fire-sales losses:

$$\Omega : [0, 1]^N \mapsto \mathbb{R}_+^N.$$

We want to find the scenario which maximizes

$$\max_{||x||_2 \leq 1} \left\{ 1^T \Omega x \right\} = \max_{||x||_2 \leq 1} \left\{ f^T x \right\},$$

where $f := 1^T \Omega R$. The worst-case scenario, which follows immediately from Cauchy-Schwarz, is

$$x^* = \frac{f}{||f||_2}.$$
Estimated fire-sales losses EBA scenario
Worst-case fire-sales losses

- Price-mediated contagion
- Modeling fire sales
- Indirect Contagion Index
- Scenario design
- Conclusion

Measuring systemic risk

R. Cont and E. Schaanning
Ratio of EBA FSLoss to worst-case FSLoss

![Graph showing the ratio of EBA FSLoss to worst-case FSLoss as a function of liquidation horizon and shock size.](image)
Further work

The problem

\[
\max_{\|x\|_2 \leq 1} \left\{ 1^T \Omega x \right\}
\] \hspace{1cm} (1)

only looks at the fire-sales losses. It (i) ignores losses suffered on illiquid assets, and (ii) implicitly assumes a leverage targeting behaviour instead of a threshold behaviour.
Further work

The problem

\[
\max_{\|x\|_2 \leq 1} \left\{ 1^T \Omega x \right\}
\] \hspace{1cm} (1)

only looks at the fire-sales losses. It (i) ignores losses suffered on illiquid assets, and (ii) implicitly assumes a leverage targeting behaviour instead of a threshold behaviour.

Ideally, we would like to find scenarios \(\epsilon \in [0, 1]^{M+K} \) as shocks to asset classes, that maximize

\[
\max_{\|\epsilon\|_2 \leq 1} 1^T A\epsilon + 1^T \Omega \Gamma(A\epsilon),
\] \hspace{1cm} (2)

where \(A = (\Theta, \Pi) \), \(\Gamma : \mathbb{R}^N \rightarrow \mathbb{R}^N \) is the threshold deleveraging function, and \(\epsilon \) is potentially subject to further restrictions. This is a concave minimization.
Conclusions

• Overlapping portfolios give rise to an indirect contagion network. Under stress, the risk of a portfolio thus depends on the distress that similar portfolio-holders suffer.
• The indirect contagion index predicts fire-sales losses well, and can be used to quantify the systemicness of institutions.
Conclusions

- Overlapping portfolios give rise to an indirect contagion network. Under stress, the risk of a portfolio thus depends on the distress that similar portfolio-holders suffer.
- The indirect contagion index predicts fire-sales losses well, and can be used to quantify the systemicness of institutions.
- From the liquidity-weighted overlap network, we can derive a "worst-case" contagion scenario via a simple optimisation problem. This can be used both for benchmarking current stress scenarios, and for designing relevant future scenarios.
- The worst-case contagion scenario leads to a "perfect-storm" contagion, where the weaknesses of the system are specifically targeted.
References

- R Cont and E Schaanning. Fire sales, indirect contagion and systemic stress testing,
 http://ssrn.com/abstract=2541114

Stress tests to promote financial stability: Assessing progress and looking to the future.

An agent-based model for financial vulnerability.

Simulating fire-sales in banking and shadow banking system.
Mimeo.

