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Summary. This paper demonstrates how standard cluster algorithms like K-means
or partitioning around medoids can be modified such that the final solution fulfills
group constraints, which specify that certain data points must be or may not be
in the same cluster. An extensible software implementation for the R statistical
computing environment is presented that allows user-specified group constraints for
clustering with respect to arbitrary distance measures. Finally we discuss appli-
cations of the methodology to market segmentation of household shopping basket
panel data and model diagnostics for finite mixture models.
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1 Introduction

While statistical models for stratified data with nested groupings like mixed effects
models with complicated random effect structures have been available for some time
now, clustering data with grouping information has received only little attention in
the literature. This is insofar surprising, as the main task of clustering is to group
data, and incorporating prior grouping information into the clustering procedure
seems rather natural. An exception is model-based clustering, especially because
several mixture model classes are not identifiable without repeated measurements
and hence grouping information is a necessity there [MP00, Grü02]. As a consequence
mixture modelling software like R [R D05] package flexmix [Lei04] can deal with
grouping information that specifies which groups of observations must be in the
same cluster.

Model-free clustering procedures like K-centroids cluster analysis [KCCA, e.g.,
Lei06] are almost never combined with group constraints, and especially in the sta-
tistical literature we are not aware of any publications. An exception in the machine
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learning community is the work by [WCRS01], who modify K-means by a greedy
search step for the optimal cluster assignment under two types of group constraints.
We extend this approach to another class of cluster algorithms, namely exchange
methods, and we show how the greedy search can be replaced by a locally opti-
mal step in each iteration by using the global optimizer of a linear sum assignment
problem.

2 Clustering with Group Constraints

Assume we are given a data set XN = {x1, . . . ,xN} of size N , and let d(x,y)
denote a distance measure between points x and y. The objective of centroids-based
partitioning cluster analysis is to find a set of K centroids CK such that the average
distance of each point to the closest centroid is minimal,

D(XN , CK) =
1

N

N∑
n=1

d(xn, c(xn)) → min
CK

,

where c(x) is the centroid c ∈ CK closest to x. Euclidean distance is certainly the
most popular choice for d, but the methods and software tools presented in this
paper work for distance measures in general like other Minkowski metrics, trans-
formations of similarity measures like correlation, etc.; see [Lei06] for examples and
implementation details.

Even for very simple distance measures no closed form solution for the K-
centroids cluster problem exists and iterative estimation procedures have to be used.
Two classes of KCCA algorithms are most popular within the statistical commu-
nity3: variations of the K-means algorithm in its general form [e.g., Mac67], which
use the whole data set in each iteration of the algorithm; and exchange algorithms
like the one described in [HW79] or partitioning around medoids [PAM, KR90],
which use only one data point at a time. All of these can be (more or less) easily
modified to incorporate group constraints.

Let GN = {g1, . . . , gN}, gn ∈ {1, . . . , M}, denote a given prespecified classifica-
tion of the N data points into M ≤ N groups Gm:

Gm = {xn ∈ XN |gn = m}, m = 1, . . . , M.

For notational simplicity we will assume that the groups are disjoint in the follow-
ing. Several parts could be easily extended to the case of overlapping groups with
gn ⊆ {1, . . . , M}, see the discussion in Section 4. Following [WCRS01] we define a
constraint αm for each group m = 1, . . . , M which can take two possible values:

αm =

{
must-link : all group members must be in the same cluster
cannot-link : all group members must be in different clusters

Data points without any grouping constraints are put into singular dummy groups of
size one with a must-link constraint. Obviously, groups with cannot-link constraint
must not have more than K members: |Gm| ≤ K.

3 The machine learning community seems to prefer “online” algorithms of the “com-
petitive learning” type, see [Rip96] for an overview.



Cluster Algorithms with Group Constraints 3

2.1 Exchange Algorithms with Group Constraints

The cluster algorithm described in [HW79] as well as PAM by [KR90] follow the
same basic principle: Both algorithms start with an initial partitioning of the data
set, e.g., by using K random data points as initial centroids. In each iteration a
single data point is selected and if a swap of cluster membership decreases the
overall objective function D then this swap is done, otherwise the point remains in
its cluster. The main difference between the two algorithms is that the first uses
arbitrary points in space as cluster centroids, while PAM only allows data points in
XN as centroids (and calls them medoids).

If group constraints are to be fulfilled the following algorithm can be used:

1. Randomly select a subset of K different data points from XN and use them
as initial set of centroids CK . Assign each data point xn to the cluster of the
closest centroid c(xn), possibly violating the group constraints.

2. Select a group Gm by iterating through a random permutation of the numbers
1, . . . , M .

3. Depending on the type of group constraint αm do one of the following:
αm = must-link: Assign all points x ∈ Gm together to each of the K clusters,

recompute the system of centroids CK and D for each assignment in turn
and keep the optimal one.

αm = cannot-link: Find the optimal assignment of the |Gm| points x ∈ Gm

to the K clusters, recompute centroids CK and D. Keep the new cluster
assignment of the points
• if the group did previously not fulfill the cannot-link constraint (first

pass through the data), or
• if the new assignment decreases D compared with a valid assignment

from the previous iteration.
4. Remove empty clusters and repeat from step 2 until convergence or a pre-

specified maximum number of iterations.

Technical details for efficient computation of possible swaps in step 3 are given
in the references cited above, an algorithm for optimal assignment of points with
cannot-link constraint is shown in Section 2.3. After the first pass through the com-
plete data set the following holds:

• all group constraints are fulfilled
• the algorithm accepts only swaps decreasing the overall performance measure

D.

Because only a finite number of possible assignments of N data points to K clusters
is possible and the algorithm is strictly decreasing in D, convergence is guaranteed.
Note that convergence is only to a local minimum, in practice it is advisable to try
several random initializations and use the best solution.

2.2 K-means with Group Constraints

Let us now consider a modification of the generalized K-means algorithm. The
main difference to exchange algorithms is that centroids and cluster assignments
are not recomputed after considering a single group of points, but always for all
groups simultaneously. This usually increases the probability of getting stuck in a
local minimum of D, but can be more efficiently implemented in highly vectorized
interpreted languages like R.
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1. Randomly select a subset of K different data points from XN and use them
as initial set of centroids CK . Assign each data point xn to the cluster of the
closest centroid c(xn).

2. Update the set of centroids holding the cluster memberships fixed.
3. For each group Gm, m = 1, . . . , M , do one of the following depending on the

type of group constraint αm:
αm = must-link: Assign all points x ∈ Gm simultaneously to the cluster where

the centroid has the minimum sum of distances to all group members.
αm = cannot-link: Find the optimal assignment of the |Gm| points x ∈ Gm

to the K clusters such that sum of distances of each group member to its
respective cluster centroid is minimal.

4. Repeat from step 2 until convergence or a pre-specified maximum number of
iterations.

The algorithm is again strictly decreasing such that convergence is guaranteed. This
algorithm is very similar to the one proposed by [WCRS01], however they use a
greedy search for the assignment of groups with cannot-link constraint, while we
show below how the optimal configuration for each group can be found in each
iteration.

2.3 Implementation in Flexclust

We have implemented the generalized K-means algorithm with group constraints
as part of function kcca() in R package flexclust [Lei06]. Flexclust offers an ex-
tensible toolbox for K-centroids cluster analysis where users can easily combine
several cluster algorithms with self-written and hence arbitrary distance functions.
Following this basic design principle of extensibility users can specify a function im-
plementing the group constraints as part of "kccaFamily" objects. This functions
basically must encode the assignments of points to clusters from step 3 of the al-
gorithm in Section 2.2. It takes a vector of old cluster assignments c(xn), group
memberships gn and an N × K matrix of distances from each data point to each
centroid as input, and returns a vector of length N of new cluster assignments4. The
straightforward function minSumClusters(cluster, group, distmat) implements
must-link constraints as described above.

Function differentClusters(cluster, group, distmat) implements cannot-
link constraints. For each group Gm we have to solve a linear sum assignment prob-
lem. The optimal solution can be found in polynomial time of order O(K3) using
the so-called Hungarian method [e.g., PS82]. R package clue provides an implemen-
tation for K×K linear sum assignment problems in function solve_LSAP() [HB05],
we have extended this to the L × K case by filling up non-square matrices with
K − L dummy rows where all entries are (basically) infinite.

There currently is no function implementing both must-link and cannot-link con-
straints simultaneously. However, this is not for technical reasons, but only because
we had no application for it yet. All that needs to be done is combining the code of
the two existing functions into one.

4 The actual implementation in flexclust is a little bit more advanced: After
convergence the function also computes the second-best cluster assignment of
each group for visualization purposes.
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3 Application Examples

3.1 Must-Link: Clustering Household Shopping Baskets

The application that first motivated us to research clustering with group constraints
is market segmentation of shopping basket data, see [Bal05] for a comprehensive
analysis of both artificial and real-world data. The latter are the “ZUMA subset”
of the GfK Nürnberg household panel data [Pap01]: it consists of self-report data
for shopping baskets of 40000 households over one year, on average 100 baskets per
household. The data are binary indicators for 65 product groups like milk, cheese,
washing powder or pet food and specify whether a product from the respective
group has been bought or not. Clustering the complete data set at once was not
possible due to the size of the data set, so a sampling scheme similar to the CLARA
algorithm [KR90] was adopted to iteratively cluster parts of the data.

The task was the assignment of each household to one of several market seg-
ments and find product groups which are bought together. We tried several grouping
strategies:

1. Summarize the data for each household, i.e., first compute a new data set where
each observation corresponds to the sum of all shopping trips of each household
for the complete year.

2. Cluster the original basket data without any group constraints, and then analyze
the cross-tabulation of households and clusters.

3. Cluster the original basket data with a must-link constraint for each household.

1 and 2 did not give satisfactory market segments, probably due to the following
reasons: The data matrix itself is very sparse, i.e., each basket contains only a few
product groups which makes the clustering result of strategy 2 rather unstable. How-
ever, the product groups themselves are very common, so most households bought
many of them at some point in time over the year, and aggregation as in strategy 1
looses the information which products were in the same baskets. Clustering with
must-link constraints seems to be the right compromise in between and yields sat-
isfactory results with profiled cluster centroids. Detailed results have to be omitted
in this paper due to space restrictions and can be found in [Bal05], a journal paper
summarizing the main results is under preparation.

3.2 Cannot-Link: Bootstrapping Finite Mixture Models

In [GL04] bootstrap methods are proposed for model diagnostics in finite mixture
models. However, the parametric bootstrap with random initialization of the EM
algorithm for analysis of model identification leads to label switching, a problem
which has already received some attention in Bayesian mixture modelling. It has
been shown that imposing a suitable ordering constraint on one parameter is difficult
because the choice of parameter is crucial [RG97], or because there might even not
exist a parameter which determines a unique labelling of the parameters [Ste00]
suggests to use a decision theoretic approach to deal with label switching where
label-invariant distance measures are used.

We propose to cluster the component specific parameters in order to determine a
suitable labelling of the components under a cannot-link constraint which prevents
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that components from a model fitted to the same bootstrap sample are assigned
to the same cluster. This approach can be used to either cluster the a-posteriori
probabilities or the fitted parameters with different distance measures, see [GL05]
for details.

This clustering strategy is applied to a simple artificial example of a Gaussian
mixture regression model with 3 components where no suitable ordering constraint
exists as each parameter overlaps at least for two components. In Figure 1 a sample
of 50 individuals with observations for both x2 values where the mixture component
membership is fixed is given on the left. A model is fitted to the sample using the
best of 5 repetitions of the EM algorithm. 100 parametric bootstrap samples are
drawn from the fitted model and to each bootstrap sample a model is fitted using
the best of 5 repetitions of the EM algorithm. The K-means clustering result of
the standardized parameters of the bootstrap models is visualized using parallel
coordinate plots on the right.
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Fig. 1. Sample from the finite mixture (left) and parallel coordinate plot of the
parameters of the 100 bootstrap models where the labelling is determined using
K-means clustering under the cannot-link constraint (right).

4 Summary and Future Work

Using prior group information in clustering procedures is a natural task that has
received surprisingly little attention in the literature so far. We have shown general
solutions for two popular classes of cluster algorithms and two types of group con-
straints. These improve on existing solutions by replacing greedy cluster assignments
by locally optimal ones in each iteration. An extensible software implementation in
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R is available that allows users to easily program new types of constraints and hook
them into existing clustering procedures. Implementation of exchange algorithms
with group constraints is currently under investigation. A natural extension are
overlapping groups with different types of constraints, which need to be checked
for admissibility such that it cannot happen that two points are simultaneously in
groups with must-link and cannot-link constraints. A possible way of clustering with
multiple groupings is to represent those by several group vectors (which contain only
non-overlapping groups) and applying the procedure presented above iteratively to
each, but the details have yet to be worked out.

Another issue are other types of constraints or algorithmic solutions. E.g., we
also have code for majority vote for must-link constraints where all points of a group
are assigned to the cluster of the centroid that is closest to the majority of group
members. This assignment is more robust, because it is not possible that a single
outlier moves a complete group of points to a different cluster. The disadvantage is
that convergence cannot be guaranteed because the algorithm is no longer strictly
decreasing, although empirical evidence suggests that this seems not to be a problem
in praxis.
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