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1
Introduction

1.1 Learning Outcomes

The learning outcomes of the two parts of this course in Mathematics are
threefold:

• Mathematical reasoning

• Fundamental concepts in mathematical economics

• Extend mathematical toolbox

Topics

• Linear Algebra:

– Vector spaces, basis and dimension

– Matrix algebra and linear transformations

– Norm and metric

– Orthogonality and projections

– Determinants

– Eigenvalues

• Topology

– Neighborhood and convergence

– Open sets and continuous functions

– Compact sets

• Calculus

– Limits and continuity

– Derivative, gradient and Jacobian matrix

– Mean value theorem and Taylor series

3
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– Inverse and implicit functions

– Static optimization

– Constrained optimization

• Integration

– Antiderivative

– Riemann integral

– Fundamental Theorem of Calculus

– Leibniz’s rule

– Multiple integral and Fubini’s Theorem

• Dynamic analysis

– Ordinary differential equations (ODE)

– Initial value problem

– linear and logistic differential equation

– Autonomous differential equation

– Phase diagram and stability of solutions

– Systems of differential equations

– Stability of stationary points

– Saddle path solutions

• Dynamic analysis

– Control theory

– Hamilton function

– Transversality condition

– Saddle path solutions
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1.2 A Science and Language of Patterns

Mathematics consists of propositions of the form: P implies
Q, but you never ask whether P is true. (Bertrand Russell)

The mathematical universe is built-up by a series of definitions, the-
orems and proofs.

Axiom
A statement that is assumed to be true.

Axioms define basic concepts like sets, natural numbers or real
numbers: A family of elements with rules to manipulate these.

...

...
Definition

Introduce a new notion. (Use known terms.)
Theorem

A statement that describes properties of the new object:
If . . . then . . .

Proof
Use true statements (other theorems!) to show that this statement is

true.
...
...

New Definition
Based on observed interesting properties.

Theorem
A statement that describes properties of the new object.

Proof
Use true statements (including former theorems) to show that the

statement is true.
...

????

Here is a very simplistic example:

Even number. An even number is a natural number n that is divisible Definition 1.1
by 2.

If n is an even number, then n2 is even. Theorem 1.2

PROOF. If n is divisible by 2, then n can be expressed as n = 2k for some
k ∈N. Hence n2 = (2k)2 = 4k2 = 2(2k2) which also is divisible by 2. Thus
n2 is an even number as claimed.
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The if . . . then . . . structure of mathematical statements is not always
obvious. Theorem 1.2 may also be expressed as: The square of an even
number is even.

When reading the definition of even number we find the terms divisi-
ble and natural numbers. These terms must already be well-defined: We
say that a natural number n is divisible by a natural number k if there
exists a natural number m such that n = k ·m.

What are natural numbers? These are defined as a set of objects that
satisfies a given set of rules, i.e., by axioms1.

Of course the development in mathematics is not straightforward as
indicate in the above diagram. It is rather a tree with some additional
links between the branches.

1.3 Mathematical Economics

The quote from Bertrand Russell may seem disappointing. However, this
exactly is what we are doing in Mathematical Economics.

An economic model is a simplistic picture of the real world. In such a
model we list all our assumptions and then deduce patterns in our model
from these “axioms”. E.g., we may try to derive propositions like: “When
we increase parameter X in model Y then variable Z declines.” It is not
the task of mathematics to validate the assumptions of the model, i.e.,
whether the model describes the real world sufficiently well.

Verification or falsification of the model is the task of economists.

1.4 About This Manuscript

This manuscript is by no means a complete treatment of the material.
Rather it is intended as a road map for our course. The reader is in-
vited to consult additional literature if she wants to learn more about
particular topics.

As this course is intended as an extension of the course Mathema-
tische Methoden the reader is encouraged to look at the given handouts
for examples and pictures. It is also assumed that the reader has suc-
cessfully mastered all the exercises of that course. Moreover, we will not
repeat all definitions given there.

1.5 Solving Problems

In this course we will have to solve many problems. For this task the
reader may use any theorem that have already been proved up to this
point. Missing definitions could be found in the handouts for the course
Mathematische Methoden. However, one must not use any results or
theorems from these handouts.

1The natural numbers can be defined by the so called Peano axioms.
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Roughly spoken there are two kinds of problems:

• Prove theorems and lemmata that are stated in the main text. For
this task you may use any result that is presented up to this par-
ticular proposition that you have to show.

• Problems where additional statements have to be proven. Then
all results up to the current chapter may be applied, unless stated
otherwise.

Some of the problems are hard. Here is Polya’s four step plan for
tackling these issues.

(i) Understand the problem

(ii) Devise a plan

(iii) Execute the problem

(iv) Look back

1.6 Symbols and Abstract Notions

Mathematical illiterates often complain that mathematics deals with ab-
stract notions and symbols. However, this is indeed the foundation of the
great power of mathematics.

Let us give an example2. Suppose we want to solve the quadratic
equation

x2 +10x = 39 .

Muh. ammad ibn Mūsā al-Khwārizmı̄ (c. 780–850) presented an algorithm
for solving this equation in his text entitled Al-kitāb al-muh

¯
tas. ar fı̄ h. isāb

al-jabr wa-l-muqābala (The Condensed Book on the Calculation of al-
Jabr and al Muqabala). In his text he distinguishes between three kinds
of quantities: the square [of the unknown], the root of the square [the un-
known itself], and the absolute numbers [the constants in the equation].
Thus he stated our problem as

“What must be the square which, when increased by ten of
its own roots, amounts to thirty-nine?”

and presented the following recipe:

“The solution is this: you halve the number of roots, which in
the present instance yields five. This you multiply by itself;
the product is twenty-five. Add this to thirty-nine; the sum
us sixty-four. Now take the root of this which is eight, and
subtract from it half the number of the roots, which is five;
the remainder is three. This is the root of the square which
you sought for.”

2See Sect. 7.2.1 in Victor J. Katz (1993), A History of Mathematics, HarperCollins
College Publishers.
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Using modern mathematical (abstract!) notation we can express this al-
gorithm in a more condensed form as follows:

The solution of the quadratic equation x2 + bx = c with b, c > 0 is
obtained by the procedure

1. Halve b.
2. Square the result.
3. Add c.
4. Take the square root of the result.
5. Subtract b/2.

It is easy to see that the result can abstractly be written as

x =
√(

b
2

)2
+ c− b

2
.

Obviously this problem is just a special case of the general form of a
quadratic equation

ax2 +bx+ c = 0, a,b, c ∈R

with solution

x1,2 = −b±
p

b2 −4ac
2a

.

Al-Khwārizmı̄ provides a purely geometrically proof for his algorithm.
Consequently, the constants b and c as well as the unknown x must be
positive quantities. Notice that for him x2 = bx+ c is a different type
of equations. Thus he has to distinguish between six different types of
quadratic equations for which he provides algorithms for finding their
solutions (and a couple of types that do not have positive solutions at all).
For each of these cases he presents geometric proofs. And Al-Khwārizmı̄
did not use letters nor other symbols for the unknown and the constants.

— Summary

• Mathematics investigates and describes structures and patterns.

• Abstraction is the reason for the great power of mathematics.

• Computations and procedures are part of the mathematical tool-
box.

• Students of this course have mastered all the exercises from the
course Mathematische Methoden.

• Ideally students read the corresponding chapters of this manuscript
in advance before each lesson!



2
Logic

We want to look at the foundation of mathematical reasoning.

2.1 Statements

We use a naïve definition.

A statement is a sentence that is either true (T) or false (F) – but not Definition 2.1
both.

Example 2.2

• “Vienna is the capital of Austria.” is a true statement.

• “Bill Clinton was president of Austria.” is a false statement.

• “19 is a prime number” is a true statement.

• “This statement is false” is not a statement.

• “x is an odd number.” is not a statement. ♦

2.2 Connectives

Statements can be connected to more complex statements by means of
words like “and”, “or”, “not”, “if . . . then . . . ”, or “if and only if”. Table 2.3
lists the most important ones.

2.3 Truth Tables

Truth tables are extremely useful when learning logic. Mathematicians
do not use them in day-to-day work but they provide clarity for the be-
ginner. Table 2.4 lists truth values for important connectives.

Notice that the negation of “All cats are gray” is not “All cats are not
gray” but “Not all cats are gray”, that is, “There is at least one cat that
is not gray”.

9
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Let P and Q be two statements.

Connective Symbol Name

not P ¬P Negation
P and Q P ∧Q Conjunction
P or Q P ∨Q Disjunction
if P then Q P ⇒Q Implication
Q if and only if P P ⇔Q Equivalence

Table 2.3

Connectives for
statements

Let P and Q be two statements.

P Q ¬P P ∧Q P ∨Q P ⇒Q P ⇔Q

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Table 2.4

Truth table for
important connectives

2.4 If . . . then . . .

In an implication P ⇒Q there are two parts:

• Statement P is called the hypothesis or assumption, and

• Statement Q is called the conclusion.

The truth values of an implication seems a bit mysterious. Notice
that P ⇒Q says nothing about the truth of P or Q.

Which of the following statements are true?Example 2.5

• “If Barack Obama is Austrian citizen, then he may be elected for
Austrian president.”

• “If Ben is Austrian citizen, then he may be elected for Austrian
president.” ♦

2.5 Quantifier

The phrase “for all” is the universal quantifier.Definition 2.6
It is denoted by ∀.

The phrase “there exists” is the existential quantifier.Definition 2.7
It is denoted by ∃.
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— Problems

2.1 Verify that the statement (P ⇒Q)⇔ (¬P ∨Q) is always true. HINT: Compute the truth
table for this statement.

2.2 Contrapositive. Verify that the statement

(P ⇒Q)⇔ (¬Q ⇒¬P)

is always true. Explain this statement and give an example.

2.3 Express P ∨Q, P ⇒ Q, and P ⇔ Q as compositions of P and Q by
means of ¬ and ∧. Prove your statement by truth tables.

2.4 Another connective is exclusive-or P ⊕Q. This statement is true
if and only if exactly one of the statements P or Q is true.

(a) Establish the truth table for P ⊕Q.

(b) Express this statement by means of “not”, “and”, and “or”.
Verify your proposition by means of truth tables.

2.5 Construct the truth table of the following statements:

(a) ¬¬P (b) ¬(P ∧Q) (c) ¬(P ∨Q)

(d) ¬P ∧P (e) ¬P ∨P (f) ¬P ∨¬Q

2.6 A tautology is a statement that is always true. A contradiction
is a statement that is always false.

Which of the statements in the above problems is a tautology or a
contradiction?

2.7 Assume that the statement P ⇒ Q is true. Which of the following
statements are true (or false). Give examples.

(a) Q ⇒ P (b) ¬Q ⇒ P

(c) ¬Q ⇒¬P (d) ¬P ⇒¬Q





3
Definitions, Theorems and

Proofs

We have to read mathematical texts and need to know what that terms
mean.

3.1 Meanings

A mathematical text is build around a skeleton of the form “definition –
theorem – proof”. Besides that one also finds, e.g., examples, remarks, or
illustrations. Here is a very short description of these terms.

• Definition: an explanation of the mathematical meaning of a word.

• Theorem: a very important true statement.

• Proposition: a less important but nonetheless interesting true
statement.

• Lemma: a true statement used in proving other statements (aux-
iliary proposition; pl. lemmata).

• Corollary: a true statement that is a simple deduction from a
theorem.

• Proof: the explanation of why a statement is true.

• Conjecture: a statement believed to be true, but for which we
have no proof.

• Axiom: a basic assumption about a mathematical situation.

13
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3.2 Reading

When reading definitions:

• Observe precisely the given condition.

• Find examples.

• Find standard examples (which you should memorize).

• Find trivial examples.

• Find extreme examples.

• Find non-examples, i.e., an example that do not satisfy the condi-
tion of the definition.

When reading theorems:

• Find assumptions and conditions.

• Draw a picture.

• Apply trivial or extreme examples.

• What happens to non-examples?

3.3 Theorems

Mathematical proofs are statements of the form “if A then B”. It is always
possible to rephrase a theorem in this way. E.g., the statement “

p
2 is an

irrational number” can be rewritten as “If x =p
2 then x is a irrational

number”.
When talking about mathematical theorems the following two terms

are extremely important.

A necessary condition is one which must hold for a conclusion to beDefinition 3.1
true. It does not guarantee that the result is true.

A sufficient condition is one which guarantees the conclusion is true.Definition 3.2
The conclusion may even be true if the condition is not satisfied.

So if we have the statement “if A then B”, i.e., A ⇒ B, then

• A is a sufficient condition for B, and

• B is a necessary condition for A (sometimes also written as B ⇐ A).

3.4 Proofs

Finding proofs is an art and a skill that needs to be trained. The mathe-
matician’s toolbox provide the following main techniques.
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Direct Proof

The statement is derived by a straightforward computation.

If n is an odd number, then n2 is odd. Proposition 3.3

PROOF. If n is odd, then it is not divisible by 2 and thus n can be ex-
pressed as n = 2k+1 for some k ∈N. Hence

n2 = (2k+1)2 = 4k2 +4k+1

which is not divisible by 2, either. Thus n2 is an odd number as claimed.

Contrapositive Method

The contrapositive of the statement P ⇒Q is

¬Q ⇒¬P .

We have already seen in Problem 2.2 that (P ⇒ Q) ⇔ (¬Q ⇒¬P). Thus
in order to prove statement P ⇒Q we also may prove its contrapositive.

If n2 is an even number, then n is even. Proposition 3.4

PROOF. This statement is equivalent to the statement:

“If n is not even (i.e., odd), then n2 is not even (i.e., odd).”

However, this statements holds by Proposition 3.3 and thus our proposi-
tion follows.

Obviously we also could have used a direct proof to derive Proposi-
tion 3.4. However, our approach has an additional advantage: Since we
already have shown that Proposition 3.3 holds, we can use it for our proof
and avoid unnecessary computations.

Indirect Proof

This technique is a bit similar to the contrapositive method. Yet we as-
sume that both P and ¬Q are true and show that a contradiction results.
Thus it is called proof by contradiction (or reductio ad absurdum). It
is based on the equivalence (P ⇒Q)⇔¬(P ∧¬Q). The advantage of this
method is that we get the statement ¬Q for free even when Q is difficult
to show.

The square root of 2 is irrational, i.e., it cannot be written in form m/n Proposition 3.5
where m and n are integers.
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PROOF. Suppose the contrary that
p

2 = m/n where m and n are inte-
gers. Without loss of generality we can assume that this quotient is in its
simplest form. (Otherwise cancel common divisors of m and n.) Then we
find

m
n

=
p

2 ⇔ m2

n2 = 2 ⇔ m2 = 2n2

Consequently m2 is even and thus m is even by Proposition 3.4. So
m = 2k for some integer k. We then find

(2k)2 = 2n2 ⇔ 2k2 = n2

which implies that n is even and there exists an integer j such that
n = 2 j. However, we have assumed that m/n was in its simplest form;
but we find

p
2= m

n
= 2k

2 j
= k

j

a contradiction. Thus we conclude that
p

2 cannot be written as a quo-
tient of integers.

The phrase “without loss of generality” (often abbreviated as “w.l.o.g.”
is used in cases when a general situation can be easily reduced to some
special case which simplifies our arguments. In this example we just
have to cancel out common divisors.

Proof by Induction

Induction is a very powerful technique. It is applied when we have an
infinite number of statements A(n) indexed by the natural numbers. It
is based on the following theorem.

Principle of mathematical induction. Let A(n) be an infinite collec-Theorem 3.6
tion of statements with n ∈N. Suppose that

(i) A(1) is true, and

(ii) A(k)⇒ A(k+1) for all k ∈N.

Then A(n) is true for all n ∈N.

PROOF. Suppose that the statement does not hold for all n. Let j be
the smallest natural number such that A( j) is false. By assumption
(i) we have j > 1 and thus j −1 ≥ 1. Note that A( j −1) is true as j is
the smallest possible. Hence assumption (ii) implies that A( j) is true, a
contradiction.

When we apply the induction principle the following terms are use-
ful.
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• Checking condition (i) is called the initial step.

• Checking condition (ii) is called the induction step.

• Assuming that A(k) is true for some k is called the induction
hypothesis.

Let q ∈R and n ∈N Then Proposition 3.7

n−1∑
j=0

q j = 1− qn

1− q

PROOF. For a fixed q ∈ R this statement is indexed by natural numbers.
So we prove the statement by induction.

Initial step: Obviously the statement is true for n = 1.
Induction step: We assume by the induction hypothesis that the

statement is true for n = k, i.e.,

k−1∑
j=0

q j = 1− qk

1− q
.

We have to show that the statement also holds for n = k+1. We find

k∑
j=0

q j =
k−1∑
j=0

q j + qk = 1− qk

1− q
+ qk = 1− qk

1− q
+ (1− q)qk

1− q
= 1− qk+1

1− q

Thus by the Principle of Mathematical Induction the statement is true
for all n ∈N.

Proof by Cases

It is often useful to break a given problem into cases and tackle each of
these individually.

Triangle inequality. Let a and b be real numbers. Then Proposition 3.8

|a+b| ≤ |a|+ |b|

PROOF. We break the problem into four cases where a and b are positive
and negative, respectively.

Case 1: a ≥ 0 and b ≥ 0. Then a+ b ≥ 0 and we find |a+ b| = a+ b =
|a|+ |b|.

Case 2: a < 0 and b < 0. Now we have a+b < 0 and |a+b| = −(a+b)=
(−a)+ (−b)= |a|+ |b|.

Case 3: Suppose one of a and b is positive and the other negative.
W.l.o.g. we assume a < 0 and b ≥ 0. (Otherwise reverse the rôles of a and
b.) Notice that x ≤ |x| for all x. We have the following to subcases:
Subcase (a): a+b > 0 and we find |a+b| = a+b ≤ |a|+ |b|.
Subcase (b): a+b < 0 and we find |a+b| = −(a+b)= (−a)+ (−b)≤ |−a|+
|−b| = |a|+ |b|.

This completes the proof.
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Counterexample

A counterexample is an example where a given statement does not
hold. It is sufficient to find one counterexample to disprove a conjecture.
Of course it is not sufficient to give just one example to prove a conjec-
ture.

Reading Proofs

Proofs are often hard to read. When reading or verifying a proof keep
the following in mind:

• Break into pieces.

• Draw pictures.

• Find places where the assumptions are used.

• Try extreme examples.

• Apply to a non-example: Where does the proof fail?

Mathematicians seem to like the word trivial which means self-
evident or being the simplest possible case. Make sure that the argument
really is evident for you1.

3.5 Why Should We Deal With Proofs?

The great advantage of mathematics is that one can assess the truth of
a statement by studying its proof. Truth is not determined by a higher
authority who says “because I say so”. (On the other hand, it is you that
has to check the proofs given by your lecturer. Copying a wrong proof
from the blackboard is your fault. In mathematics the incantation “But
it has been written down by the lecturer” does not work.)

Proofs help us to gain confidence in the truth of our statements.
Another reason is expressed by Ludwig Wittgenstein: Beweise reini-

gen die Begriffe. We learn something about the mathematical objects.

3.6 Finding Proofs

The only way to determine the truth or falsity of a mathematical state-
ment is with a mathematical proof. Unfortunately, finding proofs is not
always easy.
M. Sipser2. has the following tips for producing a proof:

1Nasty people say that trivial means: “I am confident that the proof for the state-
ment is easy but I am too lazy to write it down.”

2See Sect. 0.3 in Michael Sipser (2006), Introduction to the Theory of Computation,
2nd international edition, Course Technology.
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• Find examples. Pick a few examples and observe the statement in
action. Draw pictures. Look at extreme examples and non-exam-
ples. See what happens when you try to find counterexamples.

• Be patient. Finding proofs takes times. If you do not see how to do
it right away, do not worry. Researchers sometimes work for weeks
or even years to find a single proof.

• Come back to it. Look over the statement you want to prove, think
about it a bit, leave it, and then return a few minutes or hours
later. Let the unconscious, intuitive part of your mind have a
chance to work.

• Try special cases. If you are stuck trying to prove your statement,
try something easier. Attempt to prove a special case first. For
example, if you cannot prove your statement for every n ≥ 1, first
try to prove it for k = 1 and k = 2.

• Be neat. When you are building your intuition for the statement
you are trying to prove, use simple, clear pictures and/or text. Slop-
piness gets in the way of insight.

• Be concise. Brevity helps you express high-level ideas without get-
ting lost in details. Good mathematical notation is useful for ex-
pressing ideas concisely.

3.7 When You Write Down Your Own Proof

When you believe that you have found a proof, you must write it up
properly. View a proof as a kind of debate. It is you who has to convince
your readers that your statement is indeed true. A well-written proof is
a sequence of statements, wherein each one follows by simple reasoning
from previous statements in the sequence. All your reasons you may
use must be axioms, definitions, or theorems that your reader already
accepts to be true.

— Summary

• Mathematical papers have the structure “Definition – Theorem –
Proof”.

• A theorem consists of an assumption or hypothesis and a conclu-
sion.

• We distinguish between necessary and sufficient conditions.

• Examples illustrate a notion or a statement. A good example shows
a typical property; extreme examples and non-examples demon-
strate special aspects of a result. An example does not replace a
proof.
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• Proofs verify theorems. They only use definitions and statements
that have already be shown true.

• There are some techniques for proving a theorem which may (or
may not) work: direct proof, indirect proof, proof by contradiction,
proof by induction, proof cases.

• Wrong conjectures may be disproved by counterexamples.

• When reading definitions, theorems or proofs: find examples, draw
pictures, find assumptions and conclusions.
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— Problems

3.1 Consider the following statement:

Suppose that a, b, c and d are real numbers. If ab = cd
and a = c, then b = d.

Proof: We have

ab = cd
⇔ ab = ad, as a = c,
⇔ b = d, by cancellation.

Unfortunately, this statement is false. Where is the mistake? Fix
the proposition, i.e., change the statement such that it is true.

3.2 Prove that the square root of 3 is irrational, i.e., it cannot be writ- HINT: Use the same idea
as in the proof of Proposi-
tion 3.5.

ten in form m/n where m and n are integers.

3.3 Suppose one uses the same idea as in the proof of Proposition 3.5 to
show that the square root of 4 is irrational. Where does the proof
fail?

3.4 Prove by induction that
n∑

j=1
j = 1

2
n(n+1) .

3.5 The binomial coefficient is defined as(
n
k

)
= n!

k! (n−k)!

It also can be computed by
(n
0
)= (n

n
)= 1 and the following recursion:(

n+1
k+1

)
=

(
n
k

)
+

(
n

k+1

)
for k = 0, . . . ,n−1

This recursion can be illustrated by Pascal’s triangle:(0
0
)(1

0
) (1

1
)(2

0
) (2

1
) (2

2
)(3

0
) (3

1
) (3

2
) (3

3
)(4

0
) (4

1
) (4

2
) (4

3
) (4

4
)(5

0
) (5

1
) (5

2
) (5

3
) (5

4
) (5

5
)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Prove this recursion by a direct proof.

3.6 Prove the binomial theorem by induction: HINT: Use the recursion
from Problem 3.5.

(x+ y)n =
n∑

k=0

(
n
k

)
xk yn−k





Part II

Linear Algebra
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4
Matrix Algebra

We want to cope with rows and columns.

4.1 Matrix and Vector

An m×n matrix (pl. matrices) is a rectangular array of mathematical Definition 4.1
expressions (e.g., numbers) that consists of m rows and n columns. We
write

A= (ai j)m×n =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 .

We use bold upper case letters to denote matrices and corresponding
lower case letters for their entries. For example, the entries of matrix A
are denote by ai j. In addition, we also use the symbol [A]i j to denote the
entry of A in row i and column j.

A column vector (or vector for short) is a matrix that consists of a single Definition 4.2
column. We write

x=


x1
x2
...

xn

 .

A row vector is a matrix that consists of a single row. We write Definition 4.3

x′ = (x1, x2, . . . , xm) .

We use bold lower case letters to denote vectors. Symbol ek denotes
a column vector that has zeros everywhere except for a one in the kth
position.

25
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The set of all (column) vectors of length n with entries in R is denoted
by Rn. The set of all m×n matrices with entries in R is denoted by Rm×n.

It is convenient to write A = (a1, . . . ,an) to denote a matrix with col-

umn vectors a1, . . . ,an. We write A =

a′
1
...

a′
m

 to denote a matrix with row

vectors a′
1, . . . ,a′

m.

An n×n matrix is called a square matrix.Definition 4.4

An m× n matrix where all entries are 0 is called a zero matrix. It isDefinition 4.5
denoted by 0nm.

An n×n square matrix with ones on the main diagonal and zeros else-Definition 4.6
where is called identity matrix. It is denoted by In.

We simply write 0 and I, respectively, if the size of 0nm and In can be
determined by the context.

A diagonal matrix is a square matrix in which all entries outside theDefinition 4.7
main diagonal are all zero. The diagonal entries themselves may or may
not be zero. Thus, the n×n matrix D is diagonal if di j = 0 whenever i 6= j.
We denote a diagonal matrix with entries x1, . . . , xn by diag(x1, . . . , xn).

An upper triangular matrix is a square matrix in which all entriesDefinition 4.8
below the main diagonal are all zero. Thus, the n× n matrix U is an
upper triangular matrix if ui j = 0 whenever i > j.

Notice that identity matrices and square zero matrices are examples
for both a diagonal matrix and an upper triangular matrix.

4.2 Matrix Algebra

Two matrices A and B are equal, A = B, if they have the same numberDefinition 4.9
of rows and columns and

ai j = bi j .

Let A and B be two m× n matrices. Then the sum A+B is the m× nDefinition 4.10
matrix with elements

[A+B]i j = ai j +bi j .

That is, matrix addition is performed element-wise.

Let A be an m×n matrix and α ∈R. Then we define αA byDefinition 4.11

[αA]i j =αai j .

That is, scalar multiplication is performed element-wise.
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Let A be an m× n matrix and B an n× k matrix. Then the matrix Definition 4.12
product A ·B is the m×k matrix with elements defined as

[A ·B]i j =
n∑

s=1
aisbs j .

That is, matrix multiplication is performed by multiplying ×
rows by columns.

Rules for matrix addition and multiplication. Theorem 4.13
Let A, B, C, and D, matrices of appropriate size. Then

(1) A+B=B+A

(2) (A+B)+C=A+ (B+C)

(3) A+0=A

(4) (A ·B) ·C=A · (B ·C)

(5) Im ·A=A ·In =A

(6) (αA) ·B=A · (αB)=α(A ·B)

(7) C · (A+B)=C ·A+C ·B
(8) (A+B) ·D=A ·D+B ·D

PROOF. See Problem 4.7.

Notice: In general matrix multiplication is not commutative! B
AB 6=BA

4.3 Transpose of a Matrix

The transpose of an m×n matrix A is the n×m matrix A′ (or At or AT) Definition 4.14
defined as

[A′]i j = (a ji) .

Let A be an m×n matrix and B an n×k matrix. Then Theorem 4.15

(1) A′′ =A,

(2) (AB)′ =B′A′.

PROOF. See Problem 4.15.

A square matrix A is called symmetric if A′ =A. Definition 4.16
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4.4 Inverse Matrix

A square matrix A is called invertible if there exists a matrix A−1 suchDefinition 4.17
that

AA−1 =A−1A= I .

Matrix A−1 is then called the inverse matrix of A.
A is called singular if such a matrix does not exist.

Let A be an invertible matrix. Then its inverse A−1 is uniquely defined.Theorem 4.18

PROOF. See Problem 4.18.

Let A and B be two invertible matrices of the same size. Then AB isTheorem 4.19
invertible and

(AB)−1 =B−1A−1 .

PROOF. See Problem 4.19.

Let A be an invertible matrix. Then the following holds:Theorem 4.20

(1) (A−1)−1 =A

(2) (A′)−1 = (A−1)′

PROOF. See Problem 4.20.

4.5 Block Matrix

Suppose we are given some vector x= (x1, . . . , xn)′. It may happen that we
naturally can distinguish between two types of variables (e.g., endoge-
nous and exogenous variables) which we can group into two respective
vectors x1 = (x1, . . . , xn1)′ and x2 = (xn1+1, . . . , xn1+n2)′ where n1 + n2 = n.
We then can write

x=
(
x1
x2

)
.

Assume further that we are also given some m×n Matrix A and that the
components of vector y=Ax can also be partitioned into two groups

y=
(
y1
y2

)
where y1 = (y1, . . . , xm1)′ and y2 = (ym1+1, . . . , ym1+m2)′. We then can parti-
tion A into four matrices

A=
(
A11 A12
A21 A22

)
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where Ai j is a submatrix of dimension mi ×n j. Hence we immediately
find (

y1
y2

)
=

(
A11 A12
A21 A22

)
·
(
x1
x2

)
=

(
A11x1 +A12x2
A21x1 +A22x2

)
.

Matrix
(
A11 A12
A21 A22

)
is called a partitioned matrix or block matrix. Definition 4.21

The matrix A =
 1 2 3 4 5

6 7 8 9 10
11 12 13 14 15

 can be partitioned in numerous Example 4.22

ways, e.g.,

A=
(
A11 A12
A21 A22

)
=

 1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

 ♦

Of course a matrix can be partitioned into more than 2×2 submatrices.
Sometimes there is no natural reason for such a block structure but it
might be convenient for further computations.

We can perform operations on block matrices in an obvious ways, that
is, we treat the submatrices as of they where ordinary matrix elements.
For example, we find for block matrices with appropriate submatrices,

α

(
A11 A12
A21 A22

)
=

(
αA11 αA12
αA21 αA22

)
(
A11 A12
A21 A22

)
+

(
B11 B12
B21 B22

)
=

(
A11 +B11 A12 +B12
A21 +B21 A22 +B22

)
and (

A11 A12
A21 A22

)
·
(
C11 C12
C21 C22

)
=

(
A11C11 +A12C21 A11C12 +A12C22
A21C11 +A22C21 A21C12 +A22C22

)
We also can use the block structure to compute the inverse of a parti-

tioned matrix. Assume that a matrix is partitioned as (n1+n2)×(n1+n2)

matrix A =
(
A11 A12
A21 A22

)
. Here we only want to look at the special case

where A21 = 0, i.e.,

A=
(
A11 A12
0 A22

)

We then have to find a block matrix B=
(
B11 B12
B21 B22

)
such that

AB=
(
A11B11 +A12B21 A11B12 +A12B22

A22B21 A22B22

)
=

(
In1 0
0 In2

)
= In1+n2 .
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Thus if A−1
22 exists the second row implies that B21 = 0n2n1 and B22 =A−1

22 .
Furthermore, A11B11 +A12B21 = I implies B11 = A−1

11 . At last, A11B12 +
A12B22 = 0 implies B12 =−A−1

11 A12A−1
22 . Hence we find

(
A11 A12
0 A22

)−1

=
(
A−1

11 −A−1
11 A12A−1

22

0 A−1
22

)

— Summary

• A matrix is a rectangular array of mathematical expressions.

• Matrices can be added and multiplied by a scalar componentwise.

• Matrices can be multiplied by multiplying rows by columns.

• Matrix addition and multiplication satisfy all rules that we expect
for such operations except that matrix multiplication is not com-
mutative.

• The zero matrix 0 is the neutral element of matrix addition, i.e., 0
plays the same role as 0 for addition of real numbers.

• The identity zero matrix I is the neutral element of matrix multi-
plication, i.e., I plays the same role as 1 for multiplication of real
numbers.

• There is no such thing as division of matrices. Instead one can use
the inverse matrix, which is the matrix analog to the reciprocal of
a number.

• A matrix can be partitioned. Thus one obtains a block matrix.
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— Exercises

4.1 Let

A=
(
1 −6 5
2 1 −3

)
, B=

(
1 4 3
8 0 2

)
and C=

(
1 −1
1 2

)
.

Compute

(a) A+B (b) A ·B (c) 3A′ (d) A ·B′

(e) B′ ·A (f) C+A (g) C·A+C·B (h) C2

4.2 Demonstrate by means of the two matrices A =
(
1 −1
1 2

)
und B =(

3 2
−1 0

)
, that matrix multiplication is not commutative in general,

i.e., we may find A ·B 6=B ·A.

4.3 Let x=
 1
−2
4

 , y=
−3
−1
0

.

Compute x′x, xx′, x′y, y′x, xy′ und yx′.

4.4 Let A be a 3×2 matrix, C be a 4×3 matrix, and B a matrix, such
that the multiplication A ·B ·C is possible. How many rows and
columns must B have? How many rows and columns does the
product A ·B ·C have?

4.5 Compute X. Assume that all matrices are quadratic matrices and
all required inverse matrices exist.

(a) AX+BX=CX+I (b) (A−B)X=−BX+C

(c) AXA−1 =B (d) XAX−1 =C (XB)−1

4.6 Use partitioning and compute the inverses of the following matri-
ces:

(a) A=


1 0 0 1
0 1 0 2
0 0 1 3
0 0 0 4

 (b) B=


1 0 5 6
0 2 0 7
0 0 3 0
0 0 0 4


— Problems

4.7 Prove Theorem 4.13.
Which conditions on the size of the respective matrices must be
satisfied such that the corresponding computations are defined?
HINT: Show that corresponding entries of the matrices on either side of the equa-
tions coincide. Use the formulæ from Definitions 4.10, 4.11 and 4.12.
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4.8 Show that the product of two diagonal matrices is again a diagonal
matrix.

4.9 Show that the product of two upper triangular matrices is again
an upper triangular matrix.

4.10 Show that the product of a diagonal matrix and an upper triangu-
lar matrices is an upper triangular matrix.

4.11 Let A= (a1, . . . ,an) be an m×n matrix.

(a) What is the result of Aek?
(b) What is the result of AD where D is an n×n diagonal matrix?

Prove your claims!

4.12
Let A=

a′
1
...

a′
m

 be an m×n matrix.

(a) What is the result of e′
kA.

(b) What is the result of DA where D is an m×m diagonal ma-
trix?

Prove your claims!

4.13 Let A be an m×n matrix and B be an n×n matrix where bkl = 1
for fixed 1≤ k, l ≤ n and bi j = 0 for i 6= k or j 6= l. What is the result
of AB? Prove your claims!

4.14 Let A be an m×n matrix and B be an m×m matrix where bkl = 1
for fixed 1≤ k, l ≤ m and bi j = 0 for i 6= k or j 6= l. What is the result
of BA? Prove your claims!

4.15 Prove Theorem 4.15.

HINT: (2) Compute the matrices on either side of the equation and compare their
entries.

4.16 Let A be an m×n matrix. Show that both AA′ and A′A are sym-HINT: Use Theorem 4.15.

metric.

4.17 Let x1, . . . ,xn ∈ Rn. Show that matrix G with entries g i j = x′
ix j is

symmetric.

4.18 Prove Theorem 4.18.

HINT: Assume that there exist two inverse matrices B and C. Show that they
are equal.

4.19 Prove Theorem 4.19.
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4.20 Prove Theorem 4.20.
HINT: Use Definition 4.17 and apply Theorems 4.19 and 4.15. Notice that I−1 = I
and I′ = I. (Why is this true?)

4.21 Compute the inverse of A=
(
A11 0
A21 A22

)
.

(Explain all intermediate steps.)





5
Vector Space

We want to master the concept of linearity.

5.1 Linear Space

In Chapter 4 we have introduced addition and scalar multiplication of Definition 5.1
vectors. Both are performed element-wise. We again obtain a vector of
the same length. We thus say that the set of all real vectors of length n,

Rn =


x1

...
xn

 : xi ∈R, i = 1, . . . ,n


is closed under vector addition and scalar multiplication.

In mathematics we find many structures which possess this nice
property.

Let P = {∑k
i=0 aixi : k ∈N, ai ∈R

}
be the set of all polynomials. Then we Example 5.2

define a scalar multiplication and an addition on P by

• (αp)(x)=αp(x) for p ∈P and α ∈R,

• (p1 + p2)(x)= p1(x)+ p2(x) for p1, p2 ∈P .

Obviously, the result is again a polynomial and thus an element of P ,
i.e., the set P is closed under scalar multiplication and addition. ♦

Vector Space. A vector space is any non-empty set of objects that is Definition 5.3
closed under scalar multiplication and addition.

Of course in mathematics the meanings of the words scalar multipli-
cation and addition needs a clear and precise definition. So we also give
a formal definition:

35
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A (real) vector space is an object (V ,+, ·) that consists of a nonemptyDefinition 5.4
set V together with two functions + : V × V → V , (u,v) 7→ u+v, called
addition, and · : R×V → V , (α,v) 7→α·v, called scalar multiplication, with
the following properties:

(i) v+u=u+v, for all u,v ∈ V . (Commutativity)

(ii) v+ (u+w)= (v+u)+w, for all u,v,w ∈ V . (Associativity)

(iii) There exists an element 0 ∈ V such that 0+v = v+ 0 = v, for all
v ∈ V . (Identity element of addition)

(iv) For every v ∈ V , there exists an u ∈ V such that v+u = u+v = 0.
(Inverse element of addition)

(v) α(v+u)=αv+αu, for all v,u ∈ V and all α ∈R. (Distributivity)

(vi) (α+β)v=αv+βv, for all v ∈ V and all α,β ∈R. (Distributivity)

(vii) α(βv)= (αβ)v=β(αv), for all v ∈ V and all α,β ∈R.

(viii) 1v= v, for all v ∈ V , where 1 ∈R.
(Identity element of scalar multiplication)

We write vector space V for short, if there is no risk of confusion about
addition and scalar multiplication.

It is easy to check that Rn and the set P of polynomials in Example 5.2Example 5.5
form vector spaces.

Let C 0([0,1]) and C 1([0,1]) be the set of all continuous and con-
tinuously differential functions with domain [0,1], respectively. Then
C 0([0,1]) and C 1([0,1]) equipped with pointwise addition and scalar mul-
tiplication as in Example 5.2 form vector spaces.

The set L 1([0,1]) of all integrable functions on [0,1] equipped with
pointwise addition and scalar multiplication as in Example 5.2 forms a
vector space.

A non-example is the first hyperoctant in Rn, i.e., the set

H = {x ∈Rn : xi ≥ 0} .

It is not a vector space as for every x ∈ H \{0} we find −x 6∈ H. ♦

Subspace. A nonempty subset S of some vector space V is called aDefinition 5.6
subspace of V if for every u,v ∈S and α,β ∈R we find αu+βv ∈S .

The fundamental property of vector spaces is that we can take some
vectors and create a set of new vectors by means of so called linear com-
binations.

Linear combination. Let V be a real vector space. Let {v1, . . . ,vk} ⊂ VDefinition 5.7
be a finite set of vectors and α1, . . . ,αk ∈ R. Then

∑k
i=1αivi is called a

linear combination of the vectors v1, . . . ,vk.
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Is is easy to check that the set of all linear combinations of some fixed
vectors forms a subspace of the given vector space.

Given a vector space V and a nonempty subset S = {v1, . . . ,vk}⊂ V . Then Theorem 5.8
the set of all linear combinations of the elements of S is a subspace of V .

PROOF. Let x=∑k
i=1αivi and y=∑k

i=1βivi. Then

z= γx+δy= γ
k∑

i=1
αivi +δ

k∑
i=1

βivi =
k∑

i=1
(γαi +δβi)vi .

is a linear combination of the elements of S for all γ,δ ∈R, as claimed.

Linear span. Let V be a vector space and S = {v1, . . . ,vk} ⊂ V be a Definition 5.9
nonempty subset. Then the subspace

span(S)=
{

k∑
i=1

αivi : αi ∈R
}

is referred as the subspace spanned by S and called linear span of S.

5.2 Basis and Dimension

Let V be a vector space. A subset S ⊂V is called a generating set of V Definition 5.10
if span(S)= V .

A vector space V is said to be finitely generated, if there exists a finite Definition 5.11
subset S of V that spans V .

In the following we will restrict our interest to finitely generated real
vector spaces. We will show that the notions of a basis and of linear
independence are fundamental to vector spaces.

Basis. A set S is called a basis of some vector space V if it is a minimal Definition 5.12
generating set of V . Minimal means that every proper subset of S does
not span V .

If V is finitely generated, then it has a basis. Theorem 5.13

PROOF. Since V is finitely generated, it is spanned by some finite set S.
If S is minimal, we are done. Otherwise, remove an appropriate element
and obtain a new smaller set S′ that spans V . Repeat this step until the
remaining set is minimal.

Linear dependence. Let S = {v1, . . . ,vk} be a subset of some vector Definition 5.14
space V . We say that S is linearly independent or the elements of S
are linearly independent if for any αi ∈ R, i = 1, . . . ,k,

∑k
i=1αivi =α1v1 +

·· · +αkvk = 0 implies α1 = . . . = αk = 0. The set S is called linearly
dependent, if it is not linearly independent.
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Every nonempty subset of a linearly independent set is linearly indepen-Theorem 5.15
dent.

PROOF. Let V be a vector space and S = {v1, . . . ,vk} ⊂ V be a linearly
independent set. Suppose S′ ⊂ S is linearly dependent. Without loss of
generality we assume that S′ = {v1, . . . ,vm}, m < k (otherwise rename the
elements of S). Then there exist α1, . . . ,αm not all 0 such that

∑m
i=1αivi =

0. Set αm+1 = . . .=αk = 0. Then we also have
∑k

i=1αivi = 0, where not all
αi are zero, a contradiction to the linear independence of S.

Every set that contains a linearly dependent set is linearly dependent.Theorem 5.16

PROOF. See Problem 5.7.

The following theorems gives us a characterization of linearly depen-
dent sets.

Let S = {v1, . . . ,vk} be a subset of some vector space V . Then S is linearlyTheorem 5.17
dependent if and only if there exists some v j ∈ S such that v j =∑k

i=1αivi
for some α1, . . . ,αk ∈R with α j = 0.

PROOF. Assume that v j =∑k
i=1αivi for some v j ∈ S such that α1, . . . ,αk ∈

R with α j = 0. Then 0 = (
∑k

i=1αivi)−v j = ∑k
i=1α

′
ivi, where α′

j = α j −1 =
−1 and α′

i =αi for i 6= j. Thus we have a solution of
∑k

i=1α
′
ivi = 0 where

at least α′
j 6= 0. But this implies that S is linearly dependent.

Now suppose that S is linearly dependent. Then we find αi ∈R not all
zero such that

∑k
i=1αivi = 0. Without loss of generality α j 6= 0 for some

j ∈ {1, . . . ,k}. Then we find v j = α1
α j

v1+·· ·+ α j−1
α j

v j−1+ α j+1
α j

v j+1+·· ·+ αk
α j

vk,
as proposed.

Theorem 5.17 can also be stated as follows: S = {v1, . . . ,vk} is a lin-
early dependent subset of V if and only if there exists a v ∈ S such that
v ∈ span(S \{v}).

Let S = {v1, . . . ,vk} be a linearly independent subset of some vector spaceTheorem 5.18
V . Let u ∈ V . If u 6∈ span(S), then S∪ {u} is linearly independent.

PROOF. See Problem 5.9.

The next theorem provides us an equivalent characterization of a
basis by means of linear independent subsets.

Let B be a subset of some vector space V . Then the following are equiv-Theorem 5.19
alent:

(1) B is a basis of V .

(2) B is linearly independent generating set of V .
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PROOF. (1)⇒(2): By Definition 5.12, B is a generating set. Suppose that
B = {v1, . . . ,vk} is linearly dependent. By Theorem 5.17 there exists some
v ∈ B such that v ∈ span(B′) where B′ = B\{v}. Without loss of generality
assume that v = vk. Then there exist αi ∈ R such that vk = ∑k−1

i=1 αivi.
Now let u ∈ V . Since B is a basis there exist some βi ∈ R, such that
u = ∑k

i=1βivi = ∑k−1
i=1 βivi +βk

∑k−1
i=1 αivi = ∑k−1

i=1 (βi +βkαi)vi. Hence u ∈
span(B′). Since u was arbitrary, we find that B′ is a generating set of V .
But since B′ is a proper subset of B, B cannot be minimal, a contradiction
to the minimality of a basis.

(2)⇒(1): Let B be a linearly independent generating set of V . Sup-
pose that B is not minimal. Then there exists a proper subset B′ ⊂ B such
that span(B′)= V . But then we find for every x ∈ B \ B′ that x ∈ span(B′)
and thus B cannot be linearly independent by Theorem 5.17, a contra-
diction. Hence B must be minimal as claimed.

A subset B of some vector space V is a basis if and only if it is a maximal Theorem 5.20
linearly independent subset of V . Maximal means that every proper
superset of B (i.e., a set that contains B as a proper subset) is linearly
dependent.

PROOF. See Problem 5.10.

Steinitz exchange theorem (Austauschsatz). Let B1 and B2 be two Theorem 5.21
bases of some vector space V . If there is an x ∈ B1 \ B2 then there exists
a y ∈ B2 \ B1 such that (B1 ∪ {y})\{x} is a basis of V .

This theorem tells us that we can replace vectors in B1 by some vectors
in B2.

PROOF. Let B1 = {v1, . . . ,vk} and assume without loss of generality that
x = v1. (Otherwise rename the elements of B1.) As B1 is a basis it is
linearly independent by Theorem 5.19. By Theorem 5.15, B1\{v1} is also
linearly independent and thus it cannot be a basis of V by Theorem 5.20.
Hence it cannot be a generating set by Theorem 5.19. This implies that
there exists a y ∈ B2 with y 6∈ span(B1 \ {v1}), since otherwise we had
span(B2)⊆ span(B1 \{v1}) 6= V , a contradiction as B2 is a basis of V .

Now there exist αi ∈ R not all equal to zero such that y = ∑k
i=1αivi.

In particular α1 6= 0, since otherwise y ∈ span(B1 \ {v1}), a contradiction
to the choice of y. We then find

v1 = 1
α1

y−
k∑

i=2

αi

α1
vi .

Similarly for every z ∈ V there exist β j ∈R such that z=∑k
j=1β jv j. Con-

sequently,

z=
k∑

j=1
β jv j =β1v1 +

k∑
j=2

β jv j =β1

(
1
α1

y−
k∑

i=2

αi

α1
vi

)
+

k∑
j=2

β jv j

= β1

α1
y+

k∑
j=2

(
β j − β1

α1
α j

)
v j
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that is, (B1 ∪ {y}) \ {x} = {y,v2, . . . ,vk} is a generating set of V . By our
choice of y and Theorem 5.18 this set is linearly independent. Thus it is
a basis by Theorem 5.19. This completes the proof.

Any two bases B1 and B2 of some finitely generated vector space V haveTheorem 5.22
the same size.

PROOF. See Problem 5.11.

We want to emphasis here that in opposition to the dimension the
basis of a vector space is not unique! Indeed there is infinite number ofB
bases.

Dimension. Let V be a finitely generated vector space. Let n be theDefinition 5.23
number of elements in a basis. Then n is called the dimension of V and
we write dim(V )= n. V is called an n-dimensional vector space.

Any linearly independent subset S of some finitely generated vectorTheorem 5.24
space V can be extended into a basis of B with S ⊆ B.

PROOF. See Problem 5.12.

Let B = {v1, . . . ,vn} be some basis of vector space V . Assume that x =Theorem 5.25 ∑n
i=1αivi where αi ∈ R and α1 6= 0. Then B′ = {x,v2, . . . ,vn} is a basis of

V .

PROOF. See Problem 5.15.

5.3 Coordinate Vector

Let V be an n-dimensional vector space with basis B = {v1,v2, . . . ,vn}.
Then we can express a given vector x ∈ V as a linear combination of the
basis vectors, i.e.,

x=
n∑

i=1
αivi

where the αi ∈R.

Let V be a vector space with some basis B = {v1, . . . ,vn}. Let x ∈ VTheorem 5.26
and αi ∈ R such that x = ∑n

i=1αivi. Then the coefficients α1, . . . ,αn are
uniquely defined.

PROOF. See Problem 5.16.

This theorem allows us to define the coefficient vector of x.
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Let V be a vector space with some basis B = {v1, . . . ,vn}. For some vector Definition 5.27
x ∈ V we call the uniquely defined numbers αi ∈R with x=∑n

i=1αivi the
coefficients of x with respect to basis B. The vector c(x) = (α1, . . . ,αn)′

is then called the coefficient vector of x.
We then have

x=
n∑

i=1
ci(x)vi .

Notice that c(x) ∈Rn.

Canonical basis. It is easy to verify that B = {e1, . . . ,en} forms a basis Example 5.28
of the vector space Rn. It is called the canonical basis of Rn and we
immediately find that for each x= (x1, . . . , xn)′ ∈Rn,

x=
n∑

i=1
xiei . ♦

The set P2 = {a0 + a1x+ a2x2 : ai ∈ R} of polynomials of order less than Example 5.29
or equal to 2 equipped with the addition and scalar multiplication of
Example 5.2 is a vector space with basis B = {v0,v1,v2} = {1, x, x2}. Then
any polynomial p ∈P2 has the form

p(x)=
2∑

i=0
aixi =

2∑
i=0

aivi

that is, c(p)= (a0,a1,a2)′. ♦

The last example demonstrates an important consequence of Theo-
rem 5.26: there is a one-to-one correspondence between a vector x ∈ V

and its coefficient vector c(x) ∈ Rn. The map V → Rn, x 7→ c(x) preserves
the linear structure of the vector space, that is, for vectors x,y ∈ V and
α,β ∈R we find (see Problem 5.17)

c(αx+βy)=αc(x)+βc(y) .

In other words, the coefficient vector of a linear combination of two vec-
tors is the corresponding linear combination of the coefficient vectors of
the two vectors.

In this sense Rn is the prototype of any n-dimensional vector space
V . We say that V and Rn are isomorphic, V ∼=Rn, that is, they have the
same structure.

Now let B1 = {v1, . . . ,vn} and B2 = {w1, . . . ,wn} be two bases of vector
space V . Let c1(x) and c2(x) be the respective coefficient vectors of x ∈ V .
Then we have

w j =
n∑

i=1
c1i(w j)vi , j = 1, . . . ,n
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and
n∑

i=1
c1i(x)vi = x=

n∑
j=1

c2 j(x)w j =
n∑

j=1
c2 j(x)

n∑
i=1

c1i(w j)vi

=
n∑

i=1

(
n∑

j=1
c2 j(x)c1i(w j)

)
vi .

Consequently, we find

c1i(x)=
n∑

j=1
c1i(w j)c2 j(x) .

Thus let U12 contain the coefficient vectors of the basis vectors of B2 with
respect to basis B1 as its columns, i.e.,

[U12]i j = c1i(w j) .

Then we find

c1(x)=U12c2(x) .

Matrix U12 is called the transformation matrix that transforms theDefinition 5.30
coefficient vector c2 with respect to basis B2 into the coefficient vector c1
with respect to basis B1.

— Summary

• A vector space is a set of elements that can be added and multiplied
by a scalar (number).

• A vector space is closed under forming linear combinations, i.e.,

x1, . . . ,xk ∈ V and α1, . . . ,αk ∈R implies
k∑

i=1
αixi ∈ V .

• A set of vectors is called linear independent if it is not possible
to express one of these as a linear combination of the remaining
vectors.

• A basis is a minimal generating set, or equivalently, a maximal set
of linear independent vectors.

• The basis of a given vector space is not unique. However, all bases
of a given vector space have the same size which is called the di-
mension of the vector space.

• For a given basis every vector has a uniquely defined coordinate
vector.

• The transformation matrix allows to transform a coordinate vector
w.r.t. one basis into the coordinate vector w.r.t. another one.

• Every vector space of dimension n “looks like” the Rn.
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— Exercises

5.1 Give linear combinations of the two vectors x1 and x2.

(a) x1 =
(
1
2

)
, x2 =

(
3
1

)
(b) x1 =

2
0
1

, x2 =
1

1
0



— Problems

5.2 Let S be some vector space. Show that 0 ∈S .

5.3 Give arguments why the following sets are or are not vector spaces:

(a) The empty set, ;.

(b) The set {0}⊂Rn.

(c) The set of all m×n matrices, Rm×n, for fixed values of m and
n.

(d) The set of all square matrices.

(e) The set of all n×n diagonal matrices, for some fixed values of
n.

(f) The set of all polynomials in one variable x.

(g) The set of all polynomials of degree less than or equal to some
fixed value n.

(h) The set of all polynomials of degree equal to some fixed value
n.

(i) The set of points x in Rn that satisfy the equation Ax = b for
some fixed matrix A ∈Rm×n and some fixed vector b ∈Rm.

(j) The set {y=Ax : x ∈Rn}, for some fixed matrix A ∈Rm×n.

(k) The set {y=b0 +αb1 : α ∈R}, for fixed vectors b0,b1 ∈Rn.

(l) The set of all functions on [0,1] that are both continuously
differentiable and integrable.

(m) The set of all functions on [0,1] that are not continuous.

(n) The set of all random variables X on some given probability
space (Ω,F ,P).

Which of these vector spaces are finitely generated?
Find generating sets for these. If possible give a basis.

5.4 Prove the following proposition: Let S1 and S2 be two subspaces
of vector space V . Then S1 ∩S2 is a subspace of V .

5.5 Proof or disprove the following statement:

Let S1 and S2 be two subspaces of vector space V . Then their
union S1 ∪S2 is a subspace of V .
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5.6 Let U1 and U2 be two subspaces of a vector space V . Then the sum
of U1 and U2 is the set

U1 +U2 = {u1 +u2 : u1 ∈U1,u2 ∈U2} .

Show that U1 +U2 is a subspace of V .

5.7 Prove Theorem 5.16.

5.8 Does Theorem 5.17 still hold if we allow α j 6= 0?

5.9 Prove Theorem 5.18.

5.10 Prove Theorem 5.20.
HINT: Use Theorem 5.19(2). First assume that B is a basis but not maximal.
Then a larger linearly independent subset exists which implies that B cannot be
a generating set. For the converse statement assume that B is maximal but not
a generating set. Again derive a contradiction.

5.11 Prove Theorem 5.22.
HINT: Look at B1 \ B2. If it is nonempty construct a new basis B′

1 by means of
the Austauschsatz where an element in B1 \B2 is replaced by a vector in B2 \B1.
What is the size of B′

1∩B2 compared to that of B1∩B2. When B′
1 \B2 6= ; repeat

this procedure and check again. Does this procedure continue ad infinitum or
does it stop? Why or why not? When it stops at a basis, say, B∗

1 , what do we know
about the relation of B∗

1 and B2? Is one included in the other? What does it mean
for their cardinalities? What happens if we exchange the roles of B1 and B2?

5.12 Prove Theorem 5.24.
HINT: Start with S and add linearly independent vectors (Why is this possible?)
until we obtain a maximal linearly independent set. This is then a basis that
contains S. (Why?)

5.13 Prove Theorem 5.24 by means of the Austauschsatz.

5.14 Let U1 and U2 be two subspaces of a vector space V . Show that

dim(U1)+dim(U2)= dim(U1 +U2)+dim(U1 ∩U2) .

HINT: Use Theorem 5.24.

5.15 Prove Theorem 5.25.
HINT: Express v1 as linear combination of elements in B′ and show that B′ is a
generating set by replacing v1 by this expression. It remains to show that the set
is a minimal generating set. (Why is any strict subset not a generating set?)

5.16 Prove Theorem 5.26.
HINT: Assume that there are two sets of numbers αi ∈ R and βi ∈ R such that
x=∑n

i=1αivi =
∑n

i=1βivi . Show that αi =βi by means of the fact that x−x= 0.

5.17 Let V be an n-dimensional vector space. Show that for two vectors
x,y ∈ V and α,β ∈R,

c(αx+βy)=αc(x)+βc(y) .
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5.18 Show that a coefficient vector c(x)= 0 if and only if x= 0.

5.19 Let V be a vector space with bases B1 = {v1, . . . ,vn} and B2 = {w1, . . . ,wn}.

(a) How does the transformation matrix U21 look like?

(b) What is the relation between transformation matrices U12
and U21.





6
Linear Transformations

We want to preserve linear structures.

6.1 Linear Maps

In Section 5.3 we have seen that the transformation that maps a vector
x ∈ V to its coefficient vector c(x) ∈ RdimV preserves the linear structure
of vector space V .

Let V and W be two vector spaces. A transformation φ : V →W is called Definition 6.1
a linear map if for all x,y ∈ V and all α,β ∈R the following holds:

(i) φ(x+y)=φ(x)+φ(y)

(ii) φ(αx)=αφ(x)

We thus have

φ(αx+βy)=αφ(x)+βφ(y) .

Every m×n matrix A defines a linear map (see Problem 6.2) Example 6.2

φA : Rn →Rm, x 7→φA(x)=Ax . ♦
Let P = {∑k

i=0 aixi : k ∈N, ai ∈R
}

be the vector space of all polynomials Example 6.3
(see Example 5.2). Then the map d

dx : P → P , p 7→ d
dx p is linear. It is

called the differential operator1. ♦
Let C 0([0,1]) and C 1([0,1]) be the vector spaces of all continuous and Example 6.4
continuously differential functions with domain [0,1], respectively (see
Example 5.5). Then the differential operator

d
dx

: C 1([0,1])→C 0([0,1]), f 7→ f ′ = d
dx

f

is a linear map. ♦

1A transformation that maps a function into another function is usually called an
operator.
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Let L be the vector space of all random variables X on some given prob-Example 6.5
ability space that have an expectation E(X ). Then the map

E : L →R, X 7→ E(X )

is a linear map. ♦

Linear maps can be described by their range and their preimage of 0.

Kernel and image. Let φ : V →W be a linear map.Definition 6.6

(i) The kernel (or nullspace) of φ is the preimage of 0, i.e.,

ker(φ)= {x ∈ V : φ(x)= 0} .

(ii) The image (or range) of φ is the set

Im(φ)=φ(V )= {y ∈W : ∃x ∈ V , s.t. φ(x)= y} .

Let φ : V →W be a linear map. Then ker(φ)⊆ V and Im(φ)⊆W are vectorTheorem 6.7
spaces.

PROOF. By Definition 5.6 we have to show that an arbitrary linear com-
bination of two elements of the subset is also an element of the set.

Let x,y ∈ ker(φ) and α,β ∈ R. Then by definition of ker(φ), φ(x) =
φ(y)= 0 and thus φ(αx+βy)=αφ(x)+βφ(y)= 0. Consequently αx+βy ∈
ker(φ) and thus ker(φ) is a subspace of V .

For the second statement assume that x,y ∈ Im(φ). Then there exist
two vectors u,v ∈ V such that x = φ(u) and y = φ(v). Hence for any
α,β ∈R, αx+βy=αφ(u)+βφ(v)=φ(αu+βv) ∈ Im(φ).

Let φ : V → W be a linear map and let B = {v1, . . . ,vn} be a basis of V .Theorem 6.8
Then Im(φ) is spanned by the vectors φ(v1), . . . ,φ(vn).

PROOF. For every x ∈ V we have x =∑n
i=1 ci(x)vi, where c(x) is the coef-

ficient vector of x with respect to B. Then by the linearity of φ we find
φ(x)=φ(∑n

i=1 ci(x)vi
)=∑n

i=1 ci(x)φ(vi). Thus φ(x) can be represented as
a linear combination of the vectors φ(v1), . . . ,φ(vn).

We will see below that the dimensions of these vector spaces deter-
mine whether a linear map is invertible. First we show that there is a
strong relation between their dimensions.

Dimension theorem for linear maps. Let φ : V →W be a linear map.Theorem 6.9
Then

dimker(φ)+dimIm(φ)= dimV .



6.1 LINEAR MAPS 49

PROOF. Let {v1, . . . ,vk} form a basis of ker(φ) ⊆ V . Then it can be ex-
tended into a basis {v1, . . . ,vk,w1, . . . ,wn} of V , where k+n = dimV . For
any x ∈ V there exist unique coefficients ai and b j such that
x=∑k

i=1 aivi +∑n
j=1 biw j. By the linearity of φ we then have

φ(x)=
k∑

i=1
aiφ(vi)+

n∑
j=1

biφ(w j)=
n∑

j=1
biφ(w j)

i.e., {φ(w1), . . . ,φ(wn)} spans Im(φ). It remains to show that this set is
linearly independent. In fact, if

∑n
j=1 biφ(w j) = 0 then φ(

∑n
j=1 biw j) =

0 and hence
∑n

j=1 biw j ∈ ker(φ). Thus there exist coefficients ci such
that

∑n
j=1 biw j = ∑k

i=1 civi, or equivalently,
∑n

j=1 biw j +∑k
i=1(−ci)vi = 0.

However, as {v1, . . . ,vk,w1, . . . ,wn} forms a basis of V all coefficients b j
and ci must be zero and consequently the vectors {φ(w1), . . . ,φ(wn)} are
linearly independent and form a basis for Im(φ). Thus the statement
follows.

Let φ : V → W be a linear map and let B = {v1, . . . ,vn} be a basis of V . Lemma 6.10
Then the vectors φ(v1), . . . ,φ(vn) are linearly independent if and only if
ker(φ)= {0}.

PROOF. By Theorem 6.8, φ(v1), . . . ,φ(vn) spans Im(φ), that is, for every
x ∈ V we have φ(x) = ∑n

i=1 ci(x)φ(vi) where c(x) denotes the coefficient
vector of x with respect to B. Thus if φ(v1), . . . ,φ(vn) are linearly indepen-
dent, then

∑n
i=1 ci(x)φ(vi)= 0 implies c(x)= 0 and hence x= 0. But then

x ∈ ker(φ). Conversely, if ker(φ) = {0}, then φ(x) = ∑n
i=1 ci(x)φ(vi) = 0

implies x = 0 and hence c(x) = 0. But then vectors φ(v1), . . . ,φ(vn) are
linearly independent, as claimed.

Recall that a function φ : V →W is invertible, if there exists a func-
tion φ−1 : W → V such that

(
φ−1 ◦φ)

(x)= x for all x ∈ V and
(
φ◦φ−1)

(y)=
y for all y ∈W . Such a function exists if φ is one-to-one and onto.

A linear map φ is onto if Im(φ) = W . It is one-to-one if for each
y ∈W there exists at most one x ∈ V such that y=φ(x).

A linear map φ : V →W is one-to-one if and only if ker(φ)= {0}. Lemma 6.11

PROOF. See Problem 6.5.

Let φ : V → W be a linear map. Then dimV = dimIm(φ) if and only if Lemma 6.12
ker(φ)= {0}.

PROOF. By Theorem 6.9, dimIm(φ) = dimV − dimker(φ). Notice that
dim{0}= 0. Thus the result follows from Lemma 6.11.

A linear map φ : V → W is invertible if and only if dimV = dimW and Theorem 6.13
ker(φ)= {0}.
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PROOF. Notice that φ is onto if and only if dimIm(φ) = dimW . By Lem-
mata 6.11 and 6.12, φ is invertible if and only if dimV = dimIm(φ) and
ker(φ)= {0}.

Let φ : V →W be a linear map with dimV = dimW .Theorem 6.14

(1) If there exists a function ψ : W → V such that (ψ ◦φ)(x) = x for all
x ∈ V , then (φ◦ψ)(y)= y for all y ∈W .

(2) If there exists a function χ : W → V such that (φ ◦χ)(y) = y for all
y ∈W , then (χ◦φ)(x)= x for all x ∈ V .

PROOF. It remains to show that φ is invertible in both cases.
(1) Ifψ exists, then φmust be one-to-one. Thus ker(φ)= {0} by Lemma 6.11
and consequently φ is invertible by Theorem 6.13.
(2) We can use (1) to conclude that χ−1 =φ. Hence φ−1 = χ and the state-
ment follows.

An immediate consequence of this Theorem is the existence of ψ or
χ implies the existence of the other one. Consequently, this also implies
that φ is invertible and φ−1 =ψ= χ.

6.2 Matrices and Linear Maps

In Section 5.3 we have seen that the Rn can be interpreted as the vector
space of dimension n. Example 6.2 shows us that any m× n matrix A
defines a linear map between Rn and Rm. The following theorem tells
us that there is also a one-to-one correspondence between matrices and
linear maps. Thus matrices are the representations of linear maps.

Let φ : Rn → Rm be a linear map. Then there exists an m×n matrix AφTheorem 6.15
such that φ(x)=Aφx.

PROOF. Let ai =φ(ei) denote the images of the elements of the canonical
basis {e1, . . . ,en}. Let A = (a1, . . . ,an) be the matrix with column vectors
ai. Notice that Aei = ai. Now we find for every x = (x1, . . . , xn)′ ∈ Rn,
x=∑n

i=1 xiei and therefore

φ (x)=φ
(

n∑
i=1

xiei

)
=

n∑
i=1

xiφ(ei)=
n∑

i=1
xiai =

n∑
i=1

xiAei =A
n∑

i=1
xiei =Ax

as claimed.

Now assume that we have two linear maps φ : Rn →Rm and ψ : Rm →
Rk with corresponding matrices A and B, resp. The map composition
ψ◦φ is then given by (ψ◦φ)(x) =ψ(φ(x)) = B(Ax) = (BA)x. Thus matrix
multiplication corresponds to map composition.

If the linear map φ : Rn →Rn, x 7→ Ax, is invertible, then matrix A is
also invertible and A−1 describes the inverse map φ−1.
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By Theorem 6.15 a linear map φ and its corresponding matrix A are
closely related. Thus all definitions and theorems about linear maps may
be applied to matrices. For example, the kernel of matrix A is the set

ker(A)= {x : Ax= 0} .

The following result is an immediate consequence of our considera-
tions and Theorem 6.14.

Let A be some square matrix. Theorem 6.16

(a) If there exists a square matrix B such that AB= I, then A is invert-
ible and A−1 =B.

(b) If there exists a square matrix C such that CA= I, then A is invert-
ible and A−1 =C.

The following result is very convenient.

Let A and B be two square matrices with AB= I. Then both A and B are Corollary 6.17
invertible and A−1 =B and B−1 =A.

6.3 Rank of a Matrix

Theorem 6.8 tells us that the columns of a matrix A span the image of
a linear map φ induced by A. Consequently, by Theorem 5.20 we get a
basis of Im(φ) by a maximal linearly independent subset of these column
vectors. The dimension of the image is then the size of this subset. This
motivates the following notion.

The rank of a matrix A is the maximal number of linearly independent Definition 6.18
columns of A.

By the above considerations we immediately have the following lem-
mata.

For any matrix A, Lemma 6.19

rank(A)= dimIm(A) .

Let A be an m × n matrix. If T is an invertible m × m matrix, then Lemma 6.20
rank(TA)= rank(A).

PROOF. Let φ and ψ be the linear maps induced by A and T, resp. Theo-
rem 6.13 states that ker(ψ)= {0}. Hence by Theorem 6.9, ψ is one-to-one.
Hence rank(TA)= dim(ψ(φ(Rn)))= dim(φ(Rn))= rank(A), as claimed.

Sometimes we are interested in the dimension of the kernel of a matrix.

The nullity of matrix A is the dimension of the kernel (nullspace) of A. Definition 6.21
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Rank-nullity theorem. Let A be an m×n matrix. ThenTheorem 6.22

rank(A)+nullity(A)= n.

PROOF. By Lemma 6.19 and Theorem 6.9 we find rank(A)+nullity(A)=
dimIm(A)+dimker(A)= n.

Let A be an m×n matrix and B be an n×k matrix. ThenTheorem 6.23

rank(AB)≤min {rank(A),rank(B)} .

PROOF. Let φ and ψ be the maps represented by A and B, respec-
tively. Recall that AB correspond to map composition φ ◦ψ. Obviously,
Im(φ◦ψ)⊆ Imφ. Hence rank(AB)= dimIm(φ◦ψ)≤ dimIm(φ)= rank(A).
Similarly, Im(φ ◦ψ) is spanned by φ(S) where S is any linearly inde-
pendent subset of Im(ψ). Hence rank(AB) = dimIm(φ◦ψ) ≤ dimIm(ψ) =
rank(B). Thus the result follows.

Our notion of rank in Definition 6.18 is sometimes also referred to as
column rank of matrix A. One may also define the row rank of A as the
maximal number of linearly independent rows of A. However, column
rank and row rank always coincide.

For any matrix A,Theorem 6.24

rank(A)= rank(A′).

For the proof of this theorem we first show the following result.

Let A be a m×n matrix. Then rank(A′A)= rank(A).Lemma 6.25

PROOF. We show that ker(A′A) = ker(A). Obviously, x ∈ ker(A) im-
plies A′Ax = A′0 = 0 and thus ker(A) ⊆ ker(A′A). Now assume that
x ∈ ker(A′A). Then A′Ax = 0 and we find 0 = x′A′Ax = (Ax)′(Ax) which
implies that Ax = 0 so that x ∈ ker(A). Hence ker(A′A) ⊆ ker(A) and,
consequently, ker(A′A)= ker(A). Now notice that A′A is an n×n matrix.
Theorem 6.22 then implies

rank(A′A)−rank(A)= (
n−nullity(A′A)

)− (n−nullity(A))
= nullity(A)−nullity(A′A)= 0

and thus rank(A′A)= rank(A), as claimed.

PROOF OF THEOREM 6.24. By Theorem 6.23 and Lemma 6.25 we find

rank(A′)≥ rank(A′A)= rank(A) .

As this statement remains true if we replace A by its transpose A′ we
have rank(A)≥ rank(A′) and thus the statement follows.
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Let A be an m×n matrix. Then Corollary 6.26

rank(A)≤min{m,n}.

Finally, we give a necessary and sufficient condition for invertibility
of a square matrix.

An n×n matrix A is called regular if it has full rank, i.e., if rank(A)= n. Definition 6.27

A square matrix A is invertible if and only if it is regular. Theorem 6.28

PROOF. By Theorem 6.13 a matrix is invertible if and only if nullity(A)=
0 (i.e., ker(A) = {0}). Then rank(A) = n−nullity(A) = n by Theorem 6.22.

6.4 Similar Matrices

In Section 5.3 we have seen that every vector x ∈ V in some vector space
V of dimension dimV = n can be uniformly represented by a coordinate
vector c(x) ∈ Rn. However, for this purpose we first have to choose an
arbitrary but fixed basis for V . In this sense every finitely generated
vector space is “equivalent” (i.e., isomorphic) to the Rn.

However, we also have seen that there is no such thing as the basis of
a vector space and that coordinate vector c(x) changes when we change
the underlying basis of V . Of course vector x then remains the same.

In Section 6.2 above we have seen that matrices are the representa-
tions of linear maps between Rm and Rn. Thus if φ : V → W is a linear
map, then there is a matrix A that represents the linear map between
the coordinate vectors of vectors in V and those in W . Obviously matrix
A depends on the chosen bases for V and W .

Suppose now that dimV = dimW = Rn. Let A be an n× n square
matrix that represents a linear map φ : Rn → Rn with respect to some
basis B1. Let x be a coefficient vector corresponding to basis B2 and let U
denote the transformation matrix that transforms x into the coefficient
vector corresponding to basis B1. Then we find:

basis B1: Ux A−→ AUx

U↑ ↓U−1

basis B2: x C−→ U−1AUx

hence Cx=U−1AUx

That is, if A represents a linear map corresponding to basis B1, then
C=U−1AU represents the same linear map corresponding to basis B2.

Two n× n matrices A and C are called similar if C = U−1AU for some Definition 6.29
invertible n×n matrix U.
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— Summary

• A Linear map φ preserve the linear structure, i.e.,

φ(αx+βy)=αφ(x)+βφ(y) .

• Kernel and image of a linear map φ : V →W are subspaces of V and
W , resp.

• Im(φ) is spanned by the images of a basis of V .

• A linear map φ : V → W is invertible if and only if dimV = dimW

and ker(φ)= {0}.

• Linear maps are represented by matrices. The corresponding ma-
trix depends on the chosen bases of the vector spaces.

• Matrices are called similar if they describe the same linear map
but w.r.t. different bases.

• The rank of a matrix is the dimension of the image of the corre-
sponding linear map.

• Matrix multiplication corresponds to map composition. The in-
verse of a matrix corresponds to the corresponding inverse linear
map.

• A matrix is invertible if and only if it is a square matrix and regu-
lar, i.e., has full rank.
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— Exercises

6.1 Let P2 = {a0 + a1x+ a2x2 : ai ∈ R} be the vector space of all poly-
nomials of order less than or equal to 2 equipped with point-wise
addition and scalar multiplication. Then B = {1, x, x2} is a basis of
P2 (see Example 5.29). Let φ = d

dx : P2 → P2 be the differential
operator on P2 (see Example 6.3).

(a) What is the kernel of φ? Give a basis for ker(φ).

(b) What is the image of φ? Give a basis for Im(φ).

(c) For the given basis B represent map φ by a matrix D.

(d) The first three so called Laguerre polynomials are `0(x) = 1,
`1(x)= 1− x, and `2(x)= 1

2
(
x2 −4x+2

)
.

Then B` = {`0(x),`1(x),`2(x)} also forms a basis of P2. What
is the transformation matrix U` that transforms the coeffi-
cient vector of a polynomial p with respect to basis B into its
coefficient vector with respect to basis B`?

(e) For basis B` represent map φ by a matrix D`.

— Problems

6.2 Verify the claim in Example 6.2.

6.3 Show that the following statement is equivalent to Definition 6.1:

Let V and W be two vector spaces. A transformation φ : V → W is
called a linear map if for for all x,y ∈ V and α,β ∈ R the following
holds:

φ(αx+βy)=αφ(x)+βφ(y)

for all x,y ∈ V and all α,β ∈R.

6.4 Let φ : V →W be a linear map and let B = {v1, . . . ,vn} be a basis of
V . Give a necessary and sufficient for span

(
φ(v1), . . . ,φ(vn)

)
being

a basis of Im(φ).

6.5 Prove Lemma 6.11.
HINT: We have to prove two statements:
(1) φ is one-to-one ⇒ ker(φ)= {0}.
(2) ker(φ)= {0} ⇒ φ is one-to-one.
For (2) use the fact that if φ(x1) = φ(x2), then x1 −x2 must be an element of the
kernel. (Why?)

6.6 Let φ : Rn →Rm, x 7→ y=Ax be a linear map, where A= (a1, . . . ,an).
Show that the column vectors of matrix A span Im(φ), i.e.,

span(a1, . . . ,an)= Im(φ) .
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6.7 Let A be an m×n matrix. If T is an invertible n×n matrix, then
rank(AT)= rank(A).

6.8 Prove Corollary 6.26.

6.9 Disprove the following statement:
For any m × n matrix A and any n × k matrix B it holds that
rank(AB)=min {rank(A),rank(B)}.

6.10 Show that two similar matrices have the same rank.

6.11 Is the converse of the statement in Problem 6.10 true?
Prove or disprove:
If two n×n matrices have the same rank then they are similar.
HINT: Consider simple diagonal matrices.

6.12 Let U be the transformation matrix for a change of basis (see Def-
inition 5.30). Argue why U is invertible.
HINT: Use the fact that U describes a linear map between the sets of coefficient
vectors for two given bases. These have the same dimension.



7
Linear Equations

We want to compute dimensions and bases of kernel and image.

7.1 Linear Equations

A system of m linear equations in n unknowns is given by the following Definition 7.1
set of equations:

a11 x1 + a12 x2 + ·· · + a1n xn = b1
a21 x1 + a22 x2 + ·· · + a2n xn = b2

...
...

. . .
...

...
am1 x1 + am2 x2 + ·· · + amn xn = bm

By means of matrix algebra it can be written in much more compact form
as (see Problem 7.2)

Ax=b .

The matrix

A=


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


is called the coefficient matrix and the vectors

x=

x1
...

xn

 and b=

 b1
...

bm


contain the unknowns xi and the constants b j on the right hand side.

A linear equation Ax= 0 is called homogeneous. Definition 7.2
A linear equation Ax=b with b 6= 0 is called inhomogeneous.

57
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Observe that the set of solutions of the homogeneous linear equation
Ax = 0 and is just the kernel of the coefficient matrix, ker(A), and thus
forms a vector space. The set of solutions of an inhomogeneous linear
equation Ax=b can be derived from ker(A) as well.

Let x0 and y0 be two solutions of the inhomogeneous equation Ax = b.Lemma 7.3
Then x0 −y0 is a solution of the homogeneous equation Ax= 0.

Let x0 be a particular solution of the inhomogeneous equation Ax = b,Theorem 7.4
then the set of all solutions of Ax=b is given by

S = x0 +ker(A)= {x= x0 +z : z ∈ ker(A)} .

PROOF. See Problem 7.3.

Set S is an example of an affine subspace of Rn.

Let x0 ∈Rn be a vector and S ⊆Rn be a subspace. Then the set x0+S =Definition 7.5
{x= x0 +z : z ∈S } is called an affine subspace of Rn

7.2 Gauß Elimination

A linear equation Ax=b can be solved by transforming it into a simpler
form called row echelon form.

A matrix A is said to be in row echelon form if the following holds:Definition 7.6

(i) All nonzero rows (rows with at least one nonzero element) are above
any rows of all zeroes, and

(ii) The leading coefficient (i.e., the first nonzero number from the left,
also called the pivot) of a nonzero row is always strictly to the right
of the leading coefficient of the row above it.

It is sometimes convenient to work with an even simpler form.

A matrix A is said to be in row reduced echelon form if the followingDefinition 7.7
holds:

(i) All nonzero rows (rows with at least one nonzero element) are above
any rows of all zeroes, and

(ii) The leading coefficient of a nonzero row is always strictly to the
right of the leading coefficient of the row above it. It is 1 and is
the only nonzero entry in its column. Such columns are then called
pivotal.

Any coefficient matrix A can be transformed into a matrix R that is
in row (reduced) echelon form by means of elementary row operations
(see Problem 7.6):
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(E1) Switch two rows.

(E2) Multiply some row with α 6= 0.

(E3) Add some multiple of a row to another row.

These row operations can be performed by means of elementary ma-
trices, i.e., matrices that differs from the identity matrix by one single
elementary row operation. These matrices are always invertible, see
Problem 7.4.

The procedure works due to the following lemma which tells use how
we obtain equivalent linear equations that have the same solutions.

Let A be an m×n coefficient matrix and b the vector of constants. If T Lemma 7.8
is an invertible m×m matrix, then the linear equations

Ax=b and TAx=Tb

are equivalent. That is, they have the same solutions.

PROOF. See Problem 7.5.

Gauß elimination now iteratively applies elementary row operations
until a row (reduced) echelon form is obtained. Mathematically spoken:
In each step of the iteration we multiply a corresponding elementary
matrix Tk from the left to the equation Tk−1 · · ·T1Ax = Tk−1 · · ·T1b. For
practical reasons one usually uses the augmented coefficient matrix.

For every matrix A there exists a sequence of elementary row operations Theorem 7.9
T1, . . .Tk such that R=Tk · · ·T1A is in row (reduced) echelon form.

PROOF. See Problem 7.6.

For practical reasons one augments the coefficient matrix A of a lin-
ear equation by the constant vector b. Thus the row operations can be
performed on A and b simultaneously.

Let Ax = b be a linear equation with coefficient matrix A = (a1, . . .an). Definition 7.10
Then matrix Ab = (A,b) = (a1, . . .an,b) is called the augmented coeffi-
cient matrix of the linear equation.

When the coefficient matrix is in row echelon form, then the solution
x of the linear equation Ax = b can be easily obtained by means of an
iterative process called back substitution. When it is in row reduced
echelon form it is even simpler: We get a particular solution x0 by setting
all variables that belong to non-pivotal columns to 0. Then we solve
the resulting linear equations for the variables that corresponds to the
pivotal columns. This is easy as each row reduces to

δixi = bi where δi ∈ {0,1}.
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Obviously, these equations can be solved if and only if δi = 1 or bi = 0.
We then need a basis of ker(A) which we easily get from a row re-

duced echelon form of the homogeneous equation Ax = 0. Notice, that
ker(A)= {0} if there are no non-pivotal columns.

7.3 Image, Kernel and Rank of a Matrix

Once the row reduced echelon form R is given for a matrix A we also can
easily compute bases for its image and kernel.

Let R be a row reduced echelon form of some matrix A. Then rank(A) isTheorem 7.11
equal to the number nonzero rows of R.

PROOF. By Lemma 6.20 and Theorem 7.9, rank(R) = rank(A). It is easy
to see that non-pivotal columns can be represented as linear combina-
tions of pivotal columns. Hence the pivotal columns span Im(R). More-
over, the pivotal columns are linearly independent since no two of them
have a common non-zero entry. The result then follows from the fact
that the number of pivotal columns equal the number of nonzero ele-
ments.

Let R be a row reduced echelon form of some matrix A. Then the columnsTheorem 7.12
of A that correspond to pivotal columns of R form a basis of Im(A).

PROOF. The columns of A span Im(A). Let Ap consists of all columns of
A that correspond to pivotal columns of R. If we apply the same elemen-
tary row operations on Ap as for A we obtain a row reduced echelon form
Rp where all columns are pivotal. Hence the columns of Ap are linearly
independent and rank(Ap) = rank(A). Thus the columns of Ap form a
basis of Im(A), as claimed.

At last we verify other observation about the existence of the solution
of an inhomogeneous equation.

Let Ax = b be an inhomogeneous linear equation. Then there exists aTheorem 7.13
solution x0 if and only if rank(A)= rank(Ab).

PROOF. Recall that Ab denotes the augmented coefficient matrix. If
there exists a solution x0, then b=Ax0 ∈ Im(A) and thus

rank(Ab)= dimspan(a1, . . . ,an,b)= dimspan(a1, . . . ,an)= rank(A) .

On the other hand, if no such solution exists, then b 6∈ span(a1, . . . ,ak)
and thus span(a1, . . . ,an)⊂ span(a1, . . . ,an,b). Consequently,

rank(Ab)= dimspan(a1, . . . ,an,b)> dimspan(a1, . . . ,an)= rank(A)

and thus rank(Ab) 6= rank(A).
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— Summary

• A linear equation is one that can be written as Ax=b.

• The set of all solutions of a homogeneous linear equation forms a
vector space.
The set of all solutions of an inhomogeneous linear equation forms
an affine space.

• Linear equations can be solved by transforming the augmented co-
efficient matrix into row (reduced) echelon form.

• This transformation is performed by (invertible) elementary row
operations.

• Bases of image and kernel of a matrix A as well as its rank can
be computed by transforming the matrix into row reduced echelon
form.
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— Exercises

7.1 Compute image, kernel and rank of

A=
1 2 3

4 5 6
7 8 9

 .

— Problems

7.2 Verify that a system of linear equations can indeed written in ma-
trix form. Moreover show that each equation Ax = b represents a
system of linear equations.

7.3 Prove Lemma 7.3 and Theorem 7.4.

7.4
Let A=

a′
1
...

a′
m

 be an m×n matrix.

(1) Define matrix Ti↔ j that switches rows a′
i and a′

j.

(2) Define matrix Ti(α) that multiplies row a′
i by α.

(3) Define matrix Ti← j(α) that adds row a′
j multiplied by α to

row a′
i.

For each of these matrices argue why these are invertible and state
their respective inverse matrices.
HINT: Use the results from Exercise 4.14 to construct these matrices.

7.5 Prove Lemma 7.8.

7.6 Prove Theorem 7.9. Use a so called constructive proof. In this case
this means to provide an algorithm that transforms every input
matrix A into row reduce echelon form by means of elementary
row operations. Describe such an algorithm (in words or pseudo-
code).



8
Euclidean Space

We need a ruler and a protractor.

8.1 Inner Product, Norm, and Metric

Inner product. Let x,y ∈Rn. Then Definition 8.1

x′y=
n∑

i=1
xi yi

is called the inner product (dot product, scalar product) of x and y.

Fundamental properties of inner products. Let x,y,z ∈Rn and α,β ∈ Theorem 8.2
R. Then the following holds:

(1) x′y= y′x (Symmetry)

(2) x′x≥ 0 where equality holds if and only if x= 0
(Positive-definiteness)

(3) (αx+βy)′z=αx′z+βy′z (Linearity)

PROOF. See Problem 8.1.

In our notation the inner product of two vectors x and y is just the
usual matrix multiplication of the row vector x′ with the column vector
y. However, the formal transposition of the first vector x is often omitted
in the notation of the inner product. Thus one simply writes x ·y. Hence
the name dot product. This is reflected in many computer algebra sys-
tems like Maxima where the symbol for matrix multiplication is used to
multiply two (column) vectors.

Inner product space. The notion of an inner product can be general- Definition 8.3
ized. Let V be some vector space. Then any function

〈·, ·〉 : V ×V →R

that satisfies the properties
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(i) 〈x,y〉 = 〈y,x〉,
(ii) 〈x,x〉 ≥ 0 where equality holds if and only if x= 0,

(iii) 〈αx+βy〉z=α〈x,z〉+β〈y,z〉,

is called an inner product. A vector space that is equipped with such an
inner product is called an inner product space. In pure mathematics
the symbol 〈x,y〉 is often used to denote the (abstract) inner product of
two vectors x,y ∈ V .

Let L be the vector space of all random variables X on some given prob-Example 8.4
ability space with finite variance V(X ). Then map

〈·, ·〉 : L ×L →R, (X ,Y ) 7→ 〈X ,Y 〉 = E(XY )

is an inner product in L . ♦

Euclidean norm. Let x ∈Rn. ThenDefinition 8.5

‖x‖ =
p

x′x=
√

n∑
i=1

x2
i

is called the Euclidean norm (or norm for short) of x.

Cauchy-Schwarz inequality. Let x,y ∈Rn. ThenTheorem 8.6

|x′y| ≤ ‖x‖ ·‖y‖

Equality holds if and only if x and y are linearly dependent.

PROOF. The inequality trivially holds if x = 0 or y = 0. Assume that
y 6= 0. Then we find for any λ ∈R,

0≤ (x−λy)′(x−λy)= x′x−λx′y−λy′x+λ2y′y= x′x−2λx′y+λ2y′y.

Using the special value λ= x′y
y′y we obtain

0≤ x′x−2
x′y
y′y

x′y+ (x′y)2

(y′y)2 y′y= x′x− (x′y)2

y′y
.

Hence

(x′y)2 ≤ (x′x) (y′y)= ‖x‖2 ‖y‖2.

or equivalently

|x′y| ≤ ‖x‖‖y‖

as claimed. The proof for the last statement is left as an exercise, see
Problem 8.2.
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Minkowski inequality. Let x,y ∈Rn. Then Theorem 8.7

‖x+y‖ ≤ ‖x‖+‖y‖ .

PROOF. See Problem 8.3.

Fundamental properties of norms. Let x,y ∈Rn and α ∈R. Then Theorem 8.8

(1) ‖x‖ ≥ 0 where equality holds if and only if x= 0
(Positive-definiteness)

(2) ‖αx‖ = |α|‖x‖ (Positive scalability)

(3) ‖x+y‖ ≤ ‖x‖+‖y‖ (Triangle inequality or subadditivity)

PROOF. See Problem 8.5.

A vector x ∈Rn is called normalized if ‖x‖ = 1. Definition 8.9

Normed vector space. The notion of a norm can be generalized. Let Definition 8.10
V be some vector space. Then any function

‖ ·‖ : V →R

that satisfies properties

(i) ‖x‖ ≥ 0 where equality holds if and only if x= 0

(ii) ‖αx‖ = |α|‖x‖
(iii) ‖x+y‖ ≤ ‖x‖+‖y‖
is called a norm. A vector space that is equipped with such a norm is
called a normed vector space.

The Euclidean norm of a vector x in Definition 8.5 is often denoted
by ‖x‖2 and called the 2-norm of x (because the coefficients of x are
squared).

Other examples of norms of vectors x ∈Rn are the so called 1-norm Example 8.11

‖x‖1 =
n∑

i=1
|xi|

the p-norm

‖x‖p =
(

n∑
i=1

|xi|p
) 1

p

for p ≤ 1<∞,

and the supremum norm

‖x‖∞ = max
i=1,...,n

|xi| . ♦
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Let L be the vector space of all random variables X on some given prob-Example 8.12
ability space with finite variance V(X ). Then map

‖ ·‖2 : L → [0,∞), X 7→ ‖X‖2 =
√
E(X2)=

√
〈X , X 〉

is a norm in L . ♦
In Definition 8.5 we used the inner product (Definition 8.1) to define

the Euclidean norm. In fact we only needed the properties of the inner
product to derive the properties of the Euclidean norm in Theorem 8.8
and the Cauchy-Schwarz inequality (Theorem 8.6). That is, every inner
product induces a norm. However, there are also other norms that are
not induced by inner products, e.g., the p-norms ‖x‖p for p 6= 2.

Euclidean metric. Let x,y ∈ Rn, then d2(x,y) = ‖x−y‖2 defines theDefinition 8.13
Euclidean distance between x and y.

Fundamental properties of metrics. Let x,y,z ∈Rn. ThenTheorem 8.14

(1) d2(x,y)= d2(y,x) (Symmetry)

(2) d2(x,y)≥ 0 where equality holds if and only if x= y
(Positive-definiteness)

(3) d2(x,z)≤ d2(x,y)+d2(y,z) (Triangle inequality)

PROOF. See Problem 8.8.

Metric space. The notion of a metric can be generalized. Let V be someDefinition 8.15
vector space. Then any function

d(·, ·) : V ×V →R

that satisfies properties

(i) d(x,y)= d(y,x)

(ii) d(x,y)≥ 0 where equality holds if and only if x= y

(iii) d(x,z)≤ d(x,y)+d(y,z)

is called a metric. A vector space that is equipped with a metric is called
a metric vector space.

Definition 8.13 (and the proof of Theorem 8.14) shows us that any
norm induces a metric. However, there also exist metrics that are not
induced by some norm.

Let L be the vector space of all random variables X on some given prob-Example 8.16
ability space with finite variance V(X ). Then the following maps are
metrics in L :

d2 : L ×L → [0,∞), (X ,Y ) 7→ ‖X −Y ‖ =
√
E((X −Y )2)

dE : L ×L → [0,∞), (X ,Y ) 7→ dE(X ,Y )= E(|X −Y |)
dF : L ×L → [0,∞), (X ,Y ) 7→ dF (X ,Y )=max

∣∣FX (z)−FY (z)
∣∣

where FX denotes the cumulative distribution function of X . ♦
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8.2 Orthogonality

Two vectors x and y are perpendicular if and only if the triangle shown
below is isosceles, i.e., ‖x+y‖ = ‖x−y‖ .

x

−y y

x+yx−y

The difference between the two sides of this triangle can be computed by
means of an inner product (see Problem 8.9) as

‖x+y‖2 −‖x−y‖2 = 4x′y .

Two vectors x,y ∈Rn are called orthogonal to each other if x′y= 0. Definition 8.17

Pythagorean theorem. Let x,y ∈Rn be two vectors that are orthogonal Theorem 8.18
to each other. Then

‖x+y‖2 = ‖x‖2 +‖y‖2 .

PROOF. See Problem 8.10.

Let v1, . . . ,vk be non-zero vectors. If these vectors are pairwise orthogo- Lemma 8.19
nal to each other, then they are linearly independent.

PROOF. Suppose v1, . . . ,vk are linearly dependent. Then w.l.o.g. there
exist α2, . . . ,αk such that v1 = ∑k

i=2αivi. Then v′
1v1 = v′

1
(∑k

i=2αivi
) =∑k

i=2αiv′
1vi = 0, i.e., v1 = 0 by Theorem 8.2, a contradiction to our as-

sumption that all vectors are non-zero.

Orthonormal system. A set {v1, . . . ,vn}⊂Rn is called an orthonormal Definition 8.20
system if the following holds:

(i) the vectors are mutually orthogonal,

(ii) the vectors are normalized.

Orthonormal basis. A basis {v1, . . . ,vn}⊂Rn is called an orthonormal Definition 8.21
basis if it forms an orthonormal system.
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Notice that we find for the elements of an orthonormal basis B =
{v1, . . . ,vn}:

v′
iv j = δi j =

{
1, if i = j,
0, if i 6= j.

Let B = {v1, . . . ,vn} be an orthonormal basis of Rn. Then the coefficientTheorem 8.22
vector c(x) of some vector x ∈Rn with respect to B is given by

c j(x)= v′
jx .

PROOF. See Problem 8.11.

Orthogonal matrix. A square matrix U is called an orthogonal ma-Definition 8.23
trix if its columns form an orthonormal system.

Let U be an n×n matrix. Then the following are equivalent:Theorem 8.24

(1) U is an orthogonal matrix.

(2) U′ is an orthogonal matrix.

(3) U′U= I, i.e., U−1 =U′.

(4) The linear map defined by U is an isometry, i.e., ‖Ux‖ = ‖x‖ for all
x ∈Rn.

PROOF. Let U= (u1, . . . ,un).

(1)⇒(3) [U′U]i j =u′
iu j = δi j = [I]i j, i.e., U′U= I. By Theorem 6.16, U′U=

UU′ = I and thus U−1 =U′.

(3)⇒(4) ‖Ux‖2 = (Ux)′(Ux)= x′U′Ux= x′x= ‖x‖2.

(4)⇒(1) Let x,y ∈Rn. Then by (4), ‖U(x−y)‖ = ‖x−y‖, or equivalently

x′U′Ux−x′U′Uy−y′U′Ux+y′U′Uy= x′x−x′y−y′x+y′y.

If we again apply (4) we can cancel out some terms on both side of this
equation and obtain

−x′U′Uy−y′U′Ux=−x′y−y′x.

Notice that x′y = x′y by Theorem 8.2. Similarly, x′U′Uy = (
x′U′Uy

)′ =
y′U′Ux, where the first equality holds as these are 1×1 matrices. The
second equality follows from the properties of matrix multiplication (The-
orem 4.15). Thus

x′U′Uy= x′y= x′Iy for all x,y ∈Rn.

Recall that e′
iU

′ = u′
i and Ue j = u j. Thus if we set x = ei and y = e j we

obtain

u′
iu j = e′

iU
′Ue j = e′

ie j = δi j
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that is, the columns of U for an orthonormal system.

(2)⇒(3) Can be shown analogously to (1)⇒(3).

(3)⇒(2) Let v1, . . . ,vn denote the rows of U. Then

v′
iv j = [UU′]i j = [I]i j = δi j

i.e., the rows of U form an orthonormal system.

This completes the proof.

— Summary

• An inner product is a bilinear symmetric positive definite function
V ×V → R. It can be seen as a measure for the angle between two
vectors.

• Two vectors x and y are orthogonal (perpendicular, normal) to each
other, if their inner product is 0.

• A norm is a positive definite, positive scalable function V → [0,∞)
that satisfies the triangle inequality ‖x+y‖ ≤ ‖x‖+‖y‖. It can be
seen as the length of a vector.

• Every inner product induces a norm: ‖x‖ =p
x′x.

Then the Cauchy-Schwarz inequality |x′y| ≤ ‖x‖ · ‖y‖ holds for all
x,y ∈ V .

If in addition x,y ∈ V are orthogonal, then the Pythagorean theo-
rem ‖x+y‖2 = ‖x‖2 +‖y‖2 holds.

• A metric is a bilinear symmetric positive definite function V ×V →
[0,∞) that satisfies the triangle inequality. It measures the dis-
tance between two vectors.

• Every norm induces a metric.

• A metric that is induced by an inner product is called an Euclidean
metric.

• Set of vectors that are mutually orthogonal and have norm 1 is
called an orthonormal system.

• An orthogonal matrix is whose columns form an orthonormal sys-
tem. Orthogonal maps preserve angles and norms.
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— Problems

8.1 Prove Theorem 8.2.

8.2 Complete the proof of Theorem 8.6. That is, show that equality
holds if and only if x and y are linearly dependent.

8.3 (a) The Minkowski inequality is also called triangle inequal-
ity. Draw a picture that illustrates this inequality.

(b) Prove Theorem 8.7.

(c) Give conditions where equality holds for the Minkowski in-
equality.

HINT: Compute ‖x+y‖2 and apply the Cauchy-Schwarz inequality.

8.4 Show that for any x,y ∈Rn∣∣∣‖x‖−‖y‖
∣∣∣≤ ‖x−y‖ .

HINT: Use the simple observation that x= (x−y)+y and y= (y−x)+y and apply
the Minkowski inequality.

8.5 Prove Theorem 8.8. Draw a picture that illustrates property (iii).
HINT: Use Theorems 8.2 and 8.7.

8.6 Let x ∈ Rn be a non-zero vector. Show that
x
‖x‖ is a normalized

vector. Is the condition x 6= 0 necessary? Why? Why not?

8.7 (a) Show that ‖x‖1 and ‖x‖∞ satisfy the properties of a norm.

(b) Draw the unit balls in R2, i.e., the sets {x ∈ R2 : ‖x‖ ≤ 1} with
respect to the norms ‖x‖1, ‖x‖2, and ‖x‖∞.

(c) Use a computer algebra system of your choice (e.g., Maxima)
and draw unit balls with respect to the p-norm for various
values of p. What do you observe?

8.8 Prove Theorem 8.14. Draw a picture that illustrates property (iii).
HINT: Use Theorem 8.8.

8.9 Show that ‖x+y‖2 −‖x−y‖2 = 4x′y.
HINT: Use ‖x‖2 = x′x.

8.10 Prove Theorem 8.18.
HINT: Use ‖x‖2 = x′x.

8.11 Prove Theorem 8.22.
HINT: Represent x by means of c(x) and compute x′v j .

8.12 Let U=
(
a b
c d

)
. Give conditions for the elements a,b, c,d that im-

ply that U is an orthogonal matrix. Give an example for such an
orthogonal matrix.
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Projections

To them, I said, the truth would be literally nothing but the shadows of
the images.

Suppose we are given a subspace U ⊂Rn and a vector y ∈Rn. We want to
find a vector u ∈U such that the “error” r= y−u is as small as possible.
This procedure is of great importance when we want to reduce the num-
ber of dimensions in our model without loosing too much information.

9.1 Orthogonal Projection

We first look at the simplest case U = span(x) where x ∈Rn is some fixed
normalized vector, i.e., ‖x‖ = 1. Then every u ∈ U can be written as λx
for some λ ∈R.

Let y,x ∈Rn be fixed with ‖x‖ = 1. Let r ∈Rn and λ ∈R such that Lemma 9.1

y=λx+r .

Then for λ=λ∗ and r= r∗ the following statements are equivalent:

(1) ‖r∗‖ is minimal among all values for λ and r.

(2) x′r∗ = 0.

(3) λ∗ = x′y.

PROOF. (2) ⇔ (3): Follows by a simple computation (see Problem 9.1). An
immediate consequence is that there always exist r∗ and λ∗ such that
r∗ = y−λ∗x and x′r∗ = 0.
(2) ⇒ (1): Assume that x′r∗ = 0 and λ∗ such that r∗ = y−λ∗x. Set r(ε)=
y−(λ∗+ε)x= (y−λ∗x)−εx= r∗−εx for ε ∈R. As r∗ and x are orthogonal
by our assumption the Pythagorean theorem implies ‖r(ε)‖2 = ‖r∗‖2 +
ε2‖x‖2 = ‖r∗‖2 +ε2. Thus ‖r(ε)‖ ≥ ‖r∗‖ where equality holds if and only
if ε= 0. Thus r∗ minimizes ‖r‖.

71
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(1) ⇒ (2): Assume that r∗ minimizes ‖r‖ and λ∗ such that r∗ = y−λ∗x.
Set r(ε) = y− (λ∗+ ε)x = r∗− εx for ε ∈ R. Our assumption implies that
‖r∗‖2 ≤ ‖r∗ − εx‖2 = ‖r∗‖2 − 2εx′r+ ε2‖x‖2 for all ε ∈ R. Thus 2εx′r ≤
ε2‖x‖2 = ε2. Since ε may have positive and negative sign we find − ε

2 ≤
x′r≤ ε

2 for all ε≥ 0 and hence x′r= 0, as claimed.

Orthogonal projection. Let x,y ∈Rn be two vectors with ‖x‖ = 1. ThenDefinition 9.2

px(y)= (x′y)x

is called the orthogonal projection of y onto the linear span of x.

x

y

px(y)

Orthogonal decomposition. Let x ∈ Rn with ‖x‖ = 1. Then everyTheorem 9.3
y ∈Rn can be uniquely decomposed as

y=u+v

where u ∈ span(x) and v is orthogonal to u, that is u′v = 0. Such a
representation is called an orthogonal decomposition of y. Moreover,
u is given by

u=px(y) .

PROOF. Let u = λx ∈ span(x) with λ = x′y and v = y−u. Obviously,
u+v = y. By Lemma 9.1, u′v = 0 and u = px(y). Moreover, no other
value of λ has this property.

Now let x,y ∈ Rn with ‖x‖ = ‖y‖ = 1 and let λ = x′y. Then |λ| =
‖px(y)‖ and λ is positive if x and px(y) have the same orientation and
negative if x and px(y) have opposite orientation. Thus by a geometric
argument, λ is just the cosine of the angle between these vectors, i.e.,
cos^(x,y) = x′y. If x and y are arbitrary non-zero vectors these have to
be normalized. We then find

cos^(x,y)= x′y
‖x‖‖y‖ .

x
‖x‖

y
‖y‖

cos^(x,y)
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Projection matrix. Let x ∈Rn be fixed with ‖x‖ = 1. Then y 7→px(y) is a Theorem 9.4
linear map and px(y)=Pxy where Px = xx′.

PROOF. Let y1,y2 ∈Rn and α1,α2 ∈R. Then

px(α1y1 +α2y2)= (
x′(α1y1 +α2y2)

)
x= (

α1x′y1 +α2x′y2
)
x

=α1(x′y1)x+α2(x′y2)x=α1px(y1)+α2px(y2)

and thus px is a linear map and there exists a matrix Px such that
px(y)=Pxy by Theorem 6.15.
Notice that αx = xα for α ∈ R = R1. Thus Pxy = (x′y)x = x(x′y) = (xx′)y
for all y ∈Rn and the result follows.

If we project some vector y ∈ span(x) onto span(x) then y remains un-
changed, i.e., Px(y) = y. Thus the projection matrix Px has the property
that P2

xz=Px (Pxz)=Pxz for every z ∈Rn (see Problem 9.3).

A square matrix A is called idempotent if A2 =A. Definition 9.5

9.2 Gram-Schmidt Orthonormalization

Theorem 8.22 shows that we can easily compute the coefficient vector
c(x) of a vector x by means of projections when the given basis {v1, . . . ,vn}
forms an orthonormal system:

x=
n∑

i=1
ci(x)vi =

n∑
i=1

(v′
ix)vi =

n∑
i=1

pvi (x) .

Hence orthonormal bases are quite convenient. Theorem 9.3 allows us
to transform any two linearly independent vectors x,y ∈ Rn into two or-
thogonal vectors u,v ∈ Rn which then can be normalized. This idea can
be generalized to any number of linear independent vectors by means of
a recursion, called Gram-Schmidt process.

Gram-Schmidt orthonormalization. Let {u1, . . . ,un} be a basis of some Theorem 9.6
subspace U . Define vk recursively for k = 1, . . . ,n by

w1 =u1, v1 = w1

‖w1‖
w2 =u2 −pv1(u2), v2 = w2

‖w2‖
w3 =u3 −pv1(u3)−pv2(u3), v3 = w3

‖w3‖
...

...

wn =un −
n−1∑
j=1

pv j (un), vn = wn

‖wn‖

where pv j is the orthogonal projection from Definition 9.2, that is, pv j (uk)=
(v′

juk)v j. Then set {v1, . . . ,vn} forms an orthonormal basis for U .
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PROOF. We proceed by induction on k and show that {v1, . . . ,vk} form an
orthonormal basis for span(u1, . . . ,uk) for all k = 1, . . . ,n.
For k = 1 the statement is obvious as span(v1) = span(u1) and ‖v1‖ = 1.
Now suppose the result holds for k ≥ 1. By the induction hypothesis,
{v1, . . . ,vk} forms an orthonormal basis for span(u1, . . . ,uk). In particular
we have v′

jvi = δ ji. Let

wk+1 =uk+1 −
k∑

j=1
pv j (uk+1)=uk+1 −

k∑
j=1

(v′
juk+1)v j .

First we show that wk+1 and vi are orthogonal for all i = 1, . . . ,k. By
construction we have

w′
k+1vi =

(
uk+1 −

k∑
j=1

(v′
juk+1)v j

)′
vi

=u′
k+1vi −

k∑
j=1

(v′
juk+1)v′

jvi

=u′
k+1vi −

k∑
j=1

(v′
juk+1)δ ji

=u′
k+1vi −v′

iuk+1

= 0.

Now wk+1 cannot be 0 since otherwise uk+1 −
∑k

j=1 pv j (uk+1) = 0 and
consequently uk+1 ∈ span(v1, . . . ,vk) = span(u1, . . . ,uk), a contradiction
to our assumption that {u1, . . . ,uk,uk+1} is a subset of a basis of U .
Thus we may take vk+1 = wk+1

‖wk+1‖
. Then by Lemma 8.19 the vectors

{v1, . . . ,vk+1} are linearly independent and consequently form a basis for
span(u1, . . . ,uk+1) by Theorem 5.21. Thus the result holds for k+1, and
by the principle of induction, for all k = 1, . . . ,n and in particular for
k = n.

9.3 Orthogonal Complement

We want to generalize Theorem 9.3 and Lemma 9.1. Thus we need the
concepts of the direct sum of two vector spaces and of the orthogonal
complement.

Direct sum. Let U ,V ⊆Rn be two subspaces with U ∩V = {0}. ThenDefinition 9.7

U ⊕V = {u+v : u ∈U , v ∈ V }

is called the direct sum of U and V .

Let U ,V ⊆ Rn be two subspaces with U ∩ V = {0} and dim(U ) = k ≥ 1Lemma 9.8
and dim(V ) = l ≥ 1. Let {u1, . . . ,uk} and {v1, . . . ,vl} be bases of U and V ,
respectively. Then {u1, . . . ,uk}∪ {v1, . . . ,vl} is a basis of U ⊕V .
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PROOF. Obviously {u1, . . . ,uk}∪ {v1, . . . ,vl} is a generating set of U ⊕V .
We have to show that this set is linearly independent. Suppose it is lin-
early dependent. Then we find α1, . . . ,αk ∈R not all zero and β1, . . . ,βl ∈R
not all zero such that

∑k
i=1αiui +∑l

i=1βivi = 0. Then u = ∑k
i=1αiui 6= 0

and v = −∑l
i=1βivi 6= 0 where u ∈ U and v ∈ V and u−v = 0. But then

u= v, a contradiction to the assumption that U ∩V = {0}.

Decomposition of a vector. Let U ,V ⊆Rn be two subspaces with U ∩ Lemma 9.9
V = {0} and U ⊕V = Rn. Then every x ∈ Rn can be uniquely decomposed
into

x=u+v

where u ∈U and v ∈ V .

PROOF. See Problem 9.6.

Orthogonal complement. Let U be a subspace of Rn. Then the or- Definition 9.10
thogonal complement of U in Rn is the set of vectors v that are or-
thogonal to all vectors in Rn, that is,

U⊥ = {v ∈Rn : u′v= 0 for all u ∈U } .

Let U be a subspace of Rn. Then the orthogonal complement U⊥ is also Lemma 9.11
a subspace of Rn. Furthermore, U ∩U⊥ = {0}.

PROOF. See Problem 9.7.

Let U be a subspace of Rn. Then Lemma 9.12

Rn =U ⊕U⊥ .

PROOF. See Problem 9.8.

Orthogonal decomposition. Let U be a subspace of Rn. Then every Theorem 9.13
y ∈Rn can be uniquely decomposed into

y=u+u⊥

where u ∈U and u⊥ ∈U⊥. u is called the orthogonal projection of y
into U . We denote this projection by pU (y).

PROOF. See Problem 9.9.

It remains derive a formula for computing this orthogonal projection.
Thus we derive a generalization of and Lemma 9.1.
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Projection into subspace. Let U be a subspace of Rn with generatingTheorem 9.14
set {u1, . . . ,uk} and U = (u1, . . . ,uk). For a fixed vector y ∈ Rn let r ∈ Rn

and λ ∈Rk such that

y=Uλ+r .

Then for λ=λ∗ and r= r∗ the following statements are equivalent:

(1) ‖r∗‖ is minimal among all possible values for λ and r.

(2) U′r∗ = 0, that is, r∗ ∈U⊥.

(3) U′Uλ∗ =U′y.

Notice that u∗ =Uλ∗ ∈U .

PROOF. Equivalence of (2) and (3) follows by a straightforward compu-
tation (see Problem 9.10).
Now by Theorem 9.13, y = u∗ + r∗ where u∗ = Uλ∗ ∈ U and r∗ ∈ U⊥.
Then for every ε ∈ Rk define r(ε) = y−U(λ∗+ε) = r∗−Uε. As Uε ∈ U ,
r(ε) ∈ U⊥ if and only if Uε = 0, i.e., ε ∈ ker(U). Now the Pythagorean
Theorem implies ‖r(ε)‖2 = ‖r∗‖2 +‖Uε‖2 ≥ ‖r∗‖2 where equality holds if
and only if ε ∈ ker(U). Thus equivalence of (1) and (2) follows.

Equation (3) in Theorem 9.14 can be transformed simplified when
{u1, . . . ,uk} is linearly independent, i.e., when it forms a basis for U .
Then the n× k matrix U = (u1, . . . ,uk) has rank k. Then by Lemma 6.25
the k×k matrix U′U also has rank k is thus invertible.

Let U be a subspace of Rn with basis {u1, . . . ,uk} and U = (u1, . . . ,uk).Theorem 9.15
Then the orthogonal projection y ∈Rn onto U is given by

pU (y)=U(U′U)−1U′y .

If in addition {u1, . . . ,uk} forms an orthonormal system we find

pU (y)=UU′y .

PROOF. See Problem 9.12.

9.4 Approximate Solutions of Linear Equations

Let A be an n×k matrix and b ∈Rn. Suppose there is no x ∈Rk such that

Ax=b

that is, the linear equation Ax = b does not have a solution. Neverthe-
less, we may want to find an approximate solution x0 ∈Rk that minimizes
the error r=b−Ax among all x ∈Rk.
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By Theorem 9.14 this task can be solved by means of orthogonal pro-
jections pA(b) onto the linear span A of the column vectors of A, i.e., we
have to find x0 such that

A′Ax0 =A′b . (9.1)

Notice that by Theorem 9.13 there always exists an r such that b =
pA(b)+ r with r ∈ A ⊥ and hence an x0 exists such that pA(b) = Ax0.
Thus Equation (9.1) always has a solution by Theorem 9.14.

9.5 Applications in Statistics

Let x = (x1, . . . , xn)′ be a given set of data and let j = (1, . . . ,1)′ denote a
vector of length n of ones. Notice that ‖j‖2 = n. Then we can express the
arithmetic mean x̄ of the xi as

x̄ = 1
n

n∑
i=1

xi = 1
n

j′x

and we find

p j(x)=
(

1p
n

j′x
)(

1p
n

j
)
=

(
1
n

j′x
)
j= x̄j .

That is, the arithmetic mean x̄ is 1p
n times the length of the orthogonal

projection of x onto the constant vector. For the length of its orthogonal
complement p j(x)⊥ we then obtain

‖x− x̄j‖2 = (x− x̄j)′(x− x̄j)= ‖x‖2 − x̄j′x− x̄x′j+ x̄2j′j= ‖x‖2 −nx̄2

where the last equality follows from the fact that j′x = x′j = x̄n and j′j =
n. On the other hand recall that ‖x− x̄j‖2 =∑n

i=1(xi − x̄)2 = nσ2
x where σ2

x
denotes the variance of data xi. Consequently the standard deviation of
the data is 1p

n times the length of the orthogonal complement of x with
respect to the constant vector.

Now assume that we are also given data y= (y1, . . . , yn)′. Again y− ȳj
is the complement of the orthogonal projection of y onto the constant
vector. Then the inner product of these two orthogonal complements is

(x− x̄j)′(y− ȳj)=
n∑

i=1
(xi − x̄)(yi − ȳ)= nσxy

where σxy denotes the covariance between x and y.

Now suppose that we are given a set of data (yi, xi1, . . . , xik), i =
1, . . . ,n. We assume a linear regression model, i.e.,

yi =β0 +
k∑

s=1
βsxis +εi.



78 PROJECTIONS

These n equations can be stacked together using matrix notation as

y=Xβ+ε

where

y=

y1
...

yn

 , X=


1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
...

. . .
...

1 xn1 xn2 . . . xnk

 , β=

β0
...
βk

 , ε=

ε1
...
εn

 .

X is then called the design matrix of the linear regression model, β
are the model parameters and ε are random errors (“noise”) called
residuals.

The parameters β can be estimated by means of the least square
principle where the sum of squared errors,

n∑
i=1

ε2
i = ‖ε‖2 = ‖y−Xβ‖2

is minimized. Therefore by Theorem 9.14 the estimated parameter β̂
satisfies the normal equation

X′Xβ̂=X′y (9.2)

and hence

β̂= (X′X)−1X′y.

— Summary

• For every subspace U ⊂ Rn we find Rn = U ⊕U⊥, where U⊥ de-
notes the orthogonal complement of U .

• Every y ∈ Rn can be decomposed as y = u+u⊥ where u ∈ U and
u⊥ ∈U⊥. u is called the orthogonal projection of y into U .

• If {u1, . . . ,uk} is a basis of U and U= (u1, . . . ,uk), then Uu⊥ = 0 and
u=Uλ where λ ∈Rk satisfies U′Uλ=U′y.

• If y=u+v with u ∈U then v has minimal length for fixed y if and
only if v ∈U⊥.

• If the linear equation Ax = b does not have a solution, then the
solution of A′Ax=A′b minimizes the error ‖b−Ax‖.
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— Problems

9.1 Assume that y=λx+r where ‖x‖ = 1.
Show: x′r= 0 if and only if λ= x′y.
HINT: Use x′(y−λx)= 0.

9.2 Let r = y−λx where x,y ∈ Rn and x 6= 0. Which values of λ ∈ R
minimize ‖r‖?
HINT: Use the normalized vector x0 = x/‖x‖ and apply Lemma 9.1.

9.3 Let Px = xx′ for some x ∈Rn with ‖x‖ = 1.

(a) What is the dimension of Px?
(b) What is the rank of Px?
(c) Show that Px is symmetric.
(d) Show that Px is idempotent.
(e) Describe the rows and columns of Px.

9.4 Show that the direct sum U ⊕ V of two subspaces U ,V ⊆ Rn is a
subspace of Rn.

9.5 Prove or disprove: Let U ,V ⊆Rn be two subspaces with U ∩V = {0}
and U ⊕V =Rn. Let u ∈U and v ∈ V . Then u′v= 0.

9.6 Prove Lemma 9.9.
HINT: Use Lemma 9.8.

9.7 Prove Lemma 9.11.

9.8 Prove Lemma 9.12.
HINT: The union of respective orthonormal bases of U and U⊥ is an orthonormal
basis for U ⊕U⊥. (Why?) Now suppose that U ⊕U⊥ is a proper subset of Rn and
derive a contradiction by means of Theorem 5.18 and Theorem 9.6.

9.9 Prove Theorem 9.13.

9.10 Assume that y=Uλ+r.
Show: U′r= 0 if and only if U′Uλ=U′y.

9.11 Let U be a subspace of Rn with generating set {u1, . . . ,uk} and U=
(u1, . . . ,uk). Show:

(a) u ∈U if and only if there exists an λ ∈Rk such that u=Uλ.
(b) v ∈U⊥ if and only if U′v= 0.
(c) The projection y 7→pU (y) is a linear map onto U .
(d) If rank(U) = k, then the Projection matrix is given by PU =

U(U′U)−1U′.

In addition:
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(e) Could we simplify PU in the following way?
PU =U(U′U)−1U′ =UU−1 ·U′−1U′ = I ·I= I.

(f) Let PU be the matrix for projection y 7→ pU (y). Compute the
projection matrix PU⊥ for the projection onto U⊥.

9.12 Prove Theorem 9.15.

9.13 Let p be a projection into some subspace U ⊆ Rn. Let x1, . . . ,xk ∈
Rn.
Show: If p(x1), . . . ,p(xk) are linearly independent, then the vectors
x1, . . . ,xk are linearly independent.
Show that the converse is false.

9.14 (a) Give necessary and sufficient conditions such that the “nor-
mal equation” (9.2) has a uniquely determined solution.

(b) What happens when this condition is violated? (There is no
solution at all? The solution exists but is not uniquely deter-
mined? How can we find solutions in the latter case? What is
the statistical interpretation in all these cases?) Demonstrate
your considerations by (simple) examples.

(c) Show that for each solution of Equation (9.2) the arithmetic
mean of the error is zero, that is, ε̄ = 0. Give a statistical
interpretation of this result.

(d) Let xi = (xi1, . . . , xin)′ be the i-th column of X. Show that for
each solution of Equation (9.2) x′

iε = 0. Give a statistical in-
terpretation of this result.



10
Determinant

What is the volume of a skewed box?

10.1 Linear Independence and Volume

We want to “measure” whether two vectors in R2 are linearly indepen-
dent or not. Thus we may look at the parallelogram that is created by
these two vectors. We may find the following cases:

The two vectors are linearly dependent if and only if the corresponding
parallelogram has area 0. The same holds for three vectors in R3 which
form a parallelepiped and generally for n vectors in Rn.

Idea: Use the n-dimensional volume to check whether n vectors in
Rn are linearly independent.

Thus we need to compute this volume. Therefore we first look at
the properties of the area of a parallelogram and the volume of a par-
allelepiped, respectively, and use these properties to define a “volume
function”.

(1) If we multiply one of the vectors by a number α ∈ R, then we obtain
a parallelepiped (parallelogram) with the α-fold volume.

(2) If we add a multiple of one vector to one of the other vectors, then
the volume remains unchanged.

(3) If two vectors are equal, then the volume is 0.

(4) The volume of the unit-cube has volume 1.

81
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10.2 Determinant

Motivated by the above considerations we define the determinant as a
normed alternating multilinear form.

Determinant. The determinant is a function det: Rn×n → R that as-Definition 10.1
signs a real number to an n× n matrix A = (a1, . . . ,an) with following
properties:

(D1) The determinant is multilinear, i.e., it is linear in each column:

det(a1, . . . ,ai−1,αai +βbi,ai+1, . . . ,an)

=αdet(a1, . . . ,ai−1,ai,ai+1, . . . ,an)

+βdet(a1, . . . ,ai−1,bi,ai+1, . . . ,an) .

(D2) The determinant is alternating, i.e.,

det(a1, . . . ,ai−1,ai,ai+1, . . . ,ak−1,bk,ak+1, . . . ,an)

=−det(a1, . . . ,ai−1,bk,ai+1, . . . ,ak−1,ai,ak+1, . . . ,an) .

(D3) The determinant is normalized, i.e.,

det(I)= 1 .

We denote the determinant of A by det(A) or |A|.Do not mix up with the abso-
lute value of a number.

This definition sounds like a “wish list”. We define the function by its
properties. However, such an approach is quite common in mathematics.
But of course we have to answer the following questions:

• Does such a function exist?

• Is this function uniquely defined?

• How can we evaluate the determinant of a particular matrix A?

We proceed by deriving an explicit formula for the determinant that an-
swers these questions. We begin with a few more properties of the deter-
minant (provided that such a function exists). Their proofs are straight-
forward and left as an exercise (see Problems 10.10, 10.11, and 10.12).

The determinant is zero if two columns are equal, i.e.,Lemma 10.2

det(. . . ,a, . . . ,a, . . .)= 0 .

The determinant is zero, det(A) = 0, if the columns of A are linearlyLemma 10.3
dependent.

The determinant remains unchanged if we add a multiple of one columnLemma 10.4
the one of the other columns:

det(. . . ,ai +αak, . . . ,ak, . . .)= det(. . . ,ai, . . . ,ak, . . .) .
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Now let {v1, . . . ,vn} be a basis of Rn. Then we can represent each
column of n×n matrix A= (a1, . . . ,an) as

a j =
n∑

i=1
ci jvi , for j = 1, . . . ,n,

where ci j ∈R. We then find

det(a1,a2, . . . ,an)= det

(
n∑

i1=1
ci11vi1 ,

n∑
i2=1

ci22vi2 , . . . ,
n∑

in=1
cinnvin

)

=
n∑

i1=1
ci11 det

(
vi1 ,

n∑
i2=1

ci22vi2 , . . . ,
n∑

in=1
cinnvin

)

=
n∑

i1=1

n∑
i2=1

ci11ci22 det

(
vi1 ,vi2 , . . . ,

n∑
in=1

cinnvin

)
...

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

in=1
ci11ci22 . . . cinn det

(
vi1 , . . . ,vin

)
There are nn terms in this sum. However, Lemma 10.2 implies that
det

(
vi1 ,vi2 , . . . ,vin

) = 0 when at least two columns coincide. Thus only
those determinants remain which contain all basis vectors {v1, . . . ,vn} (in
different orders), i.e., those tuples (i i, i2, . . . , in) which are a permutation
of the numbers (1,2, . . . ,n).

We can define a permutation σ as a bijection from the set {1,2, . . . ,n}
onto itself. We denote the set of these permutations by Sn. It has the
following properties which we state without a formal proof.

• The compound of two permutations σ,τ ∈Sn is again a permuta-
tion, στ ∈Sn.

• There is a neutral (or identity) permutation that does not change
the ordering of (1,2, . . . ,n).

• Each permutation σ ∈Sn has a unique inverse permutation σ−1 ∈
Sn.

We then say that Sn forms a group.
Using this concept we can remove the vanishing terms from the

above expression for the determinant. As only determinants remain
where the columns are permutations of the columns of A we can write

det(a1, . . . ,an)=
∑

σ∈Sn

det
(
vσ(1), . . . ,vσ(n)

) n∏
i=1

cσ(i),i .

The simplest permutation is a transposition that just flips two ele-
ments.

• Every permutation can be composed of a sequence of transposi-
tions, i.e., for every σ ∈S there exist τ1, . . . ,τk ∈S such that σ =
τk · · ·τ1.
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Notice that a transposition of the columns of a determinant changes its
sign by property (D2). An immediate consequence is that the determi-
nants det

(
vσ(1),vσ(2), . . . ,vσ(n)

)
only differ in their signs. Moreover, the

sign is given by the number of transitions into which a permutation σ is
decomposed. So we have

det
(
vσ(1), . . . ,vσ(n)

)= sgn(σ)det(v1, . . . ,vn)

where sgn(σ) = +1 if the number of transpositions into which σ can be
decomposed is even, and where sgn(σ) = −1 if the number of transpo-
sitions is odd. We remark (without proof) that sgn(σ) is well-defined
although this sequence of transpositions is not unique.

We summarize our considerations in the following proposition.

Let {v1, . . . ,vn} be a basis of Rn and A = (a1, . . . ,an) an n×n matrix. LetLemma 10.5
ci j ∈R such that a j =∑n

i=1 ci jvi for j = 1, . . . ,n. Then

det(a1, . . . ,an)= det(v1, . . . ,vn)
∑

σ∈Sn

sgn(σ)
n∏

i=1
cσ(i),i .

This lemma allows us that we can compute det(A) provided that the
determinant of a regular matrix is known. This equation in particular
holds if we use the canonical basis {e1, . . . ,en}. We then have ci j = ai j
and

det(v1, . . . ,vn)= det(e1, . . . ,en)= det(I)= 1

where the last equality is just property (D3).

Leibniz formula for determinant. The determinant of a n×n matrix ATheorem 10.6
is given by

det(A)= det(a1, . . . ,an)=
∑

σ∈Sn

sgn(σ)
n∏

i=1
aσ(i),i . (10.1)

Existence and uniqueness. The determinant as given in Definition 10.1Corollary 10.7
exists and is uniquely defined.

Leibniz formula (10.1) is often used as definition of the determinant.
Of course we then have to derive properties (D1)–(D3) from (10.1), see
Problem 10.13.

10.3 Properties of the Determinant

Transpose. The determinant remains unchanged if a matrix is trans-Theorem 10.8
posed, i.e.,

det(A′)= det(A) .
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PROOF. Recall that [A′]i j = [A] ji and that each σ ∈ Sn has a unique
inverse permutation σ−1 ∈ Sn. Moreover, sgn(σ−1) = sgn(σ). Then by
Theorem 10.6,

det(A′)= ∑
σ∈Sn

sgn(σ)
n∏

i=1
ai,σ(i) =

∑
σ∈Sn

sgn(σ)
n∏

i=1
aσ−1(i),i

= ∑
σ∈Sn

sgn(σ−1)
n∏

i=1
aσ−1(i),i =

∑
σ∈Sn

sgn(σ)
n∏

i=1
aσ(i),i = det(A)

where the forth equality holds as {σ−1 : σ ∈Sn}=Sn.

Product. The determinant of the product of two matrices equals the Theorem 10.9
product of their determinants, i.e.,

det(A ·B)= det(A) ·det(B) .

PROOF. Let A and B be two n×n matrices. If A does not have full rank,
then rank(A) < n and Lemma 10.3 implies det(A) = 0 and thus det(A) ·
det(B) = 0. On the other hand by Theorem 6.23 rank(AB) ≤ rank(A) < n
and hence det(AB)= 0.
If A has full rank, then the columns of A form a basis of Rn and we find
for the columns of AB, [AB] j = ∑n

i=1 bi jai. Consequently, Lemma 10.5
and Theorem 10.6 immediately imply

det(AB)= det(a1, . . . ,an)
∑

σ∈Sn

sgn(σ)
n∏

i=1
bσ(i),i = det(A) ·det(B)

as claimed.

Singular matrix. Let A be an n× n matrix. Then the following are Theorem 10.10
equivalent:

(1) det(A)= 0.

(2) The columns of A are linearly dependent.

(3) A does not have full rank.

(4) A is singular.

PROOF. The equivalence of (2), (3) and (4) has already been shown in
Section 6.3. Implication (2) ⇒ (1) is stated in Lemma 10.3. For implica-
tion (1) ⇒ (4) see Problem 10.14. This finishes the proof.

An n×n matrix A is invertible if and only if det(A) 6= 0. Corollary 10.11

We can use the determinant to estimate the rank of a matrix.
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Rank of a matrix. The rank of an m×n matrix A is r if and only if thereTheorem 10.12
is an r× r subdeterminant∣∣∣∣∣∣∣

ai1 j1 . . . ai1 jr
...

. . .
...

air j1 . . . air jr

∣∣∣∣∣∣∣ 6= 0

but all (r+1)× (r+1) subdeterminants vanish.

PROOF. By Gauß elimination we can find an invertible r× r submatrix
but not an invertible (r+1)× (r+1) submatrix.

Inverse matrix. The determinant of the inverse of a regular matrix isTheorem 10.13
the reciprocal value of the determinant of the matrix, i.e.,

det(A−1)= 1
det(A)

.

PROOF. See Problem 10.15.

Finally we return to the volume of a parallelepiped which we used
as motivation for the definition of the determinant. Since we have no
formal definition of the volume yet, we state the last theorem without
proof.

Volume. Let a1, . . . ,an ∈ Rn. Then the volume of the n-dimensionalTheorem 10.14
parallelepiped created by these vectors is given by the absolute value of
the determinant,

Vol(a1, . . . ,an)= ∣∣det(a1, . . . ,an)
∣∣ .

10.4 Evaluation of the Determinant

Leibniz formula (10.1) provides an explicit expression for evaluating the
determinant of a matrix. For small matrices one may expand sum and
products and finds an easy to use scheme, known as Sarrus’ rule (see
Problems 10.17 and 10.18):∣∣∣∣a11 a12

a21 a22

∣∣∣∣= a11a22 −a21a12 .

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 +a12a23a31 +a13a21a32

−a31a22a13 −a32a23a11 −a33a21a12 .
(10.2)

For larger matrices Leibniz formula (10.1) expands to much longer
expressions. For an n×n matrix we find a sum of n! products of n factors.
However, for triangular matrices this formula reduces to the product of
the diagonal entries, see Problem 10.19.
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Triangular matrix. Let A be an n×n (upper or lower) triangular matrix. Theorem 10.15
Then

det(A)=
n∏

i=1
aii .

In Section 7.2 we have seen that we can transform a matrix A into
a row echelon form R by a series of elementary row operations (Theo-
rem 7.9), R = Tk · · ·T1A. Notice that for a square matrix we then obtain
an upper triangular matrix. By Theorems 10.9 and 10.15 we find

det(A)= (
det(Tk) · · ·det(T1)

)−1
n∏

i=1
r ii .

As det(Ti) is easy to evaluate we obtain a fast algorithm for computing
det(A), see Problems 10.20 and 10.21.

Another approach is to replace (10.1) by a recursion formula, known
as Laplace expansion.

Minor. Let A be an n× n matrix. Let Mi j denote the (n− 1)× (n− 1) Definition 10.16
matrix that we obtain by deleting the i-th row and the j-th column from
A. Then Mi j = det(Mi j) is called the (i, j) minor of A.

Laplace expansion. Let A be an n×n matrix and Mik its (i,k) minor. Theorem 10.17
Then

det(A)=
n∑

i=1
aik · (−1)i+kMik =

n∑
k=1

aik · (−1)i+kMik .

The first expression is expansion along the k-th column. The second
expression is expansion along the i-th row.

Cofactor. The term Cik = (−1)i+kMik is called the cofactor of aik. Definition 10.18

With this notation Laplace expansion can also be written as

det(A)=
n∑

i=1
aikCik =

n∑
k=1

aikCik .

PROOF. As det(A′)= det(A) we only need to prove first statement. Notice
that ak =

∑n
i=1 aikei. Therefore,

det(A)= det(a1, . . . ,ak, . . . ,an)

= det

(
a1, . . . ,

n∑
i=1

aikei, . . . ,an

)
=

n∑
i=1

aik det(a1, . . . ,ei, . . . ,an) .

It remains to show that det(a1, . . . ,ei, . . . ,an) = Cik. Observe that we can

transform matrix (a1, . . . ,ei, . . . ,an) into B=
(
1 ∗
0 Mik

)
by a series of j−1



88 DETERMINANT

transpositions of rows and k−1 transpositions of columns and thus we
find by property (D2), Theorem 10.8 and Leibniz formula

det(a1, . . . ,ei, . . . ,an)= (−1) j+k−2
∣∣∣∣1 ∗
0 Mik

∣∣∣∣= (−1) j+k−2 ∣∣B∣∣
= (−1) j+k ∑

σ∈Sn

sgn(σ)
n∏

i=1
bσ(i),i

Observe that b11 = 1 and bσ(1),i = 0 for all permutations where σ(1) = 1
and i 6= 0. Hence

(−1) j+k ∑
σ∈Sn

sgn(σ)
n∏

i=1
bσ(i),i = (−1) j+kb11

∑
σ∈Sn−1

sgn(σ)
n−1∏
i=1

bσ(i)+1,i+1

= (−1) j+k ∣∣Mik
∣∣= Cik

This finishes the proof.

10.5 Cramer’s Rule

Adjugate matrix. The matrix of cofactors for an n×n matrix A is theDefinition 10.19
matrix C whose entry in the i-th row and k-th column is the cofactor Cik.
The adjugate matrix of A is the transpose of the matrix of cofactors of
A,

adj(A)=C′ .

Let A be an n×n matrix. ThenTheorem 10.20

adj(A) ·A= det(A) I .

PROOF. A straightforward computation and Laplace expansion (Theo-
rem 10.17) yields

[adj(A) ·A]i j =
n∑

k=1
C′

ik ·ak j =
n∑

k=1
ak j ·Cki

= det(a1, . . . ,ai−1,a j,ai+1, . . . ,an)

=
{

det(A), if j = i,
0, if j 6= i,

as claimed.

Inverse matrix. Let A be a regular n×n matrix. ThenCorollary 10.21

A−1 = 1
det(A)

adj(A) .

This formula is quite convenient as it provides an explicit expres-
sion for the inverse of a matrix. However, for numerical computations it
is too expensive. Gauss-Jordan procedure, for example, is much faster.
Nevertheless, it provides a nice rule for very small matrices.
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The inverse of a regular 2×2 matrix A is given by Corollary 10.22(
a11 a12
a21 a22

)−1

= 1
|A| ·

(
a22 −a12
−a21 a11

)
.

We can use Corollary 10.21 to solve the linear equation

A ·x=b

when A is an invertible matrix. We then find

x=A−1 ·b= 1
|A| adj(A) ·b .

Therefore we find for the i-th component of the solution x,

xi = 1
|A|

n∑
k=1

C′
ik ·bk =

1
|A|

n∑
k=1

bk ·Cki

= 1
|A| det(a1, . . . ,ai−1,b,ai+1, . . . ,an) .

So we get the following explicit expression for the solution of a linear
equation.

Cramer’s rule. Let A be an invertible matrix and x a solution of the Theorem 10.23
linear equation A·x=b. Let Ai denote the matrix where the i-th column
of A is replaced by b. Then

xi = det(Ai)
det(A)

.

— Summary

• The determinant is a normed alternating multilinear form.

• The determinant is 0 if and only if it is singular.

• The determinant of the product of two matrices is the product of
the determinants of the matrices.

• The Leibniz formula gives an explicit expression for the determi-
nant.

• The Laplace expansion is a recursive formula for evaluating the
determinant.

• The determinant can efficiently computed by a method similar to
Gauß elimination.

• Cramer’s rule allows to compute the inverse of matrices and the
solutions of special linear equations.
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— Exercises

10.1 Compute the following determinants by means of Sarrus” rule or
by transforming into an upper triangular matrix:

(a)
(
1 2
2 1

)
(b)

(−2 3
1 3

)
(c)

(
4 −3
0 2

)

(d)

3 1 1
0 1 0
3 2 1

 (e)

2 1 −4
2 1 4
3 4 −4

 (f)

0 −2 1
2 2 1
4 −3 3



(g)


1 2 3 −2
0 4 5 0
0 0 6 3
0 0 0 2

 (h)


2 0 0 1
0 1 0 2
0 0 7 0
1 2 0 1

 (i)


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


10.2 Compute the determinants from Exercise 10.1 by means of Laplace

expansion.

10.3

(a) Estimate the ranks of the matrices from Exercise 10.1.

(b) Which of these matrices are regular?

(c) Which of these matrices are invertible?

(d) Are the column vectors of these matrices linear indpendent?

10.4 Let

A=
3 1 0

0 1 0
1 0 1

 , B=
3 2×1 0

0 2×1 0
1 2×0 1

 and C=
3 5×3+1 0

0 5×0+1 0
1 5×1+0 1


Compute by means of the properties of determinants:

(a) det(A) (b) det(5A) (c) det(B) (d) det(A′)

(e) det(C) (f) det(A−1) (g) det(A ·C) (h) det(I)

10.5 Let A be a 3×4 matrix. Estimate
∣∣A′ ·A∣∣ and

∣∣A ·A′∣∣.
10.6 Compute area of the parallelogram and volume of the parelelepiped,

respectively, which are created by the following vectors:

(a)
(−2

3

)
,
(
1
3

)
(b)

(−2
1

)
,
(
3
3

)

(c)

 2
1
−4

 ,

2
1
4

 ,

 3
4
−4

 (d)

2
2
3

 ,

1
1
4

 ,

−4
4
−4


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10.7 Compute the matrix of cofactors, the adjugate matrix and the in-
verse of the following matrices:

(a)
(
1 2
2 1

)
(b)

(−2 3
1 3

)
(c)

(
4 −3
0 2

)

(d)

3 1 1
0 1 0
0 2 1

 (e)

2 1 −4
2 1 4
3 4 −4

 (f)

0 −2 1
2 2 1
4 −3 3


10.8 Compute the inverse of the following matrices:

(a)
(
a b
c d

)
(b)

(
x1 y1
x2 y2

)
(c)

(
α β

α2 β2

)
10.9 Solve the linear equation

A ·x=b

by means of Cramer’s rule for b= (1,2)′ and b= (1,2,3), respetively,
and the following matrices:

(a)
(
1 2
2 1

)
(b)

(−2 3
1 3

)
(c)

(
4 −3
0 2

)

(d)

3 1 1
0 1 0
0 2 1

 (e)

2 1 −4
2 1 4
3 4 −4

 (f)

0 −2 1
2 2 1
4 −3 3



— Problems

10.10 Proof Lemma 10.2 using properties (D1)–(D3).

10.11 Proof Lemma 10.3 using properties (D1)–(D3).

10.12 Proof Lemma 10.4 using properties (D1)–(D3).

10.13 Derive properties (D1) and (D3) from Expression (10.1) in Theo-
rem 10.6.

10.14 Show that an n×n matrix A is singular if det(A)= 0.
Does Lemma 10.3 already imply this result?
HINT: Try an indirect proof and use equation I= det(AA−1).

10.15 Prove Theorem 10.13.

10.16 Show that the determinants of similar square matrices are equal.

10.17 Derive formula∣∣∣∣a11 a12
a21 a22

∣∣∣∣= a11a22 −a21a12

directly from properties (D1)–(D3) and Lemma 10.4.
HINT: Use a method similar to Gauß elimination.
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10.18 Derive Sarrus’ rule (10.2) from Leibniz formula (10.1).

10.19 Let A be an n×n upper triangular matrix. Show that

det(A)=
n∏

i=1
aii .

HINT: Use Leibniz formula (10.1) and show that there is only one permutation σ

with σ(i)≤ i for all i.

10.20 Compute the determinants of the elementary row operations from
Problem 7.4.

10.21 Modify the algorithm from Problem 7.6 such that it computes the
determinant of a square matrix.



11
Eigenspace

We want to estimate the sign of a matrix and compute its square root.

11.1 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors. Let A be an n×n matrix. Then a non- Definition 11.1
zero vector x is called an eigenvector corresponding to eigenvalue λ

if

Ax=λx , x 6= 0 . (11.1)

Observe that a scalar λ is an eigenvalue if and only if (A−λI)x = 0 has
a non-trivial solution, i.e., if (A−λI) is not invertible or, equivalently, if
and only if

det(A−λI)= 0 .

The Leibniz formula for determinants (or, equivalently, Laplace expan-
sion) implies that this determinant is a polynomial of degree n in λ.

Characteristic polynomial. The polynomial Definition 11.2

pA(t)= det(A− tI)

is called the characteristic polynomial of A. For this reason the eigen-
values of A are also called its characteristic roots and the correspond-
ing eigenvectors the characteristic vectors of A.

Notice that by the Fundamental Theorem of Algebra a polynomial of
degree n has exactly n roots (in the sense we can factorize the polynomial
into a product of n linear terms), i.e., we can write

pA(t)= (−1)n(t−λ1) · · · (t−λn)= (−1)n
n∏

i=1
(t−λi) .

93
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However, some of these roots λi may be complex numbers.
If an eigenvalue λi appears m times (m ≥ 2) as a linear factor, i.e., if

it is a multiple root of the characteristic polynomial pA(t), then we say
that λi has algebraic multiplicity m.

Spectrum. The list of all eigenvalues of a square matrix A is called theDefinition 11.3
spectrum of A. It is denoted by σ(A).

Obviously, the eigenvectors corresponding to eigenvalue λ are the
solutions of the homogeneous linear equation (A−λI)x = 0. Therefore,
the set of all eigenvectors with the same eigenvalue λ together with the
zero vector is the subspace ker(A−λI).

Eigenspace. Let λ be an eigenvalue of the n×n matrix A. The subspaceDefinition 11.4

Eλ = ker(A−λI)

is called the eigenspace of A corresponding to eigenvalue λ.

Computer programs for computing eigenvectors thus always com-
pute bases of the corresponding eigenspaces. Since bases of a subspace
are not unique, see Section 5.2, their results may differ.

Diagonal matrix. For every n× n diagonal matrix D and every i =Example 11.5
1, . . . ,n we find

Dei = diiei .

That is, each of its diagonal entries dii is an eigenvalue affording eigen-
vectors ei. Its spectrum is just the set of its diagonal entries. ♦

11.2 Properties of Eigenvalues

Transpose. A and A′ have the same spectrum.Theorem 11.6

PROOF. See Problem 11.14.

Matrix power. If x is an eigenvector of A corresponding to eigenvalueTheorem 11.7
λ, then x is also an eigenvector of Ak corresponding to eigenvalue λk for
every k ∈N.

PROOF. See Problem 11.15.

Inverse matrix. If x is an eigenvector of the regular matrix A corre-Theorem 11.8
sponding to eigenvalue λ, then x is also an eigenvector of A−1 corre-
sponding to eigenvalue λ−1.

PROOF. See Problem 11.16.



11.3 DIAGONALIZATION AND SPECTRAL THEOREM 95

Eigenvalues and determinant. Let A be an n×n matrix with eigen- Theorem 11.9
values λ1, . . . ,λn (counting multiplicity). Then

det(A)=
n∏

i=1
λi .

PROOF. A straightforward computation shows that
∏n

i=1λi is the con-
stant term of the characteristic polynomial pA(t)= (−1)n ∏n

i=1(t−λi). On
the other hand, we show that the constant term of pA(t) = det(A− tI)
equals det(A). Observe that by multilinearity of the determinant we
have

det(. . . ,ai − tei, . . .)= det(. . . ,ai, . . .)− tdet(. . . ,ei, . . .) .

As this holds for every columns we find

det(A− tI)= ∑
(δ1,...,δn)∈{0,1}n

(−t)
∑n

i=1δi det
(
(1−δ1)a1 +δ1e1, . . . ,

. . . , (1−δn)an +δnen
)

.

Obviously, the only term that does not depend on t is where δ1 = . . . =
δn = 0, i.e., det(A). This completes the proof.

There is also a similar remarkable result on the sum of the eigenval-
ues.

The trace of an n×n matrix A is the sum of its diagonal elements, i.e., Definition 11.10

tr(A)=
n∑

i=1
aii .

Eigenvalues and trace. Let A be an n× n matrix with eigenvalues Theorem 11.11
λ1, . . . ,λn (counting multiplicity). Then

tr(A)=
n∑

i=1
λi .

PROOF. See Problem 11.17.

11.3 Diagonalization and Spectral Theorem

In Section 6.4 we have called two matrices A and B similar if there exists
a transformation matrix U such that B=U−1AU.

Similar matrices. The spectra of two similar matrices A and B coincide. Theorem 11.12

PROOF. See Problem 11.18.
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Now one may ask whether we can find a basis such that the corre-
sponding matrix is as simple as possible. Motivated by Example 11.5 we
even may try to find a basis such that A becomes a diagonal matrix. We
find that this is indeed the case for symmetric matrices.

Spectral theorem for symmetric matrices. Let A be a symmetric n×Theorem 11.13
n matrix. Then all eigenvalues are real and there exists an orthonormal
basis {u1, . . . ,un} of Rn consisting of eigenvectors of A.

Furthermore, let D be the n×n diagonal matrix with the eigenvalues
of A as its entries and let U = (u1, . . . ,un) be the orthogonal matrix of
eigenvectors. Then matrices A and D are similar with transformation
matrix U, i.e.,

U′AU=D=


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 . (11.2)

We call this process the diagonalization of A.

A proof of the first part of Theorem 11.13 is out of the scope of this
manuscript. Thus we only show the following partial result (Lemma 11.14).
For the second part recall that for an orthogonal matrix U we have
U−1 =U′ by Theorem 8.24. Moreover, observe that

U′AUei =U′Aui =U′λiui =λiU′ui =λiei =Dei

for all i = 1, . . . ,n.

Let A be a symmetric n×n matrix. If ui and u j are eigenvectors to dis-Lemma 11.14
tinct eigenvalues λi and λ j, respectively, then ui and u j are orthogonal,
i.e., u′

iu j = 0.

PROOF. By the symmetry of A and eigenvalue equation (11.1) we find

λiu′
iu j = (Aui)′u j)= (u′

iA
′)u j)=u′

i(Au j)=u′
i(λ ju j)=λ ju′

iu j .

Consequently, if λi 6=λ j then u′
iu j = 0, as claimed

Theorem 11.13 immediately implies Theorem 11.9 for the special
case where A is symmetric, see Problem 11.19.

11.4 Quadratic Forms

Up to this section we only have dealt with linear functions. Now we want
to look to more advanced functions, in particular at quadratic functions.
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Quadratic form. Let A be a symmetric n×n matrix. Then the function Definition 11.15

qA : Rn →R, x 7→ qA(x)= x′Ax

is called a quadratic form.

Observe that we have

qA(x)=
n∑

i=1

n∑
j=1

ai j xix j .

In the second part of this course we need to characterize stationary
points of arbitrary differentiable multivariate functions. We then will
see that the sign of such quadratic forms will play a prominent rôle in
our investigations. Hence we introduce the concept of the definiteness of
a quadratic form.

Definiteness. A quadratic form qA is called Definition 11.16

• positive definite, if qA(x)> 0 for all x 6= 0;

• positive semidefinite, if qA(x)≥ 0 for all x;

• negative definite, if qA(x)< 0 for all x 6= 0;

• negative semidefinite, if qA(x)≤ 0 for all x;

• indefinite in all other cases.

In abuse of language we call A positive (negative) (semi) definite if the
corresponding quadratic form has this property.

Notice that we can reduce the definition of negative definite to that of
positive definite, see Problem 11.21. Thus the treatment of the negative
definite case could be omitted at all.

The quadratic form qA is negative definite if and only if q−A is positive Lemma 11.17
definite.

By Theorem 11.13 a symmetric matrix A is similar to a diagonal
matrix D and we find U′AU = D. Thus if c is the coefficient vector of a
vector x with respect to the orthonormal basis of eigenvectors of A, then
we find

x=
n∑

i=1
ciui =Uc

and thus

qA(x)= x′Ax= (Uc)′A(Uc)= c′U′AUc= c′Dc

that is,

qA(x)=
n∑

i=1
λi c2

i .

Obviously, the definiteness of qA solely depends on the signs of the eigen-
values of A.
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Definiteness and eigenvalues. Let A be symmetric matrix with eigen-Theorem 11.18
values λ1, . . . ,λn. Then the quadratic form qA is

• positive definite if and only if all λi > 0;

• positive semidefinite if and only if all λi ≥ 0;

• negative definite if and only if all λi < 0;

• negative semidefinite if and only if all λi ≤ 0;

• indefinite if and only if there are positive and negative eigenvalues.

Computing eigenvalues requires to find all roots of a polynomial.
While this is quite simple for a quadratic term, it becomes cumbersome
for cubic and quartic equations and there is no explicit solution for poly-
nomials of degree 5 or higher. Then only numeric methods are available.
Fortunately, there exists an alternative method for determine the defi-
niteness of a matrix, called Sylvester’s criterion, that requires the com-
putation of so called minors.

Leading principle minor. Let A be an n× n matrix. For k = 1, . . . ,n,Definition 11.19
the k-th leading principle submatrix is the k×k submatrix formed from
the first k rows and first k columns of A. The k-th leading principle
minor is the determinant of this submatrix, i.e.,

Hk =

∣∣∣∣∣∣∣∣∣∣
a1,1 a1,2 . . . a1,k
a2,1 a2,2 . . . a2,k

...
...

. . .
...

ak,1 ak,2 . . . ak,k

∣∣∣∣∣∣∣∣∣∣
Sylvester’s criterion. A symmetric n×n matrix A is positive definite ifTheorem 11.20
and only if all its leading principle minors are positive.

It is easy to prove that positive leading principle minors are a neces-
sary condition for the positive definiteness of A, see Problem 11.22. For
the sufficiency of this condition we first show an auxiliary result1.

Let A be a symmetric n× n matrix. If x′Ax > 0 for all nonzero vectorsLemma 11.21
x in a k-dimensional subspace V of Rn, then A has at least k positive
eigenvalues (counting multiplicity).

PROOF. Suppose that m < k eigenvalues are positive but the rest are not.
Let um+1, . . . ,un be the eigenvectors corresponding to the non-positive
eigenvalues λm+1, . . . ,λn ≤ 0 and let Let U = span(um+1, . . . ,un). Since
V +U ⊆Rn the formula from Problem 5.14 implies that

dim(V ∩U )= dim(V )+dim(U )−dim(V +U )

≥ k+ (n−m)−n = k−m > 0 .
1We essentially follow a proof by G. T. Gilbert (1991), Positive definite matrices

and Sylvester’s criterion, The American Mathematical Monthly 98(1): 44–46, DOI:
10.2307/2324036.
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Hence V and U have non-trivial intersection and there exists a non-zero
vector v ∈ V that can be written as

v=
n∑

i=m+1
ciui

and we have

v′Av=
n∑

i=m+1
λi c2

i ≤ 0

a contradiction. Thus m ≥ k, as desired.

PROOF OF THEOREM 11.20. We complete the proof of sufficiency by in-
duction. For n = 1, the result is trivial. Assume the sufficiency of positive
leading principle minors of (n−1)×(n−1) matrices. So if A is a symmetric
n×n matrix, its (n−1)st leading principle submatrix is positive definite.
Then for any non-zero vector v with vn = 0 we find v′Av > 0. As the
subspace of all such vectors has dimension n−1 Lemma 11.21 implies
that A has at least n−1 positive eigenvalues (counting multiplicities).
Since det(A) > 0 we conclude by Theorem 11.9 that all n eigenvalues of
A are positive and hence A is positive definite by Theorem 11.18. This
completes the proof.

By means of Sylvester’s criterion we immediately get the following
characterizations, see Problem 11.23.

Definiteness and leading principle minors. A symmetric n×n ma- Theorem 11.22
trix A is

• positive definite if and only if all Hk > 0 for 1≤ k ≤ n;

• negative definite if and only if all (−1)kHk > 0 for 1≤ k ≤ n; and

• indefinite if det(A) 6= 0 but A is neither positive nor negative defi-
nite.

Unfortunately, for a characterization of positive and negative semidef-
inite matrices the sign of leading principle minors is not sufficient, see
Problem 11.25. We then have to look at the sign of a lot more determi-
nants.

Principle minor. Let A be an n×n matrix. For k = 1, . . . ,n, a k-th prin- Definition 11.23
ciple minor is the determinant of the k× k submatrix formed from the
same set of rows and columns of A, i.e., for 1 ≤ i1 < i2 < ·· · < ik ≤ n we
obtain the minor

Mi1,...,ik =

∣∣∣∣∣∣∣∣∣∣
ai1,i1 ai1,i2 . . . ai1,ik

ai2,i1 ai2,i2 . . . ai2,ik
...

...
. . .

...
aik,i1 aik,i2 . . . aik,ik

∣∣∣∣∣∣∣∣∣∣
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Notice that there are
(n

k
)

many k-th principle minors which gives a total
of 2n −1. The following criterion we state without a formal proof.

Semifiniteness and principle minors. A symmetric n×n matrix A isTheorem 11.24

• positive semidefinite if and only if all principle minors are non-
negative, i.e., Mi1,...,ik ≥ 0 for all 1 ≤ k ≤ n and all 1 ≤ i1 < i2 < ·· · <
ik ≤ n.

• positive semidefinite if and only if (−1)kMi1,...,ik ≥ 0 for all 1≤ k ≤ n
and all 1≤ i1 < i2 < ·· · < ik ≤ n.

• indefinite in all other cases.

11.5 Spectral Decomposition and Functions of
Matrices

We may state the Spectral Theorem 11.13 in a different way. Observe
that Equation (11.2) implies

A=UDU′ .

Observe that [U′x]i = u′
ix and thus U′x =∑n

i=1(u′
ix)ei. Then a straight-

forward computation yields

Ax=UDU′x=UD
n∑

i=1
(u′

ix)ei =
n∑

i=1
(u′

ix)UDei =
n∑

i=1
(u′

ix)Uλiei

=
n∑

i=1
λi(u′

ix)Uei =
n∑

i=1
λi(u′

ix)ui =
n∑

i=1
λipi(x)

where pi is just the orthogonal projection onto span(ui), see Defini-
tion 9.2. By Theorem 9.4 there exists a projection matrix Pi = uiu′

i,
such that pi(x) = Pix. Therefore we arrive at the following spectral
decomposition,

A=
n∑

i=1
λiPi . (11.3)

A simple computation gives that Ak = UDkU′, see Problem 11.20, or
using Equation (11.3)

Ak =
n∑

i=1
λk

i Pi .

Thus by means of the spectral decomposition we can compute integer
powers of a matrix. Similarly, we find

A−1 =UD−1U′ =
n∑

i=1
λ−1

i Pi .

Can we compute other functions of a symmetric matrix as well as, e.g.,
its square root?
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Square root. A matrix B is called the square root of a symmetric Definition 11.25
matrix A if B2 =A.

Let B = ∑n
i=1

√
λiPi then B2 = ∑n

i=1

(√
λi

)2
Pi = ∑n

i=1λiPi = A, pro-
vided that all eigenvalues of A are positive.

This motivates to define any function of a matrix in the following
way: Let f : R→R some function. Then

f (A)=
n∑

i=1
f (λi)Pi =U


f (λ1) 0 . . . 0

0 f (λ2) . . . 0
...

...
. . .

...
0 0 . . . f (λn)

U′ .

— Summary

• An eigenvalue and its corresponding eigenvector of an n×n matrix
A satisfy the equation Ax=λx.

• The polynomial det(A−λI) = 0 is called the characteristic polyno-
mial of A and has degree n.

• The set of all eigenvectors corresponding to an eigenvalue λ forms
a subspace and is called eigenspace.

• The product and sum of all eigenvalue equals the determinant and
trace, resp., of the matrix.

• Similar matrices have the same spectrum.

• Every symmetric matrix is similar to diagonal matrix with its eigen-
values as entries. The transformation matrix is an orthogonal ma-
trix that contains the corresponding eigenvectors.

• The definiteness of a quadratic form can be determined by means
of the eigenvalues of the underlying symmetric matrix.

• Alternatively, it can be computed by means of principle minors.

• Spectral decompositions allows to compute functions of symmetric
matrices.
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— Exercises

11.1 Compute eigenvalues and eigenvectors of the following matrices:

(a) A=
(
3 2
2 6

)
(b) B=

(
2 3
4 13

)
(c) C=

(−1 5
5 −1

)

11.2 Compute eigenvalues and eigenvectors of the following matrices:

(a) A=
 1 −1 0
−1 1 0
0 0 2

 (b) B=
 4 0 1
−2 1 0
−2 0 1



(c) C=
 1 2 2

1 2 −1
−1 1 4

 (d) D=
−3 0 0

0 −5 0
0 0 −9



(e) E=
3 1 1

0 1 0
3 2 1

 (f) F=
11 4 14

4 −1 10
14 10 8


11.3 Compute eigenvalues and eigenvectors of the following matrices:

(a) A=
1 0 0

0 1 0
0 0 1

 (b) B=
1 1 1

0 1 1
0 0 1


11.4 Estimate the definiteness of the matrices from Exercises 11.1a,

11.1c, 11.2a, 11.2d, 11.2f and 11.3a.

What can you say about the definiteness of the other matrices from
Exercises 11.1, 11.2 and 11.3?

11.5 Let A =
3 2 1

2 −2 0
1 0 −1

. Give the quadratic form that is generated

by A.

11.6 Let q(x)= 5x2
1 +6x1x2−2x1x3+ x2

2 −4x2x3+ x2
3 be a quadratic form.

Give its corresponding matrix A.

11.7 Compute the eigenspace of matrix

A=
 1 −1 0
−1 1 0
0 0 2

 .

11.8 Demonstrate the following properties of eigenvalues:

(1) Quadratic matrices A and A′ have the same spectrum.
(Do they have the same eigenvectors as well?)
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(2) Let A and B be two n×n matrices. Then A ·B and B ·A have
the same eigenvalues.
(Do they have the same eigenvectors as well?)

(3) If x is an eigenvector of A corresponding to eigenvalue λ, then
x is also an eigenvector of Ak corresponding to eigenvalue λk.

(4) If x is an eigenvector of regular A corresponding to eigen-
value λ, then x is also an eigenvector of A−1 corresponding to
eigenvalue λ−1.

(5) The determinant of an n×n matrix A is equal to the product
of all its eigenvalues: det(A)=∏n

i=1λi.
(6) The trace of an n× n matrix A (i.e., the sum of its diagonal

entries) is equal to the sum of all its eigenvalues: det(A) =∑n
i=1λi.

11.9 Compute all leading principle minors of the symmetric matrices
from Exercises 11.1, 11.2 and 11.3 and determine their definite-
ness.

11.10 Compute all principle minors of the symmetric matrices from Ex-
ercises 11.1, 11.2 and 11.3 and determine their definiteness.

11.11 Compute a symmetric 2×2 matrix A with eigenvalues λ1 = 1 and
λ2 = 3 and corresponding eigenvectors v1 = (1,1)′ and v2 = (−1,1)′.
HINT: Use the Spectral Theorem. Recall that one needs an orthonormal basis.

11.12 Let A be the matrix in Problem 11.11. Compute
p

A.

11.13 Let A=
(−1 3

3 −1

)
. Compute eA.

— Problems

11.14 Prove Theorem 11.6.
HINT: Compare the characteristic polynomials of A and A′.

11.15 Prove Theorem 11.7 by induction on power k.
HINT: Use Definition 11.1.

11.16 Prove Theorem 11.8.
HINT: Use Definition 11.1.

11.17 Prove Theorem 11.11.
HINT: Use a direct computation similar to the proof of Theorem 11.9 on p. 95.

11.18 Prove Theorem 11.12.

Show that the converse is false, i.e., if two matrices have the same
spectrum then they need not be similar.
HINT: Compare the characteristic polynomials of A and B. See Problem 6.11 for
the converse statement.
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11.19 Derive Theorem 11.9 immediately from Theorem 11.13.

11.20 Let A and B be similar n×n matrices with transformation matrix
U such that A=U−1BU. Show that Ak =U−1BkU for every k ∈N.
HINT: Use induction.

11.21 Show that qA is negative definite if and only if q−A is positive def-
inite.

11.22 Let A be a symmetric n×n matrix. Show that the positivity of all
leading principle minors is a necessary condition for the positive
definiteness of A.
HINT: Compute y′Aky where Ak be the k-th leading principle submatrix of A
and y ∈ Rk. Notice that y can be extended to a vector z ∈ Rn where zi = yi if
1≤ i ≤ k and zi = 0 for k+1≤ i ≤ n.

11.23 Prove Theorem 11.22.
HINT: Use Sylvester’s criterion and Lemmata 11.17 and 11.21.

11.24 Derive a criterion for the positive or negative (semi) definiteness of
a symmetric 2×2 matrix in terms of its determinant and trace.

11.25 Suppose that all leading principle minors of some matrix A are
non-negative. Show that A need not be positive semidefinite.
HINT: Construct a 2× 2 matrix where all leading principle minors are 0 and
where the two eigenvalues are 0 and −1, respectively.

11.26 Let v1, . . . ,vk ∈ Rn and V = (v1, . . . ,vk). Then the Gram matrix of
these vectors is defined as

G=V′V .

Prove the following statements:

(a) [G]i j = v′
iv j.

(b) G is symmetric.
(c) G is positive semidefinite for all X.
(d) G is regular if and only if the vectors x1, . . . ,xk are linearly

independent.

HINT: Use Definition 11.16 for statement (c). Use Lemma 6.25 for statement (d).

11.27 Let v1, . . . ,vk ∈ Rn be linearly independent vectors. Let P be the
projection matrix for an orthogonal projection onto span(v1, . . . ,vk).

(a) Compute all eigenvalues of P.
(b) Give bases for each of the eigenspace corresponding to non-

zero eigenvalues.

HINT: Recall that P is idempotent, i.e., P2 =P.
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11.28 Let U be an orthogonal matrix. Show that all eigenvalues λ of U
have absolute value 1, i.e., |λ| = 1.
HINT: Use Theorem 8.24.

11.29 Let U be an orthogonal 3×3 matrix. Show that there exists a vector
x such that either Ux= x or Ux=−x.
HINT: Use the result from Problem 11.28.
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12
Sequences and Series

What happens when we proceed ad infinitum?

12.1 Limits of Sequences

Sequence. A sequence (xn)∞n=1 of real numbers is an ordered list of Definition 12.1
real numbers. Formally it can be defined as a function that maps the

x : N→R, n 7→ xnnatural numbers into R. Number xn is called the nth term of the se-
quence. We write (xn) for short to denote a squence if there is no risk if
confusion. Sequences can also be seen as vectors of infinite length.

Convergence and divergence. A sequence (xn)∞n=1 in R converges Definition 12.2
to a number x if for every ε> 0 there exists an index N = N(ε) such that
|xn − x| < ε for all n ≥ N, or equivalently xn ∈ (x−ε, x+ε). The number x
is then called the limit of the sequence. We write

xn → x as n →∞, or lim
n→∞xn = x .

a1 a2a5 a6a9

a3 a4a7 a8

0

(
−ε

)
ε

−ε

ε

0 n

an

A sequence that has a limit is called convergent. Otherwise it is called
divergent.

Notice that the limit of a convergent sequence is uniquely deter-
mined, see Problem 12.5.

109
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lim
n→∞ c = c for all c ∈R

lim
n→∞nα =


∞, for α> 0,
1, for α= 0,
0, for α< 0.

lim
n→∞qn =


∞, for q > 1,
1, for q = 1,
0, for −1< q < 1,
6 ∃, for q ≤−1.

lim
n→∞

na

qn =


0, for |q| > 1,
∞, for 0< q < 1,
6 ∃, for −1< q < 0,

for |q| 6∈ {0,1}.

lim
n→∞

(
1+ 1

n
)n = e = 2.7182818. . .

Table 12.5

Limits of important
sequences

The sequencesExample 12.3

(
an

)∞
n=1 =

(
1
2n

)∞
n=1

=
(

1
2

,
1
4

,
1
8

,
1

16
, . . .

)
→ 0

(
bn

)∞
n=1 =

(
n−1
n+1

)∞
n=1

=
(
0,

1
3

,
2
4

,
3
5

,
4
6

,
5
7

, . . .
)
→ 1

converge as n →∞, i.e.,

lim
n→∞

(
1
2n

)
= 0 and lim

n→∞

(
n−1
n+1

)
= 1 . ♦

The sequenceExample 12.4 (
cn

)∞
n=1 =

(
(−1)n)∞

n=1 = (−1,1,−1,1,−1,1, . . .)(
dn

)∞
n=1 =

(
2n)∞

n=1 = (2,4,8,16,32, . . .)

diverge. However, in the last example the sequence is increasing and not
bounded from above. Thus we may write in abuse of language

lim
n→∞2n =∞ . ♦

Computing limits can be a very challenging task. Thus we only look
at a few examples. Table 12.5 lists limits of some important sequences.
Notice that the limit of lim

n→∞
na

qn just says that in a product of a power
sequence with an exponential sequence the latter dominates the limits.

We prove one of these limits in Lemma 12.12 below. For this purpose
we need a few more notions.
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Bounded sequence. A sequence (xn)∞n=1 of real numbers is called Definition 12.6
bounded if there exists an M such that

|xn| ≤ M for all n ∈N.

Two numbers m and M are called lower and upper bound, respec-
tively, if

m ≤ xn ≤ M, for all n ∈N.

The greatest lower bound and the smallest upper bound are called infi-

m

M

0

mum and supremum of the sequence, respectively, denoted by sup xn

inf xninf
n∈N

xn and sup
n∈N

xn, respectively.

Notice that for a bounded sequence (xn), Lemma 12.7

xn ≤ sup
k∈N

xk for all n ∈N

and for all ε> 0, there exists an m ∈N such that

xm >
(
sup
k∈N

xk

)
−ε

since otherwise
(
supk∈N xk

)−ε were a smaller upper bound, a contradic-
tion to the definition of the supremum.

sup xn −ε ε
sup xn

xm

Do not mix up supremum (or infimum) with the maximal (and minimal) Example 12.8
value of a sequence. If a sequence (xn) has a maximal value, then obvi-
ously maxn∈N xn = supn∈N xn. However, a maximal value need not exist.
The sequence

(
1− 1

n
)∞
n=1 is bounded and we have

sup
n∈N

(
1− 1

n

)
= 1 .

However, 1 is never attained by this sequence and thus it does not have
a maximum. ♦

sup xn

Monotone sequence. A sequence (an)∞n=1 is called monotone if ei- Definition 12.9
ther an+1 ≥ an (increasing) or an+1 ≤ an (decreasing) for all n ∈N.

Convergence of a monotone sequence. A monotone sequence Lemma 12.10
(an)∞n=1 is convergent if and only if it is bounded. We then find lim

n→∞an =
sup
n∈N

an if (an) is increasing, and lim
n→∞an = inf

n∈N
an if (an) is decreasing.

PROOF IDEA. If (an) is increasing and bounded, then there is only a
finite number of elements that are less than sup

n∈N
an −ε.

If (an) is increasing and convergent, then there is only a finite num-
ber of elements greater than lim

n→∞ an +ε or less than lim
n→∞ an −ε. These

have a maximum and minimum value, respectively.
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PROOF. We consider the case where (an) is increasing. Assume that
(an) is bounded and M = supn∈N an. Then for every ε > 0, there exists
an N such that aN > M − ε (Lemma 12.7). Since (an) is increasing we
find M ≥ an > M − ε and thus |an − M| < ε for all n ≥ N. Consequently,
(an)→ M as n →∞.

M−ε εM

aN

Conversely, if (an) converges to a, then there is only a finite number
of elements a1, . . . ,am which do not satisfy |an − a| < 1. Thus an < M =
max{a+1,a1, . . . ,am}<∞ for all n ∈N. Moreover, since (an) is increasing
we also find an ≥ a1. Thus the sequence is bounded. The case where the
sequence is decreasing follows completely analogously.

a−1 ε
a

am

|an −a| < 1finitely many

For any q ∈R, the sequence (qn)∞n=0 is called a geometric sequence.Definition 12.11

Convergence of geometric sequence. lim
n→∞qn = 0 for all q ∈ (−1,1) .Lemma 12.12

PROOF. Observe that for 0 ≤ q < 1 we find 0 ≤ qn = q · qn−1 ≤ qn−1 for
all n ≥ 2 and hence qn is decreasing and bounded from below. Hence it
converges by Lemma 12.10 and lim

n→∞qn = inf
n≥1

qn.

Now suppose that m = inf
n≥1

qn > 0 for some 0 < q < 1 and let ε =
m(1/q−1)> 0. By Lemma 12.7 there exists a k such that qk < m+ε. Then
qk+1 = q · qk < q(m+m(1/q−1))= m, a contradiction. Hence lim

n→∞ qn = 0.
If −1< q < 0, then lim

n→∞ |qn| = 0 and hence lim
n→∞ qn = 0 (Problem 12.6).

Divergence of geometric sequence. For |q| > 1 the geometric se-Lemma 12.13
quence diverges. Moreover, for q > 1 we find lim

n→∞qn =∞.

PROOF. Suppose M = sup
n∈N

|qn| <∞. Then |(1/q)n| ≥ 1/M > 0 for all n ∈N
and M = inf

n∈N
|(1/q)n| > 0, a contradiction to Lemma 12.12, as |1/q| < 1.

Limits of sequences with more complex terms can be reduced to the
limits listed in Table 12.5 by means of the rules listed in Theorem 12.14
below. Notice that Rule (1) implies that taking the limit of a sequence is
a linear operator on the set of all convergent sequences.

Rules for limits. Let (an)∞n=1 and (bn)∞n=1 be convergent sequences in RTheorem 12.14
and (cn)∞n=1 be a bounded sequence in R. Then

(1) lim
n→∞(αan +βbn)=α lim

n→∞an +β lim
n→∞bn for all α,β ∈R

(2) lim
n→∞(an ·bn)= lim

n→∞an · lim
n→∞bn

(3) lim
n→∞

an

bn
= limn→∞ an

limn→∞ bn
(if lim

n→∞bn 6= 0)

(4) lim
n→∞ar

n =
(

lim
n→∞an

)r

(5) lim
n→∞(an · cn)= 0 (if lim

n→∞an = 0)
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For the proof of these (and other) properties of sequences the triangle
inequality plays a prominent rôle.

Triangle inequality. For two real numbers a and b we find Lemma 12.15

|a+b| ≤ |a|+ |b| .

PROOF. See Problem 12.4.

Here we just prove Rule (1) from Theorem 12.14 (see also Problem 12.7).
The other rules remain stated without proof.

Sum of covergent sequences. Let (an) and (bn) be two sequences in Lemma 12.16
R that converge to a and b, resp. Then

lim
n→∞(an +bn)= a+b .

PROOF IDEA. Use the triangle inequality for each term (an+bn)−(a+b).

PROOF. Let ε > 0 be arbitrary. Since both (an) → a and (bn) → b there
exists an N = N(ε) such that |an−a| < ε/2 and |bn−b| < ε/2 for all n > N.
Then we find

|(an +bn)− (a+b)| = |(an −a)− (bn −b)|
≤ |an −a|+ |bn −b| < ε

2 + ε
2 = ε

for all n > N. But this means that (an +bn)→ (a+b), as claimed.

The rules from Theorem 12.14 allow to reduce limits of composite terms Example 12.17
to the limits listed in Table 12.5.

lim
n→∞

(
2+ 3

n2

)
= 2+3 lim

n→∞n−2︸ ︷︷ ︸
=0

= 2+3 ·0= 2

lim
n→∞(2−n ·n−1)= lim

n→∞
n−1

2n = 0

lim
n→∞

1+ 1
n

2− 3
n2

=
lim

n→∞
(
1+ 1

n
)

lim
n→∞

(
2− 3

n2

) = 1
2

lim
n→∞ sin(n)︸ ︷︷ ︸

bounded

· 1
n2︸︷︷︸
→0

= 0 ♦

Exponential function. Theorem 12.14 allows to compute ex as the limit Example 12.18
of a sequence:

ex =
(

lim
m→∞

(
1+ 1

m

)m)x
= lim

m→∞

(
1+ 1

m

)mx
= lim

n→∞

(
1+ 1

n/x

)n

= lim
n→∞

(
1+ x

n

)n

where we have set n = mx. ♦
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12.2 Series

Series. Let (xn)∞n=1 be a sequence of real numbers. Then the associatedDefinition 12.19
series is defined as the ordered formal sum

∞∑
n=1

xn = x1 + x2 + x3 + . . . .

The sequence of partial sums associated to series
∑∞

n=1 xn is defined as

Sn =
n∑

i=1
xi for n ∈N.

The series converges to a limit S if sequence (Sn)∞n=1 converges to S,
i.e.,

S =
∞∑

i=1
xi if and only if S = lim

n→∞Sn = lim
n→∞

n∑
i=1

xi .

Otherwise, the series is called divergent.

We have already seen that a geometric sequence converges if |q| < 1,
see Lemma 12.12. The same holds for the associated geometric series.

Geometric series. The geometric series converges if and only if |q| < 1Lemma 12.20
and we find

∞∑
n=0

qn = 1+ q+ q2 + q3 +·· · = 1
1− q

.

PROOF IDEA. We first find a closed form for the terms of the geometric
series and then compute the limit.

PROOF. We first show that for any n ≥ 0,

Sn =
n∑

k=0
qk = 1− qn+1

1− q
.

In fact,

Sn(1− q)= Sn − qSn =
n∑

k=0
qk − q

n∑
k=0

qk =
n∑

k=0
qk −

n∑
k=0

qk+1

=
n∑

k=0
qk −

n+1∑
k=1

qk = q0 − qn+1 = 1− qn+1

and thus the result follows. Now by the rules for limits of sequences
we find by Lemma 12.12 lim

n→∞
∑n

k=0 qn = lim
n→∞

1−qn+1

1−q = 1
1−q if |q| < 1. Con-

versely, if |q| > 1, the sequence diverges by Lemma 12.13. If q = 1, the
we trivially have

∑∞
n=0 1=∞. For q =−1 the sequence of partial sums is

given by Sn = ∑n
k=0(−1)k = 1+ (−1)n which obviously does not converge.

This completes the proof.
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Harmonic series. The so called harmonic series diverges, Lemma 12.21

∞∑
n=1

1
n
= 1+ 1

2
+ 1

3
+ 1

4
+·· · =∞ .

PROOF IDEA. We construct a new series which is component-wise smaller
than or equal to the harmonic series. This series is then transformed by
adding some its terms into a series with constant terms which is obvi-
ously divergent.

PROOF. We find
∞∑

n=1

1
n
= 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
+ 1

9
+·· ·+ 1

16
+ 1

17
+ . . .

> 1 + 1
2
+ 1

4
+ 1

4
+ 1

8
+ 1

8
+ 1

8
+ 1

8
+ 1

16
+·· ·+ 1

16
+ 1

32
+ . . .

= 1+ 1
2
+

(
1
4
+ 1

4

)
+

(
1
8
+ 1

8
+ 1

8
+ 1

8

)
+

(
1

16
+·· ·+ 1

16

)
+

(
1

32
+ . . .

= 1+ 1
2
+

(
1
2

)
+

(
1
2

)
+

(
1
2

)
+

(
1
2

)
+ . . .

=∞ .

More precisely, we have
2k∑

n=1

1
n > 1+ k

2 →∞ as k →∞.

The trick from the above proof is called the comparison test as we
compare our series with a divergent series. Analogously one also may
compare the sequence with a convergent one.

Comparison test. Let
∑∞

n=1 an and
∑∞

n=1 bn be two series with 0≤ an ≤ Lemma 12.22
bn for all n ∈N.

(a) If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges.

(b) If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

PROOF. (a) Suppose that B = ∑∞
k=1 bk <∞ exists. Then by our assump-

tions 0≤∑n
k=1 ak ≤

∑n
k=1 bk ≤ B for all n ∈N. Hence

∑n
k=1 ak is increasing

and bounded and thus the series converges by Lemma 12.10.
(b) On the other hand, if

∑∞
k=1 ak diverges, then for every M there

exists an N such that M ≤∑n
k=1 ak ≤

∑n
k=1 bk for all n ≥ N. Hence

∑∞
k=1 bk

diverges, too.

Such tests are very important as it allows to verify whether a series
converges or diverges by comparing it to a series where the answer is
much simpler. However, it does not provide a limit when (bn) converges
(albeit it provides an upper bound for the limit). Nevertheless, the proof
of existence is also of great importance. The following example demon-
strates that using expressions in a naïve way without checking their
existence may result in contradictions.
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Grandi’s series. Consider the following series that has been extensivelyExample 12.23
discussed during the 18th century. What is the value of

S =
∞∑

n=0
(−1)n = 1−1+1−1+1−1+ . . . ?

One might argue in the following way:

1−S = 1− (1−1+1−1+1−1+ . . .)= 1−1+1−1+1−1+1− . . .

= 1−1+1−1+1− . . .= S

and hence 2S = 1 and S = 1
2 . Notice that this series is just a special case

of the geometric series with q = −1. Thus we get the same result if we
misleadingly use the formula from Lemma 12.20.

However, we also may proceed in a different way. By putting paren-
theses we obtain

S = (1−1)+ (1−1)+ (1−1)+ . . .= 0+0+0+ . . .= 0 , and

S = 1+ (−1+1)+ (−1+1)+ (−1+1)+ . . .= 1+0+0+0+ . . .= 1 .

Combining these three computations gives

S = 1
2 = 0= 1

which obviously is not what we expect from real numbers. The error in
all these computation is that the expression S cannot be treated like a
number since the series diverges. ♦

If we are given a convergent sequence (an)∞n=1 then the sequence of its
absolute values also converges (Problem 12.6). The converse, however,
may not hold. For the associated series we have an opposite result.

Let
∑∞

n=1 an be some series. If
∑∞

n=1 |an| converges, then
∑∞

n=1 an alsoLemma 12.24
converges.

PROOF IDEA. We split the series into a positive and a negative part.

PROOF. Let P = {n ∈N : an ≥ 0} and N = {n ∈N : an < 0}. Then

m+ = ∑
n∈P

|an| ≤
∞∑

n=1
|an| <∞ and m− = ∑

n∈N

|an| ≤
∞∑

n=1
|an| <∞

and therefore
∞∑

n=1
an = ∑

n∈P

|an|−
∑

n∈N

|an| = m+−m−

exists.

Notice that the converse does not hold. If series
∑∞

n=1 an converges
then

∑∞
n=1 |an| may diverge.
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It can be shown that the alternating harmonic series Example 12.25
∞∑

n=1

(−1)n+1

n
= 1− 1

2
+ 1

3
− 1

4
+ 1

5
− . . .= ln2

converges, whereas we already have seen in Lemma 12.21 that the har-
monic series

∑∞
n=1

∣∣∣ (−1)n+1

n

∣∣∣=∑∞
n=1

1
n does not not. ♦

A series
∑∞

n=1 an is called absolutely convergent if
∑∞

n=1 |an| converges. Definition 12.26

Ratio test. A series
∑∞

n=1 an converges if there exists a q < 1 and an Lemma 12.27
N <∞ such that∣∣∣∣an+1

an

∣∣∣∣≤ q < 1 for all n ≥ N.

Similarly, if there exists an r > 1 and an N <∞ such that∣∣∣∣an+1

an

∣∣∣∣≥ r > 1 for all n ≥ N

then the series diverges.

PROOF IDEA. We compare the series with a geometric series and apply
the comparison test.

PROOF. For the first statement observe that |an+1| < |an|q implies |aN+k| <
|aN |qk. Hence

∞∑
n=1

|an| =
N∑

n=1
|an|+

∞∑
k=1

|aN+k| <
N∑

n=1
|an|+ |aN |

∞∑
k=1

qk <∞

where the two inequalities follows by Lemmata 12.22 and 12.20. Thus∑∞
n=1 an converges by Lemma 12.24. The second statement follows simi-

larly but requires more technical details and is thus omitted.

There exist different variants of this test. We give a convenient ver-
sion for a special case.

Ratio test. Let
∑∞

n=1 an be a series where lim
n→∞

∣∣∣ an+1
an

∣∣∣ exists. Lemma 12.28
Then

∑∞
n=1 an converges if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣< 1 .

It diverges if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣> 1 .

PROOF. Assume that L = lim
n→∞

∣∣∣ an+1
an

∣∣∣ exists and L < 1. Then there exists

an N such that
∣∣∣ an+1

an

∣∣∣ < q = 1− 1
2 (1−L) < 1 for all n ≥ N. Thus the se-

ries converges by Lemma 12.27. The proof for the second statement is
completely analogous.
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— Exercises

12.1 Compute the following limits:

(a) lim
n→∞

(
7+

(
1
2

)n)
(b) lim

n→∞
2n3 −6n2 +3n−1

7n3 −16

(c) lim
n→∞

nmod10
(−2)n (d) lim

n→∞
n2 +1
n+1

(e) lim
n→∞

(
n2 − (−1)n n3)

(f) lim
n→∞

(
7n

2n−1
− 4n2 −1

5−3n2

)
12.2 Compute the limits of sequence (an)∞n=1 with the following terms:

(a) an = (−1)n (
1+ 1

n
)

(b) an = n
(n+1)2

(c) an = (
1+ 2

n
)n (d) an = (

1− 2
n
)n

(e) an = 1p
n (f) an = n

n+1 + 1p
n

(g) an = n
n+1 +

p
n (h) an = 4+pn

n

12.3 Compute the following limits:

(a) lim
n→∞

(
1+ 1

n

)nx
(b) lim

n→∞

(
1+ x

n

)n
(c) lim

n→∞

(
1+ 1

nx

)n

— Problems

12.4 Prove the triangle inequality in Lemma 12.15.
HINT: Look at all possible cases where a ≥ 0 or a < 0 and b ≥ 0 and b < 0.

12.5 Let (an) be a convergent sequence. Show by means of the triangle
inequality (Lemma 12.15) that its limit is uniquely defined.
HINT: Assume that two limits a and b exist and show that |a−b| = 0.

12.6 Let (an) be a convergent sequence with lim
n→∞an = a. Show thatHINT: Use inequality∣∣|a|− |b|∣∣≤ |a−b|.

lim
n→∞ |an| = |a| .

State and disprove the converse statement.

12.7 Let (an) be a sequence in R that converge to a and c ∈R. Show that

lim
n→∞ c an = c a .

12.8 Let (an) be a sequence in R that converge to 0 and (cn) be a bounded
sequence. Show that

lim
n→∞ cn an = 0 .
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12.9 Let (an) be a convergent sequence with an ≥ 0. Show that

lim
n→∞an ≥ 0 .

Disprove that lim
n→∞an > 0 when all elements of this convergent se-

quence are positive, i.e., an > 0 for all n ∈N.

12.10 When we inspect the second part of the proof of Lemma 12.10 we
find that monotonicity of sequence (an) is not required. Show that
every convergent sequence (an) is bounded.

Also disprove the converse claim that every bounded sequence is
convergent.

12.11 Compute
∞∑

k=1
qn.

12.12 Show that for any a ∈R, HINT: There exists an
N > |a|.

lim
n→∞

an

n!
= 0 .

12.13 Cauchy’s covergence criterion. A sequence (an) in R is called
a Cauchy sequence if for every ε> 0 there exists a number N such
that |an −am| < ε for all n,m > N.
Show: If a sequence (an) converges, then it is a Cauchy sequence. HINT: Use the triangle in-

equality.
(Remark: The converse also holds. If (an) is a Cauchy sequence,
then it converges.)

12.14 Show that
∞∑

n=1

1
n!

converges. HINT: Use the ratio test.

12.15 Someone wants to show the (false!) “theorem”:

If
∑∞

n=1 an converges, then
∑∞

n=1 |an| also converges.

He argues as follows:

Let P = {n ∈N : an ≥ 0} and N = {n ∈N : an < 0}. Then

∞∑
n=1

an = ∑
n∈P

an +
∑

n∈N

an = ∑
n∈P

|an|−
∑

n∈N

|an| <∞

and thus both m+ =∑
n∈P |an| <∞ and m− =∑

n∈N |an| <∞. There-
fore

∞∑
n=1

|an| =
∑

n∈P

|an|+
∑

n∈N

|an| = m++m− <∞

exists.





13
Topology

We need the concepts of neighborhood and boundary.

The fundamental idea in analysis can be visualized as roaming in foggy
weather. We explore a function locally around some point by making
tiny steps in all directions. However, we then need some conditions that
ensure that we do not run against an edge or fall out of our function’s
world (i.e., its domain). Thus we introduce the concept of an open neigh-
borhood.

13.1 Open Neighborhood

Interior, exterior and boundary points. Recall that for any point x ∈ Definition 13.1
Rn the Euclidean norm ‖x‖ is defined as

‖x‖ =
p

x′x=
√

n∑
i=1

x2
i .

The Euclidean distance d(x,y) between any two points x,y ∈ Rn is
given as

d(x,y)= ‖x−y‖ =
√

(x−y)′(x−y) .

These terms allow us to get a notion of points that are “nearby” some

a
r

Br(a)

point x. The set

Br(a)= {
x ∈Rn : d(x,a)< r

}
is called the open ball around a with radius r (> 0). A point a ∈ D is

a

Bε(a)

b Bε(b)

called an interior point of a set D ⊆ Rn if there exists an open ball
centered at a which lies inside D, i.e., there exists an ε > 0 such that
Bε(a) ⊆ D. An immediate consequence of this definition is that we can
move away from some interior point a in any direction without leaving
D provided that the step size is sufficiently small. Notice that every set
contains all its interior points.

121
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A point b ∈ Rn is called a boundary point of a set D ⊆ Rn if every
open ball centered at b intersects both D and its complement Dc =Rn\D.
Notice that a boundary point b needs not be an element of D.

A point x ∈ Rn is called an exterior point of a set D ⊆ Rn if it is an
interior point of its complement Rn \ D.

A set D ⊆ Rn is called an open neighborhood of a if a is an interiorDefinition 13.2
point of D, i.e., if D contains some open ball centered at a.

A set D ⊆Rn is called open if all its members are interior points of D, i.e.,Definition 13.3
if for each a ∈ D, D contains some open ball centered at a (that is, have
an open neighborhood in D). On the real line R, the simplest example of
an open set is an open interval (a,b)= {x ∈R : a < x < b}.

A set D ⊆Rn is called closed if it contains all its boundary points. On
the real line R, the simplest example of a closed set is a closed interval
[a,b]= {x ∈R : a ≤ x ≤ b}.

Show that H = {(x, y) ∈R2 : x > 0} is an open set.Example 13.4

SOLUTION. Take any point (x0, y0) in H and set ε= x0/2. We claim that
B = Bε(x0, y0) is contained in H. Let (x, y) ∈ B. Then ε> ‖(x, y)−(x0, y0)‖ =√

(x− x0)2 + (y− y0)2 ≥
√

(x− x0)2 = |x− x0|. Consequently, x > x0 − ε =
x0 − x0

2 = x0
2 > 0 and thus (x, y) ∈ H as claimed.

A set D ⊆Rn is closed if and only if its complement Dc is open.Lemma 13.5

PROOF. See Problem 13.6.

Properties of open sets.Theorem 13.6

(1) The empty set ; and the whole space Rn are both open.

(2) Arbitrary unions of open sets are open.

(3) The intersection of finitely many open sets is open.

PROOF IDEA. (1) Every ball of centered at any point is entirely in Rn.
Thus Rn is open. For the empty set observe that it does not contain any
element that violates the condition for “interior point”.

(2) Every open ball Bε(x) remains contained in a set D if we add
points to D. Thus interior points of D remain interior points in any
superset of D.

(3) If x is an interior point of open sets D1, . . . ,Dm, then there exist
open balls Bi(x) ⊆ D i centered at x. Since they are only finitely many,
there is a smallest one which is thus entirely contained in the intersec-
tion of all D i ’s.

PROOF. (1) Every ball Bε(a) ⊆ Rn and thus Rn is open. All members of
the empty set ; are inside balls that are contained entirely in ;. Hence
; is open.
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(2) Let {D i}i∈I be an arbitrary family of open sets in Rn, and let D =⋃
i∈I D i be the union of all these. For each x ∈ D there is at least one i ∈ I

such that x ∈ D i. Since D i is open, there exists an open ball Bε(x)⊆ D i ⊆
D. Hence x is an interior point of D.

(3) Let {D1,D2, . . . ,Dm} be a finite collection of open sets in Rn, and
let D = ⋂m

i=1 D i be the intersection of all these sets. Let x be any point
in D. Since all D i are open there exist open balls Bi = Bεi (x) ⊆ D i with
center x. Let ε be the smallest of all radii εi. Then x ∈ Bε(x) =⋂m

i=1 Bi ⊆ ε is the minimum of a finite
set of numbers.⋂m

i=1 D i = D and thus D is open.

The intersection of an infinite number of open sets needs not be open,
see Problem 13.10.

Similarly by De Morgan’s law we find the following properties of
closed sets, see Problem 13.11.

Properties of closed sets. Theorem 13.7

(1) The empty set ; and the whole space Rn are both closed.

(2) Arbitrary intersections of closed sets are closed.

(3) The union of finitely many closed sets is closed.

Each y ∈ Rn is either an interior, an exterior or a boundary point of
some set D ⊆ Rn. As a consequence there is a corresponding partition of
Rn into three mutually disjoint sets.

For a set D ⊆Rn, the set of all interior points of D is called the interior Definition 13.8
of D. It is denoted by D◦ or int(D).

The set of all boundary points of a set D is called the boundary of
D. It is denoted by ∂D or bd(D).

The union D ∪∂D is called the closure of D. It is denoted by D or
cl(D).

A point a is called an accumulation point of a set D if every open Definition 13.9
neighborhood of a (i.e., open ball Bε(a)) has non-empty intersection with
D (i.e., D∩Bε(a) 6= ;). Notice that a need not be an element of D.

A set D is closed if and only if D contains all its accumulation points. Lemma 13.10

PROOF. See Problem 13.12.

13.2 Convergence

A sequence (xk)∞k=1 in Rn is a function that maps the natural numbers Definition 13.11

x : N→Rn, k 7→ xk
into Rn. A point xk is called the kth term of the sequence.
Sequences can also be seen as vectors of infinite length.
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Recall that a sequence (xk) in R converges to a number x if for every
ε> 0 there exists an index N such that |xk− x| < ε for all k > N. This can
be easily generalized.

Convergence and divergence. A sequence (xk) in Rn convergesDefinition 13.12
to a point x if for every ε > 0 there exists an index N = N(ε) such that
xk ∈ Bε(x), i.e., ‖xk −x‖ < ε, for all k > N.

Equivalently, (xk) converges to x if d(xk,x) → 0 as k →∞. The point

x
x is then called the limit of the sequence. We write

xk → x as k →∞, or lim
k→∞

xk = x .

Notice, that the limit of a convergent sequence is uniquely determined.
A sequence that is not convergent is called divergent.

We can look at each of the component sequences in order to deter-
mine whether a sequence of points does converge or not. Thus the fol-
lowing theorem allows us to reduce results for convergent sequences in
Rn to corresponding results for convergent sequences of real numbers.

Convergence of each component. A sequence (xk) in Rn convergesTheorem 13.13
to the vector x in Rn if and only if for each j = 1, . . . ,n, the real number
sequence

(
x( j)

k

)∞
k=1

, consisting of the jth component of each vector xk,

converges to x( j), the jth component of x.

PROOF IDEA. For the proof of the necessity of the condition we use
the fact that maxi |xi| ≤ ‖x‖. For the sufficiency observe that ‖x‖2 ≤
nmaxi |xi|2.

PROOF. Assume that xk → x. Then for every ε > 0 there exists an N
such that ‖xk −x‖ < ε for all k > N. Consequently, for each j one has
|x( j)

k − x( j)| ≤ ‖xk −x‖ < ε for all k > N, that is, x( j)
k → x( j).

Now assume that x( j)
k → x( j) for each j. Then given any ε> 0, for each

j there exists a number N j such that |x( j)
k − x( j)| ≤ ε/

p
n for all k > N j. It

follows that

‖xk −x‖ =
√

n∑
i=1

|x(i)
k − x(i)|2 <

√
n∑

i=1
ε2/n =

√
ε2 = ε

for all k >max{N1, . . . , Nn}. Therefore xk → x as k →∞.

We will see in Section 13.3 below that this theorem is just a conse-
quence of the fact that Euclidean norm and supremum norm are equiv-
alent.

The next theorem gives a criterion for convergent sequences. The
proof of the necessary condition demonstrates a simple but quite power-
ful technique.



13.2 CONVERGENCE 125

A sequence (xk) in Rn is called a Cauchy sequence if for every ε > 0 Definition 13.14
there exists a number N such that ‖xk −xm‖ < ε for all k,m > N.

Cauchy’s covergence criterion. A sequence (xk) in Rn is convergent Theorem 13.15
if and only if it is a Cauchy sequence.

PROOF IDEA. For the necessity of the Cauchy sequence we use the trivial
equality ‖xk−xm‖ = ‖(xk−x)+(x−xm)‖ and apply the triangle inequality
for norms.

For the sufficiency assume that ‖xk − xm‖ ≤ 1
j for all m > k ≥ N j

and construct closed balls B1/ j(xN j ) for all j ∈ N. Their intersection⋂∞
j=1 B1/ j(xN j ) is closed by Theorem 13.7 and is either a single point or

the empty set. The latter can be excluded by an axiom of the real num-
bers.

PROOF. Assume that (xk) converges to x. Then there exists a number N
such that ‖xk −x‖ < ε/2 for all k > N. Hence by the triangle inequality
we find

‖xk −xm‖ = ‖(xk −x)+ (x−xm)‖ ≤ ‖xk −x‖+‖x−xm‖ < ε

2
+ ε

2
= ε

for all k,m > N. Thus (xk) is a Cauchy sequence.
For the converse assume that for all ε = 1/ j there exists an N j such

that ‖xk −xm‖ ≤ 1
j for all m > k ≥ N j, i.e., xm ∈ B1/ j(xN j ) for all m > N j.

Let D j =⋂ j
i=1 B1/i(xNi ). Then xm ∈ D j for all m > N j and thus D j 6= ; for

all j ∈ N. Moreover, the diameter of D j ≤ 2/ j → 0 for j → ∞. By Theo-
rem 13.7, D = ⋂∞

i=1 B1/i(xNi ) is closed. Therefore, either D = {a} consists
of a single point or D =;. The latter can be excluded by a fundamental
property (i.e., an axiom) of the real numbers. (However, this step is out
of the scope of this course.)

The next theorem is another example of an application of the triangle
inequality.

Sum of covergent sequences. Let (xk) and (yk) be two sequences in Theorem 13.16
Rn that converge to x and y, resp. Then

lim
k→∞

(xk +yk)= x+y .

PROOF IDEA. Use the triangle inequality for each term ‖(xk +yk)− (x+
y)‖ = ‖(xk −x)+ (yk −y)‖.

PROOF. Let ε > 0 be arbitrary. Since (xk) is convergent, there exists a
number Nx such that ‖xk −x‖ < ε/2 for all k > Nx. Analogously there
exists a number Ny such that ‖yk −y‖ < ε/2 for all k > Ny. Let N be the
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greater of the two numbers Nx and Ny. Then by the triangle inequality
we find for k > N,

‖(xk +yk)− (x+y)‖ = ‖(xk −x)+ (yk −y)‖
≤ ‖xk −x‖+‖yk −y‖ < ε

2
+ ε

2
= ε .

But this means that (xk +yk)→ (x+y), as claimed.

We can use convergent sequences to characterize closed sets.

Closure and convergence. A set D ⊆Rn is closed if and only if everyTheorem 13.17
convergent sequence of points in D has its limit in D.

PROOF IDEA. For any sequence in D with limit x every ball Bε(x) con-
tains almost all elements of the sequence. Hence it belongs to the closure
of D. So if D is closed then x ∈ D.

Conversely, if x ∈ cl(D) we can select points xk ∈ B1/k(x)∩D. Then
sequence (xk) → x converges. If we assume that every convergent se-
quence of points in D has its limit in D it follows that x ∈ D and hence D
is closed.

PROOF. Assume that D is closed. Let (xk) be a convergent sequence with
limit x such that xk ∈ D for all k. Hence for all ε > 0 there exists an N
such that xk ∈ Bε(x) for all k > N. Therefore Bε(x)∩D 6= ; and x belongs
to the closure of D. Since D is closed, limit x also belongs to D.

Conversely, assume that every convergent sequence of points in D
has its limit in D. Let x ∈ cl(D). Then B1/k(x)∩ D 6= ; for every k ∈
N and we can choose an xk in B1/k(x)∩D. Then xk → x as k → ∞ by
construction. Thus x ∈ D by hypothesis. This shows cl(D) ⊆ D, hence D
is closed.

There is also a smaller brother of the limit of a sequence.

A point a is called an accumulation point of a sequence (xk) if everyDefinition 13.18
open ball Bε(a) contains infinitely many elements of the sequence.

The sequence
(
(−1)k)∞

k=1 = (−1,1,−1,1. . .) has accumulation points −1Example 13.19
and 1 but neither point is a limit of the sequence. ♦

13.3 Equivalent Norms

Our definition of open sets and convergent sequences is based on the Eu-
clidean norm (or metric) in Rn. However, we have already seen that the
concept of norm and metric can be generalized. Different norms might
result in different families of open sets.

Two norms ‖ · ‖ and ‖ · ‖′ are called (topologically) equivalent if everyDefinition 13.20
open set w.r.t. ‖ ·‖ is also an open set w.r.t. ‖ ·‖′ and vice versa.
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Thus every interior point w.r.t. ‖ · ‖ is also an interior point w.r.t. ‖ · ‖’
and vice versa. That is, there must exist two strictly positive constants
c and d such that

c‖x‖ ≤ ‖x‖′ ≤ d‖x‖

for all x ∈Rn.
An immediate consequence is that every sequence that is convergent

w.r.t. some norm is also convergent in every equivalent norm.

Euclidean norm ‖·‖2, 1-norm ‖·‖1, and supremum norm ‖·‖∞ are equiv- Theorem 13.21
alent in Rn.

PROOF. By a straightforward computation we find

‖x‖∞ = max
i=1,...,n

|xi| ≤
n∑

i=1
|xi| = ‖x‖1 ≤

n∑
i=1

(
max

j=1,...,n
|x j|

)
= n‖x‖∞

‖x‖∞ = max
i=1,...,n

|xi| =
√

max
i=1,...,n

|xi|2 ≤
√

n∑
i=1

|xi|2 = ‖x‖2

‖x‖2 =
√

n∑
i=1

|xi|2 ≤
√√√√ n∑

i=1

(
max

j=1,...,n
|x j|

)2
=p

n‖x‖∞

Equivalence of Euclidean norm and 1-norm can be derived from Minkowski’s
inequality. Using x=∑n

i=1 xiei we find

‖x‖2 =
∥∥∥∥∥ n∑

i=1
xiei

∥∥∥∥∥
2

≤
n∑

i=1
‖xiei‖2 =

n∑
i=1

√
|xi|2 = ‖x‖1

‖x‖1 ≤
n∑

i=1

√√√√ n∑
j=1

|x j|2 =
n∑

i=1

√
‖x‖2

2 =
p

n‖x‖2

Notice that the equivalence of Euclidean norm and supremum norm
immediately implies Theorem 13.13.

Theorem 13.21 is a corollary of a much stronger result for norms in
Rn which we state without proof.

Finitely generated vector space. All norms in a finitely generated Theorem 13.22
vector space are equivalent.

For vector spaces which are not finitely generated this theorem does
not hold any more. For example, in probability theory there are different
concepts of convergence for sequences of random variates, e.g., conver-
gence in distribution, in probability, almost surely. The corresponding
norms or metrices are not equivalent. E.g., a sequence that converges in
distribution need not converge almost surely.
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13.4 Compact Sets

Bounded set. A set D in Rn is called bounded if there exists a number
M such that ‖x‖ ≤ M for all x ∈ D. A set that is not bounded is called
unbounded.

M

Obviously every convergent sequence is bounded (see Problem 13.15).
However, the converse is not true. A sequence in a bounded set need not
be convergent. But it always contains an accumulation point and a con-
vergent subsequence.

Subsequence. Let (xk)∞k=1 be a sequence in Rn. Consider a strictlyDefinition 13.23
increasing sequence k1 < k2 < k3 < k4 < . . . of natural numbers, and let
y j = xk j , for j ∈N. Then the sequence (y j)∞j=1 is called a subsequence of
(xk). It is often denoted by (xk j )

∞
j=1.

Let (xk)∞k=1 = (
(−1)k 1

k
)∞
k=1 = (−1, 1

2 ,−1
3 , 1

4 ,−1
5 , 1

6 ,−1
7 , . . .

)
. Then (yk)∞k=1 =Example 13.24 ( 1

2k
)∞
k=1 = (1

2 , 1
4 , 1

6 , 1
8 , . . .

)
and (zk)∞k=1 = (− 1

2k−1
)∞
k=1 = (−1,−1

3 ,−1
5 ,−1

7 , . . .
)

are two subsequences of (xk). ♦

Now let (xk) be a sequence in a bounded subset D ⊆ R2. Since D is
bounded there exists a bounding square K0 ⊇ D of edge length L. Divide
K0 into four equal squares, each of which has sides of length L/2. At least
one of these squares, say K1, must contain infinitely many elements xk
of this sequence. Pick one of these, say xk1 . Next divide K1 into four
squares of edge length L/4. Again in at least one of them, say K2, there
will still be an infinite number of terms from sequence (xk). Take one of
these, xk2 , with k2 > k1.

Repeating this procedure ad infinitum we eventually obtain a subse-
quence (xk j ) of the original sequence that converges by Cauchy’s crite-
rion. It is quite obvious that this approach also works in any Rn where
n may not equal to 2. Then we start with a bounding n-cube which is
recursively divided into 2n subcubes.

We summarize our observations in the following theorem (without
giving a stringent formal proof).

Bolzano-Weierstrass. A subset D of Rn is bounded if and only if everyTheorem 13.25
sequence of points in D has a convergent subsequence.

A subset D of Rn is bounded if and only if every sequence has an accu-Corollary 13.26
mulation point.

We now have seen that convergent sequences can be used to charac-
terize closed sets (Theorem 13.17) and bounded sets (Theorem 13.25).

Compact set. A set D in Rn is called compact if it is closed andDefinition 13.27
bounded.
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Compactness is a central concept in mathematical analysis, see, e.g.,
Theorems 13.36 and 13.37 below. When we combine the results of Theo-
rems 13.17 and 13.25 we get the following characterization.

Bolzano-Weierstrass. A subset D of Rn is compact if and only if every Theorem 13.28
sequence of points in D has a subsequence that converges to a point in
D.

13.5 Continuous Functions

Recall that a univariate function f : R→R is called continuous if (roughly
spoken) small changes in the argument cause small changes of the func-
tion value. One of the formal definitions reads: f is continuous at a point
x0 ∈ R if f (xk) → f (x0) for every sequence (xk) of points that converge to
x0. By our concept of open neighborhood this can easily be generalized
for vector-valued functions.

Continuous functions. A function f = ( f1, . . . , fm) : D ⊆ Rn → Rm is said Definition 13.29
to be continuous at a point x0 if f(xk)→ f(x0) for every sequence (xk) of
points in D that converges to x0. We then have

lim
k→∞

f(xk)= f( lim
k→∞

xk) .

If f is continuous at every point x0 ∈ D, we say that f is continuous on D.

x0

f (x0)

The easiest way to show that a vector-valued function is continuous,
is by looking at each of its components. We get the following result by
means of Theorem 13.13.

Continuity of each component. A function f = ( f1, . . . , fm) : D ⊆ Rn → Theorem 13.30
Rm is continuous at a point x0 if and only if each component function
f j : D ⊆Rn →R is continuous at x0.

There exist equivalent characterizations of continuity which are also
used for alternative definitions of continuous functions in the literature.
The first one uses open balls.

Continuity and images of balls. A function f : D ⊆Rn →Rm is contin- Theorem 13.31
uous at a point x0 in D if and only if for every ε> 0 there exists a δ> 0
such that∥∥f(x)− f(x0)

∥∥< ε for all x ∈ D with
∥∥x−x0∥∥< δ

or equivalently,

Bδ(x0)

Bε( f (x0))

f
(
Bδ(x0)∩D

)⊆ Bε

(
f(x0)

)
.
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PROOF IDEA. Assume that the condition holds and let (xk) be a conver-
gent sequence with limit x0. Then for every ε> 0 we can find an N such
that

∥∥f(xk)− f(x0)
∥∥< ε for all k > N, i.e., f(xk)→ f(x0), which means that

f is continuous at x0.
Now suppose that there exists an ε0 > 0 where the condition is vio-

lated. Then there exists an xk ∈ Bδ(x0) with f(xk) ∈ f
(
Bδ(x0)

)
\ Bε0

(
f(x0)

)
for every δ= 1

k , k ∈N. By construction xk → x0 but f(xk) 6→ f(x0). Thus f
is not continuous at x0.

PROOF. Suppose that the condition holds. Let ε> 0 be given. Then there
exists a δ > 0 such that

∥∥f(x)− f(x0)
∥∥ < ε whenever

∥∥x−x0∥∥ < δ. Now
let (xk) be a sequence in D that converges to x0. Thus for every δ > 0
there exists a number N such that

∥∥xk −x0∥∥< δ for all k > N. But then∥∥f(xk)− f(x0)
∥∥< ε for all k > N, and consequently f(xk)→ f(x0) for k →∞,

which implies that f is continuous at x0.
Conversely, assume that f is continuous at x0 but the condition does

not hold, that is, there exists an ε0 > 0 such that for all δ = 1/k, k ∈
N, there is an x ∈ D with

∥∥f(x)− f(x0)
∥∥ ≥ ε0 albeit

∥∥x−x0∥∥ < 1/k. Now
pick a point xk in D with this property for all k ∈ N. Then sequence
(xk) converges to x0 by construction but f(xk) 6∈ Bε0

(
f(x0)

)
. This means,

however, that (f(xk)) does not converge to f(x0), a contradiction to our
assumption that f is continuous.Bδ(x0)

Bε0 ( f (x0))

Continuous functions f : Rn → Rm can also be characterized by their
preimages. While the image f(D) of some open set D ⊆ Rn need not nec-
essarily be an open set (see Problem 13.18) this always holds for the
preimage of some open set U ⊆Rm,

f−1(U)= {x : f(x) ∈U} .

For the statement of the general result where the domain of f is not
necessarily open we need the notion of relative open sets.

Let D be a subset in Rn. ThenDefinition 13.32

(a) A is relatively open in D if A =U ∩D for some open set U in Rn.

(b) A is relatively closed in D if A = F∩D for some closed set F in Rn.

Obviously every open subset of an open set D ⊆Rn is relatively open.
The usefulness of the concept can be demonstrated by the following ex-
ample.

Let D = [0,1] ⊆ R be the domain of some function f . Then A = (1/2,1]Example 13.33
obviously is not an open set in R. However, A is relatively open in D as
A = (1/2,∞)∩ [0,1]= (1/2,∞)∩D. ♦

Characterization of continuity. A function f : D ⊆Rn →Rm is continu-Theorem 13.34
ous if and only if either of the following equivalent conditions is satisfied:
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(a) f−1(U) is relatively open for each open set U in Rm.

(b) f−1(F) is relatively closed for each closed set F in Rm.

PROOF IDEA. If U ⊆ Rm is open, then for all x ∈ f−1(U) there exists an
ε> 0 such that Bε(f(x)) ⊆U . If in addition f is continuous, then Bδ(x) ⊆
f−1(Bε(f(x)))⊆ f−1(U) by Theorem 13.31 and hence f−1(U) is open.

Conversely, if f−1(Bε(f(x))) is open for all x ∈ D and all ε > 0, then
there exists a δ > 0 such that Bδ(x) ⊆ f−1(Bε(f(x))) and thus f (Bδ(x)) ⊆
Bε(f(x)), i.e., f is continuous at x by Theorem 13.31.

PROOF. For simplicity we only prove the case where D =Rn.
(a) Suppose f is continuous and U is an open set in Rm. Let x be

any point in f−1(U). Then f(x) ∈ U . As U is open there exists an ε> 0
such that Bε(f(x)) ⊆U . By Theorem 13.31 there exists a δ> 0 such that
f (Bδ(x))⊆ Bε(f(x))⊆U . Thus Bδ(x) belongs to the preimage of U . There-
fore x is an interior point of f−1(U) which means that f−1(U) is an open
set.

Conversely, assume that f−1(U) is open for each open set U ⊆ Rm.
Let x be any point in D. Let ε > 0 be arbitrary. Then U = Bε(f(x)) is
an open set and by hypothesis the preimage f−1(U) is open in D. Thus
there exists a δ > 0 such that Bδ(x) ⊆ f−1(U) = f−1 (Bε(f(x))) and hence
f (Bδ(x)) ⊆ U = Bε(f(x)). Consequently, f is continuous at x by Theo-
rem 13.31. This completes the proof.

(b) This follows immediately from (a) and Lemma 13.5.

Let U(x) = U(x1, . . . , xn) be a household’s real-valued utility function, Example 13.35
where x denotes its commodity vector and U is defined on the whole
of Rn. Then for a number a the upper level set Γa = {x ∈ Rn : U(x) ≥ a}
consists of all vectors where the household values are at least as much
as a. Let F be the closed interval [a,∞). Then

Γa = {x ∈Rn : U(x)≥ a}= {x ∈Rn : U(x) ∈ F}=U−1(F) .

According to Theorem 13.34, if U is continuous, then Γa is closed for each
value of a. Hence, continuous functions generate close upper level sets.
They also generate closed lower level sets. ♦

Let f be a continuous function. As already noted the image f(D)
of some open set needs not be open. Similarly neither the image of a
closed set is necessarily closed, nor needs the image of a bounded set be
bounded (see Problem 13.18). However, there is a remarkable exception.

Continuous functions preserve compactness. Let f : D ⊆ Rn → Rm Theorem 13.36
be continuous. Then the image f(K)= {f(x) : x ∈ K} of every compact sub-
set K of D is compact.
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PROOF IDEA. Take any sequence (yk) in f(K) and a sequence (xk) of its
preimages in K , i.e., yk = f(xk). We now apply the Bolzano-Weierstrass
Theorem twice: (xk) has a subsequence (xk j ) that converges to some
point x0 ∈ K . By continuity yk j = f(xk j ) converges to f(x0) ∈ f(K). Hence
f(K) is compact by the Bolzano-Weierstrass Theorem.

PROOF. Let (yk) be any sequence in f(K). By definition, for each k there
is a point xk ∈ K such that yk = f(xk). By Theorem 13.28 (Bolzano-
Weierstrass Theorem), there exists a subsequence (xk j ) that converges
to a point x0 ∈ K . Because f is continuous, f(xk j )→ f(x0) as j →∞ where
f(x0) ∈ f(K). But then (yk j ) is a subsequence of (yk) that converges to
f(x0) ∈ f(K). Thus f(K) is compact by Theorem 13.28, as claimed.

We close this section with an important result in optimization theory.

Extreme-value theorem. Let f : K ⊆ Rn → R be a continuous functionTheorem 13.37
on a compact set K . Then f has both a maximum point and a minimum
point in K .

PROOF IDEA. By Theorem 13.36, f(K) is compact. Thus f(K) is bounded
and closed, that is, f(K) = [a,b] for a,b ∈ R and f attains its minimum
and maximum in respective points xm,xM ∈ K .

PROOF. By Theorem 13.36, f (K) is compact. In particular, f (K) is
bounded, and so −∞< a = infx∈K f (x) and b = supx∈K f (x) <∞. Clearly
a and b are boundary points of f (K) which belong to f (K), as f (K) is
closed. Hence there must exist points xm and xM such that f (xm) = a
and f (xM) = b. Obviously xm and xM are minimum point and a maxi-
mum point of K , respectively.
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— Problems

13.1 Is Q = {(x, y) ∈R2 : x > 0, y≥ 0} open, closed, or neither?

13.2 Is H = {(x, y) ∈R2 : x > 0, y≥ 1/x} open, closed, or neither? HINT: Sketch set H.

13.3 Let F = {(1/k,0) ∈R2 : k ∈N}. Is F open, closed, or neither? HINT: Is (0,0) ∈ F?

13.4 Show that the open ball D = Br(a) is an open set.
HINT: Take any point x ∈ Br(a) and an open ball Bε(x) of sufficiently small radius
ε. (How small is “sufficiently small”?) Show that Bε(x) ⊆ D by means of the
triangle inequality.

13.5 Give respective examples for non-empty sets D ⊆R2 which are

(a) neither open nor closed, or
(b) both open and closed, or
(c) closed and have empty interior, or
(d) not closed and have empty interior.

13.6 Show that a set D ⊆Rn is closed if and only if its complement Dc = HINT: Look at boundary
points of D.Rn \ D is open (Lemma 13.5).

13.7 Show that a set D ⊆ Rn is open if and only if its complement Dc is HINT: Use Lemma 13.5.

closed.

13.8 Show that closure cl(D) and boundary ∂D are closed for any D ⊆ HINT: Suppose that there is
a boundary point of ∂D that
is not a boundary point of D.

Rn.

13.9 Let D and F be subsets of Rn such that D ⊆ F. Show that

int(D)⊆ int(F) and cl(D)⊆ cl(F) .

13.10 Recall the proof of Theorem 13.6.

(a) Where exactly do you need the assumption that there is an
intersection of finitely many open sets in statement (3)?

(b) Let D be the intersection of the infinite family B1/k(0), k = HINT: Is there any point in
D other than 0?1,2, . . ., of open balls centered at 0. Is D open or closed?

13.11 Prove Theorem 13.7. HINT: Use Theorem 13.6 and
De Morgan’s law.

13.12 Prove Theorem 13.10.

13.13 Show that the limit of a convergent sequence is uniquely defined. HINT: Suppose that two
limits exist.

13.14 Show that for any points x,y ∈Rn and every j = 1, . . . ,n,

|x j − yj| ≤ ‖x−y‖2 ≤
p

n max
i=1,...,n

|xi − yi| .

13.15 Show that every convergent sequence (xk) in Rn is bounded.
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13.16 Give an example for a bounded sequence that is not convergent.

13.17 For fixed a ∈Rn, show that the function f : Rn →R defined by f (x)=HINT: Use Theorem 13.31
and inequality∣∣‖x‖−‖y‖∣∣≤ ‖x−y‖.

‖x−a‖ is continuous.

13.18 Give examples of non-empty subsets D of Rn and continuous func-
tions f : R→R such that

(a) D is closed, but f (D) is not closed.
(b) D is open, but f (D) is not open.
(c) D is bounded, but f (D) is not bounded.

13.19 Prove that the set

D = {x ∈Rn : g j(x)≤ 0, j = 1, . . . ,m}

is closed if the functions g j are all continuous.



14
Derivatives

We want to have the best linear approximation of a function.

Derivatives are an extremely powerful tool for investigating properties
of functions. For univariate functions it allows to check for monotonic-
ity or concavity, or to find candidates for extremal points and verify its
optimality. Therefore we want to generalize this tool for multivariate
functions.

14.1 Roots of Univariate Functions

The following theorem seems to be trivial. However, it is of great impor-
tance as is assures the existence of a root of a continuous function.

Intermediate value theorem (Bolzano). Let f : [a,b] ⊆ R→ R be a Theorem 14.1
continuous function and assume that f (a) > 0 and f (b) < 0. Then there
exists a point c ∈ (a,b) such that f (c)= 0.

PROOF IDEA. We use a technique called interval bisectioning: Start with
interval [a0,b0]= [a,b], split the interval at c1 = (a1+b1)/2 and continue
with the subinterval where f changes sign. By iterating this procedure
we obtain a sequence of intervals [an,bn] of lengths (b− a)/2n → 0. By
Cauchy’s convergence criterion sequence (cn) converges to some point c
with 0≤ lim

n→∞ f (cn)≤ 0. As f is continuous, we find f (c)= lim
n→∞ f (cn)= 0.

a bc

PROOF. We construct a sequence of intervals [an,bn] by a method called
interval bisectioning. Let [a0,b0]= [a,b]. Define cn = an+bn

2 and

[an+1,bn+1]=
{

[cn,bn] if f (cn)≥ 0,

[an, cn] if f (cn)< 0,
for n = 1,2, . . .

Notice that |ak−an| < 2−N (b−a) and |bk−bn| < 2−N (b−a) for all k,n ≥ N.
Hence (ai) and (bi) are Cauchy sequences and thus converge to respec-
tive points c+ and c− in [a,b] by Cauchy’s convergence criterion. More-
over, for every ε> 0, |c+−c−| ≤ |ak−c+|+|bk−c−| < ε for sufficiently large

135
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k and thus c+ = c− = c. By construction f (ak) ≥ 0 and f (bk) ≤ 0 for all
k. By assumption f is continuous and thus f (c) = limk→∞ f (ak) ≥ 0 and
f (c)= limk→∞ f (bk)≤ 0, i.e., f (c)= 0 as claimed.

Interval bisectioning is a brute force method for finding a root of some
function f . It is sometimes used as a last resort. Notice, however, that
this is a rather slow method. Newton’s method, secant method or regula
falsi are much faster algorithms.

14.2 Limits of a Function

For the definition of derivative we need the concept of limit of a function.

Limit. Let f : D ⊆ R → R be some function. Then the limit of f as xDefinition 14.2
approaches x0 is y0 if for every convergent sequence of arguments xk →
x0, the sequences of images converges to y0, i.e., f (xk) → y0 as k → ∞.
We write

lim
x→x0

f (x)= y0, or f (x)→ y0 as x → x0 .

Notice that x0 need not be an element of domain D and (in abuse of
language) may also be ∞ or −∞.

x0

y0

Thus results for limits of sequences (Theorem 12.14) translates im-
mediately into results on limits of functions.

Rules for limits. Let f : R→R and g : R→R be two functions where bothTheorem 14.3
lim
x→x0

f (x) and lim
x→x0

g(x) exist. Then

(1) lim
x→x0

(
α f (x)+βg(x)

)=α lim
x→x0

f (x)+β lim
x→x0

g(x) for all α,β ∈R

(2) lim
x→x0

(
f (x) · g(x)

)= lim
x→x0

f (x) · lim
x→x0

g(x)

(3) lim
x→x0

f (x)
g(x)

= limx→x0 f (x)
limx→x0 g(x)

(if limx→x0 g(x) 6= 0)

(4) lim
x→x0

(
f (x)

)α = (
lim
x→x0

f (x)
)α (for α ∈R, if

(
limx→x0 f (x)

)α is defined)

The notion of limit can be easily generalized for arbitrary transfor-
mations.

Let f : D ⊆Rn →Rm be some function. Then the limit of f as x approachesDefinition 14.4
x0 is y0 if for every convergent sequence of arguments xk → x0, the se-
quences of images converges to y0, i.e., f(x0)→ y0. We write

lim
x→x0

f(x)= y0, or f(x)→ y0 as x→ x0 .

The point x0 need not be an element of domain D.
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Writing lim
x→x0

f(x) = y0 means that we can make f(x) as close to y0 as

we want when we put x sufficiently close to x0. Notice that a limit at
some point x0 may not exist.

Similarly to our results in Section 13.5 we get the following equiv-
alent characterization of the limit of a function. It is often used as an
alternative definition of the term limit.

Let f : D ⊆ Rn → Rm be a function. Then lim
x→x0

f(x) = y0 if and only if for Theorem 14.5

every ε> 0 there exists a δ> 0 such that

f (Bδ(x0)∩D)⊆ Bε(y0)) .

Bδ(x0)

Bε(y0)

14.3 Derivatives of Univariate Functions

Recall that the derivative of a function f : D ⊆R→R at some point x is Definition 14.6
defined as the limit

f ′(x)= lim
h→0

f (x+h)− f (x)
h

.

If this limit exists we say that f is differentiable at x. If f is differen-
tiable at every point x ∈ D, we say that f is differentiable on D.

x

1

f ′(x0)

Notice that the term derivative is a bit ambiguous. The derivative at
point x is a number, namely the limit of the difference quotient of f
at point x, that is

f ′(x)= d
dx

f (x)= lim
∆x→0

∆ f (x)
∆x

= lim
∆x→0

f (x+∆x)− f (x)
∆x

.

This number is sometimes called differential coefficient. The differ-
ential notation d f

dx is an alternative notation for the derivative which is
due to Leibniz. It is very important to remind that differentiability is a
local property of a function.

On the other hand, the derivative of f is a function that assigns
every point x the derivative d f

dx at x. Its domain is the set of all points
where f is differentiable. Thus d

dx is called the differential operator
which maps a given function f to its derivative f ′. Notice that the dif-
ferential operator is a linear map, that is

d
dx

(
α f (x)+βg(x)

)
=α d

dx
f (x)+β d

dx
g(x)

for all α,β ∈R, see rules (1) and (2) in Table 14.9.
Differentiability is a stronger property than continuity. Observe that

the numerator f (x+h)− f (x) of the difference quotient must coverge to
0 for h → 0 if f is differentiable in x since otherwise the differential
quotient would not exist. Thus limh→0 f (x+h)= f (x) and we find:
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f (x) f ′(x)

c 0

xα α · xα−1 (Power rule)

ex ex

ln(x)
1
x

sin(x) cos(x)

cos(x) −sin(x)

Table 14.8

Derivatives of some
elementary functions.

If f : D ⊆R→R is differentiable at x, then f is also continuous at x.Lemma 14.7

Computing limits is a hard job. Therefore, we just list derivatives ofSee Problem 14.14 for a spe-
cial case. some elementary functions in Table 14.8 without proof.

In addition, there exist a couple of rules to reduce the derivative of
a given expression to those of elementary functions. Table 14.9 summa-
rizes these rules. Their proofs are straightforward and we given some
of these below. See Problem 14.20 for the summation rule and Prob-
lem 14.21 for the quotient rule.

PROOF OF RULE (3). Let F(x)= f (x)·g(x). Then we find by Theorem 14.3

F ′(x)= lim
h→0

F(x+h)−F(x)
h

= lim
h→0

[ f (x+h) · g(x+h)]− [ f (x) · g(x)]
h

= lim
h→0

f (x+h)g(x+h)− f (x)g(x+h)+ f (x)g(x+h)− f (x)g(x)
h

= lim
h→0

f (x+h)− f (x)
h

g(x+h)+ lim
h→0

f (x)
g(x+h)− g(x)

h

= lim
h→0

f (x+h)− f (x)
h

[
g(x+h)− g(x)

h
h+ g(x)

]
+ lim

h→0
f (x)

g(x+h)− g(x)
h

= f ′(x)g(x)+ f (x)g′(x)

as proposed.

PROOF OF RULE (4). Let F(x)= ( f ◦ g)(x)= f (g(x)). Then

F ′(x)= lim
h→0

F(x+h)−F(x)
h

= lim
h→0

f (g(x+h))− f (g(x))
h

The change from x to x+h causes the value of g change by the amount
k = g(x+h)− g(x). As lim

h→0
k = lim

h→0

[
g(x+h)−g(x)

h

]
·h = g′(x) ·0= 0 we find by
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Let g be differentiable at x and f be differentiable at x and g(x).
Then sum f + g, product f · g, composition f ◦ g, and quotient f /g (for
g(x) 6= 0) are differentiable at x, and

(1) (c · f (x))′ = c · f ′(x)

(2) ( f (x)+ g(x))′ = f ′(x)+ g′(x) (Summation rule)

(3) ( f (x) · g(x))′ = f ′(x) · g(x)+ f (x) · g′(x) (Product rule)

(4) ( f (g(x)))′ = f ′(g(x)) · g′(x) (Chain rule)

(5)
(

f (x)
g(x)

)′
= f ′(x) · g(x)− f (x) · g′(x)

(g(x))2 (Quotient rule)

Table 14.9

Rules for
differentiation.

Theorem 14.3

F ′(x)= lim
h→0

f (g(x)+k))− f (g(x))
k

· k
h

= lim
h→0

f (g(x)+k))− f (g(x))
k

· g(x+h)− g(x)
h

= f ′(g(x)) · g′(x)

as claimed.

The chain rule can be stated in a quite convenient form by means of
differential notation. Let y be function of u, i.e. y= y(u), and u itself is a
function of x, i.e., u = u(x), then we find for the derivative of y(u(x)),

d y
dx

= d y
du

· du
dx

.

An important application of the chain rule is in the computation of
derivatives when variables are changed. Problem 14.24 discusses the
case when linear scale is replaces by logarithmic scale.

14.4 Higher Order Derivatives

We have seen that the derivative f ′ of a function f is again a function.
This function may again be differentiable and we then can compute the
derivative of derivative f ′. It is called the second derivative of f and
denoted by f ′′. Recursively, we can compute the third, forth, fifth, . . .
derivatives denote by f ′′′, f iv, f v, . . . .

The nth order derivative is denoted by f (n) and we have

f (n) = d
dx

(
f (n−1)

)
with f (0) = f .
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14.5 The Mean Value Theorem

Our definition of the derivative of a function,

f ′(x)= lim
∆x→0

f (x+∆x)− f (x)
∆x

,

implies for small values of ∆x

f (x+∆x)≈ f (x)+ f ′(x)∆x .

The deviation of this linear approximation of function f at x+∆x becomes
small for small values of |∆x|. We even may improve this approximation.

Mean value theorem. Let f be continuous in the closed bounded inter-Theorem 14.10
val [a,b] and differentiable in (a,b). Then there exists a point ξ ∈ (a,b)
such that

f ′(ξ)= f (b)− f (a)
b−a

.

In particular we find

x

f (x)

a bξ

f (b)= f (a)+ f ′(ξ) (b−a) .

PROOF IDEA. We first consider the special case where f (a)= f (b). Then
by Theorem 13.37 (and w.l.o.g.) there exists a maximum ξ ∈ (a,b) of f . We
then estimate the limit of the differential quotient when x approaches ξ
from the left hand side and from the right hand side, respectively. For
the first case we find that f ′(ξ)≥ 0. The second case implies f ′(ξ)≤ 0 and
hence f ′(ξ)= 0.

PROOF. Assume first that f (a) = f (b). If f is constant, then we trivially
have f ′(x) = 0 = f (b)− f (a)

b−a for all x ∈ (a,b). Otherwise there exists an x
with f (x) 6= f (a). Without loss of generality, f (x) > f (a). (Otherwise we
consider − f .) Let ξ be a maximum of f , i.e., f (ξ) ≥ f (x) for all x ∈ [a,b].ξ exists by Theorem 13.37.

By our assumptions, ξ ∈ (a,b). Now construct sequences xk → ξ as k →∞
with xk ∈ [a,ξ) and yk → ξ as k →∞ with yk ∈ (ξ,b]. Then we find

0≤ lim
k→∞

f (yk)− f (ξ)
yk −ξ︸ ︷︷ ︸
≥0

= f ′(ξ)= lim
k→∞

f (xk)− f (ξ)
xk −ξ︸ ︷︷ ︸
≤0

≤ 0 .

Consequently, f ′(ξ)= 0 as claimed.
For the general case consider the function

g(x)= f (x)− f (b)− f (a)
b−a

(x−a) .

Then g(a)= g(b) and there exists a point ξ ∈ (a,b) such that g′(ξ)= 0, i.e.,
f ′(ξ)− f (a)− f (b)

b−a = 0. Thus the proposition follows.

The special case where f (a)= f (b) is also known as Rolle’s theorem.
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14.6 Gradient and Directional Derivatives

The partial derivative of a multivariate function f (x) = f (x1, . . . , xn) Definition 14.11
with respect to variable xi is given as

∂ f
∂xi

= lim
h→0

f (. . . , xi +h, . . .)− f (. . . , xi, . . .)
h

that is, the derivative of f when all variables x j with j 6= i are held con-
stant.

In the literature there exist several symbols for the partial derivative of
f :

∂ f
∂xi

. . . derivative w.r.t. xi

fxi (x) . . . derivative w.r.t. variable xi
f i(x) . . . derivative w.r.t. the ith variable
f ′i (x) . . . ith component of the gradient f ′

∂ f
∂x1

∂ f
∂x2

x

Notice that the notion of partial derivative is equivalent to the deriva-
tive of the univariate function g(t)= f (x+ tei) at t = 0, where ei denotes
the ith unit vector,

fxi (x)= ∂ f
∂xi

= dg
dt

∣∣∣∣
t=0

= d
dt

f (x+ t ·ei)
∣∣∣∣
t=0

We can, however, replace the unit vectors by arbitrary normalized
vectors h (i.e., ‖h‖ = 1). Thus we obtain the derivative of f when we
move along a straight line through x in direction h.

The directional derivative of f (x)= f (x1, . . . , xn) at x with respect to h Definition 14.12
is given by

fh = ∂ f
∂h

= dg
dt

∣∣∣∣
t=0

= d
dt

f (x+ t ·h)
∣∣∣∣
t=0

Partial derivatives are special cases of directional derivatives.

∂ f
∂h

h
xThe directional derivative can be computed by means of the partial

derivatives of f . For the bivariate case (n = 2) we find

∂ f
∂h

= lim
t→0

f (x+ th)− f (x)
t

= lim
t→0

(
f (x+ th)− f (x+ t h1 e1))

)+ (
f (x+ t h1 e1)− f (x)

)
t

= lim
t→0

f (x+ th)− f (x+ t h1 e1)
t

+ lim
t→0

f (x+ t h1 e1)− f (x)
t

Notice that th= t h1 e1+ t h2 e2. By the mean value theorem there exists

ξ1(t)

ξ2(t)

x

x+ th

x+ th1e1

a point ξ1(t) ∈ {x+θh1 e1 : θ ∈ (0, t)} such that

f (x+ t h1 e1)− f (x)= fx1(ξ1(t)) · t h1
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and a point ξ2(t) ∈ {x+ t h1 e1 +θh2 e2 : θ ∈ (0, t)} such that

f (x+ t h1 e1 + t h2 e2)− f (x+ t h1 e1)= fx2(ξ2(t)) · t h2 .

Consequently,

∂ f
∂h

= lim
t→0

fx2(ξ2(t)) · t h2

t
+ lim

t→0

fx1(ξ1(t)) · t h1

t
= lim

t→0
fx2(ξ2(t))h2 + lim

t→0
fx1(ξ1(t))h1

= fx2(x)h2 + fx1(x)h1

The last equality holds if the partial derivatives fx1 and fx2 are continu-
ous functions of x.

The continuity of the partial derivatives is crucial for our deduction.
Thus we define the class of continuously differentiable functions,
denoted by C 1.

A function f : D ⊆Rn →R belongs to class C m if all its partial derivativesDefinition 14.13
of order m or smaller are continuous. The function belongs to class C ∞

if partial derivatives of all orders exist.

It also seems appropriate to collect all first partial derivatives in a
row vector.

Gradient. Let f : D ⊆Rn →R be a C 1 function. Then the gradient of fDefinition 14.14
at x is the row vector

f ′(x)=∇ f (x)= (
fx1(x), . . . , fxn (x)

)
[ called “nabla f ”. ]

We can summarize our observations in the following theorem.

The directional derivative of a C 1 function f (x) = f (x1, . . . , xn) at xTheorem 14.15
with respect to direction h with ‖h‖ = 1 is given by

∂ f
∂h

(x)= fx1(x) ·h1 +·· ·+ fxn (x) ·hn =∇ f (x) ·h .

This theorem implies some nice properties of the gradient.

Properties of the gradient. Let f : D ⊆Rn →R be a C 1 function. ThenTheorem 14.16
we find

(1) ∇ f (x) points into the direction of the steepest directional derivative
at x.

(2) ‖∇ f (x)‖ is the maximum among all directional derivatives at x.

(3) ∇ f (x) is orthogonal to the level set through x.∇ f
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PROOF. By the Cauchy-Schwarz inequality we have

∇ f (x)h≤ |∇ f (x)h| ≤ ‖∇ f (x)‖ · ‖h‖︸︷︷︸
=1

=∇ f (x)
∇ f (x)
‖∇ f (x)‖

where equality holds if and only if h = ∇ f (x)/‖∇ f (x)‖. Thus (1) and (2)
follow. For the proof of (3) we need the concepts of level sets and implicit
functions. Thus we skip the proof.

14.7 Higher Order Partial Derivatives

The functions fxi are called first-order partial derivatives. Provided Definition 14.17
that these functions are again differentiable, we can generate new func-
tions by taking their partial derivatives. Thus we obtain second-order
partial derivatives. They are represented as

∂

∂x j

(
∂ f
∂xi

)
= ∂2 f
∂x j∂xi

and
∂

∂xi

(
∂ f
∂xi

)
= ∂2 f
∂x2

i
.

Alternative notations are

fxi x j and fxi xi or f ′′i j and f ′′ii .

There are n2 many second-order derivatives for a function f (x1, . . . , xn).
Fortunately, for essentially all our functions we need not take care about
the succession of particular derivatives. The next theorem provides a
sufficient condition. Notice that we again need that all the requested
partial derivatives are continuous.

Young’s theorem, Schwarz’ theorem. Let f : D ⊆ Rn → R be a C m Theorem 14.18
function, that is, all the mth order partial derivatives of f (x1, . . . , xn) exist
and are continuous. If any two of them involve differentiating w.r.t. each
of the variables the same number of times, then they are necessarily
equal. In particular we find for every C 2 function f ,

∂2 f
∂xi∂x j

= ∂2 f
∂x j∂xi

.

A proof of this theorem is given in most advanced calculus books.

Hessian matrix. Let f : D ⊆ Rn → R be a two times differentiable func- Definition 14.19
tion. Then the n×n matrix

f ′′(x)=H f (x)=

 f ′′11 . . . f ′′1n
...

. . .
...

f ′′n1 . . . f ′′nn


is called the Hessian of f .

By Young’s theorem the Hessian is symmetric for C 2 functions.
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14.8 Derivatives of Multivariate Functions

We want to generalize the notion of derivative to multivariate functions
and transformations. Our starting point is the following observation for
univariate functions.

Linear approximation. A function f : D ⊆ R→ R is differentiable at anTheorem 14.20
interior point x0 ∈ D if and only if there exists a linear function ` such
that

lim
h→0

|( f (x0 +h)− f (x0))−`(h)|
|h| = 0.

We have `(h)= f ′(x0) ·h (i.e., the differential of f at x0).

PROOF. Assume that f is differentiable in x0. Then

lim
h→0

( f (x0 +h)− f (x0))− f ′(x0)h
h

= lim
h→0

f (x0 +h)− f (x0)
h

− f ′(x0)

= f ′(x0)− f ′(x0)= 0.

Since the absolute value is a continuous function of its argument, the
proposition follows.

Conversely, assume that a linear function `(h)= ah exists such that

lim
h→0

|( f (x0 +h)− f (x0))−`(h)|
|h| = 0 .

Then we find

0= lim
h→0

|( f (x0 +h)− f (x0))−ah|
|h| = lim

h→0

( f (x0 +h)− f (x0))−ah
h

= lim
h→0

f (x0 +h)− f (x0)
h

−a

and consequently

lim
h→0

f (x0 +h)− f (x0)
h

= a .

But then the limit of the difference quotient exists and f is differentiable
at x0.

An immediate consequence of Theorem 14.20 is that we can use the
existence of such a linear function for the definition of the term differen-
tiable and the linear function ` for the definition of derivative. With the
notion of norm we can easily extend such a definition to transformations.

A function f : D ⊆ Rn → Rm is differentiable at an interior point x0 ∈ DDefinition 14.21
if there exists a linear function ` such that

lim
h→0

‖(f(x0 +h)− f(x0))−`(h)‖
‖h‖ = 0.

The linear function (if it exists) is then given by an m×n matrix A, i.e.,
`(h)=Ah. This matrix is called the (total) derivative of f and denoted
by f′(x0) or Df(x0).
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A function f = ( f1(x), . . . , fm(x))′ : D ⊆ Rn → Rm is differentiable at an in- Lemma 14.22
terior point x0 of D if and only if each component function f i : D → R is
differentiable.

PROOF. Let A be an m×n matrix and R(h)= (f(x0+h)−f(x0))−Ah. Then
we find for each j = 1, . . . ,m,

0≤ |R j(h)| ≤ ‖R(h)‖2 ≤ ‖R(h)‖1 =
m∑

i=1
|Ri(h)| .

Therefore, lim
h→0

‖R(h)‖
‖h‖ = 0 if and only if lim

h→0

|R j(h)|
‖h‖ = 0 for all j = 1, . . . ,m.

The derivative can be computed by means of the partial derivatives
of all the components of f.

Computation of derivative. Let f= ( f1(x), . . . , fm(x))′ : D ⊆Rn →Rm be Theorem 14.23
differentiable at x0. Then

Df(x0)=


∂ f1
x1

(x0) . . . ∂ f1
xn

(x0)
...

. . .
...

∂ fm
x1

(x0) . . . ∂ fm
xn

(x0)

=

∇ f1(x0)
...

∇ fm(x0)


This matrix is called the Jacobian matrix of f at x0.

PROOF IDEA. In order to compute the components of f′(x0) we estimate
the change of f j as function of the kth variable.

PROOF. Let A = (a1, . . . ,am)′ denote the derivative of f at x0 where a′
j is

the jth row vector of A. By Lemma 14.22 each component function f j is
differentiable at x0 and thus

lim
h→0

|( f j(x0 +h)− f j(x0))−a′
jh|

‖h‖ = 0.

Now set h= tek where ek denotes the kth unit vector in Rn. Then

0= lim
t→0

|( f j(x0 + tek)− f j(x0))− ta′
jek|

|t|
= lim

t→0

f j(x0 + tek)− f j(x0)
t

−a′
jek

= ∂ f j

∂xk
(x0)−a jk .

That is, a jk = ∂ f j
∂xk

(x0), as proposed.
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Notice that an immediate consequence of Theorem 14.23 is that the
derivative f′(x0) is uniquely defined (if it exists).

If f : D ⊆ Rn → R, then the Jacobian matrix reduces to a row vector
and we find f ′(x)=∇ f (x), i.e., the gradient of f .

The computation by means of the Jacobian matrix suggests that the
derivative of a function exists whenever all its partial derivatives exist.
However, this need not be the case. Problem 14.25 shows a counterex-
ample. Nevertheless, there exists a simple condition for the existence of
the derivative of a multivariate function.

Existence of derivatives. If f is a C 1 function from an open set D ⊆RnTheorem 14.24
into Rm, then f is differentiable at every point x ∈ D.

SKETCH OF PROOF. Similar to the proof of Theorem 14.15 on page 142.

Differentiability is a stronger property than continuity as the follow-
ing result shows.

If f : D ⊆ Rn → Rm is differentiable at an interior point x0 ∈ D, then f isTheorem 14.25
also continuous at x0.

PROOF. Let A denote the derivative at x0. Then we find

‖f(x0 +h)− f(x0)‖ = ‖f(x0 +h)− f(x0)−Ah+Ah‖

≤ ‖h‖︸︷︷︸
→0

· ‖f(x0 +h)− f(x0)−Ah‖
‖h‖︸ ︷︷ ︸
→0

+‖Ah‖︸ ︷︷ ︸
→0

→ 0 as h→ 0.

The ratio tends to 0 since f is differentiable. Thus f is continuous at x0,
as claimed.

Chain rule. Let f : D ⊆ Rn → Rm and g : B ⊆ Rm → Rp with f(D) ⊆ B.Theorem 14.26
Suppose f and g are differentiable at x and f(x), respectively. Then the
composite function g◦ f : D →Rp defined by (g◦ f)(x)= g(f(x)) is differen-
tiable at x, and

(g◦ f)′(x)= g′(f(x)
) · f′(x)) .

PROOF IDEA. A heuristic derivation for the chain rule using linear ap-
proximation is obtained in the following way:

(g◦ f)′(x)h≈ (g◦ f)(x+h)− (g◦ f)(x)

= g
(
f(x+h)

)−g
(
f(x)

)
≈ g′(f(x)

)[
f(x+h)− f(x)

]
≈ g′(f(x)

)
f′(x)h

for “sufficiently short” vectors h.
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PROOF. Let R f (h)= f(x+h)−f(x)−f′(x)h and Rg(k)= g
(
f(x)+k

)−g
(
f(x)

)−
g′(f(x)

)
k. As both f and g are differentiable at x and f(x), respectively,

lim
h→0

‖R f (h)‖/‖h‖ = 0 and lim
k→0

‖Rg(k)‖/‖k‖ = 0. Define k(h)= f(x+h)−f(x).

Then we find

R(h)= g
(
f(x+h)

)−g
(
f(x)

)−g′(f(x)
)
f′(x)h

= g
(
f(x)+k(h)

)−g
(
f(x)

)−g′(f(x)
)
f′(x)h

= g′(f(x)
)
k(h)+Rg

(
k(h)

)−g′(f(x)
)
f′(x)h

= g′(f(x)
)[

k(h)− f′(x)h
]+Rg

(
k(h)

)
= g′(f(x)

)[
f(x+h)− f(x)− f′(x)h

]+Rg
(
k(h)

)
= g′(f(x)

)
R f (h)+Rg

(
k(h)

)
.

Thus by the triangle inequality we have

‖R(h)‖
‖h‖ ≤ ‖g′(f(x))R f (h)‖

‖h‖ + ‖Rg(k(h))‖
‖h‖ .

The right hand side converges to zero as h → 0 and hence proposition
follows1.

Notice that the derivatives in the chain rule are matrices. Thus the
derivative of a composite function is the composite of linear functions.

Let f(x, y) =
(
x2 + y2

x2 − y2

)
and g(x, y) =

(
ex

ey

)
be two differentiable functions Example 14.27

defined on R2. Compute the derivative of g◦ f at x by means of the chain
rule.

SOLUTION. Since f′(x)=
(
2 x 2 y
2 x −2 y

)
and g′(x)=

(
ex 0
0 ey

)
, we have

(g◦ f)′(x)= g′(f(x))f′(x)=
(
ex2+y2

0
0 ex2−y2

)
·
(
2 x 2 y
2 x −2 y

)

=
(
2x ex2+y2

2y ex2+y2

2x ex2−y2 −2y ex2−y2

)

♦

Derive the formula for the directional derivative from Theorem 14.15 by Example 14.28
means of the chain rule.

SOLUTION. Let f : D ⊆Rn →R some differentiable function and h a fixed
direction (with ‖h‖ = 1). Then s : R→ D ⊆ Rn, t 7→ x0 + th is a path in Rn

and we find

f ′(s(0))= f ′(x0)=∇ f (x0) and s′(0)=h
1At this point we need some tools from advanced calculus which we do not have

available. Thus we unfortunately still have an heuristic approach albeit on some higher
level.
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and therefore

∂ f
∂h

(x0)= ( f ◦s)′(0)= f ′(s(0)) ·s′(0)=∇ f (x0) ·h

as claimed. ♦

Let f (x1, x2, t) be a differentiable function defined on R3. Suppose thatExample 14.29
both x1(t) and x2(t) are themselves functions of t. Compute the total
derivative of z(t)= f

(
x1(t), x2(t), t

)
.

SOLUTION. Let x : R→R3, t 7→
x1(t)

x2(t)
t

. Then z(t)= ( f ◦x)(t) and we have

dz
dt

= ( f ◦x)′(t)= f ′
(
x(t)

) ·x′(t)

=∇ f
(
x(t)

) ·
x′1(t)

x′2(t)
1

=
(
fx1

(
x(t)

)
, fx2

(
x(t)

)
, f t

(
x(t)

)) ·
x′1(t)

x′2(t)
1


= fx1

(
x(t)

) · x′1(t)+ fx2

(
x(t)

) · x′2(t)+ f t
(
x(t)

)
= fx1(x1, x2, t) · x′1(t)+ fx2(x1, x2, t) · x′2(t)+ f t(x1, x2, t) . ♦
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— Exercises

14.1 Estimate the following limits:

(a) lim
x→∞

1
x+1 (b) lim

x→0
x2 (c) lim

x→∞ ln(x)

(d) lim
x→0

ln |x| (e) lim
x→∞

x+1
x−1

14.2 Sketch the following functions.
Which of these are continuous functions?
In which points are these functions not continuous?

(a) D =R, f (x)= x (b) D =R, f (x)= 3x+1

(c) D =R, f (x)= e−x −1 (d) D =R, f (x)= |x|
(e) D =R+, f (x)= ln(x) (f) D =R, f (x)= [x]

(g) D =R, f (x)=


1 for x ≤ 0
x+1 for 0< x ≤ 2
x2 for x > 2

HINT: Let x = p+ y with p ∈Z and y ∈ [0,1). Then [x]= p.

14.3 Differentiate:

(a) 3x2 +5cos(x)+1 (b) (2x+1)x2

(c) x ln(x) (d) (2x+1)x−2

(e) 3x2−1
x+1 (f) ln(exp(x))

(g) (3x−1)2 (h) sin(3x2)

(i) 2x (j) (2x+1)(x2−1)
x+1

(k) 2 e3x+1(5x2+1)2+ (x+1)3

x−1 −2x

14.4 Compute the second and third derivatives of the following func-
tions:

(a) f (x)= e−
x2
2 (b) f (x)= x+1

x−1
(c) f (x)= (x−2)(x2 +3)

14.5 Compute all first and second order partial derivatives of the fol-
lowing functions at (1,1):

(a) f (x, y)= x+ y (b) f (x, y)= x y

(c) f (x, y)= x2 + y2 (d) f (x, y)= x2 y2

(e) f (x, y)= xα yβ, α,β> 0 (f) f (x, y)=
√

x2 + y2

14.6 Compute gradient and Hessian matrix of the functions in Exer-
cise 14.5 at (1,1).
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14.7 Let f (x) = ∑n
i=1 x2

i . Compute the directional derivative of f into
direction a using

(a) function g(t)= f (x+ ta);
(b) the gradient ∇ f ;
(c) the chain rule.

14.8 Let f (x, y) be a differentiable function. Suppose its directional
derivative in (0,0) in maximal in direction a = (1,3) with ∂ f

∂a = 4.
Compute the gradient of f in (0,0).

14.9 Let f (x, y) = x2 + y2 and g(t) =
(
g1(t)
g2(t)

)
=

(
t
t2

)
. Compute the deriva-

tives of the compound functions f ◦ g and g ◦ f by means of the
chain rule.

14.10 Let f(x)= (x3
1−x2, x1−x3

2)′ and g(x)= (x2
2, x1)′. Compute the deriva-

tives of the compound functions f◦g and g◦f by means of the chain
rule.

14.11 Let A be a regular n×n matrix, b ∈Rn and x the solution of the lin-
ear equation Ax = b. Compute ∂xi

∂bi
. Also give the Jacobian matrix

of x as a function of b.HINT: Use Cramer’s rule.

14.12 Let F(K ,L, t) be a production function where L = L(t) and K = K(t)
are also functions of time t. Compute dF

dt .

— Problems

14.13 Prove Theorem 14.5.HINT: See proof of Theo-
rem 13.31.

14.14 Let f (x)= xn for some n ∈N. Show that f ′(x)= n xn−1 by computing
the limit of the difference quotient.

HINT: Use the binomial theoremSay “n choose k”.

(a+b)n =
n∑

k=0

(
n
k

)
ak ·bn−k

14.15 Show that f (x)= |x| is not differentiable on R.

HINT: Recall that a function is differentiable on D if it is differentiable on every
x ∈ D.

14.16 Show that

f (x)=
{p

x, for x ≥ 0,
−p−x, for x < 0,

is not differentiable on R.
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14.17 Construct a function that is differentiable but not twice differen-
tiable.
HINT: Recall that a function is differentiable on D if it is differentiable on every
x ∈ D.

14.18 Show that the function

f (x)=
{

x2 sin
(1

x
)
, for x 6= 0,

0, for x = 0,

is differentiable in x = 0 but not continuously differentiable.

14.19 Compute the derivative of f (x)= ax (a > 0). HINT: ax = eln(a) x

14.20 Prove the summation rule. (Rule (2) in Table 14.9).
HINT: Let F(x)= f (x)+ g(x) and apply Theorem 14.3 for the limit.

14.21 Prove the quotient rule. (Rule (5) in Table 14.9). HINT: Use chain rule, prod-
uct rule and power rule.

14.22 Verify the Square Root Rule:
HINT: Use the rules from
Tabs. 14.8 and 14.9.(p

x
)′ = 1

2
p

x

14.23 Let f : R→ (0,∞) be a differentiable function. Show that

(ln( f (x)))′ = f ′(x)
f (x)

14.24 Let f : (0,∞)→ (0,∞) be a differentiable function. Then the term

ε f (x)= x · f ′(x)
f (x)

is called the elasticity of f at x. It describes relative changes of
f w.r.t. relative changes of its variable x. We can, however, de-
rive the elasticity by changing from a linear scale to a logarithmic
scale. Thus we replace variable x by its logarithm v = ln(x) and
differentiate the logarithm of f w.r.t. v and find HINT: Differentiate

y(v)= ln( f (ev)) and
substitute v = ln(x).

ε f (x)= d(ln( f (x)))
d(ln(x))

Derive this formula by means of the chain rule.

14.25 Let

f (x, y)=


xy2

x2 + y4 , for (x, y) 6= 0,

0, for (x, y)= 0.

(a) Plot the graph of f (by means of the computer program of
your choice).
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(b) Compute all first partial derivatives for (x, y) 6= 0.

(c) Compute all first partial derivatives for (x, y) = 0 by comput-
ing the respective limits

fx(0,0)= lim
t→0

f (t,0)− f (0,0)
t

f y(0,0)= lim
t→0

f (0, t)− f (0,0)
t

(d) Compute the directional derivative at 0 into some direction
h′ = (h1,h2),

fh(0,0)= lim
t→0

f (th1, th2)− f (0,0)
t

What do you expect if f were differentiable at 0?

14.26 Let f : Rn →Rm be a linear function with f(x)=Ax for some matrix
A.

(a) What are the dimensions of matrix A (number of rows and
columns)?

(b) Compute the Jacobian matrix of f.

14.27 Let A be a symmetric n×n matrix. Compute the Jacobian matrix
of the corresponding quadratic form q(x)= x′Ax.

14.28 A function f (x) is called homogeneous of degree k, if

f (αx)=αk f (x) for all α ∈R.

(a) Give an example for a homogeneous function of degree 2 and
draw level lines of this function.

(b) Show that all first order partial derivatives of a differentiable
homogeneous function of degree k (k ≥ 1) are homogeneous of
degree k−1.

(c) Show that the level lines are parallel along each ray from the
origin. (A ray from the origin in direction r 6= 0 is the halfline
{x=αr : α≥ 0}.)

HINT: Differentiate both sides of equation f (αx)=αk f (x) w.r.t. xi .

14.29 Let f and g be two n times differentiable functions. Show by in-
duction that

( f · g)(n)(x)=
n∑

k=0

(
n
k

)
f (k)(x) · g(n−k)(x) .

HINT: Use the recursion
(n+1
k+1

)= (n
k
)+ ( n

k+1
)

for k = 0, . . . ,n−1.
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14.30 Let

f (x)=
{

exp
(
− 1

x2

)
, for x 6= 0,

0, for x = 0.

(a) Show that f is differentiable in x = 0.

(b) Show that f ′(x)=
{
−x−3 f (x), for x 6= 0,
0, for x = 0.

(c) Show that f is continuously differentiable in x = 0.

(d) Argue why all derivatives of f vanish in x = 0, i.e., f (n)(0) = 0
for all n ∈N.

HINT: For (a) use limx→0 f (x)= limx→∞ f
(

1
x

)
; for (b) use the formula from Prob-

lem 14.29.





15
Taylor Series

We need a local approximation of a function that is as simple as possible,
but not simpler.

15.1 Taylor Polynomial

The derivative of a function can be used to find the best linear approxi-
mation of a univariate function f , i.e.,

f (x)≈ f (x0)+ f ′(x0)(x− x0) .

Notice that we evaluate both f and its derivative f ′ at x0. By the mean
value theorem (Theorem 14.10) we have

f (x)= f (x0)+ f ′(ξ)(x− x0)

for some appropriate point ξ ∈ [x, x0]. When we need to improve this first-
order approximation, then we have to use a polynomial pn of degree n.
We thus select the coefficients of this polynomial such that its first n
derivatives at some point x0 coincides with the first k derivatives of f at
x0, i.e.,

p(k)
n (x0)= f (k)(x0) , for k = 0, . . . ,n.

We then find

f (x)=
n∑

k=0

f (k)(x0)
k!

(x− x0)k +Rn(x) .

The term Rn is called the remainder and is the error when we approx-
imate function f by this so called Taylor polynomial of degree n.

Let f be an n times differentiable function. Then the polynomial Definition 15.1

T f ,x0,n(x)=
n∑

k=0

f (k)(x0)
k!

(x− x0)k

is called the nth-order Taylor polynomial of f around x = x0. The term
f (0) refers to the “0-th derivative”, i.e., function f itself.

155
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The special case with x0 = 0 is called the Maclaurin polynomial.

If we expand the summation symbol we can write the Maclaurin
polynomial as

T f ,0,n(x)= f (0)+ f ′(0) x+ f ′′(0)
2!

x2 + f ′′′(0)
3!

x3 +·· ·+ f (n)(0)
n!

xn .

Exponential function. The derivatives of f (x) = ex at x0 = 0 are givenExample 15.2

1

1

exp(x)

T1

T2
T3

by

f (n)(x)= ex hence f (n)(0)= 1 for all n ≥ 0.

Therefore we find for the nth order Maclaurin polynomial

T f ,0,n(x)=
n∑

k=0

f (k)(0)
k!

xk =
n∑

k=0

xk

k!
. ♦

Logarithm. The derivatives of f (x)= ln(1+ x) at x0 = 0 are given byExample 15.3

1−1

1 ln(1+ x)

T1

T2

T5

T6

f (n)(x)= (−1)n+1(n−1)!(1+ x)−n

hence f (n)(0)= (−1)n+1(n−1)! for all n ≥ 1. As f (0)= ln(1)= 0 we find for
the nth order Maclaurin polynomial

T f ,0,n(x)=
n∑

k=0

f (k)(0)
k!

xk =
n∑

k=1

(−1)k+1(k−1)!
k!

xk =
n∑

k=1
(−1)k+1 xk

k
. ♦

Obviously, the approximation of a function f by its Taylor polynomial
is only useful if the remainder Rn(x) is small. Indeed, the error will go
to 0 faster than (x− x0)n as x tends to x0.

Taylor’s theorem. Let function f : R→ R be n times differentiable atTheorem 15.4
the point x0 ∈R. Then there exists a function hn : R→R such that

f (x)= T f ,x0,n(x)+hn(x)(x− x0)n and lim
x→x0

hn(x)= 0 .

There are even stronger results. The error term can be estimated
more precisely. The following theorem gives one such result. Observe
that Theorem 15.4 is then just a corollary when the assumptions of The-
orem 15.5 are met.

Lagrange’s form of the remainder. Suppose f is n+1 times differ-Theorem 15.5
entiable in the interval [x, x0]. Then the remainder for T f ,x0,n can be
written as

Rn(x)= f (n+1)(ξ)
(n+1)!

(x− x0)n+1

for some point ξ ∈ (x, x0).
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PROOF IDEA. We construct a function

g(t)= Rn(t)− (t− x0)n+1

(x− x0)n+1 Rn(x)

and show that all derivatives g(k)(x0)= 0 vanish for all k = 0, . . . ,n. More-
over, g(ξ0) = 0 for ξ0 = x and thus Rolle’s Theorem implies that there
exists a ξ1 ∈ (ξ0, x0) such that g′(ξ1)= 0. Repeating this argument recur-
sively we eventually obtain a ξ = ξn+1 ∈ (ξk, x0) ⊆ (x, x0) with g(n+1)(ξ) =
f (n+1)(ξ)− (n+1)!

(x−x0)n+1 Rn(x)= 0 and thus the result follows.

PROOF. Let Rn(x)= f (x)−T f ,x0,n(x) and

g(t)= Rn(t)− (t− x0)n+1

(x− x0)n+1 Rn(x) .

We then find g(x) = 0. Moreover, g(x0) = 0 and g(k)(x0) = 0 for all k =
0, . . . ,n since the first n derivatives of f and T f ,x0,n coincide at x0 by
construction (Problem 15.9). Thus g(x) = g(x0) and the mean value the-
orem (Rolle’s Theorem, Theorem 14.10) implies that there exists a ξ1 ∈
(x, x0) such that g′(ξ1) = 0 and thus g′(ξ1) = g′(x0) = 0. Again the mean
value theorem implies that there exists a ξ2 ∈ (ξ1, x0) ⊆ (x, x0) such that
g′′(ξ2) = 0. Repeating this argument we find ξ1,ξ2, . . . ,ξn+1 ∈ (x, x0) such
that g(k)(ξk) = 0 for all k = 1, . . . ,n+1. In particular, for ξ= ξn+1 we then
have

0= g(n+1)(ξ)= f (n+1)(ξ)− (n+1)!
(x− x0)n+1 Rn(x)

and thus the formula for Rn follows.

Lagrange’s form of the remainder can be seen as a generalization of
the mean value theorem for higher order derivatives.

15.2 Taylor Series

Taylor series expansion. The series Definition 15.6
∞∑

n=0

f (n)(x0)
n!

(x− x0)n

is called the Taylor series of f at x0. We say that we expand f into a
Taylor series around x0.

If the remainder Rn(x) → 0 as n → ∞, then the Taylor series con-
verges to f (x), i.e., we them have

f (x)=
∞∑

n=0

f (n)(x0)
n!

(x− x0)n .

Table 15.7 lists Maclaurin series of some important functions. The mean-
ing of ρ is explained in Section 15.4 below.

In some cases it is quite straightforward to show the convergence of
the Taylor series.
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f (x) Maclaurin series ρ

exp(x) =
∞∑

n=0

xn

n!
= 1+ x+ x2

2!
+ x3

3!
+ x4

4!
+·· · ∞

ln(1+ x) =
∞∑

n=1
(−1)n+1 xn

n
= x− x2

2
+ x3

3
− x4

4
+·· · 1

sin(x) =
∞∑

n=0
(−1)n x2n+1

(2n+1)!
= x− x3

3!
+ x5

5!
− x7

7!
+·· · ∞

cos(x) =
∞∑

n=0
(−1)n x2n

(2n)!
= 1− x2

2!
+ x4

4!
− x6

6!
+·· · ∞

1
1− x

=
∞∑

n=0
xn = 1+ x+ x2 + x3 + x4 +·· · 1

Table 15.7

Maclaurin series of
some elementary
functions.

Convergence of remainder. Assume that all derivatives of f areTheorem 15.8
bounded in the interval (x, x0) by some number M, i.e., | f (k)(ξ)| ≤ M for
all ξ ∈ (x, x0) and all k ∈N. Then

|Rn(x)| ≤ M
|x− x0|n+1

(n+1)!
for all n ∈N

and thus lim
n→∞Rn(x)= 0 as n →∞.

PROOF. Immediately by Theorem 15.5 and hypothesis of the theorem.

We have seen in Example 15.2 that f (n)(x) = ex for all n ∈ N. ThusExample 15.9
| f (n)(ξ)| ≤ M = max{|ex|, |ex0 |} for all ξ ∈ (x, x0) and all k ∈ N. Then by
Theorem 15.8, ex =∑∞

n=0
f (n)(0)

n! xn for all x ∈R. ♦

The required order of the Taylor polynomial for the approximation
of a function f of course depends on the particular task. A first-order
Taylor polynomial may be used to linearize a given function near some
point of interest. This also may be sufficient if one needs to investigate
local monotonicity of some function. When local convexity or concavity
of the function are of interest we need at least a second-order Taylor
polynomial.

15.3 Landau Symbols

If all derivatives of f are bounded in the interval (x, x0), then Lagrange’s
form of the remainder Rn(x) is expressed as a multiple of the nth power
of the distance between the point x of interest and the expansion point
x0, that is, C|x− x0|n+1 for some positive constant C. The constant itself
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is often hard to compute and thus it is usually not specified. However, in
many cases this is not necessary at all.

Suppose we have two terms C1|x−x0|k and C2|x−x0|k+1 with C1,C2 >
0, then for values of x sufficiently close to x0 the second term becomes
negligible small compared to the first one as

C2|x− x0|k+1

C1|x− x0|k
= C2

C1
· |x− x0|→ 0 as x → x0.

More precisely, this ratio can be made as small as desired provided that
x is in some sufficiently small open ball around x0. This observation
remains true independent of the particular values of C1 and C2. Only
the diameter of this “sufficiently small open ball” may vary.

Such a situation where we want to describe local or asymptotic be-
havior of some function up to some non-specified constant is quite com-
mon in mathematics. For this purpose the so called Landau symbol is
used.

Landau symbol. Let f (x) and g(x) be two functions defined on some Definition 15.10
subset of R. We write

f (x)=O
(
g(x)

)
as x → x0 (say “ f (x) is big O of g”)

if there exist positive numbers M and δ such that

| f (x)| ≤ M |g(x)| for all x with |x− x0| < δ.

f (x)
M g(x)

−M g(x)By means of this notation we can write Taylor’s formula with the
Lagrange form of the remainder as

f (x)=
n∑

k=0

f (k)(x0)
k!

(x− x0)k +O(|x− x0|n+1)

(provided that f is n+1 times differentiable at x0).
Observe that f (x)=O

(
g(x)

)
implies that there exist positive numbers

M and δ such that∣∣∣∣ f (x)
g(x)

∣∣∣∣≤ M for all x with |x− x0| < δ.

We also may have situations where we know that this fraction even con-
verges to 0. Formally, we then write

f (x)= o
(
g(x)

)
as x → x0 (say “ f (x) is small O of g”)

if for every ε> 0 there exists a positive δ such that

| f (x)| ≤ ε|g(x)| for all x with |x− x0| < δ.

Using this notation we can write Taylor’s Theorem 15.4 as

f (x)=
n∑

k=0

f (k)(x0)
k!

(x− x0)k + o(|x− x0|n)
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The symbols O(·) and o(·) are called Landau symbols.
The notation “ f (x)=O

(
g(x)

)
” is a slight abuse of language as it merely

indicates that f belongs to a family of functions that locally behaves sim-
ilar to g(x). Thus this is sometimes also expressed as

f (x) ∈O
(
g(x)

)
.

15.4 Power Series and Analytic Functions

Taylor series are a special case of so called power series

p(x)=
∞∑

n=1
an(x− x0)n .

Suppose that limn→∞
∣∣∣ an+1

an

∣∣∣ exists. Then the ratio test (Lemma 12.28)
implies that the power series converges if

lim
n→∞

∣∣∣∣an+1(x− x0)n+1

an(x− x0)n

∣∣∣∣= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ |x− x0| < 1

that is, if

|x− x0| < lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ .

Similarly we find that the series diverges if

|x− x0| > lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ .

For the exponential function in Example 15.2 we find an = 1/n!. ThusExample 15.11

lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣= lim
n→∞

(n+1)!
n!

= lim
n→∞n+1=∞ .

Hence the Taylor series converges for all x ∈R. ♦

For function f (x) = ln(1+ x) the situation is different. Recall that forExample 15.12
function f (x)= ln(1+ x), we find an = (−1)n+1/n (see Example 15.3).

lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣= lim
n→∞

n+1
n

= 1 .

Hence the Taylor series converges for all x ∈ (−1,1); and diverges for x > 1
or x <−1.
For x =−1 we get the divergent harmonic series, see Lemma 12.21. For
x = 1 we get the convergent alternating harmonic series, see Lemma 12.25.
However, a proof requires more sophisticated methods. ♦
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Example 15.12 demonstrates that a Taylor series need not converge
for all x ∈ R. Instead there is a maximal distance ρ such that the se-
ries converges for all x ∈ Bρ(x0) but diverges for all x with |x− x0| > ρ.
The value ρ is called the radius of convergence of the power series.
Table 15.7 also lists this radius for the given Maclaurin series. ρ = ∞
means that the series converges for all x ∈R.

There is, however, a subtle difference between Examples 15.9 and
15.11. In the first example we have show that

∑∞
n=0

f (n)(0)
n! xn = ex for all

x ∈R while in the latter we have just shown that
∑∞

n=0
f (n)(0)

n! xn converges.
Similarly, we have shown in Example 15.12 that the Taylor series which
we have computed in Example 15.3 converges, but we have not given a
proof that

∑n
k=1(−1)k+1 xk

k = ln(1+ x).
Indeed functions f exist where the Taylor series converge but do not

coincide with f (x).

The function Example 15.13

f (x)=
{

exp
(
− 1

x2

)
, for x 6= 0,

0, for x = 0.

is infinitely differentiable in x = 0 and f (n)(0) = 0 for all n ∈N (see Prob-
lem 14.30). Consequently, we find for all Maclaurin polynomials T f ,n,0(x)=
0 for all x ∈ R. Thus the Maclaurin series converges to 0 for all x ∈ R.
However, f (x) > 0 for all x 6= 0, i.e., albeit the series converges we find∑∞

n=0
f (n)(0)

n! xn 6= f (x). ♦

Analytic function. An infinitely differentiable function f is called ana- Definition 15.14
lytic in an open interval Br(x0) if its Taylor series around x0 converges
and

f (x)=
∞∑

n=0

f (n)(x0)
n!

(x− x0)n for all x ∈ Br(x0).

15.5 Defining Functions

Computations with power series are quite straightforward. Power series
can be

• added or subtracted termwise,

• multiplied,

• divided,

• differentiated and integrated termwise.

We get the Maclaurin series of the exponential function by differentiat- Example 15.15
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ing the Maclaurin series of ex:

(
exp(x)

)′ = ( ∞∑
n=0

1
n!

xn

)′
=

∞∑
n=0

1
n!

(
xn)′ = ∞∑

n=1

n
n!

xn−1 =
∞∑

n=1

1
(n−1)!

xn−1

=
∞∑

n=0

1
n!

xn = exp(x) .

We get the Maclaurin series of f (x)= x2·sin(x) by multiplying the Maclau-Example 15.16
rin series of sin(x) by x2:

x2 ·sin(x)= x2 ·
∞∑

n=0
(−1)n x2n+1

(2n+1)!
=

∞∑
n=0

(−1)nx2 x2n+1

(2n+1)!

=
∞∑

n=0
(−1)n x2n+3

(2n+1)!
.

We also can substitute x in the Maclaurin series from Table 15.7 by
some polynomial.

We obtain the Maclaurin series of exp(−x2) by substituting −x2 into theExample 15.17
Maclaurin series of the exponential function.

exp(−x2)=
∞∑

n=0

1
n!

(−x2)n =
∞∑

n=0

(−1)n

n!
x2n .

For that reason it is quite convenient to define analytic functions by
its Taylor series.

exp(x) :=
∞∑

n=0

1
n!

xn

15.6 Taylor’s Formula for Multivariate Functions

Taylor polynomials can also be established for multivariate functions.
We then construct a polynomial where all its kth order partial deriva-
tives coincide with the corresponding partial derivatives of f at some
given expansion point x0.

In opposition to the univariate case the number of coefficients of a
polynomial in two or more variables increases exponentially in the de-
gree of the polynomial. Thus we restrict our interest to the 2nd order
Taylor polynomials which can be written as

p2(x1, . . . , xn)= a0 +
n∑

i=1
aixi +

n∑
i=1

n∑
j=1

ai jxix j

or, using vectors and quadratic forms,

p2(x)= a0 +a′x+x′Ax

where A is an n×n matrix with [A]i j = ai j and a′ = (a1, . . . ,an).
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If we choose the coefficients ai and ai j such that all first and second
order partial derivatives of p2 at x0 = 0 coincides with the corresponding
derivatives of f we find,

p2(x)= f (0)+ f ′(0)x+ 1
2

x′ f ′′(0)x

For a general expand point x0 we get the following analog to Taylor’s
Theorem 15.4 which we state without proof.

Taylor’s formula for multivariate functions. Suppose that f is a C 3 Theorem 15.18
function in an open set containing the line segment [x0,x0 +h]. Then

f (x0 +h)= f (x0)+ f ′(x0) ·h+ 1
2

h′ · f ′′(x0) ·h+O(‖h‖3) .

Let f (x, y)= ex2−y2 + x. Then gradient and Hessian matrix are given by Example 15.19

f ′(x, y)=
(
2x ex2−y2 +1, −2y ex2−y2

)

f ′′(x, y)=
(
(2+4x2) ex2−y2 −4xy ex2−y2

−4xy ex2−y2
(−2+4x2) ex2−y2

)
and thus we get for the 2nd order Taylor polynomial around x0 = 0

f (x, y)= f (0,0)+ f ′(0,0)(x, y)′+ 1
2

(x, y) f ′′(0,0)(x, y)′+O(‖(x, y)‖3)

= 1+ (1,0)(x, y)′+ 1
2

(x, y)
(
2 0
0 −2

)
(x, y)′+O(‖(x, y)‖3)

= 1+ x+ x2 − y2 +O(‖(x, y)‖3) .



164 TAYLOR SERIES

— Exercises

15.1 Expand f (x)= 1
2−x into a Maclaurin polynomial of

(a) first order;

(b) second order.

Draw the graph of f (x) and of these two Maclaurin polynomials in
the interval [−3,5].
Give an estimate for the radius of convergence.

15.2 Expand f (x)= (x+1)1/2 into the 3rd order Taylor polynomial around
x0 = 0.

15.3 Expand f (x)= sin(x10) into a Maclaurin polynomial of degree 30.

15.4 Expand f (x)= sin(x2 −5) into a Maclaurin polynomial of degree 4.

15.5 Expand f (x) = 1/(1+ x2) into a Maclaurin series. Compute its ra-
dius of convergence.

15.6 Expand the density of the standard normal distribution f (x) =
exp

(
− x2

2

)
into a Maclaurin series. Compute its radius of conver-

gence.

15.7 Expand f (x, y) = ex2+y2
into a 2nd order Taylor series around x0 =

(0,0).

— Problems

15.8 Expand the exponential function exp(x) into a Taylor series about
x0 = 0. Give an upper bound of the remainder Rn(1) as a function
of order n. When is this bound less than 10−16?

15.9 Assume that f is n times differentiable in x0. Show that for the
first n derivative of f and of its n-order Taylor polynomial coincide
in x0, i.e.,(

T f ,x0,n
)(k) (x0)= f (k)(x0) , for all k = 0, . . . ,n.

15.10 Verify the Maclaurin series from Table 15.7.

15.11 Show by means of the Maclaurin series from Table 15.7 that

(a) (sin(x))′ = cos(x) (b)
(
ln(1+ x)

)′ = 1
1+x



16
Inverse and Implicit

Functions

Can we invert the action of some function?

16.1 Inverse Functions

Inverse function. Let f : D f ⊆Rn →Wf ⊆Rm, x 7→ y= f(x) be some func- Definition 16.1
tion. Suppose that there exists a function f−1 : Wf → D f , y 7→ x = f−1(y)
such that

f−1 ◦ f= f◦ f−1 = id

that is, f−1(f(x)) = f−1(y) = x for all x ∈ D f , and f(f−1(y)) = f(x) = y for all
y ∈Wf . Then f−1 is called the inverse function of f.

Obviously, the inverse function exists if and only if f is a bijection. Lemma 16.2

We get the function term of the inverse function by solving equation
y= f(x) w.r.t. to x.

Affine function. Suppose that f : Rn → Rm, x 7→ y = f(x) = Ax+b where Example 16.3
A is an m×n matrix and b ∈Rm. Then we find

y=Ax+b ⇔ x=A−1 y−A−1 b=A−1 (y−b)

provided that A is invertible. In particular we must have n = m. Thus
we have f−1(y)=A−1 (y−b). Observe that

Df−1(y)=A−1 = (Df(x))−1 . ♦

For an arbitrary function the inverse need not exist. E.g., the func-
tion f : R→R, x 7→ x2 is not invertible. However, if we restrict the domain
of our function to some (sufficiently small) open interval D = Bε(x0) ⊂
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(0,∞) then the inverse exists. Motivated by Example 16.3 above we ex-
pect that this always works whenever f ′(x0) 6= 0, i.e., when 1

f ′(x0) exists.

Moreover, it is possible to compute the derivative
(
f −1)′ of its inverse in

y0 = f (x0) as
(
f −1)′ (y0) = 1

f ′(x0) without having an explicit expression for
f −1.

This useful fact is stated in the inverse function theorem.

Inverse function theorem. Let f : D ⊆ Rn → Rn be a C k function inTheorem 16.4
some open set D containing x0. Suppose that the Jacobian determi-
nant of f at x0 is nonzero, i.e.,

∂( f1, . . . , fn)
∂(x1, . . . , xn)

= ∣∣f′(x0)
∣∣ 6= 0 for x= x0.

Then there exists an open set U around x0 such that f maps U one-to-
one onto an open set V around y0 = f(x0). Thus there exists an inverse
mapping f−1 : V → U which is also in C k. Moreover, for all y ∈ V , we
have

(f−1)′(y0)= (f′(x0))−1 .

x−ε x+ε

y

x

In other words, a C k function f with a nonzero Jacobian determinant
at x0 has a local inverse around f(x0) which is again C k.

This theorem is an immediate corollary of the Implicit Function The-
orem 16.11 below, see Problem 16.10. The idea behind the proof is that
we can locally replace function f by its differential in order to get its local
inverse.

For the case n = 1, that is, a function f : R→R, we find

( f −1)′(y0)= 1
f ′(x0)

where y0 = f (x0).

Let f : R→ R, x 7→ y = f (x) = x2 and x0 = 3. Then f ′(x0) = 6 6= 0 thus f −1Example 16.5
exists in open ball around y0 = f (x0)= 9. Moreover

( f −1)′(9)= 1
f ′(3)

= 1
6

.

We remark here that Theorem 16.4 does not imply that function f −1 does
not exist in any open ball around f (0). As f ′(0) = 0 we simply cannot
apply the theorem in this case. ♦

Let f : R2 → R2, x 7→ f(x) =
(
x2

1 − x2
2

x1 x2

)
. Then we find Df(x) =

(
2x1 −2x2
x2 x1

)
Example 16.6

and thus
∂( f1, f2)
∂(x1, x2)

= |Df(x)| =
∣∣∣∣2x1 −2x2

x2 x1

∣∣∣∣= 2x2
1 +2x2

2 6= 0

for all x 6= 0. Consequently, f−1 exists around all y = f(x) where x 6= 0.
The derivative at y= f(1,1) is given by

D(f−1)(y)= (Df(1,1))−1 =
(
2 −2
1 1

)−1

=
( 1

4
2
4

−1
4

2
4

)
. ♦
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16.2 Implicit Functions

Suppose we are given some function F(x, y). Then equation F(x, y) = 0
describes a relation between the two variables x and y. Then if we fix x
then y is implicitly given. Thus we call this an implicit function. One
may ask the question whether it is possible to express y as an explicit
function of x.

Linear function. Let F(x, y) = ax+ by = 0 for a,b ∈ R. Then we easily Example 16.7
find y = f (x) =− a

b x provided that b 6= 0. Observe that Fx = a and Fy = b.
Thus we find

y=−Fx

Fy
x and

dy
dx

=−Fx

Fy
provided that Fy 6= 0. ♦

For non-linear functions this need not work. E.g., for

F(x, y)= x2 + y2 −1= 0

it is not possible to globally express y as a function of x. Nevertheless,
we may try to find such an explicit expression that works locally, i.e.,
within an open rectangle around a given point (x0, y0) that satisfies this
equation. Thus we replace F locally by its total derivative

dF = Fxdx+Fyd y= d0= 0

and obtain formally the derivative

d y
dx

=−Fx

Fy
.

Obviously this only works when Fy(x0, y0) 6= 0.

Implicit function theorem. Let F : ⊆ R2 → R be a differentiable func- Theorem 16.8
tion in some open set D. Consider an interior point (x0, y0) ∈ D where

F(x0, y0)= 0 and Fy(x0, y0) 6= 0 .

Then there exists an open rectangle R around (x0, y0), such that y

x

(x0, y0)

• F(x, y)= 0 has a unique solution y= f (x) in R, and

•
d y
dx

=−Fx

Fy
.

Let F(x, y) = x2 + y2 −8 = 0 and (x0, y0) = (2,2). Since F(x0, y0) = 0 and Example 16.9
Fy(x0, y0)= 2 y0 = 4 6= 0, there exists a rectangle R around (2,2) such that
y can be expressed as an explicit function of x and we find

d y
dx

(x0)=−Fx(x0, y0)
Fy(x0, y0)

=−2x0

2y0
=−4

4
=−1 .
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Observe that we cannot apply Theorem 16.8 for the point (
p

8,0) as then
Fy(

p
8,0) = 0. Thus the hypothesis of the theorem is violated. Notice,

however, that this does not necessarily imply that the requested local
explicit function does not exist at all. ♦

We can generalize Theorem 16.8 to the functions with arbitrary num-
bers of arguments. Thus we first need a generalization of the partial
derivative.

Jacobian matrix. Let F : Rn+m →Rm be a differentiable function withDefinition 16.10

(x,y) 7→F(x,y)=

 F1(x1, . . . , xn, y1, . . . , ym)
...

Fm(x1, . . . , xn, y1, . . . , ym)


Then the matrix

∂F(x,y)
∂y

=


∂F1
∂y1

. . . ∂F1
∂ym

...
. . .

...
∂Fm
∂y1

. . . ∂Fm
∂ym


is called the Jacobian matrix of F(x,y) w.r.t. y.

Implicit function theorem. Let F : D ⊆Rn+m →Rm be C k in some openTheorem 16.11
set D. Consider an interior point (x0,y0) ∈ D where

F(x0,y0)= 0 and
∣∣∣∣∂F(x,y)

∂y

∣∣∣∣ 6= 0 for (x,y)= (x0,y0).

Then there exist open balls B(x0)⊆Rn and B(y0)⊆Rm around x0 and y0,
respectively, with B(x0)×B(y0) ⊆ D such that for every x ∈ B(x0) there
exists a unique y ∈ B(y0) with F(x,y) = 0. In this way we obtain a C k

function f : B(x0)⊆Rn → B(y0)⊆Rm with f(x)= y. Moreover,

∂y
∂x

=−
(
∂F
∂y

)−1
·
(
∂F
∂x

)
The proof of this theorem requires tools from advanced calculus which

are beyond the scope of this course. Nevertheless, the rule for the deriva-
tive for the local inverse function (if it exists) can be easily derived by
means of the chain rule, see Problem 16.12.

Obviously, Theorem 16.8 is just a special case of Theorem 16.11. For
the special case where F : Rn+1 →R, (x, y) 7→ F(x, y)= F(x1, . . . , xn, y), and
some point (x0, y) with F(x0, y0) = 0 and Fy(x0, y0) 6= 0 we then find that
there exists an open rectangle around (x0, y) such that y= f (x) and

∂y
∂xi

=−Fxi

Fy
.
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Let Example 16.12

F(x1, x2, x3, x4)= x2
1 + x2 x3 + x2

3 − x3 x4 −1= 0 .

We are given a point (x1, x2, x3, x4)= (1,0,1,1). We find F(1,0,1,1)= 0 and
Fx2(1,0,1,1)= 1 6= 0. Thus there exists an open rectangle where x2 can be
expressed locally by an explicit function of the remaining variables, x2 =
f (x1, x3, x4), and we find for the partial derivative w.r.t. in (x1, x3, x4) =
(1,1,1),

∂x2

∂x3
=−Fx3

Fx2

=− x2 +2 x3 − x4

x3
=−1 .

Notice that we cannot apply the Implicit Function Theorem neither at
(1,1,1,1) nor at (1,1,0,1) as F(1,1,1,1) 6= 0 and Fx2(1,1,0,1) = 0, respec-
tively. ♦

Let Example 16.13

F(x,y)=
(
F1(x1, x2, y1, y2)
F2(x1, x2, y1, y2)

)
=

(
x2

1 + x2
2 − y2

1 − y2
2 +3

x3
1 + x3

2 + y3
1 + y3

2 −11

)
and some point (x0,y0)= (1,1, 1,2).

∂F
∂x

=
(∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

)
=

(
2x1 2x2

3x2
1 3x2

2

)
and

∂F
∂x

(1,1, 1,2)=
(
2 2
3 3

)

∂F
∂y

=
(∂F1
∂y1

∂F1
∂y2

∂F2
∂y1

∂F2
∂y2

)
=

(−2y1 −2y2

3y2
1 3y2

2

)
and

∂F
∂y

(1,1, 1,2)=
(−2 −4

3 12

)

Since F(1,1, 1,2) = 0 and
∣∣∣∂F(x,y)

∂y

∣∣∣ = −12 6= 0 we can apply the Implicit
Function Theorem and get

∂y
∂x

=−
(
∂F
∂y

)−1
·
(
∂F
∂x

)
=− 1

−12

(
12 4
−3 −2

)
·
(
2 2
3 3

)
=

(
3 3
0 0

)
. ♦
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— Exercises

16.1 Let f : R2 →R2 be a function with

x 7→ f(x)= y=
(
y1
y2

)
=

(
x1 − x1x2

x1x2

)
(a) Compute the Jacobian matrix and determinant of f.
(b) Around which points is it possible to find a local inverse of f?
(c) Compute the Jacobian matrix for the inverse function.
(d) Compute the inverse function (where it exists).

16.2 Let T : R2 →R2 be a function with

(x, y) 7→ (u,v)= (ax+by, cx+d y)

where a, b, c, and d are non-zero constants.

Show: If the Jacobian determinant of T equals 0, then the image
of T is a straight line through the origin.

16.3 Give a sufficient condition for f and g such that the equations

u = f (x, y), v = g(x, y)

can be solved w.r.t. x and y.

Suppose we have the solutions x = F(u,v) and y=G(u,v). Compute
∂F
∂u and ∂G

∂u .

16.4 Show that the following equations define y as a function of x in an
interval around x0. Compute y′(x0).

(a) y3 + y− x3 = 0, x0 = 0
(b) x2 + y+sin(xy)= 0, x0 = 0

16.5 Compute d y
dx from the implicit function x2 + y3 = 0.

For which values of x does an explicit function y = f (x) exist lo-
cally?
For which values of y does an explicit function x = g(y) exist lo-
cally?

16.6 Which of the given implicit functions can be expressed as z = g(x, y)
in a neighborhood of the given point (x0, y0, z0).
Compute ∂g

∂x and ∂g
∂y .

(a) x3 + y3 + z3 − xyz−1= 0, (x0, y0, z0)= (0,0,1)
(b) exp(z)− z2 − x2 − y2 = 0, (x0, y0, z0)= (1,0,0)

16.7 Compute the marginal rate of substitution of K for L for the fol-
lowing isoquant of the given production function, that is dK

dL :

F(K ,L)= AKαLβ = F0
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16.8 Compute the derivative dxi
dx j

of the indifference curve of the utility
function:

(a) u(x1, x2)=
(
x

1
2
1 + x

1
2
2

)2

(b) u(x1, . . . , xn)=
(

n∑
i=1

x
θ−1
θ

i

) θ
θ−1

(θ > 1)

— Problems

16.9 Prove Lemma 16.2.

16.10 Derive Theorem 16.4 from Theorem 16.11. HINT: Consider function
F(x,y)= f(x)−y= 0.

16.11 Does the inverse function theorem (Theorem 16.4) provide a nec-
essary or a sufficient condition for the existence of a local inverse
function or is the condition both necessary and sufficient?

If the condition is not necessary, give a counterexample. HINT: Use a function
f : R→R.

If the condition is not sufficient, give a counterexample.

16.12 Let f : Rn → Rn be a C 1 function that has a local inverse function
f−1 around some point x0. Show by means of the chain rule that(

f−1)′(y0)= (
f′(x0)

)−1 where y0 = f(x0).

HINT: Notice that f−1◦f= id, where id denotes the identity function, i.e, id(x)= x.
Compute the derivatives on either side of the equation. Use the chain rule for the
left hand side. What is the derivative of id?





17
Convex Functions

Is there a panoramic view over our entire function?

17.1 Convex Sets

Convex set. A set D ⊆Rn is called convex, if each pair of points x,y ∈ D Definition 17.1
can be joints by a line segment lying entirely in D, i.e., if

(1− t)x+ ty ∈ D for all x,y ∈ D and all t ∈ [0,1].

The line segment between x and y is the set

[x,y]= {
z= (1− t)x+ ty : t ∈ [0,1]

}
.

whose elements are so called convex combinations of x and y. Hence x
y

[x,y] is also called the convex hull of these points.

The following sets are convex: Example 17.2

The following sets are not convex:

Intersection. The intersection of convex sets is convex. Theorem 17.3

PROOF. See Problem 17.7.

Notice that the union of convex need not be convex.
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174 CONVEX FUNCTIONS

Half spaces. Let p ∈Rn, p 6= 0, and m ∈R. Then the setExample 17.4

H = {x ∈Rn : p′ ·x= m}

is called a hyperplane in Rn. It divides Rn into two so called half
spaces

H+ = {x ∈Rn : p′ ·x≥ m} and H− = {x ∈Rn : p′ ·x≤ m} .

All sets H, H+, and H− are convex, see Problem 17.8. ♦

17.2 Convex and Concave Functions

Convex and concave function. A function f : D ⊆Rn →R is convexDefinition 17.5
if D is convex and

f
(
(1− t)x1 + tx2

)≤ (1− t) f (x1)+ t f (x2)

for all x1,x2 ∈ D and all t ∈ [0,1]. This is equivalent to the property that
the set

{
(x, y) ∈Rn+1 : f (x)≥ y

}
is convex.x1 x2

Function f is concave if D is convex and

f
(
(1− t)x1 + tx2

)≥ (1− t) f (x1)+ t f (x2)

for all x1,x2 ∈ D and all t ∈ [0,1].

x1 x2 Notice that a function f is concave if and only if − f is convex, see Prob-
lem 17.9.

Strictly convex function. A function f : D ⊆Rn →R is strictly convexDefinition 17.6
if D is convex and

f
(
(1− t)x1 + tx2

)< (1− t) f (x1)+ t f (x2)

for all x1,x2 ∈ D with x1 6= x2 and all t ∈ (0,1). Function f is strictly
concave if this equation holds with “<” replaced by “>”.

Linear function. Let a ∈Rn be constant. Then f (x)= a′ ·x is both convexExample 17.7
and concave:

f
(
(1− t)x1 + tx2

)= a′ · ((1− t)x1 + tx2
)= (1− t)a′ ·x1 + ta′ ·x2

= (1− t) f (x1)+ t f (x2)

However, it is neither strictly convex nor strictly concave. ♦
Quadratic function. Function f (x)= x2 is strictly convex:Example 17.8

f ((1− t) x+ t y)− [
(1− t) f (x)+ t f (y)

]
= (

(1− t) x+ t y
)2 − [

(1− t) x2 + t y2]
= (1− t)2 x2 +2(1− t)t xy+ t2 y2 − (1− t) x2 − t y2

=−t(1− t) x2 +2(1− t)t xy− t(1− t) y2

=−t(1− t) (x− y)2 < 0

for x 6= y and 0< t < 1. ♦
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Convex sum. Let α1, . . . ,αk > 0. If f1(x), . . . , fk(x) are convex (concave) Theorem 17.9
functions, then

g(x)=
k∑

i=1
αi f i(x)

is convex (concave). Function g(x) is strictly convex (strictly concave) if
at least one of the functions f i(x) is strictly convex (strictly concave).

PROOF. See Problem 17.12.

An immediate consequence of this theorem and Example 17.8 is that
a quadratic function f (x)= ax2 +bx+ c is strictly convex if a > 0, strictly
concave if a < 0 and both convex and concave if a = 0.

Quadratic form. Let A be a symmetric n× n matrix. Then quadratic Theorem 17.10
form q(x) = x′Ax is strictly convex if and only if A is positive definite. It
is convex if and only if A is positive semidefinite.

Similarly, q is strictly concave if and only if A is negative definite. It
is concave if and only if A is negative semidefinite.

PROOF IDEA. We first show by a straightforward computation that the
univariate function g(t)= q

(
(1−t)x1+tx2

)
is strictly convex for all x1,x2 ∈

Rn if and only if A is positive definite.

PROOF. Let x1 and x2 be two distinct points in Rn. Then

g(t)= q
(
(1− t)x1 + tx2

)= q
(
x1 + t(x2 −x1)

)
= (

x1 + t(x2 −x1)
)′A(

x1 + t(x2 −x1)
)

= t2(x2 −x1)′A(x2 −x1)+2t (x′
1Ax2 −x′

1Ax1)+x′
1Ax1

= q(x1 −x2) t2 +2(x′
1Ax2 − q(x1)) t+ q(x1)

is a quadratic function in t which is strictly convex if and only if q(x1 −
x2)> 0. This is the case for each pair of points x1 and x2 if and only if A
is positive definite. We then find

q
(
(1− t)x1 + tx2

)= g(t)= g
(
(1− t)0+ t1

)
> (1− t)g(0)+ tg(1)= (1− t)q(x1)+ tq(x2)

for all t ∈ (0,1) and hence q is strictly convex as well. The cases where q
is convex and (strictly) concave follow analogously.

Recall from Linear Algebra that we can determine the definiteness
of a symmetric matrix A by means of the signs of its eigenvalues or by
the signs of (leading) principle minors.



176 CONVEX FUNCTIONS

Tangents of convex functions. A C 1 function f is convex in an open,Theorem 17.11
convex set D if and only if

f (x)− f (x0)≥∇ f (x0) · (x−x0) (17.1)

for all x and x0 in D, i.e., the tangent is always below the function.
x0 Function f is strictly convex if and only if inequality (17.1) is strict for

x 6= x0.
A C 1 function f is concave in an open, convex set D if and only if

f (x)− f (x0)≤∇ f (x0) · (x−x0)

for all x and x0 in D, i.e., the tangent is always above the function.
x0

PROOF IDEA. For the necessity of condition (17.1) we transform the in-
equality for convexity (see Definition 17.5) into an inequality about dif-
ference quotients and apply the Mean Value Theorem. Using continuity
of the gradient of f yields inequality (17.1).

We note here that for the case of strict convexity we need some tech-
nical trick to obtain the requested strict inequality.

For sufficiency we split an interval [x0,x] into two subintervals [x0,z]
and [z,x] and apply inequality (17.1) on each.

PROOF. Assume that f is convex, and let x0,x ∈ D. Then we have by
definition

f
(
(1− t)x0 + tx

)≤ (1− t) f (x0)+ t f (x)

and thus

f (x)− f (x0)≥ f
(
x0 + t(x−x0)

)− f (x0)
t

=∇ f (ξ(t)) · (x−x0)

by the mean value theorem (Theorem 14.10) where ξ(t) ∈ [x0,x0 + t(x−
x0)]. (Notice that the central term is the difference quotient correspond-
ing to the directional derivative.) Since f is a C 1 function we find

f (x)− f (x0)≥ lim
t→0

∇ f (ξ(t)) · (x−x0)=∇ f (x0) · (x−x0)

as claimed.
Conversely assume that (17.1) holds for all x0,x ∈ D. Let t ∈ [0,1] and

z= (1− t)x0 + tx. Then z ∈ D and by (17.1) we find

(1− t)
(
f (x0)− f (z)

)+ t
(
f (x)− f (z)

)
≥ (1− t)∇ f (z) (x0 −z)+ t ∇ f (z) (x−z)

=∇ f (z)
(
(1− t)x0 + tx−z)

)=∇ f (z) 0= 0 .

Consequently,

(1− t) f (x0)− t f (x)≥ f (z)= f
(
(1− t)x0 + tx

)
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and thus f is convex.
The proof for the case where f is strictly convex is analogous. How-

ever, in the first part of the proof f (x)− f (x0)>∇ f (ξ(t)) · (x−x0) does not
imply strict inequality in

f (x)− f (x0)≥ lim
t→0

∇ f (ξ(t)) · (x−x0) .

So we need a technical trick. Assume x 6= x0 and let x1 = (x+x0)/2. By
strict convexity of f we have f (x1)< 1

2 ( f (x)+ f (x0)). Hence we find

2(x1 −x0)= x−x0 and 2( f (x1)− f (x0))< f (x)− f (x0)

and thus

f (x)− f (x0)> 2( f (x1)− f (x0))≥ 2∇ f (x0) · (x1 −x0)=∇ f (x0) · (x−x0)

as claimed.

There also exists a version for functions that are not necessarily dif-
ferentiable.

Subgradient and supergradient. Let f be a convex function on a Theorem 17.12
convex set D ⊆ Rn, and let x0 be an interior point of D. If f is convex,
then there exists a vector p such that

f (x)− f (x0)≥p′ · (x−x0) for all x ∈ D.

If f is a concave function on D, then there exists a vector q such that
x0

f (x)− f (x0)≤q′ · (x−x0) for all x ∈ D.

The vectors p and q are called subgradient and supergradient, resp.,
of f at x0.

We omit the proof and refer the interested reader to [3, Sect. 2.4].

Jensen’s inequality, discrete version. A function f on a convex do- Theorem 17.13
main D ⊆Rn is concave if and only if

f

(
k∑

i=1
αixi

)
≥

k∑
i=1

αi f (xi)

for all xi ∈ D and αi ≥ 0 with
∑k

i=1αi = 1.

PROOF. See Problem 17.13.

We finish with a quite obvious proposition.

Restriction of a function. Let f : D ⊆ Rn → Rm be some function and Definition 17.14
S ⊂ D. Then the function f

∣∣
S : S → Rm defined by f

∣∣
S(x) = f (x) for all

x ∈ S is called the restriction of f to S.
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Let f be a (strictly) convex function on a convex set D ⊂ Rn and S ⊂ D aLemma 17.15
convex subset. Then f

∣∣
S is (strictly) convex.

We close this section with a few useful results.

Function f (x) is convex if and only if
{
(x, y) : x ∈ D f , f (x)≤ y

}
is convex.Lemma 17.16

Function f (x) is concave if and only if
{
(x, y) : x ∈ D f , f (x)≥ y

}
is convex.

PROOF. Observe that
{
(x, y) : x ∈ D f , f (x) ≤ y

}
is the region above the

graph of f . Thus the result follows from Definition 17.5.

Minimum and maximum of two convex functions.Lemma 17.17

(a) If f (x) and g(x) are concave, then min
{
f (x), g(x)

}
is concave.

(b) If f (x) and g(x) are convex, then max
{
f (x), g(x)

}
is convex.

PROOF. See Problem 17.14.

Composite functions. Suppose that f : D f ⊆ Rn → R and F : DF ⊆ R→Theorem 17.18
R are two functions such that f (D f )⊆ DF . Then the following holds:

(a) If f (x) is concave and F(u) is concave and increasing, then G(x) =
F( f (x)) is concave.

(b) If f (x) is convex and F(u) is convex and increasing, then G(x) =
F( f (x)) is convex.

(c) If f (x) is concave and F(u) is convex and decreasing, then G(x) =
F( f (x)) is convex.

(d) If f (x) is convex and F(u) is concave and decreasing, then G(x) =
F( f (x)) is concave.

PROOF. We only show (a). Assume that f (x) is concave and F(u) is
concave and increasing. Then a straightforward computation gives

G
(
(1− t)x+ ty

)= F
(
f ((1− t)x+ ty)

)≥ F
(
(1− t) f (x)+ t f (y)

)
≥ (1− t)F( f (x))+ tF( f (y))= (1− t)G(x)+ tG(y)

where the first inequality follows from the concavity of f and the mono-
tonicity of F. The second inequality is implied by the concavity of F.

17.3 Monotone Univariate Functions

We now want to use derivatives to investigate the convexity or concavity
of a given function. We start with univariate functions and look at the
simpler case of monotonicity.
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Monotone function. A function f : D ⊆R→R is called monotonically Definition 17.19

x1 x2

f (x1)

f (x2)

increasing [monotonically decreasing] if

x1 ≤ x2 ⇒ f (x1)≤ f (x2)
[
f (x1)≥ f (x2)

]
.

It is called strictly increasing [strictly decreasing] if

x1 < x2 ⇒ f (x1)< f (x2)
[
f (x1)> f (x2)

]
.

Notice that a function f is (strictly) monotonically decreasing if and
only if − f is (strictly) monotonically increasing. Moreover, the implica-
tion in Definition 17.19 can be replaced by an equivalence relation.

A function f : D ⊆R→R is [strictly] monotonically increasing if and only Lemma 17.20
if

x1 ≤ x2 ⇔ f (x1)≤ f (x2)
[
f (x1)< f (x2)

]
.

For a C 1 function f we can use its derivative to verify monotonicity.

Monotonicity and derivatives. Let f : D ⊆ R→ R be a C 1 function. Theorem 17.21
Then the following holds.

(1) f is monotonically increasing on its domain D if and only if f ′(x)≥ 0
for all x ∈ D.

(2) f is strictly increasing if f ′(x)> 0 for all x ∈ D.

(3) If f ′(x0) > 0 for some x0 ∈ D, then f is strictly increasing in an open
neighborhood of x0.

These statements holds analogously for decreasing functions.

Notice that (2) is a sufficient but not a necessary condition for strict
monotonicity, see Problem 17.15.

Condition (2) can be replaced by a weaker condition that we state
without proof:

(2’) f is strictly increasing if f ′(x)> 0 for almost all x ∈ D (i.e., for all but
a finite or countable number of points).

PROOF. (1) Assume that f ′(x) ≥ 0 for all x ∈ D. Let x1, x2 ∈ D with x1 <
x2. Then by the mean value theorem (Theorem 14.10) there exists a
ξ ∈ [x1, x2] such that

f (x2)− f (x1)= f ′(ξ)(x2 − x1)≥ 0 .

Hence f (x1) ≤ f (x2) and thus f is monotonically increasing. Conversely,
if f (x1)≤ f (x2) for all x1, x2 ∈ D with x1 < x2, then

f (x2)− f (x1)
x2 − x1

≥ 0 and thus f ′(x1)= lim
x2→x1

f (x2)− f (x1)
x2 − x1

≥ 0

for all x1 ∈ D. For the proof of (2) and (3) see Problem 17.15.
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17.4 Convexity of C 2 Functions

For univariate C 2 functions we can use the second derivative to verify
convexity of the function, similar to Theorem 17.21.

Convexity of univariate functions. Let f : D ⊆R→R be a C 2 functionTheorem 17.22
on an open interval D ⊆R. Then f is convex [concave] in D if and only if
f ′′(x)≥ 0

[
f ′′(x)≤ 0

]
for all x ∈ D.

PROOF IDEA. In order to verify the necessity of the condition we apply
Theorem 17.11 to show that f ′ is increasing. Thus f ′′(x) ≥ 0 by Theo-
rem 17.21.

The sufficiency of the condition immediately follows from the La-
grange form of the reminder of the Taylor polynomial similar to the proof
of Theorem 17.21.

PROOF. Assume that f is convex. Then Theorem 17.11 implies

f ′(x1)≤ f (x2)− f (x1)
x2 − x1

≤ f ′(x2)

for all x1, x2 ∈ D with x1 < x2. Hence f ′ is monotonically increasing and
thus f ′′(x)≥ 0 for all x ∈ D by Theorem 17.21, as claimed.

Conversely, assume that f ′′(x) ≥ 0 for all x ∈ D. Then the Lagrange’s
form of the remainder of the first order Taylor series (Theorem 15.5)
gives

f (x)= f (x0)+ f ′(x0) (x− x0)+ f ′′(ξ)
2

(x− x0)2 ≥ f (x0)+ f ′(x0) (x− x0)

and thus

f (x)− f (x0)≥ f ′(x0) (x− x0) .

Hence f is convex by Theorem 17.11.

Similarly, we obtain a sufficient condition for strict convexity.

Let f : D ⊆R→R be a C 2 function on an open interval D ⊆R. If f ′′(x0)> 0Theorem 17.23
for some x0 ∈ D, then f is strictly convex in an open neighborhood of x0.

PROOF. Since f is a C 2 function there exists an open ball Bε(x0) such
that f ′′(x) > 0 for all x ∈ Bε(x0). Using the same argument as for Theo-
rem 17.22 the statement follows.

These results can be generalized for multivariate functions.

Convexity of multivariate functions. A C 2 function is convex (con-Theorem 17.24
cave) on a convex, open set D ⊆ Rn if and only if the Hessian matrix
f ′′(x) is positive (negative) semidefinite for each x ∈ D.
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PROOF IDEA. We reduce the convexity of f to the convexity of all uni-
variate reductions of f and apply Theorems 17.22 and 17.10.

PROOF. Let x,x0 ∈ D and t ∈ [0,1]. Define

g(t)= f
(
(1− t)x0 + tx

)= f
(
x0 + t(x−x0)

)
.

If g is convex for all x,x0 ∈ D and t ∈ [0,1], then

f
(
(1− t)x0 + tx

)= g(t)= g
(
(1− t) ·0+ t ·1)

≤ (1− t) g(0)+ tg(1)= (1− t) f (x0)+ t f (x)

i.e., f is convex. Similarly, if f is convex then g is convex. Applying the
chain rule twice gives

g′(t)=∇ f
(
x0 + t(x−x0)

) · (x−x0) , and

g′′(t)= (x−x0)′ f ′′
(
x0 + t(x−x0)

) · (x−x0) .

By Theorem 17.22, g is convex if and only if g′′(t)≥ 0 for all t. The latter
is the case for all x,x0 ∈ D if and only if f ′′(x) is positive semidefinite for
each x ∈ D by Theorem 17.10.

By a similar argument we find the multivariate extension of Theo-
rem 17.23.

Let f be a C 2 function on a convex, open set D ⊆Rn and x0 ∈ D. If f ′′(x0) Theorem 17.25
is positive (negative) definite, then f is strictly convex (strictly concave)
in an open ball Bε(x0) centered at x0.

PROOF IDEA. Completely analogous to the proof of Theorem 17.24 except
that we replace inequalities by strict inequalities.

We can combine the results from Theorems 17.24 and 17.25 and our
results from Linear Algebra as following. Let f be a C 2 function on a
convex, open set D ⊆ Rn and x0 ∈ D. Let Hr(x) denotes the rth leading
principle minor of f ′′(x) then we find

• Hr(x0)> 0 for all r =⇒ f is strictly convex in some open ball Bε(x0).

• (−1)rHr(x0)> 0 for all r =⇒ f is strictly concave in Bε(x0).

The condition for semidefiniteness requires evaluations of all prin-
ciple minors. Let Mi1,...,ir denote a generic principle minor of order r of
f ′′(x). Then we have the following sufficient condition:

• Mi1,...,ir ≥ 0 for all x ∈ D and all i1 < . . . ir for r = 1, . . . ,n
⇐⇒ f is convex in D.

• (−1)rMi1,...,ir ≥ 0 for all x ∈ D and all i1 < . . . ir for r = 1, . . . ,n
⇐⇒ f is concave in D.
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Logarithm and exponential function. The logarithm functionExample 17.26

log: D = (0,∞)→R, x 7→ log(x)

is strictly concave as its second derivative (log(x))′′ = −1
x < 0 is negative

for all x ∈ D. The exponential function

exp: D =R→ (0,∞), x 7→ ex

is a strictly convex as its second derivative (exp(x))′′ = ex > 0 is positive
for all x ∈ D. ♦

1

1

e

log(x)

1

1

e

exp(x)

Function f (x, y)= x4 + x2 −2 x y+ y2 is strictly convex in D =R2.Example 17.27

SOLUTION. Its Hessian matrix is

f ′′(x, y)=
(
12 x2 +2 −2

−2 2

)
with leading principle minors H1 = 12 x2 + 2 > 0 and H2 = | f ′′(x, y)| =
24 x2 ≥ 0. Observe that both are positive on D0 = {(x, y) : x 6= 0}. Hence f
is strictly convex on D0. Since f is a C 2 function and the closure of D0
is D0 = D we can conclude that f is convex on D. ♦

Cobb-Douglas function. The Cobb-Douglas functionExample 17.28

f : D = (0,∞)2 →R , (x, y) 7→ f (x, y)= xαyβ

with α,β≥ 0 and α+β≤ 1 is concave.

SOLUTION. The Hessian matrix at (x, y) and its principle minors are

f ′′(x, y)=
(
α(α−1) xα−2 yβ αβxα−1 yβ−1

αβxα−1 yβ−1 β(β−1) xαyβ−2

)
,

M1 =α (α−1) xα−2 yβ ≤ 0 ,

M2 =β (β−1) xαyβ−2 ≤ 0 ,

M1,2 =αβ (1−α−β) x2α−2 y2β−2 ≥ 0 .

The Cobb-Douglas function is strict concave if α,β> 0 and α+β< 1. ♦
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17.5 Quasi-Convex Functions

Convex and concave functions play a prominent rôle in static optimiza-
tion. However, in many theorems convexity and concavity can be re-
placed by weaker conditions. In this section we introduce a notion that
is based on level sets.

Level set. The set Definition 17.29

Uc = {x ∈ D : f (x)≥ c}= f −1(
[c,∞)

)
is called a upper level set of f . The set

Lc = {x ∈ D : f (x)≤ c}= f −1(
(−∞, c]

)
is called a lower level set of f .

c
c

upper level set lower level set

Level sets of convex functions. Let f : D ⊆ Rn → R be a convex func- Lemma 17.30
tion and c ∈R. Then the lower level set Lc = {x ∈ D : f (x)≤ c} is convex.

PROOF. Let x1,x2 ∈ {x ∈ D : f (x) ≤ c}, i.e., f (x1) ≤ c and f (x2) ≤ c. Then
for every y= (1− t)x1 + tx2 with t ∈ [0,1] we find

f (y)= f
(
(1− t)x1 + tx2

)≤ (1− t) f (x1)+ t f (x2)≤ (1− t)c+ tc = c

that is, y ∈ {x ∈ D : f (x) ≤ c}. Thus the lower level set {x ∈ D : f (x) ≤ c} is
convex, as claimed. x1

x2
y

We will see in the next chapter that functions where all its lower level
sets are convex behave in many situations similar to convex functions,
that is, they are quasi convex. This motivates the following definition.

Quasi-convex. A function f : D ⊆ Rn → R is called quasi-convex if Definition 17.31
each of its lower level sets Lc = {x ∈ D : f (x)≤ c} are convex.

Function f is called quasi-concave if each of its upper level sets
Uc = {x ∈ D : f (x)≥ c} are convex.

Analogously to Problem 17.9 we find that a function f is quasi-concave
if and only if − f is quasi-convex, see Problem 17.16.

Obviously every concave function is quasi-concave but not vice versa
as the following examples shows.

Function f (x)= e−x2
is quasi-concave but not concave. ♦ Example 17.32
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Characterization of quasi-convexity. A function f on a convex setTheorem 17.33
D ⊆Rn is quasi-convex if and only if

f
(
(1− t)x1 + tx2

)≤max
{
f (x1), f (x2)

}
for all x1,x2 ∈ D and t ∈ [0,1]. The function is quasi-convex if and only if

f
(
(1− t)x1 + tx2

)≥min
{
f (x1), f (x2)

}
for all x1,x2 ∈ D and t ∈ [0,1].

x1 x2 x1 x2
quasi-convex quasi-concave

PROOF IDEA. For c =max
{
f (x1), f (x2)

}
we find that

(1− t)x1 + tx2 ∈ Lc = {x ∈ D : f (x)≤ c}

is equivalent to

f
(
(1− t)x1 + tx2

)≤ c =max
{
f (x1), f (x2)

}
.

PROOF. Let x1,x2 ∈ D and t ∈ [0,1]. Let c = max
{
f (x1), f (x2)

}
and as-

sume w.l.o.g. that c = f (x2) ≥ f (x1). If f is quasi-convex, then (1− t)x1 +
tx2 ∈ Lc = {x ∈ D : f (x)≤ c} and thus f ((1−t)x1+tx2)≤ c =max

{
f (x1), f (x2)

}
.

Conversely, if f ((1− t)x1 + tx2) ≤ c = max
{
f (x1), f (x2)

}
, then (1− t)x1 +

tx2 ∈ Lc and thus f is quasi-convex. The case for quasi-concavity is
shown analogously.

In Theorem 17.18 we have seen that some compositions of functions
preserve convexity. Quasi-convexity is preserved under even milder con-
dition.

Composite functions. Suppose that f : D f ⊆ Rn → R and F : DF ⊆ R→Theorem 17.34
R are two functions such that f (D f )⊆ DF . Then the following holds:

(a) If f (x) is quasi-convex (quasi-concave) and F(u) is increasing, then
G(x)= F( f (x)) is quasi-convex (quasi-concave).

(b) If f (x) is quasi-convex (quasi-concave) and F(u) is decreasing, then
G(x)= F( f (x)) is quasi-concave (quasi-convex).

PROOF IDEA. Monotone transformations preserve (in some sense) level
sets of functions.



17.5 QUASI-CONVEX FUNCTIONS 185

−1
−4

−9

−1
−4

−9

e−1
e−4

e−9

e−1
e−4

e−9

f (x, y)=−x2 − y2 exp(−x2 − y2)

PROOF. Assume that f is quasi-convex and F is increasing. Thus by
Theorem 17.33 f

(
(1− t)x1+ tx2

)≤max
{
f (x1), f (x2)

}
for all x1,x2 ∈ D and

t ∈ [0,1]. Moreover, F(y1)≤ F(y2) if and only if y1 ≤ y2. Hence we find for
all x1,x2 ∈ D and t ∈ [0,1],

F
(
f ((1− t)x1 + tx2)

)≤ F
(
max{ f (x1), f (x2)}

)≤max
{
F( f (x1)), f ( f (x2))

}
and thus F◦ f is quasi-convex. The proof for the other cases is completely
analogous.

Theorem 17.34 allows to determine quasi-convexity or quasi-concavity
of some functions. In Example 17.28 we have shown that the Cobb-
Douglas function is concave for appropriate parameters. The compu-
tation was a bit tedious and it is not straightforward to extend the proof
to functions of the form

∑n
i=1 xαi

i . Quasi-concavity is much easier to show.
Moreover, it holds for a larger range of parameters and our computation
easily generalizes to many variables.

Cobb-Douglas function. The Cobb-Douglas function Example 17.35

f : D = (0,∞)2 →R , (x, y) 7→ f (x, y)= xαyβ

with α,β≥ 0 is quasi-concave.

SOLUTION. Observe that f (x, y) = exp
(
α log(x)+β log(y)

)
. Notice that

log(x) is concave by Example 17.26. Thus α log(x)+β log(y) is concave
by Theorem 17.9 and hence quasi-concave. Since the exponential func-
tion exp is monotonically increasing, it follows that the Cobb-Douglas
function is quasi-concave if α,β> 0. ♦

Notice that it is not possible to apply Theorem 17.18 to show concav-
ity of the Cobb-Douglas function when α+β≤ 1.

CES function. Let a1, . . . ,an ≥ 0. Then function Example 17.36

f (x)=
(

n∑
i=1

aixr
i

)1/r

is quasi-concave for all r ≤ 1 and quasi-convex for all r ≥ 1.

SOLUTION. Since
(
xr

i
)′′ = r(r − 1)xr−2

i , we find that xr
i is concave for

r ∈ [0,1] and convex otherwise. Hence the same holds for
∑n

i=1 aixr
i by

Theorem 17.9. Since F(y) = y1/r is monotonically increasing if r > 0 and
decreasing if r < 0, Theorem 17.34 implies that f (x) is quasi-concave for
all r ≤ 1 and quasi-convex for all r ≥ 1. ♦
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In opposition to Theorem 17.9 the sum of quasi-convex functions
need not be quasi-convex.

The two functions f1(x) = exp
(− (x−2)2)

and f2(x) = exp
(− (x+2)2)

areExample 17.37
quasi-concave as each of their upper level sets are intervals (or empty).
However, f1(x)+ f2(x) has two local maxima and thus cannot be quasi-
concave.

There is also an analog to strict convexity. However, a definition us-
ing lower level set were not useful. So we start with the characterization
of quasi-convexity in Theorem 17.33.

Strictly quasi-convex. A function f on a convex set D ⊆ Rn is calledDefinition 17.38
strictly quasi-convex if

f
(
(1− t)x1 + tx2

)<max
{
f (x1), f (x2)

}
for all x1,x2 with x1 6= x2, and t ∈ (0,1). It is called strictly quasi-
concave if

f
(
(1− t)x1 + tx2

)>min
{
f (x1), f (x2)

}
for all x1,x2 with x1 6= x2, and t ∈ (0,1).

Our last result shows, that we also can use tangents to characterize
quasi-convex function. Again, the condition is weaker than the corre-
sponding condition in Theorem 17.11.

Tangents of quasi-convex functions. A C 1 function f is quasi-convexTheorem 17.39
in an open, convex set D if and only if

f (x)≤ f (x0) implies ∇ f (x0) · (x−x0)≤ 0

for all x,x0 ∈ D. It is quasi-concave if and only if

f (x)≥ f (x0) implies ∇ f (x0) · (x−x0)≥ 0

for all x,x0 ∈ D.

PROOF. Assume that f is quasi-convex and f (x) ≤ f (x0). Define g(t) =
f
(
(1−t)x0+tx

)= f
(
x0+t(x−x0

)
. Then Theorem 17.33 implies that g(0)=

f (x0)≥ g(t) for all t ∈ [0,1] and hence g′(0)≤ 0. By the chain rule we find
g′(t)=∇ f

(
x0+t(x−x0)

)
(x−x0) and consequently g′(0)=∇ f (x0)·(x−x0)≤

0 as claimed.
For the converse assume that f is not quasi-convex. Then there exist

x,x0 ∈ D with f (x) ≤ f (x0) and a z = x0 + t(x−x0) ∈ D for some t ∈ (0,1)
such that f (z) > f (x0). Define g(t) as above. Then g(t) > g(0) and there
exists a τ ∈ (0,1) such that g′(τ) > 0 by the Mean Value Theorem, and
thus ∇ f (z0) · (x−z0)> 0, where z0 = g(τ). We state without proof that we
can find such a point z0 where f (z0) ≥ f (x). Thus the given condition is
violated for some points.

The proof for the second statement is completely analogous.
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— Exercises

17.1 Let

f (x)= x4 + 4
3

x3 −24x2 +8 .

(a) Determinte the regions where f is monotonically increasing
and monotonically decreasing, respectively.

(b) Determinte the regions where f is concave and convex, re-
spectively.

17.2 A function f : R→ (0,∞) is called log-concave if ln◦ f is a concave
function.

Which of the following functions is log-concave?

(a) f (x)= 3 exp(−x4)

(b) g(x)= 4 exp(−x7)

(c) h(x)= 2 exp(x2)

(d) s : (−1,1)→ (0,∞), x 7→ s(x)= 1− x4

17.3 Determine whether the following functions are convex, concave or
neither.

(a) f (x)= exp
(−px

)
on D = [0,∞).

(b) f (x)= exp
(−∑n

i=1
p

xi
)

on D = [0,∞)n.

17.4 Determine whether the following functions on R2 are (strictly) con-
vex or (strictly) concave or neither.

(a) f (x, y)= x2 −2xy+2y2 +4x−8

(b) g(x, y)= 2x2 −3xy+ y2 +2x−4y−2

(c) h(x, y)=−x2 +4xy−4y2 +1

17.5 Show that function

f (x, y)= ax2 +2bxy+ cy2 + px+ qy+ r

is strictly concave if ac− b2 > 0 and a < 0, and strictly convex if
ac−b2 > 0 and a > 0.

Find necessary and sufficient conditions for (strict) convexity/concavity
of f .

17.6 Show that f (x, y)= exp(−x2− y2) is quasi-concave in D =R2 but not
concave. Apply Theorem 17.34.

Is there a domain where f is (strictly) concave? Compute the
largest of such domains.
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— Problems

17.7 Let S1, . . . ,Sk be convex sets in Rn. Show that their intersection⋂k
i=1 Si is convex (Theorem 17.3).

Give an example where the union of convex sets is not convex.

17.8 Show that the sets H, H+, and H− in Example 17.4 are convex.

17.9 Show that a function f : D ⊆Rn →R is (strictly) concave if and only
if function g : D ⊆Rn →R with g(x)=− f (x) is (strictly) convex.

17.10 A function f : R→ (0,∞) is called log-concave if ln◦ f is a concave
function.

Show that every concave function f : R→ (0,1) is log-concave.

17.11 Let T : (0,∞) → R be a strictly monotonically increasing twice dif-
ferentiable transformation. A function f : R→ (0,∞) is called T-
concave if T ◦ f is a concave function.

Consider the family Tc(x), c ≤ 0, of transformations with T0(x) =
ln(x) and Tc(x)=−xc/c for c < 0.

(a) Show that all transformations Tc satify the above conditions
for all c ≤ 0.

(b) Show that f (x)= exp(−x2) is T−1/2-concave.

(c) Show that f (x)= exp(−x2) is Tc-concave for alle c ≤ 0.

(d) Show that every Tc0-concave function f : R→ (0,∞) with c0 <
0 is also Tc-concave for all c ≤ c0.
HINT: f is Tc-concave if and only if (T( f (x)))′′/(c f (x)(c−2)) ≤ 0 for all x.
Compute this term and derive a condition on c.

17.12 Prove Theorem 17.9.

17.13 Prove Jensen’s inequality (Theorem 17.13).
HINT: For k = 2 the theorem is equivalent to the definition of concavity. For k ≥ 3
use induction.

17.14 Prove Lemma 17.17.HINT: Use Lemma 17.16.

17.15 Prove (2) and (3) of Theorem 17.21.

Condition (2) (i.e., f ′(x) > 0 for all x ∈ D) is sufficient for f be-HINT: Give a strictly in-
creasing function f where
f ′(0)= 0.

ing strictly monotonically increasing. Give a counterexample that
shows that this condition is not necessary.

Suppose one wants to prove the (false!) statement that f ′(x) > 0
for each x ∈ D f for every strictly increasing function f . Thus he or
she uses the same argument as in the proof of Theorem 17.21(1).
Where does this argument fail?
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17.16 Show that a function f : D ⊆ Rn → R is (strictly) quasi-concave if
and only if function g : D ⊆ Rn → R with g(x) = − f (x) is (strictly)
quasi-convex.
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Static Optimization

We want to find the highest peak in our world.

18.1 Extremal Points

We start with so called global extrema.

Extremal points. Let f : D ⊆ Rn → R. Then x∗ ∈ D is called a (global) Definition 18.1
maximum of f if

f (x∗)≥ f (x) for all x ∈ D.

It is called a strict maximum if the inequality is strict for x 6= x∗.
Similarly, x∗ ∈ D is called a (global) minimum of f if f (x∗)≤ f (x) for

all x ∈ D.

A stationary point x0 of a function f is a point where the gradient Definition 18.2
vanishes, i.e,

∇ f (x0)= 0 .

Necessary first-order conditions. Let f be a C 1 function on an open Theorem 18.3
set D ⊆ Rn and let x∗ ∈ D be an extremal point. Then x∗ is a stationary
point of f , i.e.,

∇ f (x∗)= 0 .

PROOF. If x∗ is an extremal point then all directional derivatives are 0
and thus the result follows.

Sufficient conditions. Let f be a C 1 function on an open set D ⊆ Rn Theorem 18.4
and let x∗ ∈ D be a stationary point of f .

If f is (strictly) convex in D, then x∗ is a (strict) minimum of f .
If f is (strictly) concave in D, then x∗ is a (strict) maximum of f .

191
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PROOF. Assume that f is strictly convex. Then by Theorem 17.11

f (x)− f (x∗)>∇ f (x∗) · (x−x∗)= 0 · (x−x∗)= 0

and hence f (x) > f (x∗) for all x 6= x∗, as claimed. The other statements
follow analogously.

Cobb-Douglas function. We want to find the (global) maxima ofExample 18.5

f : D = [0,∞)2 →R, f (x, y)= 4 x
1
4 y

1
4 − x− y .

SOLUTION. A straightforward computation yields

fx = x−
3
4 y

1
4 −1

f y = x
1
4 y−

3
4 −1

and thus x0 = (1,1) is the only stationary point of this function. As f is
strictly concave (see Example 17.28) x0 is the global maximum of f . ♦

Local extremal points. Let f : D ⊆ Rn → R. Then x∗ ∈ D is called aDefinition 18.6
local maximum of f if there exists an ε> 0 such that

f (x∗)≥ f (x) for all x ∈ Bε(x∗).

It is called a strict local maximum if the inequality is strict for x 6= x∗.
Similarly, x∗ ∈ D is called a local minimum of f if there exists an

ε> 0 such that f (x∗)≤ f (x) for all x ∈ Bε(x∗).

Local extrema necessarily are stationary points.

Sufficient conditions for local extremal points. Let f be a C 2 func-Theorem 18.7
tion on an open set D ⊆Rn and let x∗ ∈ D be a stationary point of f .

If f ′′(x∗) is positive definite, then x∗ is a strict local minimum of f .
If f ′′(x∗) is negative definite, then x∗ is a strict local maximum of f .

PROOF. Assume that f ′′(x∗) is positive definite. Since f ′′ is continuous,
there exists an ε such that f ′′(x) is positive definite for all x ∈ Bε(x∗)
and hence f is strictly convex in Bε(x∗). Consequently, x∗ is a strict
minimum in Bε(x∗) by Theorem 18.4, i.e., a strict local minimum of f .

We want to find all local maxima ofExample 18.8

f (x, y)= 1
6

x3 − x+ 1
4

x y2 .
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SOLUTION. The partial derivative of f are given as

fx = 1
2

x2 −1+ 1
4

y2,

f y = 1
2

x y,

and hence we find the stationary points x1 = (0,2), x2 = (0, −2), x3 =
(
p

2, 0), and x4 = (−p2, 0). In order to apply Theorem 17.25 we need the
Hessian of f ,

f ′′(x, y)=
(

fxx(x) fxy(x)
f yx(x) f yy(x)

)
=

(
x 1

2 y
1
2 y 1

2 x

)
.

We then find f ′′(x3) =
(p

2 0
0

p
2

2

)
. Its leading principle minors are both

positive, H1 =p
2 > 0 and H2 = 1 > 0, and hence x3 is a local minimum.

Similarly we find that x4 is a local maximum. ♦

Besides (local) extrema there are also other types of stationary points.

Saddle point. Let f be a C 2 function on an open set D ⊆Rn. A station- Definition 18.9
ary point x0 ∈ D is called a saddle point if f ′′(x0) is indefinite, that is,
if f is neither convex nor concave in any open ball around x∗.

In Example 18.8 we have found two additional stationary points: x1 = Example 18.10
(0,2) and x2 = (0, −2). However, the Hessian of f at x1,

f ′′(x1)=
(
0 1
1 0

)
is indefinite as it has leading principle minors H1 = 0 and H2 = −1 < 0.
Consequently x1 is a saddle point. ♦

18.2 The Envelope Theorem

Let f (x,r) be a C 1 function with (endogenous) variable x ∈ D ⊆ Rn and
parameter (exogenous variable) r ∈ Rk. An extremal point of f may de-
pend on r. So let x∗(r) denote an extremal point for a given parameter r
and let

f ∗(r)=max
x∈D

f (x,r)= f (x∗(r),r)

be the value function.

Envelope theorem. Let f (x,r) be a C 1 function on D ×Rk where D ⊆ Theorem 18.11
Rn. Let x∗(r) denote an extremal point for a given parameter r and
assume that r 7→ x∗(r) is differentiable. Then

∂ f ∗(r)
∂r j

= ∂ f (x,r)
∂r j

∣∣∣∣
x=x∗(r)
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PROOF IDEA. The chain rule implies

∂ f ∗(r)
∂r j

= ∂ f (x∗(r),r)
∂r j

=
n∑

i=1
fxi (x

∗(r),r)︸ ︷︷ ︸
=0

·∂x∗i (r)

∂r j
+ ∂ f (x,r)

∂r j

∣∣∣∣
x=x∗(r)

= ∂ f (x,r)
∂r j

∣∣∣∣
x=x∗(r)

as claimed.

The following figure illustrates this theorem. Let f (x, r)=p
x−rx and

f ∗(r) = maxx f (x, r). gx(r) = f (r, x) denotes function f with argument x
fixed. Observe that f ∗(r)=maxx gx(r).

r

g4/11
g1/2

g2/3

g1

g3/2
f ∗(r)

See Lecture 11 in Mathematische Methoden for further examples.

18.3 Constraint Optimization – The Lagrange
Function

In this section we consider the optimization problem

max (min) f (x1, . . . , xn)

subject to g j(x1, . . . , xn)= c j, j = 1, . . . ,m (m < n)

or in vector notation

max (min) f (x) subject to g(x)= c .

Lagrange function. FunctionDefinition 18.12

L (x;λ)= f (x)−λ′(g(x)−c)= f (x)−
m∑

j=1
λ j(g j(x)− c j)

is called the Lagrange function (or Lagrangian) of the above con-
straint optimization problem. The numbers λ j are called Lagrange
multipliers.
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In order to find candidates for solutions of the constraint optimiza-
tion problem we have to find stationary points of the Lagrange function.
We state this condition without a proof.

Necessary condition. Suppose that f and g are C 1 functions and Theorem 18.13
x∗ (locally) solves the constraint optimization problem and g′(x∗) has
maximal rank m, then there exist a unique vector λ∗ = (λ∗

1 , . . . ,λ∗
m) such

that ∇L (x∗,λ∗)= 0.

This necessary condition implies that ∂ f ′(x∗)=λ∗g′(x∗). The follow-
ing figure illustrates the situation for the case of two variables x and y
and one constraint g(x, y) = c. Then we have find ∇ f = λ∇g, that is, in
an optimal point ∇ f is some multiple of ∇g.

1

2
g(x, y)= c

∇g

∇ f ∇ f =λ∇g
x∗

Also observe that a point x is admissible (i.e., satisfies constraint
g(x)= c) if and only if ∂L

∂λ
(x,λ)= 0 for some vector λ= 0.

Sufficient condition. Let f and g be C 1. Suppose there exists a λ∗ = Theorem 18.14
(λ∗

1 , . . . ,λ∗
m) and an admissible x∗ such that (x∗,λ∗) is a stationary point

of L , i.e., ∇L (x∗,λ∗) = 0. If L (x,λ∗) is concave (convex) in x, then x∗

solves the constraint maximization (minimization) problem.

PROOF. By Theorem 18.4 these conditions imply that x∗ is a maximum
of L (x,λ∗) w.r.t. x, i.e.,

L (x∗;λ∗)= f (x)∗−
m∑

j=1
λ∗

j (g j(x∗)− c j)

≥ f (x)−
m∑

j=1
λ∗

j (g j(x)− c j)=L (x;λ∗) .

However, all admissible x satisfy g j(x) = c j for all j and thus f (x∗) ≥
f (x) for all admissible x. Hence x∗ solves the constraint maximization
problem.



196 STATIC OPTIMIZATION

Similar to Theorem 18.7 we can find sufficient conditions for local
solutions of the constraint optimization problem. That is, (x∗,λ∗) is a
stationary point of L and L w.r.t. x is strictly concave (strictly convex)
in some open ball around (x∗,λ∗), then x∗ solves the local constraint
maximization (minimization) problem. Such an open ball exists if the
Hessian of L w.r.t. x is negative (positive) definite in (x∗,λ∗).

However, such a condition is too strong. There is no need to in-
vestigate the behavior of L for points x that do not satisfy constraint
g(x) = c. Hence (roughly spoken) it is sufficient that the Lagrange func-
tion L is strictly concave on the affine subspace spanned by the gradi-
ents ∇g1(x∗), . . . ,∇gm(x∗). Again it is sufficient to look at the definite-
ness of the Hessian L ′′ at x∗. (L ′′ denotes the Hessian w.r.t. x.)

Let f and g be C 1. Suppose there exists a λ∗ = (λ∗
1 , . . . ,λ∗

m) and an ad-Lemma 18.15
missible x∗ such that ∇L (x∗,λ∗)= 0. If there exists an open ball around
x∗ such that the quadratic form

h′L ′′(x∗;λ∗)h

is negative (positive) definite for all h ∈ span
(∇g1(x∗), . . . ,∇gm(x∗)

)
, then

x∗ solves the local constraint maximization (minimization) problem.

This condition can be verified by means of a theorem from Linear
Algebra which requires the concept of the border Hessian.

Border Hessian. The matrixDefinition 18.16

H̄(x;λ)=
(

0 g′(x)
(g′(x))′ L ′′(x;λ)

)

=



0 . . . 0 ∂g1
∂x1

. . . ∂g1
∂xn

...
. . .

...
...

. . .
...

0 . . . 0 ∂gm
∂x1

. . . ∂gm
∂xn

∂g1
∂x1

. . . ∂gm
∂x1

Lx1x1 . . . Lx1xn

...
. . .

...
...

. . .
...

∂g1
∂xn

. . . ∂gm
∂xn

Lxnx1 . . . Lxnxn


is called the border Hessian of L (x;λ)= f (x)−λ′(g(x)−c).
We denote its leading principal minors by

Br(x)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 . . . 0 ∂g1
∂x1

(x;λ) . . . ∂g1
∂xr

(x;λ)
...

. . .
...

...
. . .

...
0 . . . 0 ∂gm

∂x1
(x;λ) . . . ∂gm

∂xr
(x;λ)

∂g1
∂x1

(x;λ) . . . ∂gm
∂x1

(x;λ) Lx1x1(x;λ) . . . Lx1xr (x;λ)
...

. . .
...

...
. . .

...
∂g1
∂xr

(x;λ) . . . ∂gm
∂xr

(x;λ) Lxr x1(x;λ) . . . Lxr xr (x;λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Sufficient condition for local optimum. Let f and g be C 1. Sup- Theorem 18.17
pose there exists a λ∗ = (λ∗

1 , . . . ,λ∗
m) and an admissible x∗ such that

∇L (x∗,λ∗)= 0.

(a) If (−1)rBr(x) > 0 for all r = m+1, . . . ,n, then x∗ solves the local con-
straint maximization problem.

(b) If (−1)mBr(x) > 0 for all r = m+1, . . . ,n, then x∗ solves the local con-
straint minimization problem.

See Lecture 12 in Mathematische Methoden for examples.

18.4 Kuhn-Tucker Conditions

In this section we consider the optimization problem

max f (x1, . . . , xn)

subject to g j(x1, . . . , xn)≤ c j, j = 1, . . . ,m (m < n),

and xi ≥ 0, i = 1, . . .n (non-negativity constraint)

or in vector notation

max f (x) subject to g(x)≥ c and x≥ 0.

Again let

L (x;λ)= f (x)−λ′(g(x)−c)= f (x)−
m∑

j=1
λ j(g j(x)− c j)

denote the Lagrange function of this problem.

Kuhn-Tucker condition. The conditions Definition 18.18

∂L

∂x j
≤ 0, x j ≥ 0 and x j

∂L

∂x j
= 0

∂L

∂λi
≥ 0, λi ≥ 0 and λi

∂L

∂λi
= 0

are called the Kuhn-Tucker conditions of the problem.

Kuhn-Tucker sufficient condition. Suppose that f and g are C 1 func- Theorem 18.19
tions and there exists a λ∗ = (λ∗

1 , . . . ,λ∗
m) and an admissible x∗ such that

(1) The objective function f is concave.

(2) The functions g j are convex for j = 1, . . . ,m.

(3) The point x∗ satisfies the Kuhn-Tucker conditions.

Then x∗ solves the constraint maximization problem.

See Lecture 13 in Mathematische Methoden for examples.
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— Exercises

18.1 Compute all local and global extremal points of the functions

(a) f (x)= (x−3)6

(b) g(x)= x2+1
x

18.2 Compute the local and global extremal points of the functions

(a) f : [0,∞]→R, x 7→ 1
x + x

(b) f : [0,∞]→R, x 7→p
x− x

(c) g : R→R, x 7→ e−2x +2x

18.3 Compute all local extremal points and saddle points of the follow-
ing functions. Are the local extremal points also globally extremal.

(a) f (x, y)=−x2 + xy+ y2

(b) f (x, y)= 1
x ln(x)− y2 +1

(c) f (x, y)= 100(y− x2)2 + (1− x)2

(d) f (x, y)= 3 x+4 y− ex − ey

18.4 Compute all local extremal points and saddle points of the follow-
ing functions. Are the local extremal points also globally extremal.

f (x1, x2, x3)= (x3
1 − x1) x2 + x2

3 .

18.5 We are given the following constraint optimization problem

max(min) f (x, y)= x2 y subject to x+ y= 3.

(a) Solve the problem graphically.

(b) Compute all stationary points.

(c) Use the bordered Hessian to determine whether these sta-
tionary points are (local) maxima or minima.

18.6 Compute all stationary points of the constraint optimization prob-
lem

max (min) f (x1, x2, x3)= 1
3

(x1 −3)3 + x2 x3

subject to x1 + x2 = 4 and x1 + x3 = 5.

18.7 A household has an income m and can buy two commodities with
prices p1 and p2. We have

p1 x1 + p2 x2 = m

where x1 and x2 denote the quantities. Assume that the household
has a utility function

u(x1, x2)=α ln(x1)+ (1−α) ln(x2)

where α ∈ (0,1).
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(a) Solve this constraint optimization problem.

(b) Compute the change of the optimal utility function when the
price of commodity 1 changes.

(c) Compute the change of the optimal utility function when the
income m changes.

18.8 We are given the following constraint optimization problem

max f (x, y)=−(x−2)2 − y subject to x+ y≤ 1, x, y≥ 0 .

(a) Solve the problem graphically.

(b) Solve the problem by means of the Kuhn-Tucker conditions.

— Problems

18.9 Our definition of a local maximum (Definition 18.6) is quite simple
but has unexpected consequences: There exist functions where a
global minimum is a local maximum. Give an example for such a
function. How could Definition 18.6 be “repaired”?

18.10 Let f : Rn →R and T : R→R be a strictly monotonically increasing
transformation. Show that x∗ is a maximum of f if and only if x∗

is a maximum of the transformed function T ◦ f .





19
Integration

We know the boundary of some domain. What is its area?

In this chapter we deal with two topics that seem to be quite distinct: We
want to invert the result of differentiation and we want to compute the
area of a region that is enclosed by curves. These two tasks are linked
by the Fundamental Theorem of Calculus.

19.1 The Antiderivative of a Function

A univariate function F is called an antiderivative of some function f Definition 19.1
if F ′(x)= f (x).

Motivated by the Fundamental Theorem of Calculus (p. 206) the an-
tiderivative is usually called the indefinite integral (or primitive in-
tegral) of f and denoted by

F(x)=
∫

f (x)dx .

Finding antiderivatives is quite a hard issue. In opposition to dif-
ferentiation often no straightforward methods exist. Roughly spoken we
have to do the following:

Make an educated guess and verify by differentiation.

Find the antiderivative of f (x)= ln(x). Example 19.2

SOLUTION. Guess: F(x)= x (ln(x)−1).
Verify: F ′(x)= (x (ln(x)−1))′ = 1 · (ln(x)−1)+ x · 1

x = ln(x). ♦

It is quite obvious that F(x)= x(ln(x)−1)+123 is also an antideriva-
tive of ln(x) as is F(x)= x(ln(x)−1)+ c for every c ∈R.

If F(x) is an antiderivative of some function f (x), then F(x)+ c is also Lemma 19.3
an antiderivative of f (x) for every c ∈ R. The constant c is called the
integration constant.

201
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f (x)
∫

f (x)dx

0 c

xα 1
α+1 · xα+1 + c for α 6= −1

ex ex + c
1
x

ln |x|+ c

cos(x) sin(x)+ c

sin(x) −cos(x)+ c

Table 19.4

Table of antiderivatives
of some elementary
functions.

Summation rule:
∫
α f (x)+βg(x)dx =α

∫
f (x)dx+β

∫
g(x)dx

By parts:
∫

f (x) · g′(x)dx = f (x) · g(x)−
∫

f ′(x) · g(x)dx

By substitution:
∫

f
(
g(x)

) · g′(x)dx =
∫

f (z)dz

where z = g(x) and dz = g′(x)dx

Table 19.5

Rules for indefinite
integrals.

Fortunately there exist some tools that ease the task of “guessing”
the antiderivative. Table 19.4 lists basic integrals. Observe that we get
these antiderivatives simply by exchanging the columns in our table of
derivatives (Table 14.8).

Table 19.5 lists integration rules that allow to reduce the issue of
finding indefinite integrals of complicated expressions to simpler ones.
Again these rules can be directly derived from the corresponding rules in
Table 14.9 for computing derivatives. There exist many other such rules
which are, however, often only applicable to special functions. Computer
algebra systems like Maxima thus use much larger tables for basic inte-
grals and integration rules for finding indefinite integrals.

DERIVATION OF THE INTEGRATION RULES. The summation rule is just
a consequence of the linearity of the differential operator.

For integration by parts we have to assume that both f and g are
differentiable. Thus we find by means of the product rule

f (x) · g(x)=
∫ (

f (x) · g(x)
)′ dx =

∫ (
f ′(x) g(x)+ f (x) g′(x)

)
dx

=
∫

f ′(x) g(x)dx+
∫

f (x) g′(x)dx

and hence the rule follows.
For integration by substitution let F denote an antiderivative of f .
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Then we find∫
f (z)dz = F(z)

= F
(
g(x)

)= ∫ (
F

(
g(x)

))′
dx =

∫
F ′(g(x)

)
g′(x)dx

=
∫

f
(
g(x)

)
g′(x)dx

that is, if the integrand is of the form f
(
g(x)

)
g′(x) we first compute the

indefinite integral
∫

f (z)dz and then substitute z = g(x).

Compute the indefinite integral of f (x)= 4 x3 − x2 +3 x−5. Example 19.6

SOLUTION. By the summation rule we find∫
f (x)dx =

∫
4 x3 − x2 +3 x−5dx

= 4
∫

x3 dx−
∫

x2 dx+3
∫

x dx−5
∫

dx

= 4
1
4

x4 − 1
3

x3 +3
1
2

x2 −5x+ c

= x4 − 1
3

x3 + 3
2

x2 −5x+ c . ♦

Compute the indefinite integral of f (x)= x ex. Example 19.7

SOLUTION. Integration by parts yields∫
f (x)dx =

∫
x︸︷︷︸
f

· ex︸︷︷︸
g′

dx = x︸︷︷︸
f

· ex︸︷︷︸
g

dx−
∫

1︸︷︷︸
f ′

· ex︸︷︷︸
g

dx = x · ex − ex + c .

f (x)= x ⇒ f ′(x)= 1
g′(x)= ex ⇒ g(x)= ex ♦

Compute the indefinite integral of f (x)= 2x ex2
. Example 19.8

SOLUTION. By substitution we find∫
f (x)dx

∫
exp( x2︸︷︷︸

g(x)

) · 2x︸︷︷︸
g′(x)

dx =
∫

exp(z)dz = ez + c = ex2 + c .

z = g(x)= x2 ⇒ dz = g′(x)dx = 2x dx ♦

Compute the indefinite integral of f (x)= x2 cos(x). Example 19.9

SOLUTION. Integration by parts yields∫
f (x)dx

∫
x2︸︷︷︸
f

·cos(x)︸ ︷︷ ︸
g′

dx = x2︸︷︷︸
f

·sin(x)︸ ︷︷ ︸
g

−
∫

2x︸︷︷︸
f ′

·sin(x)︸ ︷︷ ︸
g

dx .
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For the last term we have to apply integration by parts again:∫
2x︸︷︷︸
f

·sin(x)︸ ︷︷ ︸
g′

dx = 2x︸︷︷︸
f

· (−cos(x))︸ ︷︷ ︸
g

−
∫

2︸︷︷︸
f ′

· (−cos(x))︸ ︷︷ ︸
g

dx

=−2x ·cos(x)−2 · (−sin(x))+ c .

Therefore we have∫
x2 cos(x)dx = x2 sin(x)− (−2x cos(x)+2 sin(x)+ c

)
= x2 sin(x)+2x cos(x)−2 sin(x)+ c .

♦

Sometimes the application of these integration rules might not be
obvious as the following examples shows.

Compute the indefinite integral of f (x)= ln(x).Example 19.10

SOLUTION. We write f (x)= 1 · ln(x). Integration by parts yields∫
ln(x)︸ ︷︷ ︸

f

· 1︸︷︷︸
g′

dx = ln(x)︸ ︷︷ ︸
f

· x︸︷︷︸
g

dx−
∫

1
x︸︷︷︸
f ′

· x︸︷︷︸
g

dx = ln(x) · x− x+ c

f (x)= ln(x) ⇒ f ′(x)= 1
x

g′(x)= 1 ⇒ g(x)= x
♦

We again want to note that there are no simple recipes for finding
indefinite integrals. Even with integration rules like those in Table 19.5
there remains still trial and error. (Of course experience increases the
change of successful guesses significantly.)

There are even two further obstacles: (1) not all functions have an
antiderivative; (2) the indefinite integral may exist but it is not possible
to express it in terms of elementary functions. The density of the normal
distribution, ϕ(x)= exp(−x2), is the most prominent example.

19.2 The Riemann Integral

Suppose we are given some nonnegative function f over some interval
[a,b] and we have to compute the area A below the graph of f . If f (x)=
c is a constant function, then this task is quite simple: The region in
question is a rectangle and we find by basic geometry (length of base ×
height)

c

a b
A = c · (b−a) .

For general functions with “irregular”-shaped graphs we may ap-
proximate the function by a step function (or staircase function), i.e.
a piecewise constant function. The area for the step function can then be
computed for each of the rectangles and added up for the total area.

a b

Thus we select points x0 = 0 < x1 < . . . < xn = b and compute f at
intermediate points ξ ∈ (xi−1, xi), for i = 1, . . . ,n.
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x0 ξ1 x1 ξ2 x2

f (ξ1)

f (ξ2)

Hence we find for the area

A ≈
n∑

i=1
f (ξi) · (xi − xi−1) .

x0 ξ1 x1 ξ2 x2

f (x0)

f (x1)

f (x2)

If f is a monotonically decreasing function and the points x0, x1, . . . , xn
are selected equidistant, i.e., (xi − xi−1) = 1

n (b− a), then we find for the
approximation error∣∣∣∣∣A−

n∑
i=1

f (ξi) · (xi − xi−1)

∣∣∣∣∣≤ ( fmax − fmin) (b−a)
1
n
→ 0 as n →∞.

Thus when we increase the number of points n, then this so called Rie-
mann sum converges to area A. For a nonmonotone function the limit
may not exist. If it exists we get the area under the graph.

Riemann integral. Let f be some function defined on [a,b]. Let (Zk) = Definition 19.11({
x(k)

0 , x(k)
1 , . . . , x(k)

n

})
be a sequence of point sets such that x(k)

0 = a < x(k)
1 <

. . . x(k)
k−1 < x(k)

k = b for all k = 1,2, . . . and maxi=1,...,k

(
x(k)

i − x(k)
i−1

)
→ 0 as k →

∞. Let ξ(k)
i ∈

(
x(k)

i−1, x(k)
i

)
. If the Riemann sum

Ik =
k∑

i=1
f (ξ(k)

i ) ·
(
x(k)

i − x(k)
i−1

)
converges for all such sequences (Zk) then the function f : [a,b] → R is
Riemann integrable. The limit is called the Riemann integral of f
and denoted by∫ b

a
f (x)dx = lim

k→∞

k∑
i=1

f (ξ(k)
i ) ·

(
x(k)

i − x(k)
i−1

)
.

This definition requires some remarks.

• This limit (if it exists) is uniquely determined.

• Not all functions are Riemann integrable, that is, there exist func-
tions where this limit does not exist for some choices of sequence
(Zk). However, bounded “nice” (in particular continuous) functions
are always Riemann integrable.
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Let f and g be integrable functions and α,β ∈R. Then we find∫ b

a
(α f (x)+βg(x))dx =α

∫ b

a
f (x)dx+β

∫ b

a
g(x)dx

∫ b

a
f (x)dx =−

∫ a

b
f (x)dx∫ a

a
f (x)dx = 0

∫ c

a
f (x)dx =

∫ b

a
f (x)dx+

∫ c

b
f (x)dx

∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx if f (x)≤ g(x) for all x ∈ [a,b]

Table 19.12

Properties of definite
integrals.

• There also exist other concepts of integration. However, for contin-
uous functions these coincide. Thus we will say integrable and
integral for short.

• As we will see in the next section integrals are usually called defi-
nite integrals.

• From the definition of the integral we immediately see that for
regions where function f is negative the integral also is negative.

• Similarly, as the definition of Riemann sum contains the term(
x(k)

i − x(k)
i−1

)
instead of its absolute value

∣∣∣x(k)
i − x(k)

i−1

∣∣∣, the integral
of a positive function becomes negative if the interval (a,b) is tra-
versed from right to left.

Table 19.12 lists important properties of the definite integral. These
can be derived from the definition of integrals and the rules for limits
(Theorem 14.3 on p. 136).

19.3 The Fundamental Theorem of Calculus

We have defined the integral as the limit of Riemann sums. However,
we still need a efficient method to compute the integral. On the other
hand we did not establish any condition that ensure the existence of the
antiderivative of a given function. Astonishingly these two apparently
distinct problems are closely connected.

A(x)

x+hx

fmin

fmax

Let f be some continuous function and suppose that the area of f
under the graph in the interval [0, x] is given by A(x). We then get the
area under the curve of f in the interval [x, x+h] for some h by subtrac-
tion, A(x+h)−A(x). As f is continuous it has a maximum fmax(h) and a
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minimum fmin(h) on [x, x+h]. Then we find

fmin(h) ·h ≤ A(x+h)− A(x)≤ fmax(h) ·h

fmin(h)≤ A(x+h)− A(x)
h

≤ fmax(h)

If h → 0 we then find by continuity of f ,

lim
h→0

fmin(h)= lim
h→0

fmax(h)= f (x)

and hence

f (x)≤ lim
h→0

A(x+h)− A(x)
h︸ ︷︷ ︸

=A′(x)

≤ f (x) .

Consequently, A(x) is differentiable and we arrive at

A′(x)= f (x)

that is, A(x) is an antiderivative of f .
This observation is formally stated in the two parts of the Funda-

mental Theorem of Calculus which we state without a stringent proof.

First fundamental theorem of calculus. Let f : [a,b]→R be a contin- Theorem 19.13
uous function that admits an antiderivative F on [a,b], then

∫ b

a
f (x)dx = F(b)−F(a) .

Second fundamental theorem of calculus. Let f : [a,b] → R be a Theorem 19.14
continuous function and F defined for all x ∈ [a,b] as the integral

F(x)=
∫ x

a
f (t)dt .

Then F is differentiable on (a,b) and

F ′(x)= f (x) for all x ∈ (a,b).

An immediate corollary is that every continuous function has an an-
tiderivative, namely the integral function F.

Notice that the first part states that we simply can use the indefinite
integral to compute the integral of continuous functions,

∫ b
a f (x)dx. In

contrast, the second part gives us a sufficient condition for the existence
of the antiderivative of a function.
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By parts:
∫ b

a
f (x) g′(x)dx = f (x) g(x)

∣∣∣b

a
−

∫ b

a
f ′(x) g(x)dx

By substitution:
∫ b

a
f (g(x)) · g′(x)dx =

∫ g(b)

g(a)
f (z)dz

where z = g(x) and dz = g′(x)dx

Table 19.17

Rules for definite
integrals.

19.4 The Definite Integral

Theorem 19.13 provides a method to compute the integral of a function
without dealing with limits of Riemann sums. This motivates the term
definite integral.

Let f : [a,b] → R be a continuous function and F an antiderivative of f .Definition 19.15
Then ∫ b

a
f (x)dx = F(x)

∣∣∣b

a
= F(b)−F(a)

is called the definite integral of f .

Compute the definite integral of f (x)= x2 in the interval [0,1].Example 19.16

SOLUTION.
∫ 1

0
x2 dx = 1

3 x3
∣∣∣1
0
= 1

3 ·13 − 1
3 ·03 = 1

3
. ♦

The rules for indefinite integrals in Table 19.5 can be easily trans-
lated into rules for the definite integral, see Table 19.17

Compute
∫ 10

e

1
log(x)

· 1
x

dx.Example 19.18

SOLUTION.∫ 10

e

1
log(x)

· 1
x

dx =
∫ log(10)

1

1
z

dz

z = log(x) ⇒ dz = 1
x

dx

= log(z)
∣∣∣log(10)

1
= log(log(10))− log(1)≈ 0.834 . ♦

Compute
∫ 2

−2
f (x)dx whereExample 19.19

−1 0 1

f (x)=


1+ x for −1≤ x < 0
1− x for 0≤ x < 1
0 for x <−1 and x ≥ 1
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SOLUTION.∫ 2

−2
f (x)dx =

∫ −1

−2
f (x)dx+

∫ 0

−1
f (x)dx+

∫ 1

0
f (x)dx+

∫ 2

1
f (x)dx

=
∫ −1

−2
0dx+

∫ 0

−1
(1+ x)dx+

∫ 1

0
(1− x)dx+

∫ 2

1
0dx

=
(
x+ 1

2
x2

)∣∣∣∣0−1
+

(
x− 1

2
x2

)∣∣∣∣1
0

= 1
2
+ 1

2
= 1 . ♦

19.5 Improper Integrals

Suppose we want to compute
∫ b

0
e−λx dx. We then get Example 19.20

∫ b

0
e−λx dx =

∫ −λb

0
ez (− 1

λ

)
dz =− 1

λ
ez

∣∣∣−λb

0
= 1
λ

(
1− e−λb

)
. ♦

a

So what happens if b tends to ∞, i.e., when the domain of integration is
unbounded. Obviously

lim
b→∞

∫ b

0
e−λx dx = lim

b→∞
1
λ

(
1− e−λb

)
= 1
λ

.

Thus we may use the symbol∫ ∞

0
f (x)dx

for this limit. Similarly we may want to compute the integral
1∫
0

1p
x dx.

But then 0 does not belong to the domain of f as f (0) is not defined. We
then replace the lower bound 0 by some a > 0, compute the integral and
find the limit for a → 0. We again write∫ 1

0

1p
x

dx = lim
a→0+

∫ 1

a

1p
x

dx

where 0+ indicates that we are looking at the limit from the right hand
side.

Integrals of functions that are unbounded at a or b or have unbounded Definition 19.21
domain (i.e., a =−∞ or b =∞) are called improper integrals. They are
defined as limits of proper integrals. If the limit∫ b

0
f (x)dx = lim

t→b

∫ t

0
f (x)dx

exists we say that the improper integral converges. Otherwise we say
that it diverges.
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For practical reasons we demand that this limit exists if and only if

lim
t→∞

∫ t

0

∣∣ f (x)
∣∣dx exists.

Compute the improper integral
∫ 1

0

1p
x

dx.Example 19.22

SOLUTION.∫ 1

0

1p
x

dx = lim
t→0

∫ 1

t
x−

1
2 dx = lim

t→0
2
p

x
∣∣∣1
t
= lim

t→0
(2−2

p
t)= 2 . ♦

Compute the improper integral
∫ ∞

1

1
x2 dx.Example 19.23

SOLUTION.∫ ∞

1

1
x2 dx = lim

t→∞

∫ t

1
x−2 dx = lim

t→∞ −1
x

∣∣∣∣t

1
= lim

t→∞−1
t
− (−1)= 1 . ♦

Compute the improper integral
∫ ∞

1

1
x

dx.Example 19.24

SOLUTION.∫ ∞

1

1
x

dx = lim
t→∞

∫ t

1

1
x

dx = lim
t→∞ log(x)

∣∣∣t

1
= lim

t→∞ log(t)− log(1)=∞ .

The improper integral diverges. ♦

19.6 Differentiation under the Integral Sign

We are given some continuous function f with antiderivative F, i.e.,
F ′(x) = f (x). If we differentiate the definite integral

∫ x
a f (t)dt = F(x)−

F(a) w.r.t. its upper bound we obtain

d
dx

∫ x

a
f (t)dt = (F(x)−F(a))′ = F ′(x)= f (x) .

That is, the derivative of the definite integral w.r.t. the upper limit of
integration is equal to the integrand evaluated at that point.

We can generalize this result. Suppose that both lower and upper
limit of the definite integral are differentiable functions a(x) and b(x),
respectively. Then we find by the chain rule

d
dx

∫ b(x)

a(x)
f (t)dt = (F(b(x))−F(a(x)))′ = f (b(x)) b′(x)− f (a(x)) a′(x) .

Now suppose that f (x, t) is a continuous function of two variables and
consider the function F(x) defined by

F(x)=
∫ b

a
f (x, t)dt .
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Its derivative F ′(x) can be computed as

F ′(x)= lim
h→0

F(x+h)−F(x)
h

= lim
h→0

∫ b

a

f (x+h, t)− f (x, t)
h

dt

=
∫ b

a
lim
h→0

f (x+h, t)− f (x, t)
h

dt

=
∫ b

a

∂ f (x, t)
∂x

dt .

That is, in order to get the derivative of the integral with respect to
parameter x we differentiate under the integral sign.

Of course the partial derivative fx(x, t) must be an integrable func-
tion which is satisfied whenever it is continuous by the Fundamental
Theorem.

It is important to note that both the (Riemann-) integral and the
partial derivative are limits. Thus we have to exchange these two limits
in our calculation. Notice, however, that this is a problematic step and In general exchanging limits

can change the result!its validation requires tools from advanced calculus.
We now can combine our observations into a single formula.

Leibniz’s formula. Let Theorem 19.25

F(x)=
∫ b(x)

a(x)
f (x, t)dt

where the function f (x, t) and its partial derivative fx(x, t) are continuous
in both x and t in the region

{
(x, t) : x0 ≤ x ≤ x1, a(x) ≤ t ≤ b(x)

}
and the

functions a(x) and b(x) are C 1 functions over [x0, x1]. Then

F ′(x)= f (x,b(x)) b′(x)− f (x,a(x)) a′(x)+
∫ b(x)

a(x)

∂ f (x, t)
∂x

dt .

PROOF. Let H(x,a,b) =
b∫
a

f (x, t)dt. Then F(x) = H(x,a(x),b(x)) and we

find by the chain rule

F ′(x)= Hx +Haa′(x)+Hbb′(x) .

Since Hx = ∫ b
a fx(x, t)dt, Ha = − f (x,a) and Hb = f (x,b), the result fol-

lows.

Compute F ′(x), x ≥ 0, when F(x)= ∫ 2x
x t x2 dt. Example 19.26

SOLUTION. Let f (x, t)= t x2, a(x)= x and b(x)= 2x. By Leibniz’s formula
we find

F ′(x)= (2 x) · x2 ·2− (x) · x2 ·1+
∫ 2x

x
2x t dt

= 4x3 − x3 + (2x
1
2

t2)
∣∣∣2x

x
= 4x3 − x3 + (4x3 − x3)= 6x3 .

♦
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Leibniz formula also works for improper integrals provided that the
integral

∫ b(x)
a(x) f ′x(x, t)dt converges:

d
dx

∫ ∞

a
f (x, t)dt =

∫ ∞

a

∂ f (x, t)
∂x

dt

Let K(t) denote the capital stock of some firm at time t, and let p(t) beExample 19.27
the price per unit of capital. Let R(t) denote the rental price per unit of
capital and let r be some constant interest rate. In capital theory, one
principle for the determining of the correct price of the firm’s capital is
given by the equation

p(t)K(t)=
∫ ∞

t
R(τ)K(τ) e−r(τ−t) dτ for all t.

That is, the current cost of capital should equal the discounted present
value of the returns from lending it. Find an expression for R(t) by dif-
ferentiating the equation w.r.t. t.

SOLUTION. By differentiation the left hand side using the product rule
and the right hand side using Leibniz’s formula we arrive at

p′(t)K(t)+ p(t)K ′(t)=−R(t)K(t)+
∫ ∞

t
R(τ)K(τ) r e−r(τ−t) dτ

=−R(t)K(t)+ r p(t)K(t)

and consequently

R(t)=
(
r− K ′(t)

K(t)

)
p(t)− p′(t) . ♦
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— Exercises

19.1 Compute the following indefinite integrals:

(a)
∫

x ln(x)dx (b)
∫

x2 sin(x)dx (c)
∫

2 x
√

x2 +6 dx

(d)
∫

ex2
x dx (e)

∫
x

3 x2 +4
dx (f)

∫
x
p

x+1dx

(g)
∫

3 x2 +4
x

dx (h)
∫

ln(x)
x

dx

19.2 Compute the following definite integrals:

(a)
∫ 4

1
2x2 −1dx (b)

∫ 2

0
3ex dx

(c)
∫ 4

1
3x2 +4x dx (d)

∫ π
3

0

−sin(x)
3

dx

(e)
∫ 1

0

3 x+2
3 x2 +4 x+1

dx

19.3 Compute the following improper integrals:

(a)
∫ ∞

0
−e−3x dx (b)

∫ 1

0

2
4px3

dx (c)
∫ ∞

0

x
x2 +1

dx

19.4 The marginal costs for a cost function C(x) are given by 30−0.05 x.
Reconstruct C(x) when the fixed costs are c2000.

19.5 Compute the expectation of a so called half-normal distributed
random variate which has domain [0,∞) and probability density
function

f (x)=
√

2
π

exp
(
− x2

2

)
.

HINT: The expectation of a random variate X with density f is defined as

E(X )=
∫ ∞

−∞
x f (x)dx .

19.6 Compute the expectation of a normal distributed random variate HINT:
∞∫

−∞
f (x)dx =

0∫
−∞

f (x)dx+
∞∫
0

f (x)dx
with probability density function

f (x)= 1p
2π

exp
(
− x2

2

)
.
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— Problems

19.7 For which value of α ∈ R do the following improper integrals con-
verge? What are their values?

(a)
1∫

0

xα dx (b)
∞∫

1

xα dx (c)
∞∫

0

xα dx

19.8 Let X be a so called Cauchy distributed random variate with prob-HINT: Show that the im-

proper integral
∞∫

−∞
f (x)dx

diverges.

ability density function

f (x)= 1
π(1+ x2)

.

Show that X does not have an expectation.

Why is the following approach incorrect?

E(X )= lim
t→∞

∫ t

−t

x
π(1+ x2)

dx = lim
t→∞0= 0 .

19.9 Compute for T ≥ 0

d
dx

∫ g(x)

0
U(x) e−(t−T) dt .

Which conditions on g(x) and U(x) must be satisfied?

19.10 Let f be the probability density function of some absolutely con-
tinuous distributed random variate X . The moment generating
function of f is defined as

M(t)= E(etX )=
∫ ∞

−∞
etx f (x)dx .

Show that M′(0)= E(X ), i.e., the expectation of X .

19.11 The gamma function Γ(z) is an extension of the factorial function.
That is, if n is a positive integer, then

Γ(n)= (n−1)!

For positive real numbers z it is defined as

Γ(z)=
∫ ∞

0
tz−1 e−t dt .

(a) Use integration by parts and show that

Γ(z+1)= zΓ(z) .

(b) Compute Γ′(z) by means of Leibniz’s formula.
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Multiple Integrals

What is the volume of a smooth mountain?

The idea of Riemann integration can be extended to the computation of
volumes under the graph of bivariate and multivariate functions. How-
ever, difficulties arise as the domain of such functions are not simple
intervals in general but can be irregular shaped regions. x

y

z

b
d

20.1 The Riemann Integral

Let us start with the simple case where the domain of some bivariate
function is the Cartesian product of two closed intervals, i.e., a rectangle

R = [a,b]× [c,d]= {(x, y) ∈R2 : a ≤ x ≤ b, c ≤ y≤ d} .

Analogously to Section 19.2 we partition R into rectangular subregions

a bxi−1 xi

c

d

yj−1

yj

Ri j = [xi−1, xi]× [yj−1, yj] for 1≤ i ≤ n and 1≤ j ≤ k

where a = x0 < x1 < . . .< xn = b and c = y0 < y1 < . . .< yk = d.
For f : R ⊂ R2 → R we compute f (ξi,ζi) for points (ξi,ζ j) ∈ Ri j and

approximate the volume V under the graph of f by the Riemann sum

V ≈
n∑

i=1

k∑
j=1

f (ξi,ζ j) (xi − xi−1) (yj − yj−1) ,

Observe that (xi − xi−1) (yj − yj−1) simply is the area of rectangle Ri j.
Each term in this sum is just the volume of the bar [xi−1, xi]× [yj−1, yj]×
[0, f (ξi,ζ j)].

x

y

z

b
d

Now suppose that we refine this partition such that the diameter of
the largest rectangle tends to 0. If the Riemann sum converges for every
such sequence of partitions for arbitrarily chosen points (ξi,ζi) then this
limit is called the double integral of f over R and denoted byÏ

R
f (x, y)dx dy= lim

diam(Ri j)→0

n∑
i=1

k∑
j=1

f (ξi,ζ j) (xi − xi−1) (yj − yj−1) .

215
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Let f and g be integrable functions over some domain D. Let D1,D2
be a partition of D, i.e., D1 ∪D2 = D and D1 ∩D2 =;. Then we findÏ

D
(α f (x, y)+βg(x, y))dx dy

=α
Ï

D
f (x, y)dx dy+β

Ï
D

g(x, y)dx dyÏ
D

f (x, y)dx =
Ï

D1

f (x, y)dx dy+
Ï

D2

f (x, y)dx dyÏ
D

f (x, y)dx dy≤
Ï

D
g(x, y)dx d y

if f (x, y)≤ g(x, y) for all (x, y) ∈ D

Table 20.1

Properties of double
integrals.

It must be noted here that for the definition of the Riemann integral
the partition of R need not consist of rectangles. Thus the same idea also
works for non-rectangular domains D which may have a quite irregular
shape. However, the process of convergence requires more technical de-
tails than for the case of univariate functions. For example, the partition
has to consist of subdomains D i of D for which we can determine their
areas. Then we haveÏ

D
f (x, y)dx dy= lim

diam(D i)→0

n∑
i=1

f (ξi,ζi) A(D i)

where A(D i) denotes the area of subdomain D i. Of course this only
works if this limit exists and if it is independent from the particular
partition D i and the choice of the points (ξi,ζi) ∈ D i.

By this definition we immediately get properties that are similar to
those of definite integrals, see Table 20.1.

20.2 Double Integrals over Rectangles

As far we only have a concept for the volume below the graph of a bivari-
ate function. However, we also need a convenient method to compute it.
So let us again assume that f is a continuous positive function defined
on a rectangular domain R = [a,b]× [c,d]. We then write

Ï
R

f (x, y)dx dy=
∫ b

a

∫ d

c
f (x, y)dydx

in analogy to univariate definite integrals.
Let t be an arbitrary point in [a,b]. Then let V (t) denote the volume

V (t)=
∫ t

a

∫ d

c
f (x, y)d ydx .
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We also obtain a univariate function g(y)= f (t, y) defined on the interval
[c,d]. Thus

A(t)=
∫ d

c
g(y)d y=

∫ d

c
f (t, y)d y

is the area of the (2-dimensional) set {(t, y, z) : 0 ≤ z ≤ f (t, y), y ∈ [c,d]}.
Hence we find

V (t+h)−V (t)≈ A(t) ·h
and consequently

V ′(t)= lim
h→0

V (t+h)−V (t)
h

= A(t)

that is, V (t) is an antiderivative of A(t). Here we have used (but did not
formally proof) that A(t) is also a continuous function of t. t+ht

A(t+h)

By this observation we only need to compute the definite integral∫ d
c f (t, y)d y for every t and obtain some function A(t). Then we compute

the definite integral
∫ b

a A(x)dx. In other words: For that reasonÎ
R f (x, y)dx dy is called

double integral.
Ï

R
f (x, y)dx dy=

∫ b

a

(∫ d

c
f (x, y)d y

)
dx .

Obviously our arguments remain valid if we exchange the rôles of x and
y. ThusÏ

R
f (x, y)dx dy=

∫ d

c

(∫ b

a
f (x, y)dx

)
d y .

We summarize our results in the following theorem which we state
without a formal proof.

Fubini’s theorem. Let f : R = [a,b]× [c,d] ⊂ R2 → R be a continuous Theorem 20.2
function. ThenÏ

R
f (x, y)dx dy=

∫ b

a

(∫ d

c
f (x, y)d y

)
dx =

∫ d

c

(∫ b

a
f (x, y)dx

)
d y .

By this theorem we have the following recipe to compute the double
integral of a continuous function f (x, y) defined on the rectangle [a,b]×
[c,d].

(1) Keep y fixed and compute the inner integral w.r.t. x from x = a to
x = b. This gives

∫ b
a f (x, y)dx, a function of y.

(2) Now integrate
∫ b

a f (x, y)dx w.r.t. y from y = c to y = d to obtain∫ d
c

(∫ b
a f (x, y)dx

)
d y.

Of course we can reverse the order of integration, that is, we first com-
pute

∫ d
c f (x, y)d y and obtain a function of x which is then integrated

w.r.t. x and obtain
∫ b

a

(∫ d
c f (x, y)d y

)
dx. By Fubini’s theorem the results

of these two procedures coincide.
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Compute
∫ 1

−1

∫ 1

0
(1− x− y2 + xy2)dx dy.Example 20.3

SOLUTION. We have to integrate two times.∫ 1

−1

∫ 1

0
(1− x− y2 + xy2)dx dy=

∫ 1

−1

(
x− 1

2
x2 − xy2 + 1

2
x2 y2

∣∣∣∣1
0

)
d y

=
∫ 1

−1

(
1
2
− 1

2
y2

)
d y= 1

2
y− 1

6
y3

∣∣∣∣1−1
= 1

2
− 1

6
−

(
−1

2
+ 1

6

)
= 2

3
.

We can also perform the integration in the reverse order.∫ 1

0

∫ 1

−1
(1− x− y2 + xy2)d ydx =

∫ 1

0

(
y− xy− 1

3
y3 + 1

3
xy3

∣∣∣∣1−1

)
dx

=
∫ 1

0

(
1− x− 1

3
+ 1

3
x−

(
−1+ x+ 1

3
− 1

3
x
))

dx

=
∫ 1

0

(
4
3
− 4

3
x
)

dx = 4
3

x− 4
6

x2
∣∣∣∣1
0
= 2

3
.

We obtain the same result by both procedures. ♦
We can extend our results for multivariate functions. Let

Ω= [a1,b1]×·· ·× [an,bn]= {
(x1, . . . , xn) ∈Rn : ai ≤ xi ≤ bi, i = 1, . . . ,n

}
be the Cartesian product of closed intervals [a1,b1], . . . , [an,bn]. We call
Ω an n-dimensional rectangle.

If f : Ω→ R is a continuous function, then the multiple integral of
f over Ω is defined asÏ

. . .
∫
Ω

f (x1, . . . , xn)dx1 . . .dxn

=
∫ b1

a1

(∫ b2

a2

. . .
(∫ bn

an

f (x1, . . . , xn)dxn

)
. . .dx2

)
dx1 .

It is important to note that the inner integrals are evaluated at first.

20.3 Double Integrals over General Domains

Consider now a domain D ⊆R2 defined as

D = {(x, y) : a ≤ x ≤ b, c(x)≤ y≤ d(x)}

for two functions c(x) and d(x). Let f (x, y) be a continuous function de-

x

y
y= d(x)

y= c(x)

D

a b
fined over D. As in the case of rectangular domains we can keep x fixed
and compute the area

A(x)=
∫ d(x)

c(x)
f (x, y)d y .

We then can argue in the same way that the volume is given byÏ
D

f (x, y)d ydx =
∫ b

a
A(x)dx =

∫ b

a

(∫ d(x)

c(x)
f (x, y)d y

)
dx .
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Let D = {(x, y) : 0≤ x ≤ 2, 0≤ y≤ 4− x2} and let f (x, y)= x2 y be defined on Example 20.4
D. Compute

Î
D f (x, y)d ydx. y

x

D

SOLUTION.

Ï
D

f (x, y)d ydx =
∫ 2

0

∫ 4−x2

0
x2 yd ydx =

∫ 2

0

(∫ 4−x2

0
x2 yd y

)
dx

=
∫ 2

0

(
1
2

x2 y2
∣∣∣∣4−x2

0

)
dx =

∫ 2

0

(
1
2

x2(4− x2)2
)

dx

=
∫ 2

0

1
2

(
x6 −8x4 +16x2)

dx

= 1
14

x7 − 8
10

x5 + 16
6

x3
∣∣∣∣2
0
= 512

105
. ♦

It might be convenient if we partition the domain of integration D
into two disjoint regions A and B, that is, A∪B = D and A∩B =;. We
then findÏ

A∪B
f (x, y)dx dy=

Ï
A

f (x, y)dx d y+
Ï

B
f (x, y)dx d y

provided that all integrals exist. The formula extend the corresponding
rule for univariate integrals in Table 19.12 on page 206. We can extend
this formula to overlapping subsets A and B. We then findÏ

A∪B
f (x, y)dx dy=

=
Ï

A
f (x, y)dx dy+

Ï
B

f (x, y)dx d y−
Ï

A∩B
f (x, y)dx dy .

20.4 A “Double Indefinite” Integral

The Fundamental Theorem of Calculus tells us that we can compute a
definite integral by the difference of the indefinite integral evaluated at
the boundary of the domain of integration. In some sense an equivalent
formula exists for double integrals.

Let f (x, y) be an continuous function defined on the rectangle [a,b]×
[c,d]. Suppose that F(x, y) has the property that

∂2F(x, y)
∂x∂y

= f (x, y) for all (x, y) ∈ [a,b]× [c,d].

Then

x

y

a b

c

d

∫ b

a

∫ d

c
f (x, y)d ydx = F(b,d)−F(a,d)−F(b, c)+F(a, c) .
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20.5 Change of Variables

Integration by substitution (see Table 19.17 on page 208) can also be
seen as a change of variables. Let x = g(z) where g is a differentiable
one-to-one function. Set z1 = g−1(a) and z2 = g−1(b). Then∫ b

a
f (x)dx =

∫ z2

z1

f (g(z)) · g′(z)dz .

That is, instead of expressing f as a function of variable x we introduce
a new variable z and a transformation g such that x = g(z). We then
integrate f ◦ g with respect to z. However, we have to take into account
that by this change of variable the domain of integration is deformed.
Thus we need the correction factor g′(z).

The same idea of changing variables also works for multivariate func-
tions.

Change of variables in double integrals. Let f (x, y) be a functionTheorem 20.5
defined on an open bounded domain D ⊂R2. Suppose that

x = g(u,v), y= h(u,v)

defines a one-to-one C 1 transformation from an open bounded set D′

onto D such that the Jacobian determinant ∂(g,h)
∂(u,v) is bounded and either

strictly positive or strictly negative on D′. ThenÏ
D

f (x, y)dx dy=
Ï

D′
f (g(u,v),h(u,v))

∣∣∣∣∂(g,h)
∂(u,v)

∣∣∣∣ du dv .

This theorem still holds if the set where ∂(g,h)
∂(u,v) is not bounded or vanishes

is a null set, i.e., a set of area 0.
We only give a rough sketch of the proof for this formula. Let g denote

our transformation (u,v) 7→ (g(u,v),h(u,v)). Recall thatÏ
D

f (x, y)dx dy= lim
diam(D i)→0

n∑
i=1

f (ξi,ζi) A(D i)

where the subsets D i are chosen as the images g(D′
i) of some paraxialu

v

(ui ,vi)

(ui +∆u,vi +∆v)

D′
i

rectangle D′
i with vertices

(ui,vi) , (ui +∆u,vi) , (ui,vi +∆v) , and (ui +∆u,vi +∆v)

and (ξi,ζi)= g(ui,vi) ∈ D i. HenceÏ
D

f (x, y)dx dy≈
n∑

i=1
f (ξi,ζi) A(D i)=

n∑
i=1

f (g(ui,vi)) A(g(D′
i)) .

If g(D′
i) were a parallelogram, then we could compute its area by means

of the absolute value of the determinant∣∣∣∣∣g(ui +∆u,vi)− g(ui,vi) g(ui,vi +∆v)− g(ui,vi)

h(ui +∆u,vi)−h(ui,vi) h(ui,vi +∆v)−h(ui,vi)

∣∣∣∣∣ .
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If g(D′
i) is not a parallelogram but ∆u is small, then we may use

this determinant as an approximation for the area A(g(D′
i)). For small

x

y

D ivalues of ∆u we also have

g(ui +∆u,vi)− g(ui,vi)≈ ∂g(ui,vi)
∂u

∆u

and thus we find

A(g(D′
i))≈

∣∣∣∣∣∣∣
∣∣∣∣∣
∂g(ui ,vi)

∂u
∂g(ui ,vi)

∂v
∂h(ui ,vi)

∂u
∂h(ui ,vi)

∂v

∣∣∣∣∣
∣∣∣∣∣∣∣∆u∆v = ∣∣det(g′(ui,vi))

∣∣∆u∆v .

Notice that ∆u∆v = A(D′
i) and that we have used the symbol ∂(g,h)

∂(u,v) to
denote the Jacobian determinant. ThereforeÏ

D
f (x, y)dx d y≈

n∑
i=1

f (g(ui,vi))
∣∣det(g′(ui,vi))

∣∣ A(D′
i)

≈
Ï

D′
f (g(u,v),h(u,v))

∣∣∣∣∂(g,h)
∂(u,v)

∣∣∣∣ du dv .

When diam(D i) → 0 the approximation errors also converge to 0 and
we get the claimed identity. For a stringent proof of Theorem 20.5 the
interested reader is referred to literature on advanced calculus.

Let D = {(x, y) : −1 ≤ x ≤ 1, |x| ≤ y ≤ 1} and f (x, y) = x2 + y2 be defined on Example 20.6
D. Compute

Î
D f (x, y)dx dy.

SOLUTION. We directly can compute this integral as

x

y

−1 0 1

Ï
D

f (x, y)d ydx =
∫ 1

−1

∫ 1

|x|
x2 + y2 d ydx

=
∫ 0

−1

∫ 1

−x
x2 + y2 d ydx+

∫ 1

0

∫ 1

x
x2 + y2 d ydx

=
∫ 0

−1

(
x2 y+ 1

3
y3

)∣∣∣∣1
y=−x

dx+
∫ 1

0

(
x2 y+ 1

3
y3

)∣∣∣∣1
y=x

dx

=
∫ 0

−1
x2 + 1

3
+ x3 + 1

3
x3 dx+

∫ 1

0
x2 + 1

3
− x3 − 1

3
x3 dx

=
(

1
3

x3 + 1
3

x+ 1
3

x4
)∣∣∣∣0−1

+
(

1
3

x3 + 1
3

x− 1
3

x4
)∣∣∣∣1

0

= 1
3
+ 1

3
− 1

3
+ 1

3
+ 1

3
− 1

3
= 2

3
.

We also can first change variables. Let

u

v

0 1

g(u,v)=
(
1 −1
1 1

)
·
(
u
v

)
and D′ = {(u,v) : 0≤ u ≤ 1, 0≤ v ≤ 1−u}. Then g(D′)= D and

∣∣g′(u,v)
∣∣= ∣∣∣∣1 −1

1 1

∣∣∣∣= 2
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which is constant and thus bounded and strictly positive. Thus we findÏ
D

f (x, y)d ydx =
Ï

D′
f (g(u,v)) |g′(u,v)|dv du

=
∫ 1

0

∫ 1−u

0

(
(u−v)2 + (u+v)2)

2dv du

= 4
∫ 1

0

∫ 1−u

0

(
u2 +v2)

dv du

= 4
∫ 1

0

(
u2v+ 1

3
v3

)∣∣∣∣1−u

v=0
du

= 4
∫ 1

0

(
−4

3
u3 +2u2 −u+ 1

3

)
du

= 4
(
−1

3
u4 + 2

3
u3 − 1

2
u2 + 1

3
u
)∣∣∣∣1

0

= 4
(
−1

3
+ 2

3
− 1

2
+ 1

3

)
= 2

3

which gives (of course) the same result. ♦

Change of variables in multiple integrals. Let f (x) be a function de-Theorem 20.7
fined on an open bounded domain D ⊂Rn. Suppose that x = g(z) defines
a one-to-one C 1 transformation from an open bounded set D′ ⊂ Rn onto
D such that the Jacobian determinant ∂(g1,...,gh)

∂(z1,...,zn) is bounded and either
strictly positive or strictly negative on D′. ThenÏ

D
f (x)dx=

Ï
D′

f (g(z))
∣∣∣∣∂(g1, . . . , gn)
∂(z1, . . . , zn)

∣∣∣∣dz .

We also may state this rule analogously to the rule for integration by
substitution (Table 19.17)Ï

D
f (x)dx=

Ï
D′

f (g(z))
∣∣det(g′(z))

∣∣ dz .

x

y

r
(x, y)

θ

Polar coordinates are very convenient when we have to deal with
circular functions. Thus we represent a point by its distant r from the
origin and the angle enclosed by the corresponding vector and the posi-
tive x-axis. The corresponding transformation is given by(

x
y

)
= g(r,θ)=

(
r cos(θ)
rsin(θ)

)
where (r,θ) ∈ [0,∞)× [0,2π). It is a C 1 function and its Jacobian deter-
minant is given by

∣∣g′(r,θ)
∣∣= ∣∣∣∣cos(θ) −rsin(θ)

sin(θ) r cos(θ)

∣∣∣∣= r
(
cos2(θ)+sin2(θ)

)= r

which is bounded on every bounded domain and it is strictly positive
except for the null set {(0,θ) : 0≤ θ < 2π}.
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Let f (x, y) = 1− x2 − y2 be a function defined on D = {(x, y) : x2 + y2 ≤ 1}. Example 20.8
Compute

Î
D f (x, y)dx dy.

SOLUTION. A direct computation of this integral is cumbersome:Ï
D

(1− x2 − y2)dx d y=
∫ 1

0

∫ p
1−x2

−
p

1−x2
(1− x2 − y2)d ydx .

Thus we change to polar coordinates. Then D′ = {(r,θ) : 0 ≤ r ≤ 1, 0 ≤ θ <
2π} and we findÏ

D
(1− x2 − y2)dx dy=

∫ 1

0

∫ 2π

0
(1− r2)r dθdr = 2π

∫ 1

0
(r− r3)dr

= 2π
(

1
2

r2 − 1
4

r4
)∣∣∣∣1

0
= π

2
. ♦

20.6 Improper Multiple Integrals

In Section 19.5 we have extended the concept of integral to unbounded
functions or functions with unbounded domains. Using Fubini’s theorem
the definition of such improper integrals is straight forward by means of
limits.

Compute
∫ ∞

0

∫ ∞

0
e−x2−y2

dx dy. Example 20.9

SOLUTION. We switch to polar coordinates. f (x, y) = e−x2−y2
is defined

on D = {(x, y) : x ≥ 0, y ≥ 0}. Then D′ = {(r,θ) : r ≥ 0, 0 ≤ θ < π/2} and we
find ∫ ∞

0

∫ ∞

0
e−x2−y2

dx dy=
∫ ∞

0

∫ π/2

0
e−r2

r dθdr = π

2

∫ ∞

0
e−r2

r dr

= lim
t→∞

π

2

∫ t

0
e−r2

r dr = lim
t→∞

(
−π

4
e−r2

)∣∣∣∣t

0

= lim
t→∞

(
−π

4

(
e−t2 −1

))
= π

4
. ♦
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— Exercises

20.1 Evaluate the following double integrals

(a)
∫ 2

0

∫ 1

0
(2x+3y+4)dx dy (b)

∫ a

0

∫ b

0
(x−a)(y−b)dx dy

(c)
∫ 3

1

∫ 2

1

x− y
x+ y

dx d y (d)
∫ 1/2

0

∫ 2π

0
y3 sin(xy2)dx dy

20.2 Compute∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dx dy .

— Problems

20.3 Prove the formula from Section 20.4:∫ b

a

∫ d

c
f (x, y)d ydx = F(b,d)−F(a,d)−F(b, c)+F(a, c) .

whereHINT:
∫

f (x, y)d y= ∂F(x,y)
∂x

∂2F(x, y)
∂x∂y

= f (x, y) for all (x, y) ∈ [a,b]× [c,d].

20.4 Let Φ(x) denote the cumulative distribution function of the (uni-
variate) standard normal distribution. Let

f (x, y)=
p

6
π

exp(−2x2 −3y2)

be the probability density function of a bivariate normal distribu-
tion.

(a) Show that f (x, y) is indeed a probability function.HINT: Show thatÎ
R2 f (x, y)dxdy= 1. (b) Compute the cumulative distribution function and express

the results by means of Φ.
HINT: F(x, y)= ∫ x

−∞
∫ y
−∞

p
6
π exp(−2s2−3t2)ds dt = ∫ x

−∞
∫ y
−∞

p
2p
π

exp(−2s2) ·
p

3p
π

exp(−3t2)ds dt.

20.5 ComputeÏ
R2

exp(−q(x, y))dx dy

where

q(x, y)= 2x2 −2xy+2y2

HINT: Observe, that q is a quadratic form with matrix A=
(

2 −1
−1 2

)
. So change

the variables with respect to eigenvectors of A.



Solutions

4.1 (a) A+B=
(

2 −2 8
10 1 −1

)
; (b) not possible since the number of columns of

A does not coincide with the number of rows of B; (c) 3A′ =
 3 6
−18 3
15 −9

;

(d) A ·B′ =
(−8 18
−3 10

)
; (e) B′ ·A=

17 2 −19
4 −24 20
7 −16 9

; (f) not possible; (g) C ·

A+C ·B=C · (A+B)=
(−8 −3 9
22 0 6

)
; (h) C2 =C ·C=

(
0 −3
3 3

)
.

4.2 A ·B=
(
4 2
1 2

)
6=B ·A=

(
5 1
−1 1

)
.

4.3 x′x= 21, xx′ =
 1 −2 4
−2 4 −8
4 −8 16

, x′y=−1, y′x=−1,

xy′ =
 −3 −1 0

6 2 0
−12 −4 0

, yx′ =
−3 6 −12
−1 2 −4
0 0 0

.

4.4 B must be a 2×4 matrix. A ·B ·C is then a 3×3 matrix.

4.5 (a) X = (A+B−C)−1; (b) X = A−1 C; (c) X = A−1 BA; (d) X = CB−1 A−1 =
C (AB)−1.

4.6 (a) A−1 =


1 0 0 − 1

4
0 1 0 − 2

4
0 0 1 − 3

4
0 0 0 1

4

; (b) B−1 =


1 0 − 5

3 − 3
2

0 1
2 0 − 7

8
0 0 1

3 0
0 0 0 1

4

.

5.1 For example: (a) 2x1 +0x2 =
(
2
4

)
; (b) 3x1 −2x2 =

 4
−2
3

.

6.1 (a) ker(φ)= span({1}); (b) Im(φ)= span({1, x}); (c) D=
0 1 0

0 0 2
0 0 0

;

(d) U−1
`

=
1 1 1

0 −1 −2
0 0 1

2

, U` =
1 1 2

0 −1 −4
0 0 2

;

(e) D` =U`DU−1
`

=
0 −1 −1

0 0 −1
0 0 0

.

225



226 SOLUTIONS

7.1 Row reduced echelon form R=
1 0 −1

0 1 2
0 0 0

. Im(A)= span
{
(1,4,7)′, (2,5,8)′

}
,

ker(A)= span
{
(1,−2,1)′

}
, rank(A)= 2.

10.1 (a) −3; (b) −9; (c) 8; (d) 0; (e) −40; (f) −10; (g) 48; (h) −49; (i) 0.

10.2 See Exercise 10.1.

10.3 All matrices except those in Exercise 10.1(d) and (i) are regular and thus
invertible and have linear independent column vectors.
Ranks of the matrices: (a)–(d) rank 2; (e)–(f) rank 3; (g)–(h) rank 4;
(i) rank 1.

10.4 (a) det(A) = 3; (b) det(5A) = 53 det(A) = 375; (c) det(B) = 2 det(A) = 6;
(d) det(A′) = det(A) = 3; (e) det(C) = det(A) = 3; (f) det(A−1) = 1

det(A) = 1
3 ;

(g) det(A ·C)= det(A) ·det(C)= 3 ·3= 9; (h) det(I)= 1.

10.5
∣∣A′ ·A∣∣= 0;

∣∣A ·A′∣∣ depends on matrix A.

10.6 (a) 9; (b) 9; (c) 40; (e) 40.

10.7 A−1 = 1
|A|A

∗′.

(a) A∗ =
(

1 −2
−2 1

)
, A∗′ =

(
1 −2
−2 1

)
, |A| = −3;

(b) A∗ =
(

3 −1
−3 −2

)
, A∗′ =

(
3 −3
−1 −2

)
, |A| = −9;

(c) A∗ =
(
2 0
3 4

)
, A∗′ =

(
2 3
0 4

)
, |A| = 8;

(d) A∗ =
 1 0 0

1 3 −6
−1 0 3

, A∗′ =
1 1 −1

0 3 0
0 −6 3

, |A| = 3;

(e) A∗′ =
−20 −12 8

20 4 −16
5 −5 0

, |A| = −40;

(f) A∗′ =
 9 3 −4
−2 −4 2
−14 −8 4

, |A| = −10.

10.8 (a) A−1 = 1
ad−bc

(
d −b
−c a

)
; (b) A−1 = 1

x1 y2−x2 y1

(
y2 −y1
−x2 x1

)
;

(c) A−1 = 1
αβ2−α2β

(
β2 −β
−α2 α

)
.

10.9 (a) x = (1,0)′; (b) x = (1/3,5/9)′; (c) x = (1,1)′; (d) x = (0,2,−1)′; (e) x =
(1/2,1/2,1/8)′; (f) x= (−3/10,2/5,9/5)′.

11.1 (a) λ1 = 7, v1 =
(
1
2

)
; λ2 = 2, v2 =

(−2
1

)
; (b) λ1 = 14, v1 =

(
1
4

)
; λ2 = 1, v2 =(−3

1

)
; (c) λ1 =−6, v1 =

(
1
−1

)
; λ2 = 4, v2 =

(
1
1

)
.

11.2 (a) λ1 = 0, x1 =
1

1
0

; λ2 = 2, x2 =
0

0
1

; λ3 = 2, x3 =
−1

1
0

.

(b) λ1 = 1, x1 =
0

1
0

; λ2 = 2, x2 =
−1

2
2

; λ3 = 3, x3 =
−1

1
1

.
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(c) λ1 = 1, x1 =
 2
−1
1

; λ2 = 3, x2 =
1

0
1

; λ3 = 3, x3 =
1

1
0

.

(d) λ1 =−3, x1 =
1

0
0

; λ2 =−5, x2 =
0

1
0

; λ3 =−9, x3 =
0

0
1

.

(e) λ1 = 0, x1 =
 1

0
−3

; λ2 = 1, x2 =
 2
−3
−1

; λ3 = 4, x3 =
1

0
1

.

(f) λ1 = 0, x1 =
−2

2
1

; λ2 = 27, x2 =
2

1
2

; λ3 =−9, x3 =
−1
−2
2

.

11.3 (a) λ1 = λ2 = λ3 = 1, x1 =
1

0
0

, x2 =
0

1
0

, x3 =
0

0
1

; (b) λ1 = λ2 = λ3 = 1,

x1 =
1

0
0

.

11.4 11.1a: positiv definit, 11.1c: indefinit, 11.2a: positiv semidefinit, 11.2d:
negativ definit, 11.2f: indefinit, 11.3a: positiv definit.
The other matrices are not symmetric. So our criteria cannot be applied.

11.5 qA(x)= 3x2
1 +4x1x2 +2x1x3 −2x2

2 − x2
3.

11.6 A=
 5 3 −1

3 1 −2
−1 −2 1

.

11.7 Eigenspace corresponding to eigenvalue λ1 = 0: span


1

1
0

;

Eigenspace corresponding to eigenvalues λ2 =λ3 = 2: span


0

0
1

 ,

−1
1
0

.

11.8 Give examples.

11.9 11.1a: H1 = 3, H2 = 14, positive definite; 11.1c: H1 =−1, H2 =−24, indef-
inite; 11.2a: H1 = 1, H2 = 0, H3 = 0, cannot be applied; 11.2d: H1 = −3,
H2 = 15, H3 =−135, negative definite; 11.2f: H1 = 11, H2 =−27, H3 = 0,
cannot be applied; 11.3a: H1 = 1, H2 = 1, H3 = 1, positive definite.
All other matrices are not symmetric.

11.10 11.1a: M1 = 3, M2 = 6, M1,2 = 14, positive definite; 11.1c: M1 =−1, M2 =
−1, M1,2 = −24, indefinite; 11.2a: M1 = 1, M2 = 1, M3 = 2, M1,2 = 0,
M1,3 = 2, M2,3 = 2, M1,2,3 = 0, positive semidefinite. 11.2d: M1 =−3, M2 =
−5, M3 = −9, M1,2 = 15, M1,3 = 27, M2,3 = 45, M1,2,3 = −135, negative
definite. 11.2f: M1 = 11, M2 = −1, M3 = 8, M1,2 = −27, M1,3 = −108,
M2,3 =−108, M1,2,3 = 0, indefinite.

11.11

A=
(

2 −1
−1 2

)
.
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11.12

p
A=

(
1+p3

2
1−p3

2
1−p3

2
1+p3

2

)
.

11.13 Matrix A has eigenvalues λ1 = 2 and λ2 =−4 with corresponding eigen-
vectors v1 = (1,1)′ and v2 = (−1,1)′. Then

eA =
(

e2+e−4

2
e2−e−4

2
e2−e−4

2
e2+e−4

2

)
.

12.1 (a) 7; (b) 2
7 ; (c) 0; (d) divergent with limn→∞ n2+1

n+1 =∞; (e) divergent; (f) 29
6 .

12.2 (a) divergent; (b) 0; (c) e2 ≈ 7,38906; (d) e−2 ≈ 0.135335; (e) 0; (f) 1;
(g) divergent with limn→∞ n

n+1 +p
n =∞; (h) 0.

12.3 (a) ex; (b) ex; (c) e1/x.

12.11 By Lemma 12.20 we find
∑∞

k=1 qn = q
∑∞

k=0 qn = q
1−q .

14.1 (a) 0, (b) 0, (c) ∞, (d) −∞, (e) 1.

14.2 The functions are continuous in
(a) D, (b) D, (c) D, (d) D, (e) D, (f) R\Z, (g) R\{2}.

14.3 (a) 6x−5sin(x); (b) 6x2 +2x; (c) 1+ ln(x); (d) −2x−2 −2x−3; (e) 3x2+6x+1
(x+1)2 ;

(f) 1; (g) 18x−6; (h) 6xcos(3x2); (i) ln(2)·2x; (j) 4x−1; (k) 6e3x+1(5x2+1)2+
40e3x+1(5x2 +1)x+ 3(x−1)(x+1)2−(x+1)3

(x−1)2 −2.

14.4 f ′(x) f ′′(x) f ′′′(x)

(a) −x e−
x2
2 (x2 −1) e−

x2
2 (3 x− x3) e−

x2
2

(b) −2
(x−1)2

4
(x−1)3

−12
(x−1)4

(c) 3 x2 −4 x+3 6 x−4 6

14.5 Derivatives:
(a) (b) (c) (d) (e) (f)

fx 1 y 2 x 2 x y2 αxα−1 yβ x(x2 + y2)−1/2

f y 1 x 2 y 2 x2 y βxα yβ−1 y(x2 + y2)−1/2

fxx 0 0 2 2 y2 α(α−1) xα−2 yβ (x2 + y2)−1/2 − x2(x2 + y2)−3/2

fxy = f yx 0 1 0 4 x y αβxα−1 yβ−1 −xy(x2 + y2)−3/2

f yy 0 0 2 2 x2 β(β−1) xα yβ−2 (x2 + y2)−1/2 − y2(x2 + y2)−3/2

Derivatives at (1,1):
(a) (b) (c) (d) (e) (f)

fx 1 1 2 2 α
p

2/2
f y 1 1 2 2 β

p
2/2

fxx 0 0 2 2 α(α−1)
p

2/4
fxy = f yx 0 1 0 4 αβ −p2/4
f yy 0 0 2 2 β(β−1)

p
2/4

14.6 (a) f ′(1,1)= (1,1), f ′′(1,1)=
(
0 0
0 0

)
;

(b) f ′(1,1)= (1,1), f ′′(1,1)=
(
0 1
1 0

)
;



SOLUTIONS 229

(c) f ′(1,1)= (2,2), f ′′(1,1)=
(
2 0
0 2

)
;

(d) f ′(1,1)= (2,2), f ′′(1,1)=
(
2 4
4 2

)
;

(e) f ′(1,1)= (α,β), f ′′(1,1)=
(
α(α−1) αβ

αβ β(β−1)

)
;

(f) f ′(1,1)= (
p

2/2,
p

2/2), f ′′(1,1)=
( p

2/4 −p2/4
−p2/4

p
2/4

)
.

14.7 ∂ f
∂a = 2x′ ·a.

14.8 ∇ f (0,0)= (4/
p

10,12/
p

10).

14.9 D( f ◦ g)(t)= 2t+4t3; D(g ◦ f )(x, y)=
(

2x 2y
4x3 +4xy2 4x2 y+3y3

)
.

14.10 D(f◦g)(x)=
( −1 6x5

2
−3x2

1 2x2

)
; D(g◦ f)(x)=

(
2(x1 − x3

2) 6(−x1x2
2 + x5

2)
3x2

2 −1

)
.

14.11 ∂xi
∂b j

= (−1)i+ j M ji/|A| and thus Dx(b)=A−1.

14.12 d
dt F(K(t),L(t), t)= FK (K ,L, t)K ′(t)+FL(K ,L, t)L′(t)+Ft(K ,L, t).

15.1

-3 -2 -1 1 2 3 4 5

-2

-1

1

2

3
f

f

T1

T2

(a) f (x)≈ T1(x)= 1
2 + 1

4 x,

(b) f (x)≈ T2(x)= 1
2 + 1

4 x+ 1
8 x2.

radius of convergence ρ = 2.

15.2 T f ,0,3(x)= 1+ 1
2 x− 1

8 x2 + 1
16 x3.

15.3 T f ,0,30(x)= x10 − 1
6 x30.

15.4 T f ,0,4(x)≈ 0.959+0.284 x2 −0.479 x4.

15.5 f (x)=∑∞
n=0(−1)nx2n; ρ = 1.

15.6 f (x)=∑∞
n=0(− 1

2 )n 1
n! x

2n; ρ =∞.

15.7 f (x, y)= 1+ x2 + y2 +O(‖(x, y)‖3).

15.8 |Rn(1)| ≤ e
(n+1)! ; |Rn(1)| < 10−16 if n ≥ 18.

16.1 (a) Df(x)=
(
1− x2 −x1

x2 x1

)
, ∂(y1,y2)
∂(x1,x2) = x1;

(b) for all images of points (x1, x2) with x1 6= 0;

(c) D(f−1)(y)= (Df(x))−1 =
(
1− x2 −x1

x2 x1

)−1

= 1
x1

(
x1 x1
−x2 1− x2

)
;

(d) in order to get the inverse function we have to solve equation f(x)= y:
x1 = y1 + y2 and x2 = y2/(y1 + y2), if y1 + y2 6= 0.
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16.2 T is the linear map given by the matrix T =
(
a b
c d

)
. Hence its Jacobian

matrix is just det(T). If det(T) = 0, then the columns of T are linearly
dependent. Since the constants are non-zero, T has rank 1 and thus the
image is a linear subspace of dimension 1, i.e., a straight line through
the origin.

16.3 Let J =
∣∣∣∣∣
∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

∣∣∣∣∣ be the Jacobian determinant of this function. Then

the equation can be solved locally if J 6= 0. We then have ∂F
∂u = 1

J
∂g
∂y and

∂G
∂u =− 1

J
∂g
∂x .

16.4 (a) Fy = 3y2 +1 6= 0, y′ =−Fx/Fy = 3x2/(3y2 +1)= 0 for x = 0;
(b) Fy = 1+ xcos(xy)= 1 6= 0 for x = 0, y′(0)= 0.

16.5 d y
dx =− 2x

3y2 , y= f (x) exists locally in an open rectangle around x0 = (x0, y0)
if y0 6= 0; x = g(y) exists locally if x0 6= 0.

16.6 (a) z = g(x, y) can be locally expressed since Fz = 3z2−xy and Fz(0,0,1)=
3 6= 0; ∂g

∂x = −Fx
Fz

= − 3x2−yz
3z2−xy = − 0

3 = 0 for (x0, y0, z0) = (0,0,1); ∂g
∂y = −Fy

Fz
=

− 3y2−xz
3z2−xy =− 0

3 = 0.
(b) z = g(x, y) can be locally expressed since Fz = exp(z)−2z and Fz(1,0,0)=
1 6= 0; ∂g

∂x =−Fx
Fz

=− −2x
exp(z)−2z = 2 for (x0, y0, z0)= (1,0,0); ∂g

∂y =−Fy
Fz

=− −2y
exp(z)−2z =

0 for (x0, y0, z0)= (1,0,0).

16.7 dK
dL =−βK

αL .

16.8 (a) dxi
dx j

=− ux j
uxi

=−
(
x

1
2
1 +x

1
2
2

)
x
− 1

2
j(

x
1
2
1 +x

1
2
2

)
x
− 1

2
i

=− x
1
2
i

x
1
2
j

;

(b) dxi
dx j

=− ux j
uxi

=−
θ

θ−1

(∑n
i=1 x

θ−1
θ

i

) 1
θ−1

θ−1
θ x

− 1
θ

j

θ
θ−1

(∑n
i=1 x

θ−1
θ

i

) 1
θ−1

θ−1
θ x

− 1
θ

i

=− x
1
θ
i

x
1
θ
j

.

17.1 (a) decreasing in (−∞,−4]∪[0,3], increasing in [−4,0]∪[3,∞); (b) concave
in [−2−p

148)/6,−2+p
148)/6], convex otherwise.

17.2 (a) log-concave; (b) not log-concave; (c) not log-concave; (d) log-concave on
(−1,1).

17.3 (a) concave; (b) concave.

18.1 (a) global minimum at x = 3 ( f ′′(x)≥ 0 for all x ∈R), no local maximum;
(b) local minimum at x = 1, local maximum at x =−1, no global extrema.

18.2 (a) global minimum in x = 1, no local maximum;
(b) global maximum in x = 1

4 , no local minimum;
(c) global minimum in x = 0, no local maximum.

18.3 (a) stationary point: p0 = (0,0), H f =
(−2 1

1 2

)
,

H2 =−5< 0, ⇒ p0 is a saddle point;

(b) stationary point: p0 = (e,0), H f (p0)=
(−e−3 0

0 −2

)
,

H1 =−e−3 < 0, H2 = 2 e−3 > 0, ⇒ p0 is local maximum;
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(c) stationary point: p0 = (1,1), H f (p0)=
(

802 −400
−400 200

)
,

H1 = 802> 0, H2 = 400> 0, ⇒ p0 is local minimum;

(d) stationary point: p0 = (ln(3), ln(4)), H f =
(−ex1 0

0 −ex2

)
,

H1 =−ex1 < 0, H2 = ex1 · ex2 > 0, ⇒ local maximum in p0 = (ln(3), ln(4)).

18.4 stationary points: p1 = (0,0,0), p2 = (1,0,0), p3 = (−1,0,0),

H f =
 6x1x2 3x2

1 −1 0
3x2

1 −1 0
0 0 2

,

leading principle minors: H1 = 6x1x2 = 0, H2 = −(3x2
1 −1)2 < 0 (da x1 ∈

{0,−1,1}), H3 =−2(3x2
1 −1)2 < 0,

⇒ all three stationary points are saddle points. The function is neither
convex nor concave.

18.5 (b) Lagrange function: L (x, y;λ)= x2 y+λ(3− x− y),
stationary points x1 = (2,1;4) and x2 = (0,3;0),

(c) bordered Hessian: H̄=
0 1 1

1 2 y 2 x
1 2 x 0

,

H̄(x1)=
0 1 1

1 2 4
1 4 0

, det(H̄(x1))= 6> 0, ⇒ x1 is a local maximum,

H̄(x2)=
0 1 1

1 6 0
1 0 0

, det(H̄(x2))=−6 ⇒ x2 is a local minimum.

18.6 Lagrange function: L (x1, x2, x3;λ1,λ2) = f (x1, x2, x3) = 1
3 (x1 −3)3 + x2 x3 +

λ1(4− x1 − x2)+λ2(5− x1 − x3),
stationary points: x1 = (0,4,5;5,4) and x2 = (4,0,1;1,0).

18.7 (a) x1 =α m
p1

, x2 = (1−α) m
p2

and λ= 1
m , (c) marginal change for optimum:

1
m .

18.8 Kuhn-Tucker theorem: L (x, y;λ)=−(x−2)2− y+λ(1− x− y), x = 1, y= 0,
λ= 2.

19.1 (a) integration by parts (P): 1
4 x2 (2 ln x−1)+ c;

(b) 2×P: 2 cos(x)− x2 cos(x)+2 x sin(x)+ c;

(c) by substitution (S), z = x2 +6: 2
3
(
x2 +6

) 3
2 + c;

(d) S, z = x2: 1
2 ex2 + c;

(e) S, z = 3 x2 +4: 1
6 ln(4+3x2)+ c;

(f) P or S, z = x+1: 2
5 (x+1)

5
2 − 2

3 (x+1)
3
2 + c;

(g) = ∫
3 x+ 4

x dx = 3
2 x2 +4 ln(x)+ c; S not suitable;

(h) S, z = ln(x): 1
2 (ln(x))2 + c.

19.2 (a) 39, (b) 3 e2 −3 ≈ 19.17, (c) 93, (d) − 1
6 (use radiant instead of degree),

(e) 1
2 ln(8)≈ 1.0397

19.3 (a)
∫ ∞

0 −e−3x dx = lim
t→∞

∫ t
0 −e−3x dx = lim

t→∞
1
3 e−3t − 1

3 =− 1
3 ;

(b)
∫ 1

0
2

4px3
dx = lim

t→0

∫ 1
t

2
4px3

dx = lim
t→0

8−8 t
1
4 = 8;

(c) = lim
t→∞

∫ t
0

x
x2+1 dx = lim

t→∞
1
2
∫ t2+1

2
1
z dz = lim

t→∞
1
2 (ln(t2 +1)− ln(2))=∞,

the improper integral does not exist.
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19.4 We need the antiderivative C(x) of C′(x) = 30−0.05 x with C(0) = 2000:
C(x)= 2000+30 x−0,025 x2.

19.5 E(X )=
√

2
π

.

19.6 E(X )=−
√

2
π
+

√
2
π
= 0.

19.7 (a) The improper integral exists if and only if α>−1;
(b) the improper integral exists if and only if α<−1;
(c) the improper integral always converges.

20.1 (a) 16; (b) a2b2

4 ; (c) −5ln(5)+8ln(4)−3ln(3)≈−0.2527; (d) π−2
8π .

20.2 π.
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pactness, 131
continuously differentiable func-

tions, 142
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111
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124
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112
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converges, 109, 124
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convex combinations, 173
convex hull, 173
Convex sum, 175
Convexity of multivariate functions,

180
Convexity of univariate functions,

180
corollary, 13
counterexample, 18
Cramer’s rule, 89

Decomposition of a vector, 75
definite integral, 208
Definiteness and eigenvalues, 98
Definiteness and leading princi-

ple minors, 99
definition, 13
derivative, 137, 144
design matrix, 78
determinant, 82
diagonal matrix, 26
diagonalization, 96
difference quotient, 137
differentiable, 137, 144
differential coefficient, 137
differential operator, 47, 137
dimension, 40
Dimension theorem for linear maps,

48
direct sum, 74
directional derivative, 141, 142
Divergence of geometric sequence,

112
divergent, 109, 114, 124
dot product, 63
double integral, 215

eigenspace, 94
eigenvalue, 93
Eigenvalues and determinant, 95
Eigenvalues and trace, 95
eigenvector, 93
elasticity, 151
elementary row operations, 58
Envelope theorem, 193
equal, 26
equivalent, 126

Euclidean distance, 66, 121
Euclidean norm, 64, 121
even number, 5
exclusive-or, 11
Existence and uniqueness, 84
Existence of derivatives, 146
existential quantifier, 10
expand, 157
expectation, 213
exterior point, 122
Extreme-value theorem, 132

finitely generated, 37
Finitely generated vector space,

127
First fundamental theorem of cal-

culus, 207
first-order partial derivatives, 143
Fubini’s theorem, 217
full rank, 53
Fundamental properties of inner

products, 63
Fundamental properties of met-

rics, 66
Fundamental properties of norms,

65

generating set, 37
geometric sequence, 112
Geometric series, 114
gradient, 142
Gram matrix, 104
Gram-Schmidt orthonormalization,

73
Gram-Schmidt process, 73
group, 83

half spaces, 174
Harmonic series, 115
Hessian, 143
homogeneous, 57, 152
hyperplane, 174
hypothesis, 10

idempotent, 73
identity matrix, 26
image, 48
implication, 10
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implicit function, 167
Implicit function theorem, 167,

168
improper integral, 209
indefinite, 97
indefinite integral, 201
induction hypothesis, 17
induction step, 17
infimum, 111
inhomogeneous, 57
initial step, 17
inner product, 63, 64
inner product space, 64
integrable, 206
integral, 206
integration constant, 201
interior, 123
interior point, 121
Intermediate value theorem (Bolzano),

135
Intersection, 173
interval bisectioning, 135
inverse function, 165
Inverse function theorem, 166
Inverse matrix, 86, 88, 94
inverse matrix, 28
invertible, 28, 49
isometry, 68
isomorphic, 41

Jacobian determinant, 166
Jacobian matrix, 145, 168
Jensen’s inequality, discrete ver-

sion, 177

kernel, 48
Kuhn-Tucker conditions, 197
Kuhn-Tucker sufficient condition,

197

Lagrange function, 194
Lagrange multiplier, 194
Lagrange’s form of the remain-

der, 156
Lagrangian, 194
Landau symbols, 160
Laplace expansion, 87
Laplace expansion, 87

leading principle minor, 98
least square principle, 78
Leibniz formula for determinant,

84
Leibniz’s formula, 211
lemma, 13
Level sets of convex functions, 183
limit, 109, 124, 136
Linear approximation, 144
linear combination, 36
linear map, 47
linear span, 37
linearly dependent, 37
linearly independent, 37
local maximum, 192
local minimum, 192
lower bound, 111
lower level set, 183

Maclaurin polynomial, 156
matrices, 25
matrix, 25
matrix addition, 26
matrix multiplication, 27
Matrix power, 94
matrix product, 27
maximum, 191
Mean value theorem, 140
metric, 66
metric vector space, 66
minimum, 191
Minimum and maximum of two

convex functions, 178
Minkowski inequality, 65
minor, 87
model parameters, 78
monotone, 111
monotonically decreasing, 179
monotonically increasing, 179
Monotonicity and derivatives, 179
multiple integral, 218

n-dimensional rectangle, 218
necessary, 14
Necessary condition, 195
Necessary first-order conditions,

191
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negative definite, 97
negative semidefinite, 97
norm, 65
normed vector space, 65
nullity, 51
nullspace, 48

one-to-one, 49
onto, 49
open, 122
open ball, 121
open neighborhood, 122
operator, 47
orthogonal, 67
orthogonal complement, 75
Orthogonal decomposition, 72, 75
orthogonal decomposition, 72
orthogonal matrix, 68
orthogonal projection, 72, 75
orthonormal basis, 67
orthonormal system, 67

partial derivative, 141
partial sum, 114
partitioned matrix, 29
permutation, 83
pivot, 58
pivotal, 58
Polar coordinates, 222
positive definite, 97
positive semidefinite, 97
power series, 160
preimage, 130
primitive integral, 201
principle minor, 99
Principle of mathematical induc-

tion, 16
Product, 85
Projection into subspace, 76
Projection matrix, 73
proof, 13
proof by contradiction, 15
Properties of closed sets, 123
Properties of open sets, 122
Properties of the gradient, 142
proposition, 13
Pythagorean theorem, 67

Quadratic form, 175
quadratic form, 97
quasi-concave, 183
quasi-convex, 183

radius of convergence, 161
range, 48
rank, 51
Rank of a matrix, 86
Rank-nullity theorem, 52
Ratio test, 117
ray, 152
regular, 53
relatively closed, 130
relatively open, 130
remainder, 155
residuals, 78
restriction, 177
Riemann integrable, 205
Riemann integral, 205
Riemann sum, 205
Rolle’s theorem, 140
row echelon form, 58
row rank, 52
row reduced echelon form, 58
row vector, 25
Rules for limits, 112, 136
Rules for matrix addition and mul-

tiplication, 27

saddle point, 193
Sarrus’ rule, 86
scalar multiplication, 26
scalar product, 63
second derivative, 139
Second fundamental theorem of

calculus, 207
second-order partial derivatives,

143
Semifiniteness and principle mi-

nors, 100
sequence, 109, 123
series, 114
similar, 53
Similar matrices, 95
singular, 28
Singular matrix, 85
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spectral decomposition, 100
Spectral theorem for symmetric

matrices, 96
spectrum, 94
square matrix, 26
square root, 101
statement, 9
stationary point, 191
Steinitz exchange theorem (Aus-

tauschsatz), 39
step function, 204
strict local maximum, 192
strict maximum, 191
strictly concave, 174
strictly convex, 174
strictly decreasing, 179
strictly increasing, 179
strictly quasi-concave, 186
strictly quasi-convex, 186
subgradient, 177
Subgradient and supergradient,

177
subsequence, 128
subspace, 36
sufficient, 14
Sufficient condition, 195
Sufficient condition for local op-

timum, 197
Sufficient conditions, 191
Sufficient conditions for local ex-

tremal points, 192
sum, 26
Sum of covergent sequences, 113,

125
supergradient, 177
supremum, 111
Sylvester’s criterion, 98
symmetric, 27

Tangents of convex functions, 176
Tangents of quasi-convex functions,

186
tautology, 11
Taylor polynomial, 155
Taylor series, 157
Taylor’s formula for multivariate

functions, 163

Taylor’s theorem, 156
theorem, 13
trace, 95
transformation matrix, 42
Transpose, 84, 94
transpose, 27
transposition, 83
Triangle inequality, 17, 113
triangle inequality, 70
Triangular matrix, 87
trivial, 18

unbounded, 128
universal quantifier, 10
upper bound, 111
upper level set, 183
upper triangular matrix, 26

value function, 193
vector space, 35, 36
Volume, 86

Young’s theorem, Schwarz’ theo-
rem, 143

zero matrix, 26
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