Kapitel 6

FRAGESTELLUNG 1.1

Öffne die Datei "teenagework.sav".

Für eine grafische Darstellung bietet sich ein Boxplot an. Dazu gehe auf "Grafiken / Boxplot". Im anschließenden Menü wähle "Einfach" aus und drücke "Definieren".

Boxplots	
dBat Einfach	Definieren
	Abbrechen
∯ ∯ Gruppiert	Hilfe
Daten im Diagramm	
Auswertung über Kal	egorien einer Variablen
C Auswertung über ver	schiedene <u>V</u> ariablen

Als Variable definiere "stunden" und als Kategorienachse "sex". Mit "OK" bestätigen.

🖈 mutter	Variable:	OK
	Stunden	Einfügen
	Kategorienachse:	Zurücksetzen
	sex 🦛	Abbrechen
	Fall <u>b</u> eschriftung:	Hilfe
		Optionen

Als Ausgabe sollten wir jetzt einen **Boxplot** bekommen, der folgendermaßen aussieht:

Gehe auf "Analysieren / Mittelwerte vergleichen / T-Test bei unabhängigen Stichproben..."

Analysieren	<u>G</u> rafiken E <u>x</u> tra	is <u>F</u> en	ster <u>H</u> ilfe
Beri <u>c</u> hte <u>D</u> eskriptiv Tabellen	e Statistiken		
Mittelwerte	e vergleichen	•	<u>M</u> ittelwerte
Allgemeine	es lineares Mode	ell 🕨	T-Test bei einer <u>S</u> tichprobe
Korrelation	า	•	<u>I</u> -Test bei unabhängigen Stichproben

Als **Testvariable** wählen wir "stunden", als **Gruppenvariable** "sex". Klicke anschließend in das Feld "Gruppenvariable" und dann auf Gruppen def. ...

mutter	<u>T</u> estvariable(n): ОК
	stunden	Ein <u>f</u> ügen
		Zurücksetzen
		Abbrechen
		Hilfe
	Gruppenvarial []] [][] [][] [][] [][] [][] [][] [][]	ble:
	Gruppen def	Optionen

In diesem Menü geben wir bei "Gruppe 1" den Wert "1" und bei "Gruppe 2" den Wert "2" ein (1 steht für "weiblich" und 2 für "männlich"). Mit *"Weiter"* und *"OK"* bestätigen.

Gruppen definieren	×
Angegebene Werte verwenden	Weiter
Gruppe <u>1</u> : 1	Abbrechen
Gruppe <u>2</u> : 2	Hilfe
© <u>⊺</u> rennwert:	

Wir erhalten jetzt die **Mittelwerte für die verschiedenen Gruppen** (in unserem Fall männlich oder weiblich), den **Levene –Test** zur Überprüfung der Varianzhomogenität und den **T- Test**.

Gruppenstatistiken

	SEX	N	Mittelwert	Standardab weichung	Standardfe hler des Mittelwertes
STUNDEN	weiblich	101	9,3663	3,2333	,3217
	männlich	91	4,4396	2,7293	,2861

Test bei unabhängigen Stichproben

		Levene-Test der Varianzgleichheit		T-Test fü	r die Mittelwe	ertgleichheit
		_		-		
		F	Signifikanz	T	df	Sig. (2-seitig)
STUNDEN	Varianzen sind gleich	1,056	,305	11,343	190	,000,
	Varianzen sind nicht gleich			11,443	189,219	,000,

FRAGESTELLUNG 1.2

Öffne die Datei "comphomeneu.sav".

Für den grafischen Überblick erstellen wir wiederum wie in Fragestellung 1 einen **Boxplot**. Als **Variable** "zufried" und als **Kategorienachse** "arbeit" eingeben. Mit "*OK*" bestätigen.

🔀 Einfachen Boxplot definieren:	Auswertung über Kategorien einer Variabl	en 🗙
	Variable:	ОК
	(♣) zufried	Einfügen
	Kategorienachse:	Zurücksetzen
	🔶 arbeit	Abbrechen
	Fall <u>b</u> eschriftung:	Hilfe
		Optionen

Boxplot:

Arbeitsort

Für die Berechnung benötigen wir den **Mann–Whitney U-Test**. Dazu müssen wir *"Analysieren / Nichparametrische Tests / Zwei unabhängige Stichproben…"* auswählen.

Analysieren <u>G</u> rafiken E <u>x</u> tras	<u>Fenster</u> <u>H</u> ilfe	
Beri <u>c</u> hte <u>D</u> eskriptive Statistiken <u>T</u> abellen	>	
— <u>M</u> ittelwerte vergleichen <u>A</u> llgemeines lineares Modell Korrelation	ar var va	e l
<u>R</u> egression Loglinear	>	
Kla <u>s</u> sifizieren Dim <u>e</u> nsionsreduktion Skalieren		
<u>N</u> ichtparametrische Tests	▶ <u>C</u> hi-Quadrat	
Zeitreihen Ü <u>b</u> erlebensanalyse Mehr <u>f</u> achantworten	 <u>B</u>inomial <u>S</u>equenzen K-S bei <u>e</u>iner Stichprobe 	
Analyse fehlender Werte	Zwei unabhängige Stichprob	en

Als Testvariable wählen wir "zufried" und als Gruppenvariable "arbeit" aus. Klicke auf "Gruppen definieren..."

R Tests bei zwei unabhängige	n Stichproben	
<u>)</u>	Test <u>v</u> ariablen:	OK Ein <u>f</u> ügen
•	<u>G</u> ruppenvariable: arbeit(? ?) Gruppen <u>d</u> efinieren	Abbrechen Hilfe
Welche Tests durchführen? Mann-Whitney-U-Test Ktremreaktionen nach Moses	☐ Kolmogorov-Smirnov ☐ Wald-Wolfowitz-Seq	√Z µuenzen
	E <u>x</u> akt <u>O</u> ptionen.	

In diesem Menü geben wir bei "Gruppe 1" den Wert "1" und bei "Gruppe 2" den Wert "2" ein (1 steht für "im Büro" und 2 für "zuhause"). Mit *"Weiter"* und *"OK"* bestätigen

Zwei unabhängige Stichproben	: Gruppen definieren 🔀
Gruppe <u>1</u> : 1	Weiter
Gruppe <u>2</u> : 2	Abbrechen
	Hilfe

Wir erhalten in der Ausgabe den Mann – Whitney – U Wert und den Signifikanzwert.

Statistik	für	Testa
otutiotin		1030

	Arbeitszufri edenheit
Mann-Whitney-U	4319,000
Wilcoxon-W	9369,000
Z	-1,665
Asymptotische Signifikanz (2-seitig)	,096

a. Gruppenvariable: Arbeitsort

FRAGESTELLUNG 1.3

Öffne die Datei "apple.sav".

Erstelle einen **Boxplot** wie bei den vorangegangenen Fragestellungen. Als Variable sind *"verkauf"* und als Kategorienachse *"inhalt"* anzugeben. Mit *"OK"* bestätigen.

INHALT

Für die Berechnung benötigen wir eine einfache Varianzanalyse. Diese finden wir bei SPSS unter "Analysieren / Mittelwerte vergleichen / Einfaktorielle ANOVA".

Analysieren <u>G</u> rafiken E <u>x</u> tras	Ee	nster <u>H</u> ilfe
Beri <u>c</u> hte	•	
<u>D</u> eskriptive Statistiken	•	
<u>T</u> abellen	•	
<u>M</u> ittelwerte vergleichen		<u>M</u> ittelwerte
Allgemeines lineares Modell	•	T-Test bei einer <u>S</u> tichprobe
<u>K</u> orrelation	•	<u>I</u> -Test bei unabhängigen Stichproben
<u>R</u> egression	•	T-Test bei gegaarten Stichproben
L <u>og</u> linear	•	Einfaktorielle <u>A</u> NOVA

Als Abhängige Variable geben Sie "verkauf" ein und als Faktor "inhalt". Mit "OK" bestätigen.

Abhängige Variabler	n:OK
werkaur	Einfügen
	Zurücksetzen
	Abbrechen
Fak <u>t</u> or: ↓	Hilfe
Kontraste Post Hoc	0 Optionen

Als Ausgabe erhalten wir die Tafel der Varianzanalyse oder engl. Analysis of Variance (kurz ANOVA):

ANOVA

VERKAUF	

	Quadrats umme	df	Mittel der Quadrate	F	Signifikanz
Zwischen den Gruppen	57512,233	2	28756,117	3,233	,047
Innerhalb der Gruppen	506983,5	57	8894,447		
Gesamt	564495,7	59			

FRAGESTELLUNG 1.4

Öffne die Datei "tv.sav".

Der Boxplot sollte nun keine Probleme mehr bereiten!

🙀 Einfachen Boxplot definieren: Auswertung über Kategorien einer	Variablen 🔀
Variable:	ОК
Stunden	Einfügen
Kategorienachse:	Zurücksetzen
	Abbrechen
Fallbeschriftung:	Hilfe
	Optionen

GRUPPE

Für die Berechnung verwenden wir nun den Kruskal – Wallis Test, weil die Varianzen sehr unterschiedlich sind.

Gehe auf "Analysieren / Nichtparametrische Tests und / K unabhängige Stichproben".

Analysieren <u>G</u> rafiken E <u>x</u> tras	<u>F</u> enster <u>H</u>	lilfe	
Beri <u>c</u> hte	•		
<u>D</u> eskriptive Statistiken	•		
<u>T</u> abellen	•		
<u>M</u> ittelwerte vergleichen	•	1100	1100
Allgemeines lineares Modell	• rat	var	var
<u>K</u> orrelation	•		с з
<u>R</u> egression	•		
L <u>og</u> linear	•		
Kla <u>s</u> sifizieren	•		
Dim <u>e</u> nsionsreduktion	•		S
Skaljieren	•		
Nichtparametrische Tests	🕨 <u>C</u> hi-G	Quadrat	
Zejtreihen	▶ <u>B</u> inor	mial	
Ü <u>b</u> erlebensanalyse	<u>S</u> equenzen		
Mehrfachantworten	► K-S t	bei <u>e</u> iner Stichp	robe
Analyse fe <u>h</u> lender Werte	Zwei	i unabhängige S	Stichproben
	<u>K</u> un	abhängige Stic	hproben

Als Testvariable geben wir "stunden" und als Gruppenvariable "gruppe" ein. Anschließend auf *"Bereich definieren"* klicken.

🔒 Tests bei mehreren unab	hängigen Stichproben	x
	Test <u>v</u> ariablen:	ОК
	stunden	Ein <u>f</u> ügen
		Zurücksetzen
	<u>Gruppenvariable:</u>	Abbrechen
	gruppe(1 3)	Hilfe
- Welche Tests durchführen? I Kruskal- <u>W</u> allis-H	<u>M</u> edian	E <u>x</u> akt

Als Minimum geben wir "1" und als Maximum "3" ein. Mit "Weiter" und "OK" bestätigen.

Mehrere unabhängige Stichproben:	Bereich definieren 🛛 🔀
Bereich für Gruppenvariable	Weiter
Mjnimum:	Abbrechen
Maximum: 3	Hilfe

Wir erhalten jetzt das Ergebnis des Kruskal – Wallis Tests:

	STUNDEN
Chi-Quadrat	2,311
df	2
Asymptotische Signifikanz	,315

Statistik für Test^{a,b}

cal-wallis-resi

b. Gruppenvariable: GRUPPE

FRAGESTELLUNG 2

Öffne die Datei "teenagework.sav".

Für die grafische Darstellung verwenden wir zuerst wiederum Boxplots. Gehe diesmal aber nicht auf "Einfach", sondern auf "Gruppiert"!

Wir erhalten folgenden gruppierten Boxplot:

Zur Analyse müssen wir "Analyse / Allgemeines lineares Modell / Univariat..." auswählen.

Analy <u>s</u> ieren	<u>G</u> rafiken E <u>x</u> tra	is <u>F</u> er	nster <u>H</u> ilfe	
Beri <u>c</u> hte		•		
<u>D</u> eskripti	ve Statistiken			
<u>T</u> abellen		•	0	
<u>M</u> ittelwer	te vergleichen	•		
Allgemeir	nes lineares Mode	ell 🕨	<u>U</u> nivariat	

Als "Abhängige Variable" wähle "stunden", als "feste Faktoren" "mutter" und "sex" aus. Klicke dann auf *"Diagramme".*

🚮 Univariat			X
		Abhängige Variable:	<u>M</u> odell
		∫	Kontraste
			Diagramme
		Sex 💽	Post <u>H</u> oc
		Z <u>u</u> fallsfaktoren:	<u>Speichern</u>
	\rightarrow		<u>O</u> ptionen

Um eine mögliche Wechselwirkung mehrerer Faktoren gleichzeitig darzustellen eignen sich die sogenannten **Profilplots**. Diese können wir unter "Diagramme..." definieren.

In diesem Menü müssen wir "mutter" als "Horizontale Achse" und "sex" als "Separate Linien" angeben. Danach klicken wir auf "*Hinzufügen"*.

Univariat: Profilplots 🛛 🔀							
Eaktoren: mutter sex		Horizontale Achse: mutter Separate Linien: sex Separate Diagramme:	Weiter Abbrechen Hilfe				
Diagramme:	Hinzufügen	Ändern	Erlifemen				
1							

Wenn wir alles richtig eingegeben haben, sollte folgender Eintrag unterhalb von *"Diagramme"* zu sehen sein:

Diagramme:	Hinz <u>u</u> fügen	Ä <u>n</u> dem	Entfernen
mutter*sex			

Mit "Weiter" und "OK" bestätigen.

Wir erhalten als **Ausgabe** sowohl die **Tafel der Varianzanalyse** (Tests der Zwischensubjektseffekte):

Tests der Zwischensubjekteffekte

Abhängige Variable: STUNDEN

Quelle	Quadratsum me vom Typ III	df	Mittel der Quadrate	F	Signifikanz
Korrigiertes Modell	1621,282ª	3	540,427	80,858	,000
Konstanter Term	8682,298	1	8682,298	1299,031	,000
MUTTER	18,362	1	18,362	2,747	,099
SEX	731,571	1	731,571	109,456	,000
MUTTER * SEX	449,475	1	449,475	67,250	,000
Fehler	1256,530	188	6,684		
Gesamt	12370,000	192			
Korrigierte Gesamtvariation	2877,812	191			

a. R-Quadrat = ,563 (korrigiertes R-Quadrat = ,556)

als auch die grafische Darstellung der Mittelwerte in den einzelnen Gruppen (**Profilplot**):

