Kapitel 2

FRAGESTELLUNG 1

Im ersten Schritt müssen die Daten in die Datenansicht eingelesen werden.

Dazu muss man auf den Menüpunkt "Datei / Öffnen / Daten" gehen und die Datei "commercial.sav" laden.

<u>D</u> atei	<u>B</u> earbeiten	A <u>n</u> sicht	Daten	Trans	sformieren	Analy <u>s</u> ier
<u>N</u> e	u			•		ue la su
Ö <u>f</u> f	nen			•	D <u>a</u> ten	

Nun sollte folgende Darstellung in der Datenansicht vorhanden sein (Hinweis: je nach Einstellungen in den Optionen können anstatt Labels auch die Variablenwerte und umgekehrt angezeigt werden):

	recall	cereal	group
1	6	FL	SW
2	9	CC	SW
3	7	KH	SW
4	7	CC	SW
5	9	BB	SW
6	5	BB	SW

Die Daten können nun für Analysen verwendet werden...

Unter dem Menüpunkt "Analysieren / nichtparametrische Tests" auf "Chi Quadrat"... gehen.

Als Testvariable wählt man nun "cereal" aus und klickt dann auf "OK".

🛊 recall	Test <u>v</u> ariablen:	OK
n group		Einfügen
]	Zurücksetzen
		Abbrechen
Erwarteter Bereich	Erwartete Werte	Hilfe
• Aus den <u>D</u> aten	 Alle Kategorien gleich 	
C Angegebenen Bereich verw	enden: C <u>W</u> erte:	
Minimum:	Hinzyfügen	
Magimum:	Ägdem	Exa <u>k</u> t
		Optionen

Als Resultat erhalten wir im **Ausgabefenster** eine (dank der Wertelabels) übersichtliche Häufigkeitstabelle und den im Skriptum ausgerechneten Chi – Quadrat Wert:

gewähltes Produkt

	Beobachtetes N	Erwartete Anzahl	Residuum
FL	45	60,5	-15,5
BB	64	60,5	3,5
KH	52	60,5	-8,5
CC	81	60,5	20,5
Gesamt	242	9675388	1000000

Statistik für Test

	gewähltes Produkt
Chi-Quadratª	12,314
df	3
Asymptotische Signifikanz	,006

Beginnen wir jetzt mit der grafischen Analyse...

Dafür wird der Menüpunkt "*Grafiken / Balken"* angewählt. Es öffnet sich ein Fenster, bei dem festgelegt werden muss, welche Art von Balkendiagramm erstellt werden soll. In unserem Fall wollen wir eine einfache Darstellung ("Einfach" anwählen!) und die Auswertung der Daten über Kategorien einer Variablen (Bei Daten im Diagramm den ersten Punkt auswählen!).

Als nächstes muss im Menü *"Einfaches Balkendiagramm definieren"* auf der **Kategorienachse** "cereal" eingetragen und dann auf *"OK"* gedrückt werden.

A	Bedeutung der Balken		
#> recall	Anzahl der Fälle	% der Fälle	<u> </u>
#> group	C Kumul. Anzahl der Fälle C	Kum. % der Fälle	Einfügen
	C Andere Auswertungsfunktion		Zurücksetzer
	Variable:		Abbrechen
	Auswertungsfunktion.	**.	Hilfe
	Kategorienachse:		
	Vorlage Diagrammeinstellungen verwenden	aus:	T <u>i</u> tel
	Date		Optionen

Wir erhalten ein einfaches Balkendiagramm, das die Häufigkeiten der verschiedenen Kategorien anzeigt:

FRAGESTELLUNG 2 VARIANTE A

Lade die Datei "partner.sav".

Gehe jetzt wiederum innerhalb von *"Analysieren / Nichtparametrische Tests"* auf *"Chi – Quadrat".*

Als Testvariable wähle "famtyp". Als **Erwartete Werte** müssen die erwarteten absoluten Häufigkeiten eingegeben werden, da wir in diesem Beispiel ja keine Gleichverteilung mehr annehmen!

Te	styariablen:	OK
	🖻 famtyp	Einfügen
- F		Zurücksetzen
		Abbrechen
Erwarteter Bereich	I Erwartete Werte	Hilfe
Aus den <u>D</u> aten	C Alle Kategorien gleich	
C Angegebenen Bereich verwenden:	• Werte:	
Minimum	Hinzufügen 71.6	
Maximum:	Andem 21.6	Fusht
	Entiemen 1 3.4	E AdD(

Nach der Bestätigung mit "*OK*", erhalten wir in der SPSS – Ausgabe eine Häufigkeitstabelle und den Chi – Quadrat Wert.

FAMTYP

	Beobachtetes N	Erwartete Anzahl	Residuum
Partner kinderlos	23	71,6	-48,6
Partner mit Kindern	133	103,4	29,6
Mutter allein	39	21,6	17,4
Vater allein	5	3,4	1,6
Gesamt	200	82	21

Statistik für Test

	FAMTYP
Chi-Quadratª	56,231
df	3
Asymptotische Signifikanz	,000

FRAGESTELLUNG 2 VARIANTE B

Diesmal werden wir die Fragestellung mit Hilfe des Befehles **Fälle gewichten** lösen. Beginne mit *"Datei / Neu / Daten".*

Erzeuge in dieser neuen Datei eine Variable mit Häufigkeiten (23, 133, 39, 5) und eine zweite Variable mit den Werten 1,2,3 und 4.

counts	famtyp
23	1
133	2
39	3
5	4

Als nächstes werden wir den Variablen sinnvolle Namen zuweisen und mit **Wertelabels** versehen, damit wir später bei eigenen, größeren Datensätzen wissen, wie man den Überblick bewahrt!

Dazu wechseln wir von der **Datenansicht** in die **Variablenansicht**. Durch einmaliges Anklicken auf *"Variablenansicht"*, links unten im SPSS, sollte folgende Eintragungen zu sehen sein:

Name	Тур	Spaltenformat	Dezi	Variablenlabel	Wertelabels	Fehlende Wert	Spalten	Ausrichtung	Meßniveau
counts	Numerisch	8	0		Kein	Kein	8	Rechts	Metrisch
famtyp	Numerisch	8	0		{1, Partner 🔤	Kein	8	Rechts	Nominal

In der Spalte "Name" geben wir statt "var0001" die Bezeichnung "counts", und statt "var0002" den Namen "famtyp", ein. Klicke nun in der Zeile für die Variable "famtyp" auf die Zelle "Wertelabels". Es erscheint nun ein Symbol mit drei kleinen Punkten (

Nach einmaligem Anklicken dieses Symbols befinden wir uns im Menü "Wertelabels definieren".

Trage jetzt im Feld "Wert" "1" und im Feld "Wertelabel" "Partner kinderlos" ein. Danach klicken Sie auf hinzufügen. Als nächstes "2" und "Partner mit Kindern", dann "3" und "Mutter allein" und schließlich noch "4" und "Vater allein". Dazwischen immer "Hinzufügen" klicken!!!

V	Vertelabels definie	ren	? ×
	Wertelabels Wert: Wertelabel:		OK Abbrechen
	Hinzufügen Ändern Entfernen	1 = "Partner kinderlos" 2 = "Partner mit Kindern" 3 = "Mutter allein" 4 = "Vater allein"	Hilte

Der nächste Schritt ist die Fälle nach der Häufigkeitsvariable zu gewichten (*Dieser* Schritt ist deswegen wichtig, da wir damit im SPSS – Programm eine "simulierte Replikation" starten. D.h., SPSS baut sich die notwendige Matrix selbst auf, ohne dass wir uns darüber den Kopf zerbrechen müssen…).

Wähle aus dem Menü "Daten / Fälle gewichten":

Fälle gewichten mit	Einfügen
	Zurücksetzen
	Abbrechen

Gehe jetzt wiederum auf "Analysieren / Nichtparametrische Tests / Chi – Quadrat ..."

Chi-Quadrat-Test		
🛞 counts	tvariablen:	ОК
(#	> famtyp	Einfügen
		Zurücksetzen
		Abbrechen
Erwarteter Bereich	Erwartete Werte	Hilfe
Aus den Daten	C Alle Kategorien gleich	
C Angegebenen Bereich verwenden:	Werte:	
Minimum:	Hinzufügen 71.6 103.4	
Maximum:	Ändern 21.6 3.4	Exakt
		Optionen

Wir erhalten dasselbe Ergebnis wie bei der Variante A:

	Beobachtetes N	Erwartete Anzahl	Residuum
Partner kinderlos	23	71,6	-48,6
Partner mit Kindern	133	103,4	29,6
Mutter allein	39	21,6	17,4
Vater allein	5	3,4	1,6
Gesamt	200	10	31

FAMTYP

Statistik für Test

	FAMTYP
Chi-Quadratª	56,231
df	3
Asymptotische Signifikanz	,000

Für die grafische Analyse der Fragestellung 2 gehen wir auf den Menüpunkt *"Grafiken / Balken".* Wichtig ist, die Variable **"famtyp"** als Kategorienachse festzulegen.

Drücke "OK", um das Balkendiagramm zu erhalten.

FAMTYP

FRAGESTELLUNG 3

Erzeuge eine neue Variable mit den Namen "wahl" mit den Eintragungen "0,38", "0,24", "0,25", "0,06", "0,04" und "0,02" (Das sind die relativen Häufigkeiten der Stichprobe).

Zuerst werden wir uns einen graphischen Überblick über das Datenmaterial verschaffen. Dazu benötigen wir noch eine zusätzliche Variable mit den Namen "parteien" und den Werten "1", "2", "3", "4", "5" und "6". Gib diesen Werten die Wertelabels "SPÖ", "ÖVP", "FPÖ", "Grüne", "LIF" und "DU".

Gehe wiederum im Menü auf "Daten / Fälle gewichten".

(parteien)	C Fälle nicht gewichten	OK
	Fälle gewichten mit	Einfügen
	Häufigkeitsvariable:	Zurücksetzer
	l l (₩) wani	Abbrechen
	Aktueller Status: Fälle nicht gewichten	Hilfe

Wähle jetzt "Grafiken / Balken" aus.

Treffe nun die folgende Auswahl:

Definieren Abbrechen
Hilfe
ner Variablen
⊻ariablen

Wähle bei *"Bedeutung der Balken"* den Punkt ^{State} an und als "Kategorie" die Variable "parteien". Drücke *"OK",* um das Balkendiagramm zu erhalten:

Nachdem wir uns ein grafisches Bild vom Datenmaterial gemacht haben, beginnen wir mit der Analysearbeit...

Gehe auf *"Transformieren / Berechnen"* und gib folgenden "**numerischen Ausdruck"** und folgende "**Zielvariable"** ein:

	nen		×
R Variable berech Zielvariable: c Image: Typ und Label Image: Wahl Image: Wahl Image: Parteien	inen = ►	Numerischer Ausdruck: 1.96*SQRT(wahl*(1-wahl)/499) + > - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - - - - - - - - - - - - - - - - - - -	
		OK Einfügen Zurücksetzen Abbrechen	Hilfe

WICHTIGER HINWEIS: Obwohl in der Datenansicht bei der Dateneingabe der Beistrich das "Komma – Trennzeichen" ist, müssen wir bei einem numerischen Ausdruck einen Punkt setzen!

Anschließend auf "OK" drücken.

Danach werden die Werte als neue Variable **c** in der **"Datenansicht**" ausgegeben. Jetzt haben wir die c's (Halbe Schwankungsbreite) bei einem 95% Konfidenzintervall (KI) für jede Partei ausgerechnet!

Als nächsten Schritt werden wir die untere Schranke des KI berechnen, indem wir wieder unter Berechnen folgende Formel eintippen: $(wahl - c)^{*}$. Als "Zielvariable" geben wir (ki_unten^{*}) ein. Diesen Prozess wiederholen, nur geben wir statt dem **Minus** in der Formel ein **Plus** ein; somit erhalten wir die obere Schranke des KI (die Zielvariable nennen wir (ki_u) .

Wenn alles richtig gemacht wurde, sollten jetzt folgende Eintragungen in der Datenansicht zu sehen sein:

	wahl	parteien	⊂c_wahl	ki_unten	ki_oben
1	,38	SPÖ	,043	,34	,42
2	,24	ÖVP	,037	,20	,28
3	,25	FPÖ	,038	,21	,29
4	,06	Grüne	,021	,04	,08
5	,04	LIF	,017	,02	,06
6	,02	DU	,012	,01	,03

Falls wir Prozentwerte haben wollen, müssen natürlich noch "ki_unten" und "ki_oben" mit 100 multipliziert werden.