Proof of the Riemann hypothesis.

Gupta Deva

Abstract

A proof of the Riemann hypothesis is presented.

The hypothesis

All non-trivial zeros of the Riemann-function ζ are located on the vertical line $\operatorname{re}(s)=-\zeta(0)$ in the complex plane where $s=\sigma+\tau i \in \mathbb{C}$ and $(\sigma, \tau) \in \mathbb{R}^{2}$. The real and imaginary part of a complex number s are denoted by re (s) and im (s) respectively.

The proof

Sub-Lemma 1 : The sequence of trivial zeros of $\zeta(s)=0$ is infinite.
Proof 1 : According to the functional equation of the zeta function $\zeta(s)=$ $2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)$, and $\zeta(0)=-\frac{1}{2}$ with $0 \equiv 0+0 i$, all trivial zeros of ζ, i.e. the set $\{s \in \mathbb{C} \mid \zeta(s)=0 \wedge \operatorname{im}(s)=0\}=\{-2 n \mid n \in \mathbb{N}\}=-2 \mathbb{N}$ is infinite.

Since the Γ-function has no zeros, only poles on non-positive integers, we may interpret the functional equation as showing us that the invariant operation of the zeta function is a combined operation of a parity operator $\mathcal{P}: s \mapsto t \doteq$ $1-s$, a complex amplitude rescaling operator $\mathcal{R}: t \mapsto \frac{\Gamma(1-t)}{\pi^{1-t}}$ and a complex temporal signal modulating operator $\mathcal{T}: t \mapsto 2^{t} \sin \left(t \frac{\pi}{2}\right)$

In other words :

$$
\begin{equation*}
\zeta=\mathcal{T} * \mathcal{R} * \zeta \circ \mathcal{P} \text {, i.e. } \zeta(t)=\mathcal{T}(t) \cdot \mathcal{R}(t) \cdot \zeta(1-t) \tag{1}
\end{equation*}
$$

With M denoting a subset of \mathbb{C} and $\nu(M)$ being the number of non-trivial zeros of the ζ-function in M we may formulate the following lemma.

Lemma 1 (2) : $\nu\left\{\left.\frac{1}{2}+\tau i \right\rvert\, \tau \in \mathbb{R}\right\}=\infty$
Proof 2 : This follows from early works of Hardy, Bohr and Landau (1914) who not only proved this lemma, but were further able to show, that

$$
\forall \varepsilon \in \mathbb{R}_{+}: \forall(\sigma, \tau) \in \mathbb{R}^{2}: \lim _{T \rightarrow \infty} \frac{\nu\left\{\sigma+\tau i \left\lvert\, 0 \leq \tau \leq T \wedge \frac{1}{2}-\varepsilon \leq \sigma \leq \frac{1}{2}+\varepsilon\right.\right\}}{\frac{T}{2 \pi}\left(\ln \frac{T}{2 \pi}-1\right)}=1
$$

Proof of the Riemann Hypothesis

At infinity, the combined amplitudes of \mathcal{R} and \mathcal{T} are being damped by the the proof of Lemma 1 . The limiting points $\left(\frac{1}{2},+(\infty-\delta) i\right)$ and $\left(\frac{1}{2},-(\infty-\delta) i\right)$ where δ is an arbitrarily small real number, are both residing on the top and bottom of a line, given by $\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x=\frac{1}{2}\right.\right\}$ We may safely connect the two symmetric points through a unique line - where the clarity of the uniqueness is given by the fact, that these points are converging at infinity.

Acknowledgments

The author is very grateful for a seemingly uncountable number of conversations with colleagues, who step by step helped a mathematical baby to increase its insight by an epsilon onto the natural truth and beauty of mathematics.

