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ABSTRACT

Very fast automatic rejection algorithms were developed recently which allow to generate

random variates from large classes of unimodal distributions. They require the choice of

several design points which decompose the domain of the distribution into small sub-intervals.

The optimal choice of these points is an important but unsolved problem. So we present an

approach that allows to characterize optimal design points in the asymptotic case (when their

number tends to infinity) under mild regularity conditions. We describe a short algorithm to

calculate these asymptotically optimal points in practice. Numerical experiments indicate

that they are very close to optimal even when only six or seven design points are calculated.

1. INTRODUCTION

Random variate generation started about 45 years ago with the design of generation

algorithms for standard distributions like e.g. the normal, gamma and beta distributions.

Devroye (2) developed the first algorithms for larger distribution families. The user of
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such a “Black-box” (also called universal or automatic) algorithm has to provide typically

the density of the desired distribution, often together with some other information like

e.g. the mode of the distribution. Then the set-up step of the algorithm computes all

necessary constants whereas the sampling part of the algorithm utilizes these constants

to generate random variates from the desired distribution. In the last decade several fast

and reliable universal algorithms were suggested (e.g. (4), (6), (1), (9), (3)). They clearly

have important advantages for the user, as they provide the possibility to sample from

very different distributions with a single algorithm. This facilitates the change of input

distributions in simulation programs and saves the time to design and code random variate

generation programs for little known or newly defined distributions.

All these automatic algorithms are based on the rejection method. The decomposition

of the domain of the distribution into many sub-intervals leads to good fitting hat- and

squeeze functions and thus to (very) fast algorithms. This implies that the set-up of all

these algorithms contains the choice of these sub-intervals or of design points within each

sub-interval. The natural question of the optimal choice of these design points was posed in

all of the above references. As there is no solution to this problem published yet, this paper

introduces an asymptotic theory, asymptotic in the sense that the number of design points

tends to infinity, that leads to approximately optimal design points.

We start with a short description of transformed density rejection in Section 2. Section 3

develops approximations for the area below the hat that are used in Section 4 to prove our

main theorem on asymptotically optimal design points. Section 5 shortly presents similar

results for other variants of automatic rejection algorithms, whereas Section 6 shows that our

method can be easily extended to the rejection method using piecewise constant hats and

squeezes. Section 7 discusses how we can compute nearly optimal design points in practice,

even under extreme conditions.

2. TRANSFORMED DENSITY REJECTION (TDR)

This method was introduced in (4) and (6), generalizations were suggested in (3), a

detailed explanations of many variants are given in (8). It is based on the idea that the given
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Figure 1: Hat function (thin line) and squeeze (dashed line) with three points of contact for

the normal density (thick line) and logarithm as transformation, design points at −1, 0.2,

and 1.4. Transformed scale (l.h.s.) and original scale (r.h.s.)

density f is transformed by a strictly monotonically increasing transformation T : (0,∞)→ R

such that T (f(x)) is concave. The density f is then called T-concave; log-concave densities

are an example with T (x) = log(x).

By the concavity of T (f(x)) it is easy to construct a majorising function for the trans-

formed density as the minimum of N tangents. Transforming this function back into the orig-

inal scale we get a hat function h(x) for the density f . By using secants between the touching

points of the tangents of the transformed density we analogously can construct squeezes s(x).

Figure 1 illustrates the situation for the standard normal distribution, T (x) = log(x) and

N = 3 touching points.

It is obvious that the transformation T must have the property that the area below the

hat is finite, and that generating a random variable with density proportional to the hat

function by inversion must be easy (and fast). Thus we have to choose the transformations

T carefully. Hörmann (6) suggests the family Tc of transformations which can be represented

by

Tc(x) =
xc − 1

c
. (1)

As a linear transformation applied to Tc does not change the resulting hat, Hörmann (6)

3



suggested the simpler version

T0(x) = log(x) and Tc(x) = sign(c) xc for c 6= 0 . (2)

T0(x) is the limit of Tc(x) for c → 0, sign(c) makes Tc increasing for c 6= 0. Also note that,

as a consequence of the mentioned independence under linear transformations, the class

Tc, c ∈ R, has the convenient property that multiplying the density with a constant factor

does not change the constructed hat and squeeze functions; both are only multiplied with

the same factor. (For details see (8).) This implies that TDR works without problems if the

integral of f is bounded but not equal to one. We call such a function f a quasi-density. For

densities with unbounded domain we must have c ∈ (−1, 0].

For the choice of c it is important to note that the area below the hat increases when c

decreases. Moreover we find that if f is Tc-concave, then f is Tc′-concave for every c′ ≤ c.

Because of computational reasons, the choice of c = −1/2 (if possible) is suggested. Then

TDR can generate random variates for a larger family than the log-concave family, all T−1/2-

concave distributions. (All distributions of this family are unimodal with subquadratic tails.)

For the case that a density is not Tc-concave (3) and (8) discuss generalizations of TDR that

are applicable to such densities.

TDR – like any rejection algorithm – works fastest when the area below the hat is as

small as possible. This can be reached easily by using many design points N . But how

should we choose the location of the design points? In the literature it is mainly suggested

to use adaptive methods. This idea is quite simple and leads to a fast set-up and good results

for most densities. However for the case that we want to code a single generator for a fixed

distribution the idea of randomly selected design points is unelegant and the speed of the

set-up is irrelevant. Thus an optimal choice of a fixed number of design points is of relevance

as we can save about fifty percent of the evaluations of f compared to the adaptive selection

procedures (see (8) p. 87 for results of numerical experiments). This has little influence on

the speed of the algorithm for standard distributions but is important if the evaluation of

the density is very expensive which is for example the case for order statistics.
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Optimal design points should minimize either the total area below the hat, i.e. the

expected number α of iterations of the rejection algorithm, or the total area between hat

and squeeze which minimizes the expected number Nf of calls to the density f .

It is possible to find simple characterizations for the optimal design points for the cases

N = 1, N = 2 (see (8)), and the case N = 3 when the mode of the distribution is taken

as a design point (5). For N > 3 conditions for optimal design points are so complicated

that they are not useful for practical purposes. That is the reason why we develop an

asymptotical theory that allows to compute even for very small N (e.g. N & 5) close to

optimal design points. 1 The results of this paper are valid for general transformations T . It

is only necessary to assume that T is monotonically increasing and five times differentiable

on R
+.

3. THE AREAS OF SINGLE CELLS

To obtain asymptotic formulas for the total area below the hat, and the total area between

squeeze and hat we start to compute the area a1(p,∆) of the cell between hat and density (see

Figure 2) in the interval (p, p+ ∆) that must be a subset of the domain of the distribution.

The hat is given by the minimum of the two backtransformed tangents in p and p+ ∆. For

the hat function h(p + t), 0 < t ≤ ∆, we can write

h(p+ t)=







T−1(T (f(p)) + T (f(p))′ t) for t ≤ µ(p, p+ ∆),

T−1(T (f(p+∆)) + T (f(p+∆)′)(t−∆)) for t > µ(p, p+ ∆),
(3)

where µ(p, p+ ∆),

µ(p, p+ ∆)=
T (f(p))− T (f(p+∆))− p T (f(p))′ + (p+∆) T (f(p+ ∆))′

T (f(p+ ∆))′ − T (f(p))′
, (4)

is the abscissa of the intersection point of the tangents in p and p + ∆. The area a1(p,∆)

between hat and density is given by

a1(p,∆) =

∫ ∆

0

h(p+ t)− f(p+ t) dt. (5)

1For the Cauchy (Student’s t1), Student’s t3, and the exponential distributions, all with c = −1/2, we

have derived exact formulas for calculating the design points, and α and Nf , in the case of finite N.
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Figure 2: The cells asociated with a1 (dark shaded), a2 (light shaded) and a3 (both shaded

regions together)

To derive an asymptotic formula we consider for given p the case ∆ → 0. Clearly we

have lim∆→0 a1(p,∆) = 0 and we can also calculate the derivatives of a1(p,∆) with respect

to ∆. This is very cumbersome and the formulas of the higher of the used derivatives become

extremely extensive. But using computer algebra and the definition above it is not difficult

to obtain the first three derivatives evaluated at 0. We get

a1(p, 0) = 0, a′1(p, 0) = 0, a′′1(p, 0) = 0, a′′′1 (p, 0) = − T (f(p))′′

4 T ′(f(p))
. (6)

In addition it is possible to check that a
(4)
1 (p,∆) depends on the 5th derivative f (5)(p+∆) of

the density and lower order derivatives. Using (6) we can expand a1(p,∆) into a MacLaurin

series:

a1(p,∆) = − T (f(p))′′

24 T ′(f(p))
∆3 +O(∆4) . (7)

From the formulas for the remainder of the Taylor series after Lagrange or after Cauchy it

follows that the existence of a continuous fourth derivative of a1(p,∆) is sufficient for the

validity of the remainder in Eqn. (7). This is guaranteed by the existence of a 5th continuous

derivative f (5)(x) of the density. In Section 6 we will see that this condition on the density

is not necessary for computing close to optimal design points in practice.

To minimize the expected number Nf of evaluations of the density f(x) we have to

consider the area a3(p,∆) of the cell between hat and squeeze (see Figure 2). As a3(p,∆) is
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the sum of a1(p,∆) and the area

a2(p,∆) =

∫ ∆

0

f(p+ t) − T−1(T (f(p)) + s(p,∆) t) dt (8)

between density and squeeze we first consider a2(p,∆). In (8) s(p,∆) = (T (f(p + ∆)) −
T (f(p)))/∆ denotes the slope of the transformed squeeze which, for the interval (p, p+ ∆),

is simply a linear function connecting the points (p, T (f(p))) and (p+∆, T (f(p+∆))). Thus

it is possible to find a MacLaurin series for the area a2(p,∆) as well. Again using computer

algebra we get

a2(p, 0) = 0, a′2(p, 0) = 0, a′′2(p, 0) = 0, a′′′2 (p, 0) = − T (f(p))′′

2 T ′(f(p))
. (9)

For a
(4)
2 (p,∆) the existence of the forth derivative f (4)(x) of the density is required. We thus

obtain the MacLaurin series for the area between density and squeeze in a single cell:

a2(p,∆) = − T (f(p))′′

12 T ′(f(p))
∆3 + O(∆4). (10)

The area a3(p,∆) of the cell between hat and squeeze is the sum of (7) and (10):

a3(p,∆) = − T (f(p))′′

8 T ′(f(p))
∆3 + O(∆4). (11)

Eqns. (7), (10) and (11) can be unified as

aj(p,∆) = − j T (f(p))′′

24 T ′(f(p))
∆3 + O(∆4), j = 1, 2, 3. (12)

4. ASYMPTOTIC OPTIMIZATION

Let q, r be the borders of the domain of the density f(x) and let p0 =q, p1, ..., pN−1,

pN = r be the design points which decompose the domain into N intervals. We can apply

the above MacLaurin series to all sub-intervals of a decomposition of the domain. For this

purpose we replace p by pi and ∆ by ∆i, ∆i = pi+1 − pi. Defining the abbreviation θ(p),

θ(p) = − T (f(p))′′

24 T ′(f(p))
, (13)
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we can write for the MacLaurin series of the areas in a single cell

aj(pi, ∆i) = j θ(pi) ∆3
i +O(∆4

i ), i = 0, ..., N−1, j = 1, 2, 3. (14)

To obtain the corresponding areas Aj for the whole domain [q, r] we simply sum Eqn. (14)

over all i

Aj =
N−1
∑

i=0

(j θ(pi)∆
3
i +O(∆4

i )), j = 1, 2, 3. (15)

Let ψ, Ψ, ω, Ω be positive constants. Then, in order to compute asymptotically optimal

design points we make the following assumptions:

• T ′(x) is bounded according to

ψ ≤ T ′(x) ≤ Ψ, for x ∈ [min
z

(f(z)), f(m)], (16)

where m is the mode of the density.

• −T (f(x))′′ is bounded by

ω ≤ −T (f(x))′′ ≤ Ω. (17)

• The quasi-density f(x) is continuously differentiable five times.

The last assumption was discussed in Section 3. It is necessary to obtain the O(∆4) error

bound for the MacLaurin series expansion of the areas. Assumptions (16) and (17) can

be easily justified. Assumption (16) guarantees that the contraction of T (x), LT (x1, x2) =

(T (x2) − T (x1))/(x2 − x1), and that of T−1(x), LT−1(x1, x2), as well cannot have values

arbitrarily close to zero. For the class Tc of transformations and a Tc-concave density f

Assumption (16) is only not fulfilled if f(x) can approach arbitrarily close to zero. However,

as f is Tc-concave it is no problem to find an interval (p0, pN) for which Assumption (16)

is fulfilled. (See Section 7 below for the choice of that interval.) Assumption (17) excludes

densities whose transformed density T (f(x)) has points that almost are corner points or
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regions where T (f(x)) is arbitrarily close to linear. The problem with a linear region for

T (f(x)) can easily be solved by using a transform Tc with smaller c, the problem with

densities with corners can only be solved by decomposing the domain of such a distribution

at the corner points.

If both assumptions are fulfilled θ(p), see (13), is bounded by the positive constants

φ = ω/(24 Ψ) and Φ = Ω/(24 ψ),

φ ≤ θ(p) ≤ Φ. (18)

In order to compute asymptotically optimal design points we define the partitioning function

v(x), continuous on [q, r] with v(x) > 0 and

∫ r

q

v(x)dx = 1. (19)

The partitioning function v(x) generates the design points p1, p2, ..., pN−1 according to

∫ pi+1

pi

v(x)dx =
1

N
, i = 0, ..., N−1. (20)

We call a partitioning function v(x) regular if there exist positive constants m, M with

m ≤ v(x) ≤ M for q ≤ x ≤ r. Clearly, v(x) is not unique. But we can prove the following

main result:

THEOREM 1: Let f(x) be a five times continuously differentiable quasi-density, defined on

[q, r], which fulfills (18). For p0 = q and pN = r fixed, and N →∞ the uniquely determined

regular partitioning function ṽ(x), which leads to the minimal Aj for j = 1, 2, 3 among all

regular partitioning functions is:

ṽ(x) = C θ(x)
1

3 , where C =
1

∫ r

q
θ(x)

1

3dx
. (21)

For the asymptotically optimal partition we obtain the area-formula

lim
N→∞

N2Ãj = j

(
∫ r

q

θ(x)
1

3dx

)3

, j = 1, 2, 3. (22)
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Proof: Applying the mean value theorem on (20) shows that there are ξi, i= 0, ..., N−1,

with

∆i =
1

Nv(ξi)
, pi ≤ ξi ≤ pi+1. (23)

Inserting this into (15) we obtain

Aj N
2 =

N−1
∑

i=0

j θ(pi)

v(ξi)2
∆i +N2

N−1
∑

i=0

O(∆i)
4, j = 1, 2, 3. (24)

For the limit N → ∞, ∆i = O(1/N) for all i = 1, 2, 3 . . ., as v is a regular partitioning

function. Together with condition (18) this also implies that j θ(x)
v(x)2

is bounded. Thus for

N → ∞ the first summand of Eqn. (24) can be written as an integral whereas the second

summand converges to 0. We have:

lim
N→∞

(Aj N
2) =

∫ r

q

j θ(x)

v(x)2
dx, j = 1, 2, 3. (25)

Now the asymptotically optimal partitioning function ṽ(x) can be obtained by minimizing

(25) under the constraint (19). This is a problem of the Calculus of Variations. ṽ(x) has to

be found in such a way that

∫ r

q

j θ(x)

v(x)2
dx+ λ

[
∫ r

q

v(x)dx− 1

]

(26)

becomes stationary for v(x) = ṽ(x). λ is the Lagrange multiplier. The Euler equation is

∂K

∂θ
− d

dx

∂K

∂θx

= 0,

where

K =
j θ(x)

v(x)2
+ λ v(x).

As K does not depend on the derivative vx it follows that

ṽ(x) = C θ(x)
1

3 =
θ(x)

1

3

∫ r

q
θ(x)

1

3 dx
. (27)

This proves (21). The value of the constant C has been obtained from (19). As j, j=1, 2, 3,

is only a constant factor of the function to be minimized ṽ(x) is the asymptotically optimal
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partitioning function for all j. It follows that the asymptotically optimal partition is the

same for A1, A2, A3, (i.e. the same for minimizing α and Nf ). Inserting (27) into (25)

we obtain the asymptotic area-formula (22). Because of (18) ṽ(x) is a regular partitioning

function.

5. OTHER VARIANTS OF TDR

The basic idea of TDR is that hat-functions are constructed as tangents of the trans-

formed density in the points pi and then transformed back into the original scale by T−1. So

we have

hi(x) = T−1(T (f(pi)) + T (f(pi))
′(x− pi)) for πi−1 ≤ x ≤ πi

but different variants for the choice of πi, i = 0, ..., N− 1, are possible. In Section 3 we have

derived the series expansion of the area between hat and density for πi = µ(pi, pi+1), i.e.

the intersection points of the corresponding tangents, see Eqn. (4). We call this the original

variant of TDR. It is in a sense the best variant as it is the only of the variants listed here

that leads always to a continuous hat and a continuous squeeze and thus to the minimal

possible areas A1 and A3 for given design points.

A nice variant is the midpoint method (see Figure 3). Here the intersection points are

replaced by the midpoints of the sub-intervals:

πi =
pi + pi+1

2
. (28)

Although the hat is not continuous at πi this method has interesting properties:

• Its asymptotic behaviour is identical with that of the original variant. Even the 4th

derivatives of the aj(p,∆), see Eqn. (12), are identical. Therefore the computed design

points are the same as for the original variant of TDR.

• As no intersection points of tangents are to be calculated the set-up is faster.

• Applied to finite N there is only a very slight increase in α or Nf , respectively.

11



original variant midpoint method

Evans and Swartz proportional squeeze

Figure 3: Hat (thin line) and squeeze (dashed line) of the different variants
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Slightly different is the situation for the variant of TDR suggested by Evans and Swartz

(3). To obtain a simpler sampling algorithm they suggest to take πi = pi and πi+1 = pi+1.

This hat is not only not continuous, the fit is worse as we have on average a longer distance

to the design point used for constructing the hat. Setting µ(pi, pi+1), cf. (4) and (28), equal

to pi+1, then proceeding according to Section 3, with pi as point of contact, one can derive

that the area between hat and density for a single cell has the following MacLaurin series

a1(p,∆) = − T (f(p))′′

6 T ′(f(p))
∆3 + O(∆4)

and thus is four times larger than the corresponding area of the original variant of TDR. This

does not change the asymptotically optimal choice of the design points; only the estimated

area between hat and density (a1) is four times larger than the one given in the theorem.

This implies that this version requires twice the number of design points to obtain the same

area A1. This does not mean that the algorithm in (3) is slower as that choice of the hat

function leads to a simplification of the sampling.

A different simple and very fast implementation of TDR is possible for proportional

squeezes as suggested in (10). There the hat is constructed as explained above with πi as

the intersection points of the tangents. The squeeze is no longer defined for the sub-intervals

(pi, pi+1) but for the same interval (πi−1, πi) as the hat-function; and it is defined such that

it is proportional to the hat in that interval. For this variant the hat is exactly the same

as for standard TDR but the squeeze is slightly changed. Using the same techniques as in

Section 3 it is possible to calculate the MacLaurin series for a2, the area between density

and squeeze, which is the same as before. So our theorem is also fully valid for this variant

of TDR. This is especially important in practice, as the heuristic methods for finding good

(but not optimal) design points like for example adaptive rejection sampling (see (4)) do not

work for this variant.

6. PIECEWISE CONSTANT HATS AND SQUEEZES

Theorem 1 is based on the fact that the lowest order term of the series expansion of the

area between hat and squeeze is k = 3 for TDR. It is not difficult to formulate and prove
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Theorem 1 for general k,

aj(p, ∆) = γkj θ(p) ∆k +O(∆k+1), j = 1, 2, 3, γk1 =1, γk2 =k−1, γk3 =k, (29)

cf. eqn.(14). For TDR we need the case k= 3 with γ3j = j. The case k= 2 is also of great

interest. Using k=2, γ21 = γ22 =1, γ23 =2, we can compute asymptotically optimal design

points for the rejection method for piecewise constant hats and squeezes that is discussed

for example in (1). It can be easily verified that, analogously to (12), the MacLaurin series

for a1, a2, , a3, are

aj(p,∆) =
γ2j

2
|f ′(p)|∆2 +O(∆3), j = 1, 2, 3, γ2j = 1, 1, 2.

Thus, in analogy to (13), the coefficient in the leading term of the MacLaurin series (29) is

given by

θ(p) =
1

2
|f ′(p)|.

The details of the further development are in close analogy to the TDR case. We therefore

only state the main result:

For a three times differentiable density f , p0 =q and pN =r fixed, we consider a rejection

method that uses maxpi≤x≤pi+1
f(x) as hat and minpi≤x≤pi+1

f(x) as squeeze in the N subin-

tervals with i = 0, 1, . . . , N−1. For N →∞ the uniquely determined regular partitioning

function ṽ(x), which leads to the minimal Aj for j = 1, 2, 3 among all regular partitioning

functions is:

ṽ(x) = C θ(x)
1

2 , where C =
1

∫ r

q
θ(x)

1

2dx
. (30)

For the asymptotically optimal partition we obtain the area-formulas.

lim
N→∞

NÃj =
γ2j

2

(
∫ r

q

θ(x)
1

2dx

)2

, j = 1, 2, 3, γ2j = 1, 1, 2. (31)

Eqns. (30) and (31) are the analogues of (21) and (22).
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7. CALCULATING THE POINTS

We return to TDR: How can we use our theorem to obtain nearly optimal design points

in practice? In the case of an infinite domain we cannot use p0 = q and pN = r as they

must remain finite. And even in the case of bounded domain it happens very often that

the optimal choice implies p0 > q and/or pN < r. So if we use our asymptotic theorem to

find approximately optimal design points we have to vary p0 and pN . Outside of the interval

[p0, pN ] there are no squeezes or, as one could say, squeezes which formally are equal to zero.

For given N , we therefore have to minimize, at least approximately, either, if the rejection

constant α is the objective, the asymptotic approximation H̃(p0, pN) of the area below the

hat,

H̃(p0, pN) =

∫

x≤p0

h(x)dx+

∫ pN

p0

f(x)dx+
1

N2

(
∫ pN

p0

θ(x)
1

3dx

)3

+

∫

x≥pN

h(x)dx (32)

or, if the expected number Nf of calls to f(x) is the criterion, the asymptotic approximation

S̃(p0, pN) of the area between hat and squeeze,

S̃(p0, pN) =

∫

x≤p0

h(x)dx+
3

N2

(
∫ pN

p0

θ(x)
1

3dx

)3

+

∫

x≥pN

h(x)dx. (33)

On the right hand side of Eqn. (32) the area below the hat over the interval [p0, pN ] is

decomposed into the area below the density and the area between hat and density, for which

the asymptotic approximation (22), j=1, is used, which is an excellent approximation even

for small N . With a symbolic computation package like e.g. Mathematica or Maple it is not

difficult to evaluate H̃(p0, pN) or S̃(p0, pN) for given values of p0, pN . So the selection of p0

and pN is reduced to a minimization problem with two variables that can be easily solved

using a numerical search procedure available in symbolic computation packages as well. The

other design points can be then be calcuated easily using Theorem 1.

7.1 The Algorithm Using Numerical Approximations

For code in a general purpose programming language it is helpful to observe that it is not

necessary to calculate the design points with great accuracy as the objective function (the

total area between hat and squeeze) is very flat close to the minimum. It is therefore possible
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to use rough numerical approximations for the derivatives necessary to evaluate θ(x); and it

is enough to compute these approximations on a rough one-dimensional grid. In erecting this

grid one starts from a point m which is the mode or a point near to the mode. Depending

on the behaviour of the quasi-density the stepsize cannot be kept constant in most cases.

This will be discussed below. What we need at the beginning are scale units. Taking into

account the possibility of skew or even very skew distributions the left scale unit ul, used

at the left hand side of the mode, and the right scale unit ur must have the freedom to be

different. Experience has shown that the distances of the right and left design points to the

mode in the three-point case (5) with c = −1/2 are suitable scale units in all cases. These

distances ul, ur fulfill the equations

f(m+ ul) = f(m+ ur) = φ f(m), φ = 1/4, ul < 0, ur > 0.

In order to accelerate the algorithm we do not solve these equations exactly. For the factor

φ it is enough to be in the interval 0.15 < φ < 0.4. (Note that the geometric mean of the

borders is approximately 1/4.) For partly correcting these crude approximations ul and ur

are refined according to

ul ← ul

√

4 f(m+ ul)/f(m), ur ← ur

√

4 f(m+ ur)/f(m).

As initial stepsizes the values k ul and k ur are used with k between 0.02 and 0.15. (For the

normal distribution, e.g., k = 0.15 leads to about 40 grid points.)

During the construction of the grid we evaluate the function θ(x), see eqn.(13), at every

grid point κi. For this purpose we have included a self-written routine for symbolic differen-

tiation. Alternatively, estimates of T (f(κi))
′′, obtained as second derivatives of a quadratic

interpolation of T (f(x)) based on x=κi−1, κi, κi+1, can be used. (Our numerical experiments

with many distributions indicate that it is sufficient to work with an average T (f(x))′′ in ev-

ery interval. The final results when using this crude numerical approximation and symbolic

differentation were always very close.) For ṽ(x), see (27), we construct the approximation

v̂(x) consisting of the linear interpolations between every pair ṽ(κi), ṽ(κi+1). In (20) we use
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v̂(x) instead of v(x) and solve for pi, i = 1, N−1. As v̂(x) is a piecewise linear function this

is quite easy.

We consider the functions H̃ and S̃ of (32), (33) being dependent on the current leftmost

grid point κil and the rightmost gridpoint κir , and calculate approximations Ĥ(κil, κir) and

Ŝ(κil, κir) for H̃(κil , κir) and S̃(κil, κir). The integral over θ(x)
1

3 in (32) and (33) is approx-

imated by the following generalized trapezoidal rule also applicable to not equidistant grid

points:

∫ κir

κi
l

θ(x)
1

3dx ≈ 1

2

ir−1
∑

i=il

(θ(κi)
1

3 + θ(κi+1)
1

3 )(κi+1 − κi). (34)

After every extension of the grid by one point the value of the integral is updated (one

trapezoidal area more). Synchronously to the integral (34) the loss function

Ĥ(κil , κir) =

∫

x≤κi
l

h(x)dx+

∫ κir

κi
l

f(x)dx+
1

N2

(

∫ κir

κi
l

θ(x)
1

3dx

)3

+

∫

x≥κir

h(x)dx (35)

or, respectively,

Ŝ(κil , κir) =

∫

x≤κi
l

h(x)dx +
3

N2

(

∫ κir

κi
l

θ(x)
1

3dx

)3

+

∫

x≥κir

h(x)dx (36)

is evaluated. Compared with (36) the integral over f in (35) causes nearly no additional

costs. As the values of the density at the grid points are to be calculated anyway, only

one additional multiplication and some additions are necessary per interval. If the function

values of three successive points at one side are not monotone anymore an approximation of

p0 or pN , respectively, is obtained by minimzing the quadratic interpolation based on these

three points. (For N not too small the left and right side do not influence each other.)

Starting from m every step is made on that side of the mode where the decrease in the

loss function is greater. If after a certain number - we use b20/kc - of steps at one side

the minimum is not yet met then for each further step the new stepsize will be obtained by

multiplying the previous one by a number slightly greater than one (1.01 in our programs).

There are cases (e.g. the Cauchy distribution, c = −1/2, N > 3, minimizing Nf) where at
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the minimum solution p0 and/or pN are infinite (asymptotes instead of tangents). Therefore,

in such cases the procedure has to be terminated at a certain stage. We stop it if κil <

m + 1000 ul or κir > m + 1000 ur. Surely, also in this case one will obtain an excellent

approximation. In the case of a bounded domain it may happen that a newly calculated grid

point falls out of the domain. If f(q) > 0 and f ′(q) <∞ then the procedure will be stopped.

Otherwise, after rejecting the point outside, every new grid point is obtained by bisecting

the line segment from q to the former grid point, analogously for the right bound r. The

derivatives f ′(q) or f ′(r) are considered to be infinite if for an x near to q or near to r

f ′(x) > 1000
f(ul)

−ul

or − f ′(x) > 1000
f(ur)

ur

,

holds. (Here f(ul), f(ur) are used as scale units in the y−direction.)

Note that the costs of the main part of our asymptotic point finding method, namely

the calculation of p0 and pN , are nearly independent of N . Only the range of integration

according to (35) or (36) is slightly larger for greater N. After this main part the design points

p2, . . . , pN−1 are obtained by the evaluation of the inverse of a piecewise linear function atN−
2 arguments. The corresponding algorithm is very short, the required time, approximately

proportional to N, is negligible.

7.2 Computational Experience

Asymptotic theory is interesting from a mathematical point of view. To demonstrate that

it is also practically useful we include a small empirical study for N = 31 and N = 9. Table 1

shows the resulting α and Nf for the Normal and Gamma(3/2) distributions, the Makeham

distribution, see e.g. Evans and Swartz (3), with parameters a = 0.01, b = 0.02, c = e,

the distribution of the 29th order statistic of a sample of 97 independent normal variates,

the distribution of the 69th order statistic of a sample of 97 independent Cauchy variates,

the hyperbolic distribution with density proportional to exp(−
√

1 + x2) and the exponential

power distribution with density proportional to exp(−x4), all with transformation T (x) =

−x−1/2. We used our Fortran implementation of the asymptotic point finding algorithm

described in Section 6 and compared the results with the optimal results that we obtained
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using a relatively sophisticated gradient method written for this purpose. (This method,

however, is too slow for practical use.) The results clearly show that the asymptotic method

works excellent both for N = 31 and for N = 9 for the first six distributions. We obtained

similar results for all of the many other standard distributions we have tried.

The asymptotic results are not as close to optimal (but still very good) for the exponential

power distribution with density proportional to exp(−x4). This is not too astonishing as due

to T (f(0))′′ = 0 this density is not fulfilling (18) and thus our asymptotic theorem is not

applicable. Note that the fact that T ′(f(0)) =∞ for the Gamma distribution is no problem

for our algorithm as the asymptotic theorem is only applied to the interval (κil, κir) that

never contains zero for this distribution.

Also the condition of five time differentiable densities seems to be no problem in prac-

tice. Most densities of interest can be differentiated arbritarily often anyway. We have also

constructed examples of densities being only differentiable twice in up to 105 points per unit

interval. The calculation of the (nearly) optimal design points of these densities with our

algorithm can still be carried out without problems. We were not able to construct examples

where our algorithm had problems with two times differentiable densities.

We also observed in our experiments that we get practically the same results when min-

imizing α and when minimizing Nf .

8. CONCLUSIONS

We have proven an asymptotic theorem for the choice of optimal design points in rejection

algorithms (asymptotic in the sense that the number of design points tends to infinity). This

theorem solves an open optimization problem for the design of automatic random variate

generation algorithms. We have also demonstrated that the asymptotic result is valid for all

variants of transformed density rejection and leads to excellent results for many standard

distributions, even for small N
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Table 1: The asymptotic approximations for α and Nf , compared with the optimal values calculated by

a gradient method and with the simple heuristic of equiangular points (8). For the asymptotic algorithm

c = −1/2, the stepsize k = 1/12 and symbolic differentiation were used.

Distribution

Normal Gamma Makeham 29th order 69th order Hyper- Expon-
N(0, 1) t = 3/2 a = 0.01, statistic of statistic of bolic ential

b = 0.02, 97 normal 97 Cauchy power
Method N c = e variates variates e−

√

1+x2

e−x4

α asymp. 9 1.033978 1.019890 1.018040 1.033986 1.034037 1.035766 1.023752
α equiang. 9 1.065618 1.044879 1.047892 1.065477 1.062273 1.041767 1.054558
α optimal 9 1.033955 1.019870 1.018028 1.033963 1.034012 1.035740 1.023396

Nf asymp. 9 0.091348 0.061229 0.056335 0.091377 0.091792 0.096985 0.071487
Nf equiang. 9 0.177451 0.163139 0.254090 0.177018 0.161508 0.112061 0.148874
Nf optimal 9 0.091340 0.061186 0.056334 0.091369 0.091790 0.096984 0.070753

α asymp. 31 1.002946 1.001916 1.001519 1.002947 1.002970 1.003163 1.002158
α equiang. 31 1.006800 1.006694 1.003837 1.006783 1.006226 1.004402 1.005369
α optimal 31 1.002946 1.001914 1.001518 1.002947 1.002970 1.003163 1.002144

Nf asymp. 31 0.008598 0.005815 0.004617 0.008601 0.008678 0.009250 0.006508
Nf equiang. 31 0.019944 0.029094 0.055419 0.019900 0.018329 0.013025 0.015895
Nf optimal 31 0.008597 0.005809 0.004616 0.008601 0.008677 0.009250 0.006478

Tc-concave for c ≤ 0 0 -0.488898 0 -0.033333 0 0
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