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Chapter 1

Axioms of Probability

1.1 Definitions and Properties

There is a long history of attempts to define probability. Kolmogorov (1933) stated the so-called

axioms of probability, i.e. a generally accepted small list of properties of mappings that deserve

the name probability. The idea may be illustrated by assuming that a mechanism generates out-

come (data) randomly. A potential outcome ω is an element of a general set Ω. The outcome is

random, i.e. not certain in an astonishingly hard to define sense, and therefore only the probability

(likelihood) that the outcome is in a certain subset A ⊆ Ω can be specified.

The components for the definition of probability are thus: 1. a set (space) Ω, 2. a collection A
of subsets of Ω (if A ∈ A, then A ⊆ Ω), the set of events, and 3. a mapping P : A 7→ [0, 1], the

probability, i.e. for an event A ∈ A, P (A) is the probability of A.

Definition 1.1 A subset A ⊆ 2Ω is called σ-algebra, if

1. ∅ ∈ A and Ω ∈ A,

2. if A ∈ A, then Ac ∈ A,

3. if A1, A2, . . . is a countable sequence with Ai ∈ A, then ∪∞i=1Ai ∈ A and ∩∞i=1Ai ∈ A.

Remark 1.2 1. 2Ω denotes the power set of Ω, i.e. 2Ω = {A | A ⊆ Ω}. 2Ω is also denoted by

P(Ω).

2. Ac denotes the complement of A, i.e. Ac = Ω \A = {ω ∈ Ω | ω /∈ A}.
3. If A ⊆ 2Ω satisfies 1. 2. of the definition, but is closed only with respect to finite unions and

intersections, it is called an algebra.

4. Let A ⊆ 2Ω satisfy 1. and 2. of the definition. Assume that A is closed with respect

to countable unions, then it is closed with respect to countable intersections. Also, if A is closed

with respect to countable intersections, then it is closed with respect to countable unions. This
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follows from De Morgan’s law: (A ∩ B)c = Ac ∪ Bc and (A ∪ B)c = Ac ∩ Bc. More generally,

(∩∞i=1Ai)
c = ∪∞i=1A

c
i and (∪∞i=1Ai)

c = ∩∞i=1A
c
i . Therefore, to check that a collection A of subsets of

Ω is a σ-algebra, it is sufficient to check 1., 2. and either that A is closed w.r.t countable unions

or countable intersections.

Definition 1.3 Let C ⊆ 2Ω. σ(C) is the σ-algebra generated by C, i.e. the smallest σ-algebra on

Ω containing C. That is, σ(C) is a σ-algebra on Ω, C ⊆ σ(C) and if A is a σ-algebra on Ω with

C ⊆ A, then σ(C) ⊆ A.

Example 1.4 1. A = {∅,Ω} is a σ-algebra on Ω. It is called the trivial σ-algebra. It is the

smallest σ-algebra on Ω.

2. Let A ⊆ Ω. Then σ({A}) = {∅,Ω, A,Ac}.

3. Let C = {C1, C2, . . . , Cn} be a partition of Ω, i.e. ∪ni=1Ci = Ω and Ci ∩ Cj = ∅ for i 6= j.

Then σ(C) = {∪i∈ICi | I ⊆ {1, . . . , n}, I 6= ∅}.

4. Let O ⊆ Ω be the set of open subsets of Ω. B = σ(O) is called the Borel σ-algebra on Ω.

Remark 1.5 Borel σ-algebras B are especially important in probability theory. For instance, if

Ω = R, then the Borel σ-algebra B is the smallest σ-algebra containing all open intervals. However,

there are many more Borel sets (elements of B) than open intervals. Unions of open intervals are

Borel sets, complements of open sets (i.e. closed sets) are Borel sets. Countable unions of open

and closed sets and their complements are Borel sets. Countable unions and intersections of these

sets are Borel sets.

Definition 1.6 A probability measure P defined on a σ-algebra A is a function: P : A → [0, 1]

that satisfies:

1.

P (Ω) = 1, P (∅) = 0. (1.1)

2. For every countable and pairwise disjoint sequence (An)∞n=1 of events (An ∈ A and

An ∩Am = ∅ for n 6= m),

P (
∞⋃
n=1

An) =
∞∑
n=1

P (An). (1.2)

Remark 1.7 1. A probability measure is also called probability distribution or only distribution or

probability.

2. A probability measure is a special case of a measure: A measure m is a mapping m : A → [0,∞]

satisfying (1.2). A finite measure m is a measure with m(Ω) < ∞. Let Ω be a general set, A a

σ-algebra on Ω. (Ω,A) is called measurable space. If m is a measure on (Ω,A), then the triple
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(Ω,A,m) is called a measure space. In case the measure is a probability measure P , (Ω,A, P ) is

called probability space.

3. A mapping m : A → [0,∞] is called additive, if condition (1.2) is replaced by m(
⋃k
n=1An) =∑k

n=1m(An) (for finitely many pairwise disjoint events An).

Proposition 1.8 Let P be a probability measure on a σ-algebra A. Then

1. P is additive.

2. P (Ac) = 1− P (A) for A ∈ A.

3. If A,B ∈ A and A ⊆ B, then P (A) ≤ P (B).

Proof. 1. Let A1, . . . , Ak ∈ A be pairwise disjoint. We define An = ∅ for n > k. Then, (An)∞n=1 is

a sequence of pairwise disjoint events and since P (∅) = 0, we have

P (

k⋃
n=1

An) = P (

∞⋃
n=1

An) =

∞∑
n=1

P (An) =

k∑
n=1

P (An).

2. Since Ω = A ∪Ac we have 1 = P (Ω) = P (A ∪Ac) = P (A) + P (Ac).

3. Let A ⊆ B be events. Since B = A ∪ (B ∩Ac) we have

P (B) = P (A ∪ (B ∩Ac) = P (A) + P (B ∩Ac) ≥ P (A). 2

Theorem 1.9 Let A be a σ-algebra and suppose that P : A → [0, 1] satisfies (1.1) and is additive.

Then the following statements are equivalent:

1. (1.2), i.e. P is a probability measure.

2. If Bn ∈ A is increasing, i.e. Bn ⊆ Bn+1 for all n and B =
⋃∞
n=1Bn, then P(Bn) ↑ P(B).

3. If Cn ∈ A is decreasing, i.e. Cn+1 ⊆ Cn for all n and C =
⋂∞
n=1Cn, then P(Cn) ↓ P(C).

Proof. If (Bn) is an increasing sequence of events, if and only if (Cn) = (Bc
n) is a decreasing

sequence of events. Since P (Cn) = 1 − P (Bn) in this case, P (Bn) ↑ P (B) if and only if P (Cn) ↓
P (C). Therefore, 2. and 3. are equivalent. We have to show that 1. ⇒ 2. and 2. ⇒ 1.

1. ⇒ 2.: Let (Bn) be an increasing sequence of events. We define An = Bn∩Bc
n−1. (An) is then

a pairwise disjoint sequence of events, Bn =
⋃n
i=1Ai and B =

⋃∞
n=1An =

⋃∞
n=1Bn. Therefore,

since (1.2) holds and P is additive, we have

P (B) =
∞∑
n=1

P (An) = lim
n→∞

n∑
i=1

P (An) = lim
n→∞

P (Bn).

Clearly, P (Bn) is increasing (nondecreasing).
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2. ⇒ 1.: Let (An) be a pairwise disjoint sequence of event. We define Bn =
⋃n
i=1Ai and

B =
⋃∞
n=1Bn (=

⋃∞
n=1An). Bn is increasing and therefore

P (
∞⋃
n=1

An) = P (B) = lim
n→∞

P (Bn) = lim
n→∞

P (
n⋃
i=1

Ai) = lim
n→∞

n∑
i=1

P (Ai) =
∞∑
n=1

P (An). 2

Remark 1.10 What is the reason that one has to introduce the concept of a σ-algebra? Would not

be simple to take always A = 2Ω, i.e. all subsets of Ω are events?

1. First of all there are cases when in fact one can choose 2Ω as the set of events. This is possible,

when either Ω is of a simple structure (for instance, when Ω is countable) or when the probability

distribution P is simple.

2. It is perhaps astonishing that one cannot define probability distributions with certain desirable

properties on the power set 2Ω. For instance, one can prove that if P is the uniform distribution

on Ω = [0, 1] (intervals [a, b] ⊆ [0, 1] have probability b− a), it can be defined on the Borel sets, but

not extended to 2Ω.

3. The σ-algebra A can be considered as a measure of information. If A is small, there are only

few events on which probability statements are possible. If A has many elements, there are many

events that can be distinguished. Let us consider the following example: Assume that the outcome of

the random experiment ω is an element of Ω = {0, 1, . . . , 5}. Person A has access to the outcome.

Accordingly, A could be 2Ω, which is also generated by {0}, {1}, . . . , {5}. To person B only (ω− 2)2

is reported. Person B cannot distinguish between 1 and 3 and between 0 and 4. The appropriate

σ-algebra is the one generated by {2}, {5}, {1, 3}, {0, 4}.

1.2 Independence

Let a probability space (Ω,A, P ) be given. Think of ω ∈ Ω as the outcome of a random experiment.

Let B be an event with P (B) > 0. Then

P (A | B) =
P (A ∩B)

P (B)
(1.3)

is the probability of A given B, i.e. the likelihood of ω ∈ A among all ω ∈ B. Note that

P (A | B) = P (A) if and only if P (A ∩ B) = P (A)P (B). We call A and B (stochastically)

independent.

Definition 1.11 A collection of events (Ai)i∈I is a collection of independent events if for all finite

J ⊆ I
P (
⋂
i∈J

Ai) =
∏
i∈J

P (Ai). (1.4)

Example 1.12 A card is chosen randomly from a deck of 52 cards, each card chosen with the same

probability. Let A be the event that the chosen card is a Queen and B that the card is a heart. Then

P (A) = 1/13, P (B) = 1/4, P (A ∩B) = 1/52 = P (A)P (B). Therefore, A and B are independent.
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Example 1.13 Let Ω = {1, 2, 3, 4}, A the power set of Ω and P ({i}) = 1/4 for i = 1, 2, 3, 4.

Let A = {1, 2}, B = {1, 3}, C = {2, 3}. Then P (A) = P (B) = P (C) = 1/2 and P (A ∩ B) =

P (A ∩ C) = P (B ∩ C) = 1/4. Therefore, A, B and C are pairwise independent. However,

P (A ∩B ∩ C) = P (∅) = 0 6= 1

8
= P (A)P (B)P (C).

A, B and C are not independent!

Proposition 1.14 Let a probability space (Ω,A, P ) be given and A,B ∈ A.

1. A and B are independent if and only if the pairs A and Bc, Ac and B, and Ac and Bc are

independent.

2. A is independent of Ac if and only if P (A) = 0 or P (A) = 1.

3. Let P (B) > 0. P (A | B) = P (A) if and only if A and B are independent.

4. Let P (B) > 0. The mapping P (. | B) : A → [0, 1], given by (1.3) is a probability measure on A.

Proof. See exercises.

Proposition 1.15 Let A1, . . . , An be events. Then, if P (A1 ∩A1 ∩ · · · ∩An−1) > 0

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2 | A1)P (A3 | A1 ∩A2) · · ·P (An | A1 ∩A1 ∩ · · · ∩An−1).

Proof. See exercises.

Theorem 1.16 (Partition Equation). Let (Em) be a finite or countable partition of Ω with

P (Em) > 0 for all m. Then,

P (A) =
∑
m

P (A | Em)P (Em). (1.5)

Proof. We have P (A | Em)P (Em) = P (A∩Em) and A =
⋃
mA∩Em. Since the sets A∩Em are pair-

wise disjoint, (1.5) follows. 2

Theorem 1.17 (Bayes’ Theorem). Let (En) be a finite or countable partition of Ω with P (En) > 0

for all n. Then, if P (A) > 0,

P (En | A) =
P (A | En)P (En)∑
m P (A | Em)P (Em)

. (1.6)

Proof. The r.h.s. of (1.6) is

P (A | En)P (En)

P (A)
=
P (A ∩ En)

P (A)
= P (En | A). 2
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1.3 Exercises

Exercise 1.1 Let Ω = R. Show that all one-point sets A = {a} are Borel sets. Show that therefore

all countable subsets of R and subsets with countable complement are Borel sets.

Exercise 1.2 Let B be the Borel σ-algebra on R. Show that it is generated also by

1. All open intervals.

2. All closed subsets of R.

3. All closed intervals.

4. All half-open intervals {(a, b] | a < b}.

5. The collection of intervals {(−∞, b] | b ∈ R}.

6. The collection of intervals {(−∞, b] | b ∈ Q}.

Exercise 1.3 Let C be a collection of subsets of Ω. Show that σ(C) exists. Hint: Prove that

1. There is at least one σ-algebra A with C ⊆ A.

2. If {Ai}, i ∈ I is a collection of σ-algebras on Ω, then
⋂
i∈I Ai is a σ-algebra.

3. σ(C) =
⋂
{A | is a σ-algebra on Ω with C ⊆ A}.

Exercise 1.4 Let A be a σ-algebra on Ω and B ∈ A. Prove that G = {A ∩ B | A ∈ A} is a

σ-algebra on B.

Exercise 1.5 Let Ω = [−1, 1], A = {∅,Ω, [−1, 1/2], (1/2, 1]}. Let X : Ω → [0, 1] be given by

X(ω) = ω2. Let F = {X(A) : A ∈ A}. Check whether F is a σ-algebra on [0, 1].

Exercise 1.6 (Subadditivity). Let (Ω,A, P ) be a probability space and (Ai) a sequence of events.

Show that

P (

n⋃
i=1

Ai) ≤
n∑
i=1

P (Ai)

for all n and

P (
∞⋃
i=1

Ai) ≤
∞∑
i=1

P (Ai).

Exercise 1.7 Let A and B be events. Show that P (A) + P (B) = P (A ∪B) + P (A ∩B).

Exercise 1.8 Let A and B be events. Show that if A and B are independent and A∩B = ∅, then

P (A) = 0 or P (B) = 0.

Exercise 1.9 Prove Proposition 1.14.

8



Exercise 1.10 Prove Proposition 1.15.

Exercise 1.11 An insurance company insured an equal number of male and female drivers. In

every year a male driver has an accident involving a claim with probability α, a female driver with

probability β, with independence over the years. Let Ai be the event that a selected driver makes a

claim in year i.

1. What is the probability that a selected driver will make a claim this year?

2. What is the probability that a selected driver will make a claim in two consecutive years?

3. Show that P (A2 | A1) ≥ P (A1) with equality only if α = β.

4. Find the probability that a claimant is female.
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Chapter 2

Probabilities and Random Variables

on Countable Spaces

2.1 Discrete Probabilities

In this chapter Ω is finite or countable. We have A = 2Ω. Since Ω is at most countable, P is

completely determined by the sequence pω = P ({ω}), ω ∈ Ω.

Theorem 2.1 Let (pω) be a sequence of real numbers. There exists a unique probability measure

P on (Ω, 2Ω) such that P ({ω}) = pω if and only if pω ≥ 0 (for all ω) and
∑

ω pω = 1. In this case

for A ⊆ Ω,

P (A) =
∑
ω∈A

pω.

Example 2.2 (Uniform distribution.) If Ω is finite (|Ω| <∞), we define the uniform distribution

by choosing pω = 1/|Ω|. Then for A ⊆ Ω,

P (A) =
|A|
|Ω|

. (2.1)

The uniform distribution is sometimes called the method of Laplace. The ratio (2.1) is referred to

as number of favourable cases (ω ∈ A) over number of possible cases (ω ∈ Ω).

Example 2.3 (Hypergeometric distribution H(N,M,n).) Consider an urn containing two sets of

objects, N red balls and M blue balls. n balls are drawn without replacement, each ball has the

same probability of being drawn. The hypergeometric distribution is the probability distribution of

the number X of red balls drawn: Let N ≥ 1,M ≥ 1, 1 ≤ n ≤ N +M and 0 ≤ k ≤ n. What is the

probability that k of the n drawn balls are red? Let Ω = {0, 1, . . . , n}.
First we specify an auxiliary random experiment: We assume that the balls in the urn are

labelled, with labels 1 up to N corresponding to “red” and N+1 up to N+M corresponding to“blue”.
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Define Ω̃ as the set of subsets of {1, 2, . . . ,M + N} of size n. The auxiliary experiment picks

subsets A of size n uniformly from Ω̃. The number of red elements of A is then hypergeometrically

distributed.

The number of subsets of {1, . . . , N,N + 1, . . . N +M} of size n is(
N +M

n

)
,

the proportion with |A ∩ {1, . . . , N}| = k and |A ∩ {N + 1, . . . , N +M}| = n− k is

P(X = k) =

(
N
k

)(
M
n−k
)(

N+M
n

) .

Example 2.4 (Binomial distribution B(n, p).) Again, two types of objects are sampled (1 for

“success” and 0 for “failure”), but this time with replacement. The proportion of 1’s is p, with

0 ≤ p ≤ 1. The probability of drawing a 1 is thus p. X is the number of successes among the n

draws. What is P (X = k) (for 0 ≤ k ≤ n)? The range of X is Ω = {0, 1, . . . , n}.
First, we specify the data generating process. If the experiment is repeated n times, this leads

to a sequence ω = (ω1, . . . , ωn) ∈ {0, 1}n.

Let x = x(ω) = ω1 + ω2 + · · ·+ ωn. Then

P ({ω}) = px(1− p)n−x.

There are (
n

k

)
elements of ω with x(ω) = k and thus

P (X = k) =

(
n

k

)
pk(1− p)n−k (2.2)

for 0 ≤ k ≤ n and P (X = k) = 0 else.

Example 2.5 (Poisson distribution P(λ).) The Poisson distribution is defined on Ω = N0 =

{0, 1, . . .}. λ > 0 is the parameter and

P ({n}) = e−λ
λn

n!
. (2.3)

Example 2.6 (Geometric distribution G(θ).) The geometric distribution is defined on Ω = N =

{1, 2, . . .}. θ ∈ (0, 1) is the parameter and

P ({n}) = (1− θ)θn−1. (2.4)
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2.2 Random Variables on Countable Spaces

Let (Ω,A, P ) be a probability space and (T, C) a measurable space. Furthermore, let X : Ω → T

be a mapping. We are interested in probabilities P (X ∈ C) for C ∈ C. Since {X ∈ C} is short for

X−1(C) = {ω ∈ Ω | X(ω) ∈ C}, the mapping X has to be measurable in the sense of the following

definition:

Definition 2.7 Let (Ω,A) and (T, C) be two measurable spaces and X : Ω → T a mapping. X

is measurable (w.r.t. (Ω,A) and (T, C)) if X−1(C) ∈ A for all C ∈ C. If (Ω,A, P ) is (even) a

probability space, we call X random variable.

X : (Ω,A)→ (T, C) is short for X : Ω→ T and it is measurable w.r.t. (Ω,A) and (T, C).
If A = 2Ω, then any mapping to a measurable space is measurable. For general spaces this is

not the case.

Theorem 2.8 Let X : Ω → T be a mapping and assume that T is endowed with a σ-algebra C.

Let

σ(X) = {X−1(C) | C ∈ C}. (2.5)

σ(X) is a σ-algebra on Ω and it is the smallest σ-algebra A s.t. X : (Ω,A)→ (T, C).

Proof. If σ(X) is a σ-algebra on Ω, it is, by its construction, automatically the smallest σ-algebra

that makes X measurable. Therefore, we only have to prove that it is a σ-algebra. We have

1. ∅ = X−1(∅) and Ω = X−1(T ), therefore ∅,Ω ∈ σ(X).

2. Let A ∈ σ(X), i.e. A = X−1(C) for a C ∈ C. Since Cc ∈ C and

Ac = X−1(C)c = X−1(Cc),

Ac ∈ σ(X) follows.

3. Let (Ai) be a sequence with Ai ∈ σ(X). There are Ci ∈ C s.t. Ai = X−1(Ci). Since
⋃
iCi ∈ C

and ⋃
i

Ai =
⋃
i

X−1(Ci) = X−1(
⋃
i

Ci),⋃
iAi ∈ σ(X). 2

Note that if (Ω,A) and (T, C) are measurable spaces, then X : Ω→ T is measurable if and only

if σ(X) ⊆ A.

Let us assume that Ω is countable and A = 2Ω. Let X : Ω→ T . We may assume that T is also

countable. Let C = 2T . X is measurable. We have for j ∈ T

pXj = P (X = j) = PX({j}) = P ({ω | X(ω) = j) =
∑

ω:X(ω)=j

pω. (2.6)
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Definition 2.9 Let X be real-valued on a countable space Ω. The expectation of X is defined as

E(X) =
∑
ω∈Ω

X(ω)pω, (2.7)

if the sum makes sense: 1. If
∑

ω∈Ω |X(ω)|pω is finite, then X “has an expectation”. We call X

integrable.

2. If
∑

ω∈Ω,X(ω)<0 |X(ω)|pω <∞ and
∑

ω∈Ω,X(ω)>0X(ω)pω =∞, then X has expectation ∞.

3. If
∑

ω∈Ω,X(ω)>0X(ω)pω <∞ and
∑

ω∈Ω,X(ω)<0 |X(ω)|pω =∞, then X has expectation −∞.

Example 2.10 (Binomial distribution.) Let Ω = {0, 1}n, x(ω) = ω1+· · ·+ωn for ω = (ω1, . . . , ωn) ∈
{0, 1}n. Furthermore, if pω = px(1− p)n−x and X : Ω→ {0, 1, . . . , n} with X(ω) = x, then PX is

the binomial distribution.

To compute the expectation of X, note that X = X1 + · · ·+Xn with Xi(ω) = ωi. Thus

E(Xi) = 1× P (ωi = 1) + 0× P (ωi = 0) = 1× p+ 0× (1− p) = p.

Therefore,

E(X) = E(X1) + · · ·+ E(Xn) = np.

Another possibility is a direct computation:

E(X) =
n∑
i=0

i pi

=
n∑
i=0

i

(
n

i

)
pi(1− p)n−i

=
n∑
i=1

i
n!

i!(n− i)!
pi(1− p)n−i

=
n∑
i=1

n!

(i− 1)!(n− i)!
pi(1− p)n−i

=
n−1∑
j=0

n!

j!(n− 1− j)!
pj+1(1− p)n−1−j

= np

n−1∑
j=0

(
n− 1

j

)
pj(1− p)n−1−j

= np.

Example 2.11 (Poisson distribution.) Let X have a Poisson distribution with parameter λ > 0.

Then

E(X) =

∞∑
i=0

i pi
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=

∞∑
i=0

i
λi

i!
e−λ

=
∞∑
i=1

λi

(i− 1)!
e−λ

=
∞∑
j=0

λj+1

j!
e−λ

= λ

∞∑
j=0

λj

j!
e−λ

= λ.

The following example should discuss the role of the σ-algebra:

Example 2.12 Assume we have a market consisting of an asset S and a bank account B. The

prices today are 100 (the asset) and 1 (the bank account). Prices next week are random. Let θ > 1,

for instance θ = 1.1. We assume that the future price S of the asset is either 100 θ−1, 100 or 100 θ

and that B, the future price of the bank account, is either 1 or θ.

Let Ω = {100 θ−1, 100, 100 θ} × {1, θ} and A = 2Ω. Elements ω ∈ Ω are pairs of possible prices

of the asset and possible values of the bank account. We will observe both S and B and thus for all

subsets of Ω probability statements are feasible.

Now assume there is an investor who will observe not both S and B, but only the discounted

price of the asset S̄ = S/B. S̄ is a mapping S̄ : Ω → T = {100 θ−2, 100 θ−1, 100, 100 θ}. Let

C = 2T . Given S and B we can compute S̄, it is measurable w.r.t. (Ω,A) and (T, C). But given

S̄, we are not always able to compute S and B. We are not able to distinguish between the pairs

(100 θ−1, 1) and (100, θ) and between the pairs (100, 1) and (100 θ, θ). Therefore, σ(S̄) is generated

by the partition

{(100 θ−1, 1), (100, θ)}, {(100, 1), (100 θ, θ)}, {(100 θ−1, θ)}, {(100 θ, 1)}.

Note that C is a σ-algebra on T , whereas σ(S̄) is a σ-algebra on Ω.

2.3 Exercises

Exercise 2.1 Show that (2.2), (2.3) and (2.4) define probability distributions on {0, 1, . . . , n}, N0

and N resp.

Exercise 2.2 Show that the Poisson distribution is the limit of the binomial distribution

for p = λ/n and n→∞.

Exercise 2.3 An exam is passed successfully with probability p, (0 < p < 1). In case of failure,

the exam can be retaken. Let X be the number of times the exam is taken until the first success.

Show that X is geometrically distributed.
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Exercise 2.4 Compute the variance of the binomial and the Poisson distribution and the expecta-

tion of the geometric distribution. Recall that the variance σ2 is the expectation of (X − E(X))2.

It can be computed as σ2 = E(X2)− E(X)2.

Exercise 2.5 Let X have a probability distribution on N0. Prove that

E(X) =
∞∑
i=0

P (X > i).

Exercise 2.6 Let X and Y be independent geometric random variables with parameter θ. Compute

P (X = Y ) and P (X > Y ).

Exercise 2.7 Let X and Y be independent random variables, X Poisson and Y geometrically

distributed. Compute P (X = Y ).
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Chapter 3

Probabilities on R

3.1 Distribution Functions

In this chapter we have Ω = R. R is endowed with the Borel σ-algebra B. Recall that B is

generated by the open sets (it also generated by the open intervals, by the closed intervals, by

half-open intervals). P is a probability measure on (R,B).

Definition 3.1 The distribution function of P is defined (for x ∈ R) by

F (x) = P ((−∞, x]). (3.1)

The distribution function (c.d.f.) F is a mapping F : R→ [0, 1].

Theorem 3.2 1. The distribution function F characterizes the probability measure P : Two prob-

ability measures with the same c.d.f. are equal.

2. A function F : R→ R is the distribution function of a probability measure on (R,B) if and only

if

(a) F is non-decreasing, F (x) ≤ F (y) for x ≤ y,

(b) F is right-continuous (F (x) = limy↓x F (y)),

(c) limx→∞ F (x) = 1, limx→−∞ F (x) = 0.

Proof. We prove only the “easy half” of part 2:

If x ≤ y, then, since (−∞, x] ⊆ (−∞, y], we have

F (x) = P ((−∞, x]) ≤ P ((−∞, y]) = F (y).

Let yn > x, limn→∞ yn = x and yn+1 ≤ yn. Then

(−∞, yn] ↓ (−∞, x]
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and therefore,

F (yn) = P ((−∞, yn]) ↓ P ((−∞, x]) = F (x).

Let yn ↑ ∞. Since (−∞, yn] ↑ (−∞,∞) = R, F (yn) → 1 = P (R) follows. Similarly, let yn ↓ −∞.

Then (−∞, yn] ↓ ∅ and F (yn)→ 0 = P (∅). 2

Note that a c.d.f. is not necessarily continuous!

Theorem 3.3 Let F be the c.d.f. of the probability measure P on (R,B). Let F (x−) denote the

left limit of F at x.

1. P ((x, y]) = F (y)− F (x) for x < y.

2. P ([x, y]) = F (y)− F (x−) for x ≤ y.

3. P ([x, y)) = F (y−)− F (x−) for x < y.

4. P ((x, y)) = F (y−)− F (x) for x < y.

5. P ({x}) = F (x)− F (x−).

Proof. Exercise.

A non-decreasing, right continuous function F with corresponding limits for x → ±∞ defines

a probability measure on (R,B). A useful method for constructing such functions is the idea of a

density. Let f be a nonnegative integrable function such that∫ ∞
−∞

f(y)dy = 1. (3.2)

Let

F (x) =

∫ x

−∞
f(y)dy. (3.3)

F is the c.d.f. of a probability measure P . Here one has to be careful: Up to and including this

chapter, the integral in (3.2) is the so-called Riemann integral. It is defined in a first step for

continuous functions on bounded and closed intervals and then extended to piecewise continuous

functions on R. We assume that f is “nice enough” s.t. (3.2) makes sense. The next chapter is

devoted to a new concept of integral, the Lebesgue integral, which allows a mathematically rigorous

treatment.

3.2 Distributions

Example 3.4 (Uniform distribution U(a, b)). Let a < b. The density of the uniform distribution

on the interval (a, b) is

f(x) =

{
1
b−a if x ∈ (a, b),

0 if x /∈ (a, b).
(3.4)
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Example 3.5 (Gamma distribution Γ(α, β)). Let α, β > 0. The density f of the gamma distribu-

tion is f(x) = 0 for x ≤ 0 and

f(x) =
βα

Γ(α)
xα−1e−βx if x > 0. (3.5)

Γ(.) is the gamma function, defined by

Γ(α) =

∫ ∞
0

xα−1e−x dx.

It is defined for all α > 0 and satisfies Γ(1) = 1, Γ(α+ 1) = αΓ(α). Thus Γ(n+ 1) = n! for n ∈ N0.

α is called the shape parameter and β the scale parameter. If α = 1, the gamma distribution

Γ(1, β) is called the exponential distribution. It has the density

f(x) =

{
β e−βx if x > 0,

0 if x ≤ 0.
(3.6)

Example 3.6 (Normal distribution N(µ, σ2)). Let µ ∈ R and σ2 > 0. The normal distribution

(with expectation µ and variance σ2) has the density

φµ,σ2(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (3.7)

A special case is the standard normal distribution. Here µ = 0 and σ2 = 1. The c.d.f. is denoted

by Φµ,σ2 and Φ in the special case of the N(0, 1) distribution.

Example 3.7 (Pareto distribution). Let α > 0. The Pareto distribution has the density

f(x) =

{
α

xα+1 if x > 1,

0 if x ≤ 1.
(3.8)

and the c.d.f.

F (x) =

{
1− 1

xα if x > 1,

0 if x ≤ 1.
(3.9)

Example 3.8 (Cauchy distribution). The density of the Cauchy distribution is

f(x) =
1

π

1

1 + x2
. (3.10)

Example 3.9 Let F (x) = I[a,∞)(x), i.e.

F (x) =

{
1 if x ≥ a,
0 if x < a.

(3.11)

F has the properties (Theorem 3.2) to guarantee that it is the c.d.f. of a probability distribution.

Since F is constant except in x = a and has a jump of size 1 in x = a, we conclude that P ({a}) = 1

and P (B) = 0 for all B with a 6∈ B. The distribution is called the Dirac distribution in a (sometimes

also called the one-point distribution in a).
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Example 3.10 Let

F (x) =


0 if x < 0,

1/4 if 0 ≤ x < 1,

x/2 if 1 ≤ x < 2,

1 if x ≥ 2.

(3.12)

Again, F is the c.d.f. of a probability distribution on R.

1. F is constant on [2,∞), on (0, 1) and on (−∞, 0), therefore P ((−∞, 0)) = P ((0, 1)) =

P ((2,∞)) = 0 and therefore P ({0} ∪ [1, 2]) = 1.

2. F has jumps both of size 1/4 at x = 0 and at x = 1, therefore P ({0}) = P ({1}) = 1/4.

3. F is linear on (1, 2), where it has a derivative F ′(x) = 1/2.

P has a discrete component: The points 0 and 1 have a strictly positive probability. On (1, 2), P

is uniform. Therefore, if a random variable X has this c.d.f., then X is uniform on (1, 2) (with

probability 1/2), it is 0 with probability 1/4 and it is 1, again with probability 1/4.

3.3 Exercises

Exercise 3.1 Prove Theorem (3.3).

Exercise 3.2 Prove that the densities of the uniform, the exponential and the Pareto distribution

are in fact densities, i.e. that they integrate to 1.

Exercise 3.3 Let

F (x) =


0 if x < −1,

(x+ 1)2/2 if − 1 ≤ x < 0,
√
x+ 2/2 if 0 ≤ x < 2,

1 if x ≥ 2.

(3.13)

1. Show that F is a c.d.f. on R.

2. Identify all points a with P ({a}) > 0.

3. Find the smallest interval [a, b] with P ([a, b]) = 1.

4. Compute P ([−1, 0]) and P ([0, 2]).

Exercise 3.4 Compute the distribution function of the uniform distribution.

Exercise 3.5 Compute the distribution function of the exponential distribution.
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Exercise 3.6 Let F be the distribution function of a probability measure P . Show that if F is

continuous, P ({x}) = 0 for all one-point sets {x} and P (C) = 0 for all countable sets C. Explain

why F is continuous if P has a density. It is sufficient to assume that the density is bounded.

Exercise 3.7 Let 0 < p < 1 and a distribution function F be given by

F (x) =
∞∑
k=1

(1− p)pk−1I[1/k2,∞)(x).

Find the probability of A = [0, 1/5].

Exercise 3.8 Let the random variable X have distribution function

F (x) =
1

4
1[0,∞) +

1

2
1[1,∞) +

1

4
1[2,∞).

Compute the expectation of X.
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Chapter 4

Random Variables and Integration

with respect to a Probability Measure

4.1 Random Variables

Let X : (Ω,A) → (F,F). Recall that this is short for X being a function X : Ω → F and

measurable, i.e. X−1(C) ∈ A for all C ∈ F . If a probability measure P is specified on Ω, we call a

measurable X random variable.

Theorem 4.1 Let C ⊆ F such that F = σ(C), i.e. F is generated by C. A function X : Ω→ F is

measurable w.r.t. A and F , if and only if X−1(C) ∈ A for all C ∈ C.

Proof. Let F0 = {C ∈ F | X−1(C) ∈ A}. Clearly, C ⊆ F0 ⊆ F . We show that F0 is a σ-algebra.

Then, since F is the smallest σ-algebra containing C, F = F0 follows. Furthermore, for all C ∈ F
(=F0), X−1(C) ∈ A and X is therefore measurable w.r.t. A and F .

To show that F0 is a σ-algebra, we have to check that the defining properties of a σ-algebra

hold.

1. X−1(∅) = ∅ and X−1(F ) = Ω.

X−1 commutes with intersections, unions and taking complements, for instance X−1(Cc) =

X−1(C)c, X−1(
⋃
Ci) =

⋃
X−1(Ci) and X−1(

⋂
Ci) =

⋂
X−1(Ci). Therefore

2. If C ∈ F0, then, since A is closed w.r.t. complements and X−1(Cc) = X−1(C)c, Cc ∈ F0.

3. Let Ai ∈ F0. Again, since A is closed w.r.t. countable unions and X−1(
⋃∞
i=1Ci) =⋃∞

i=1X
−1(Ci), it follows that

⋃∞
i=1Ci ∈ F0. 2

The significance of the Theorem 4.1 is that in order to show that a mapping X : Ω → F is

measurable, one does not have to check that all preimages X−1(C) of C ∈ F are in A. It is
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sufficient to show this for a typically small subset of F . The Borel σ-algebra B on R is generated

by intervals (−∞, a]. Therefore, a real-valued X is measurable, if for all a ∈ R, {ω | X(ω) ≤ a}
is in A. B is also generated by open intervals (−∞, a). Therefore, X is measurable, if all a ∈ R,

{ω | X(ω) < a} ∈ A.

The following theorem summarizes properties of measurable functions. Recall that

1. The indicator function IA (for A ⊆ Ω) is defined by

IA(ω) =

{
1 if ω ∈ A,
0 if ω 6∈ A.

2. For a sequence (Xn) of mappings Xn : Ω→ R,

lim sup
n→∞

Xn(ω) = lim
n→∞

sup
m≥n

Xm(ω) = inf
n→∞

sup
m≥n

Xm(ω),

lim inf
n→∞

Xn(ω) = lim
n→∞

inf
m≥n

Xm(ω) = sup
n→∞

inf
m≥n

Xm(ω).

Theorem 4.2 Let (Ω,A) and (F,F) be measurable spaces and X,Xn : Ω→ F .

1. Let (F,F) = (R,B). X is measurable if and only if for all a ∈ R, {X ≤ a} ∈ A or if for all

a ∈ R, {X < a} ∈ A.

2. Let (F,F) = (R,B). If Xn is measurable for all n, then inf Xn, supXn, lim inf Xn and

lim supXn are measurable.

3. Let (F,F) = (R,B). If Xn is measurable for all n and Xn(ω)→ X(ω) for all ω ∈ Ω, then X

is measurable.

4. Let X : (Ω,A)→ (F,F) and Y : (F,F)→ (G,G), then Y ◦X : (Ω,A)→ (G,G).

5. If A is the Borel σ-algebra on Ω and F is the Borel σ-algebra on F , then every continuous

function X : Ω→ F is measurable.

6. Let (F,F) = (R,B). Let X1, . . . , Xn : (Ω,A) → (R,B) and f : (Rn,Bn) → (R,B). Then

f(X1, . . . , Xn) : (Ω,A)→ (R,B).

7. Let (F,F) = (R,B) and X,Y be real-valued and measurable. Then, X + Y , XY , X/Y (if

Y 6= 0), X ∧ Y , X ∨ Y are measurable.

8. An indicator function IA is measurable if and only if A ∈ A.

Proof. Statement 1. is a special case of Theorem 4.1, since B is generated by both the closed and

the open intervals.
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2. Let (Xn) be a sequence of measurable functions Xn : (Ω,A) → (R,B). Note that inf Xn < a if

and only if there exists an n s.t. Xn < a. Therefore

{inf Xn < a} =
∞⋃
n=1

{Xn < a} ∈ A.

Similarly, supXn ≤ a if and only if for all n Xn ≤ a. Hence

{supXn ≤ a} =

∞⋂
n=1

{Xn ≤ a} ∈ A.

lim inf
n→∞

Xn = sup
n

inf
k≥n

Xk,

lim sup
n→∞

Xn = inf
n

sup
k≥n

Xk,

implies that both lim infn→∞Xn and lim supn→∞Xn are measurable.

3. If Xn → X, then X = limn→∞Xn = lim supn→∞Xn = lim infn→∞Xn is measurable.

4. Let B ∈ G. We have (Y ◦X)−1(B) = X−1(Y −1(B)). Y −1(B) ∈ F since Y is measurable. Then

(X−1(Y −1(B)) ∈ A, since X is measurable.

5. The Borel σ-algebras are generated by the open sets. If X is continuous and O ⊆ F is open,

then X−1(O) ⊆ Ω is open. Again apply Theorem 4.1.

6. This is a special case of 4. with X = (X1, . . . , Xn) and Y = f . Note that

X−1([a1, b1]× · · · × [an, bn]) = X−1
1 ([a1, b1]) ∩ · · · ∩X−1

n ([an, bn]).

7. The functions f(x, y) = x+ y, f(x, y) = xy, f(x, y) = x/y, f(x, y) = x ∧ y, f(x, y) = x ∨ y are

continuous on their domains.

8. Note that for B ∈ B,

(IA)−1(B) =


Ω if 1 ∈ B and 0 ∈ B,
A if 1 ∈ B and 0 6∈ B,
Ac if 1 6∈ B and 0 ∈ B,
∅ if 1 6∈ B and 0 6∈ B.

2

4.2 Expectation

Let (Ω,A, P ) be a probability space. In this section X, Xn, Y are always measurable real-valued

random variables. We want to define the expectation (or the integral) of X. The integral that we

define in this section is called Lebesgue-integral. We will see that it is a concept that can be applied

to measurable functions, not only to continuous functions as is the case with the Riemann-integral.
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Definition 4.3 A r.v. X is called simple, if it can be written as

X =

m∑
i=1

aiIAi (4.1)

with ai ∈ R and Ai ∈ A.

A r.v. is simple if it is measurable and has only a finite number of values. Its representation

(4.1) is not unique, it is unique only if all the ai’s are different. Every real-valued r.v. X can be

approximated by simple functions, i.e. there is a sequence of simple functions converging to X.

Proposition 4.4 Let X be a nonnegative real-valued r.v. There exists a sequence (Yn) of nonneg-

ative simple functions s.t. Yn ↑ X.

Proof. Define

Yn(ω) =

{
k2−n if k2−n ≤ X(ω) < (k + 1) 2−n, k ≤ n 2n − 1,

n if X(ω) ≥ n.
2

To approximate a not necessarily nonnegative r.v. X by simple functions, write X as

X = X+ −X−, with X+ = X ∨ 0 the positive part and X− = −(X ∧ 0) the negative part of X

and approximate X+ and X−.

The expectation E(.) maps random variables to R, is linear E(αX +βY ) = αE(X) +βE(Y ), for

reals α, β, and E(IA) = P (A). Therefore we define

Definition 4.5 Let X be a real-valued r.v. on (Ω,A, P ).

1. If X =
∑m

i=1 aiIAi simple,

E(X) =
m∑
i=1

aiP (Ai). (4.2)

2. If X ≥ 0,

E(X) = sup
Y simple,0≤Y≤X

E(Y ). (4.3)

3. If X = X+ −X−, E(X+) <∞ and E(X−) <∞,

E(X) = E(X+)− E(X−). (4.4)

The expectation E(X) can be written as ∫
XdP

or as ∫
X(ω)dP (ω),

∫
X(ω)P (dω),
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if appropriate. Note that, since |X| = X+ + X−, both E(X+) and E(X−) are finite iff E(|X|) is

finite. It is convenient to stick to the following:

X is called integrable (has an expectation) if E(|X|) is finite. X admits an expectation if it is

either integrable or if E(X+) = ∞ and E(X−) < ∞ or E(X+) < ∞ and E(X−) = ∞. The set

of all integrable real-valued random variable is denoted by L1. Note that all almost surely (a.s.)

bounded random variables are integrable. A random variable X is a.s. bounded, if there exist a

c ≥ 0 s.t. P (|X| > c) = 0.

Theorem 4.6 1. Let X ∈ L1 and X ≥ 0. Let (Yn) be a sequence of nonnegative simple functions

s.t. Yn ↑ X. Then E(Yn)→ E(X).

2. L1 is a linear space (vector space), i.e. if X,Y ∈ L1 and α, β ∈ R, then αX + βY ∈ L1.

3. E is positive, i.e. if X ∈ L1 and X ≥ 0, then E(X) ≥ 0. If 0 ≤ X ≤ Y and Y ∈ L1, then

X ∈ L1. Furthermore, E(X) ≤ E(Y ).

4. If X = Y a.s. ({ω | X(ω) 6= Y (ω)} has probability 0), then E(X) = E(Y ).

Proof. We only sketch the proof that L1 is a vector space. Let X,Y ∈ L1 and α, β ∈ R. We have

|αX + βY | ≤ |α| |X|+ |β| |Y |.

We have to show that |α| |X|+ |β| |Y | is integrable. Let (Un) and (Vn) be sequences of nonnegative

simple functions s.t. Un ↑ |X| and Vn ↑ |Y |. Define Zn = |α|Un + |β|Vn. Each Zn is simple and

nonnegative (both Un and Vn have only a finite number of values!). Zn ↑ |α| |X|+ |β| |Y | and

E(Zn) = |α| E(Un) + |β|E(Vn) ≤ |α| E(|X|) + |β|E(|Y |) <∞. 2

4.3 Properties

First, we discuss the continuity of taking expectation, i.e. can the operations of taking limits and

expectations be interchanged? Is it true that if (Xn) is a sequence of integrable functions converging

a.s. to X, that E(Xn) → E(X)? Since the answer is no, see the example below, we have to state

additional properties for the sequence (Xn) that imply E(Xn)→ E(X).

Example 4.7 Let P be the uniform distribution on Ω = (0, 1). Let Xn = anI(0,1/n). We have

Xn = an with probability 1/n and Xn = 0 with probability 1−1/n. The expectation is E(Xn) = an/n.

For n→∞, Xn → 0, because for all ω ∈ (0, 1), Xn(ω) = 0 if 1/n ≤ ω. By choosing appropriate

sequences (an), we can have all possible nonnegative limits for (E(Xn)). For instance, if an = n,

then E(Xn) = 1→ 1 6= 0 = E(0). For an = n2, E(Xn)→∞.

25



Theorem 4.8 1. (Monotone convergence theorem). Let Xn ≥ 0 and Xn ↑ X. Then

E(Xn)→ E(X) (even if E(X) =∞).

2. (Fatou’s lemma). Let Y ∈ L1 and let Xn ≥ Y a.s. for all n. Then

E(lim inf
n→∞

Xn) ≤ lim inf
n→∞

E(Xn). (4.5)

In particular, if all Xn’s are nonnegative, (4.5) holds.

3. (Lebesgue’s dominated convergence theorem). Let Xn → X a.s. and |Xn| ≤ Y ∈ L1 for all n.

Then Xn, X ∈ L1 and E(Xn)→ E(X).

Theorem 4.9 Let (Xn) be a sequence of real-valued random variables.

1. If the Xn’s are all nonnegative, then

E

( ∞∑
n=1

Xn

)
=
∞∑
n=1

E(Xn). (4.6)

2. If
∑∞

n=1 E(|Xn|) <∞, then
∑∞

n=1Xn converges a.s. and (4.6) holds.

Proof. 1.
∑∞

n=1Xn is the limit of the partial sums Tm =
∑m

n=1Xn. If all Xn are nonnegative, (Tm)

is increasing and we may apply the monotone convergence theorem.

2. Define Sm =
∑m

n=1 |Xn|. Again, (Sm) is increasing and has a limit S in [0,∞]. Again, the

monotone convergence theorem implies that

E(S) =
∞∑
n=1

E(|Xn|),

and is therefore finite. Therefore, S is also finite a.s. and it is integrable. Since

|
m∑
n=1

Xn| ≤ S

for all m, the limit
∑∞

n=1Xn exists, is dominated by S and we may apply Lebesgue’s dominated con-

vergence theorem to derive (4.6). 2

A real-valued random variable X is called square-integrable, if E(X2) <∞. The set of square-

integrable random variables is denoted by L2.

Theorem 4.10 1. L2 is a linear space, i.e. if X,Y ∈ L2 and α, β ∈ R, then αX + βY ∈ L2.

2. (Cauchy-Schwarz inequality). If X,Y ∈ L2, then XY ∈ L1 and

|E(XY )| ≤
√

E(X2)E(Y 2). (4.7)
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3. If X ∈ L2, then X ∈ L1 and E(X)2 ≤ E(X2).

Proof. 1. Let X,Y ∈ L2 and α, β ∈ R. Note that for all u, v ∈ R, (u+ v)2 ≤ 2u2 + 2v2. Therefore

(αX + βY )2 ≤ 2α2X2 + 2β2Y 2

and

E
(
(αX + βY )2

)
≤ E

(
2α2X2 + 2β2Y 2

)
= 2α2E(X2) + 2β2E(Y 2) <∞.

Therefore, αX + βY ∈ L2.

2. Let X and Y be square-integrable. Since

|XY | ≤ 1

2
X2 +

1

2
Y 2,

we have

E(|XY |) ≤ 1

2
E(X2) +

1

2
E(Y 2) <∞.

To prove the Cauchy-Schwarz inequality: If E(Y 2) = 0, then Y = 0 holds with probability 1

and therefore XY = 0, again with probability 1 and thus E(XY ) = 0.

Now assume that E(Y 2) > 0. Let t = E(XY )/E(Y 2). Then

0 ≤ E
(
(X − tY )2

)
= E(X2)− 2tE(XY ) + t2E(Y 2) = E(X2)− E(XY )2/E(Y 2).

Therefore,

E(XY )2/E(Y 2) ≤ E(X2)

and (4.7) follow.

3. Choose Y = 1 and apply the Cauchy-Schwarz inequality. 2

The variance of X ∈ L2 is defined as

V(X) = σ2
X = E((X − E(X))2). (4.8)

Theorem 4.11 Let X be a real-valued random variable.

1. Let h : R→ R be measurable and nonnegative. Then for all a > 0,

P (h(X) ≥ a) ≤ E(h(X))

a
. (4.9)

2. (Markov’s inequality). For a > 0 and X ∈ L1,

P (|X| ≥ a) ≤ E(|X|)
a

. (4.10)
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3. (Chebyshev’s inequality). For a > 0 and X ∈ L2,

P (|X| ≥ a) ≤ E(X2)

a2
(4.11)

and

P (|X − E(X)| ≥ a) ≤
σ2
X

a2
. (4.12)

Proof. Let A = {ω | h(X(ω)) ≥ a}. Then

E(h(X)) ≥ E(h(X)IA) ≥ E(aIA) = aP (A).

Taking h(x) = |x| gives Markov’s inequality. To prove Chebyshev’s inequalities, note that, for

instance |X| ≥ a is equivalent to X2 ≥ a2. Now apply Markov’s inequality to X2 and a2. Similarly,

|X −E(X)| ≥ a if and only if (X −E(X))2 ≥ a2. 2

Let X : (Ω,A, P ) → (F,F) be measurable. It defines a probability measure PX on (F,F)

by PX(B) = P (X−1(B)). Now let h : (F,F) → (R,B) and Y = h ◦ X, i.e. Y (ω) = h(X(ω)).

Then Y : (Ω,A) → (R,B). Y defines a probability measure P Y on (R,B). For instance, let X be

integrable with expectation µ = E(X) and h(x) = (x−µ)2. Then Y = (X−µ)2, the expectation of

Y is the variance of X. Which of the probability measures P , PX or P Y is to be used to compute

this expectation? It does not matter!

Theorem 4.12 (Expectation rule). Let X be a r.v. on (Ω,A, P ) with values in (F,F) and h :

(F,F)→ R,B). We have h(X) ∈ L1(Ω,A, P ) if and only if h ∈ L1(F,F , PX). Furthermore,

E(h(X)) =

∫
h(X(ω))dP (ω) =

∫
h(x)dPX(x).

4.4 Lebesgue Measure and Densities

Let a probability space (Ω,A, P ) and a real-valued random variable X : (Ω,A)→ (R,B) be given.

In Chapter 3 we have introduced a first version of the concept of a density of X. For f nonnegative

with
∫∞
−∞ f(x)dx = 1, we defined the c.d.f. F by F (x) =

∫ x
−∞ f(y)dy. We stated that regularity

conditions have to hold such that these integrals make sense. Here we are more precise. First, we

introduce the Lebesgue measure.

Definition 4.13 Let un denote the uniform distribution on (n, n + 1]. We define the Lebesgue

measure m : B → [0,∞] by

m(A) =
∑
n∈Z

un(A). (4.13)
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We remark that by this definition, m maps the Borel sets to R+ = [0,∞]. It is countably additive,

i.e. if (An) is a sequence of pairwise disjoint Borel sets, then

m(
∞⋃
n=1

An) =
∞∑
n=1

m(An).

Such a countably additive mapping is called a measure. Probability measures P are finite measures

with P (Ω) = 1. Measures are not necessarily finite, for instance m([0,∞)) =∞.

Lebesgue measure is the only measure which gives m((a, b]) = b−a for all intervals (a, b] (a < b).

It can be viewed as an extension of the uniform distribution to R. Another characterization is the

following: Let µ be a measure such that for all intervals (a, b] and all t ∈ R, µ((a+t, b+t]) = µ((a, b]).

Then there exists a constant c s.t. µ = cm.

Let f be a measurable function f : (R,B) → (R,B). The integral
∫
fdm w.r.t. Lebesgue

measure is defined exactly as in the case of a probability measure. In a first step, it is defined for

simple functions f =
∑n

i=1 aiIAi as ∫
fdm =

n∑
i=1

aim(Ai).

Then it is extended to nonnegative measurable functions f as∫
fdm = sup

0≤g≤f,g simple

∫
gdm.

Finally, if
∫
fdm =

∫
f+dm <∞ and

∫
f−dm =

∫
f+dm <∞,∫

fdm =

∫
f+dm−

∫
f−dm.

Note that bounded functions are not necessarily integrable w.r.t. the Lebesgue measure. For

instance, the constant f(x) = 1 has
∫
fdm =∞. We often write

∫
f(x)dx for

∫
f(x)dm(x).

Definition 4.14 A density on R is a nonnegative measurable function f : (R,B) → (R,B) with∫
fdm = 1. It defines a probability measure P on (R,B) by

P (A) =

∫
IAfdm, A ∈ B. (4.14)

If a probability measure is defined by a density it is called absolutely continuous with respect

to Lebesgue measure.

Proposition 4.15 If a probability measure on (R,B) has a density, i.e. P is defined by (4.14)),

then its density is unique a.e. That is, if f and g are densities of P then

m({x | f(x) 6= g(x)}) = 0.
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4.5 Exercises

Exercise 4.1 Let X : (Ω,A)→ (F,F) be measurable. Define σ(X) = {A ⊆ Ω | there exist a B ∈
F s.t. A = X−1(B)}. Show that σ(X) is a sub-σ-algebra of A. It is the smallest σ-algebra on Ω

which makes X measurable. It is called the σ-algebra generated by X.

Exercise 4.2 Let a probability space (Ω,A, P ) be given. N ⊆ Ω is called a null set, if there exists

a A ∈ A s.t. N ⊆ A and P (A) = 0. Null sets are not necessarily in A, a fact, which can produce

problems in proof. This problem can be resolved: Let

A′ = {A ∪N | A ∈ A, Na null set}.

Prove that

1. A′ is again a σ-algebra, the smallest containing A and all null sets.

2. P extends uniquely to a probability measure on A′ by defining P (A ∪N) = P (A).

Exercise 4.3 Let X be integrable on (Ω,A, P ). Let (An) be a sequence of events s.t. P (An)→ 0.

Prove that E(XIAn)→ 0. Note that P (An)→ 0 does not imply IAn → 0 a.s.

Exercise 4.4 Let X be a random variable on (Ω,A, P ) with X ≥ 0 and E(X) = 1. Define

Q(A) = E(XIA).

1. Prove that Q is a probability measure on (Ω,A).

2. Prove that P (A) = 0 implies Q(A) = 0.

3. Let P (X > 0) = 1. Let Y = 1/X. Show that P (A) = EQ(Y IA) and that P and Q have the

same null sets.

Q is called absolutely continuous with respect to P if P (A) = 0 implies Q(A) = 0. If Q is absolutely

continuous with respect to P and P is absolutely continuous with respect to Q then P and Q are

called equivalent.

Exercise 4.5 Compute the expectation and the variance of the gamma distribution.

Exercise 4.6 Compute the expectation and the variance of the normal distribution.

Exercise 4.7 Let X have a Cauchy distribution. The Cauchy distribution is defined by its density

f(x) =
1

π

1

1 + x2
, x ∈ R.

Prove that X is not integrable, i.e. E(|X|) =∞.
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Exercise 4.8 Let X ∼ N(0, 1). Prove that P (X ≥ x) ≤ φ(x)/x for x > 0. Compare with the

Chebyshev inequality.

Exercise 4.9 (Jensen’s inequality). Let f be a measurable and convex function defined on C ⊆ R.

Let X be a random variable with values in C. Assume that both X and f ◦X are integrable. Prove

that E(f(X)) ≥ f(E(X)).

Exercise 4.10 Suppose E(X) = 3 and E(|X − 3|) = 1. Give a reasonable upper bound of P (X ≤
−2 or X ≥ 8). Let furthermore the variance be known to be σ2 = 2. Improve the estimate of

P (X ≤ −2 or X ≥ 8).
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Chapter 5

Probability Distributions on Rn

5.1 Independent Random Variables

Let X : (E, E , P ) → (G,G) and Y : (F,F , Q) → (H,H) be two random variables defined on two

different probability spaces. We want to construct a probability space on which both random

variables are defined, i.e. on which (X,Y ) is defined. Moreover, X and Y should be independent

and we have to discuss how to compute expectations on the product space.

Recall that we have defined independence of events.

Definition 5.1 Let a probability space (Ω,A, P ) be given. Sub σ-algebras (Ai)i∈I are independent,

if for all finite J ⊆ I and all Ai ∈ Ai,

P (∩i∈JAi) =
∏
i∈J

P (Ai).

Random variables Xi : (Ω,A, P ) → (Ei, Ei), i ∈ I are independent, if the σ-algebras X−1
i (Ei)

are independent, i.e. if for all finite J ⊆ I and Bi ∈ Ei,

P (Xi ∈ Bi for all i ∈ J) =
∏
i∈J

P (Xi ∈ Bi).

Theorem 5.2 Let X and Y be random variables defined on (Ω,A, P ) with values in (E, E) and

(F,F) resp. X and Y are independent if and only if any one of the following conditions holds.

1. P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) for all A ∈ E , B ∈ F .

2. f(X) and g(Y ) are independent for all measurable f and g.

3. E(f(X)g(Y )) = E(f(X))E(g(Y )) for all bounded measurable or positive measurable functions

f and g.

4. If E and F are the Borel σ-algebras on E and F , then E(f(X)g(Y )) = E(f(X))E(g(Y )) for

all bounded and continuous functions f and g.
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Remark and sketch of proof. P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) is the definition of the

independence of X and Y . This equation, with probabilities written as expectations of indicator

functions, reads as

E(IA×B(X,Y )) = E(IA(X))E(IB(Y )).

by linearity, the equation holds for simple functions. Positive measurable functions are approxi-

mated by simple functions and finally integrable functions are written as the difference of its positive

and its negative part.

Note that the theorem implies that, in case X and Y are independent and f(X) and g(Y )

integrable, then f(X)g(Y ) is also integrable. Here we do not have to assume that f(X) and g(Y )

are square-integrable. 2

Let probability spaces (E, E , P ) and (F,F , Q) be given. To construct a probability R on E×F
with the property R(A×B) = P (A)Q(B), we first have to define a σ-algebra on E × F .

Denote by E × F the set of rectangles on E × F , i.e.

E × F = {A×B | A ∈ E , B ∈ F}.

Note that E × F is not a σ-algebra, for instance the complement of a rectangle A×B is typically

not a rectangle, but a union of rectangles,

(A×B)c = Ac ×B ∪ A×Bc ∪ Ac ×Bc.

Definition 5.3 The product σ-algebra E ⊗ F is the σ-algebra on E × F generated by E × F .

Theorem 5.4 (Tonelli-Fubini). Let (E, E , P ) and (F,F , Q) be probability spaces.

a) Define R(A× B) = P (A)Q(B) for A ∈ E, B ∈ F . R extends uniquely to a probability measure

P ⊗Q on E × F (it is called the product measure).

b) If f is measurable and integrable (or positive) w.r.t. E ⊗ F , then the functions

x 7→
∫
f(x, y)Q(dy),

y 7→
∫
f(x, y)P (dx)

are measurable and ∫
f dP ⊗Q =

∫ {∫
f(x, y)Q(dy)

}
P (dx)

=

∫ {∫
f(x, y)P (dx)

}
Q(dy).

Remark 5.5 Let X and Y be random variables on (Ω,A, P ) with values in (E, E) and (F,F)

respectively. The pair (X,Y ) is a random variable with values in (E × F, E ⊗ F). X and Y are

independent if and only if

P (X,Y ) = PX ⊗ P Y .
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5.2 Joint, Marginal and Conditional Distributions

Recall that the Borel σ-algebra Bn on Rn is generated by the open subsets of Rn. It is also the

n-fold product σ-algebra Bn = B ⊗ · · · ⊗ B of the Borel σ-algebra on R.

Definition 5.6 Lebesgue measure mn on (Rn,Bn) is the n-fold product measure mn = m⊗· · ·⊗m
of the Lebesgue measure m on R. It is the unique measure on (Rn,Bn) satisfying

mn((a1, b1]× · · · × (an, bn]) =
∏n
i=1(bi − ai).

Definition 5.7 A probability measure P on (Rn,Bn) has a density f w.r.t. Lebesgue measure, if

for A ∈ Bn,

P (A) =

∫
IA f dmn.

If P is defined by a density w.r.t. mn, P is called absolutely continuous (w.r.t. mn).

Theorem 5.8 A measurable function f is the density of a probability measure P on (Rn,Bn) if

and only if f ≥ 0 and
∫
fdmn = 1. If a density of P exists, it is unique, i.e. if f and g are densities

of P then

mn({x | f(x) 6= g(x)}) = 0.

Theorem 5.9 Let X = (Y,Z) ∈ R2 be absolutely continuous with density f(y, z). Then

1. Both Y and Z are absolutely continuous with densities fY and fZ given by

fY (y) =

∫
f(y, z) dz

fZ(z) =

∫
f(y, z) dy.

2. Y and Z are independent if and only if f(y, z) = fY (y)fZ(z) a.e.

3. Define f(z | y) by

f(z | y) =

{
f(y,z)
fY (y) if fY (y) 6= 0,

0 else.
(5.1)

f(. | y) is a density on R, called the conditional density of Z given Y = y.

Proof. We prove that fY (y) =
∫
f(y, z)dz is the density of Y , i.e. for all A ∈ B,

P (Y ∈ A) =

∫
IA(y)fY (y) dy.

We have ∫
IA(y)fY (y) dy =

∫
IA(y)

∫
f(y, z) dz dy

=

∫ ∫
IA(y)f(y, z) dy dz

=

∫ ∫
IA×R(y, z)f(y, z) dy dz

= P (Y ∈ A,Z ∈ R) = P (Y ∈ A).
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We have applied the Theorem of Tonelli-Fubini.

That f(y, z) = fY (y)fZ(z) implies the independence of Y and Z is left as an easy exercise. To

show that the independence implies the product-form of f(y, z) is harder and we do not prove it.

f(y | z) is a density, since it is nonnegative and∫
f(y | z) dy =

∫
f(y, z)

fZ(z)
dy =

1

fZ(z)

∫
f(y, z) dy =

fZ(z)

fZ(z)
= 1. 2

Definition 5.10 Let X and Y be square-integrable R-valued random variables with expectations

µX and µY and variances σ2
X and σ2

Y . The covariance of X and Y is

Cov(X,Y ) = E((X − µX)(Y − µY )). (5.2)

If both σ2
X and σ2

Y are strictly positive, we define the correlation coefficient of X and Y as

ρ(X,Y ) =
Cov(X,Y )√

σ2
Xσ

2
Y

. (5.3)

The covariance and the correlation are measures of independence of X and Y . Since

Cov(X,Y ) = E((X − µX)(Y − µY )) = E(XY )− E(X)E(Y ),

we have Cov(X,Y ) = 0 iff E(XY ) = E(X)E(Y ). Compare Theorem 5.2. X and Y are independent

if this relationship holds for all integrable functions of X and Y , not for linear functions only.

Therefore, independence of X and Y implies Cov(X,Y ) = 0 (X and Y are uncorrelated), but the

converse is true only for special distributions.

The Theorem of Cauchy-Schwarz implies that −1 ≤ ρ ≤ 1, see the exercises.

Example 5.11 Let X be uniformly distributed on [−1, 1] and P (Z = 1) = P (Z = −1) = 1/2,

independent of X. Let Y = XZ. Note that both X and Y are uniformly distributed on [−1, 1] and

E(X) = E(Y ) = E(Z) = 0. Therefore

Cov(X,Y ) = E(XY ) = E(X2Z) = E(X2)E(Z) = 0.

X and Y are thus uncorrelated. They are not independent. We have |X| = |Y |. Furthermore, |X| is
uniformly distributed on [0, 1]. With f(X) = |X|, g(Y ) = |Y | we get E(f(X)g(Y )) = E(X2) = 1/3,

but E(f(X))E(g(Y )) = E(|X|)2 = 1/4.

Definition 5.12 Let X = (X1, . . . , Xn) be Rn-valued and square-integrable (the variables Xi are

square-integrable). The covariance matrix Σ = (σij)
n
i,j=1 is defined by σij = Cov(Xi, Xj).

Proposition 5.13 Let X = (X1, . . . , Xn) be Rn-valued and square-integrable with covariance ma-

trix Σ. Then
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1. Σ is symmetric and positive semi-definite, i.a. for all a1, . . . , an ∈ R,

n∑
i,j=1

aiajσij ≥ 0. (5.4)

2. Let A be a m× n matrix and Y = AX. The covariance matrix ΣY of Y is

ΣY = AΣAT , (5.5)

AT being the transpose of A.

Proof. Let Z = a1X1 + · · ·+ anXn and W = b1X1 + · · ·+ bnXn. The covariance of Z and W is

Cov(W,Z) =
n∑

i,j=1

aibjσij . (5.6)

Apply this to the case a1 = b1, . . . , an = bn to see that (5.4) is the variance of X, which cannot be

strictly negative. Apply (5.6) to the rows of A and derive (5.5). 2

We remark that if a covariance matrix is not positive definite, then there is at least one linear

combination Z = a1X1 + · · · + anXn with variance 0. In this case, one of the random variables

X1, . . . , Xn is an affine function of the remaining ones.

5.3 Transformations

Let X be an Rn-valued random variable with density fX . Let Y = g(X), with g a mapping from

the range of X to Rn. How does the distribution of Y look like? Does it have a density fY and if,

how can it be computed?

Typically, probability distributions are neither absolutely continuous nor have a countable sup-

port. However, these two types of distributions are important.

Let us begin with n = 1. Let X be a real-valued random variable with density fX and assume

that Y = g(X) with g continuous and strictly increasing. Let h = g−1 denote the inverse of g. The

c.d.f. of Y is then

FY (y) = P (Y ≤ y)

= P (g(X) ≤ y)

= P (X ≤ h(y))

= FX(h(y)).

If g is continuous and strictly decreasing, then

FY (y) = P (Y ≤ y)

36



= P (g(X) ≤ y)

= P (X ≥ h(y))

= 1− P (X < h(y))

= 1− FX(h(y)−).

If the density fX is continuous, then F ′X = fX and

fY (y) = F ′Y (y) = fX(h(x))h′(x)

if g and hence h is increasing and

fY (y) = −F ′Y (y) = −fX(h(x))h′(x)

if h is decreasing. In both cases

fY (y) = fX(h(x))|h′(x)|. (5.7)

Theorem 5.14 Let X have a continuous density fX and Y = g(X) with g continuously differen-

tiable and strictly monotone with inverse h. Then Y has a density fY , given by (5.7).

Example 5.15 Let X ∼ U(0, 1) and Y = − logX. Then Y > 0, fX(x) = 1 if 0 < x < 1 and

fX(x) = 0 else. Since g(x) = − log x, we have h(y) = e−y and |h′(y)| = e−y. Thus

fY (y) =

{
e−y if y > 0

0 else
,

Y is exponentially distributed with parameter 1.

Example 5.16 Let X have an invertible c.d.f. F . Let Y = F (X). Then Y ∈ [0, 1] and for

y ∈ [0, 1] we have

FY (y) = P (Y ≤ y) = P (F (X) ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y.

F (X) is uniformly distributed on [0, 1].

Example 5.17 Let X be uniformly distributed on (0, 1) and Y = F−1(X) with F an invertible

c.d.f. Then

P (Y ≤ y) = P (F−1(X) ≤ y) = P (X ≤ F (y)) = F (y).

Example 5.18 If the transformation is not invertible, Theorem 5.14 cannot be applied directly.

Often the c.d.f. of Y can be computed and its derivative gives the density. Let X ∼ N(0, 1) and

Y = X2. We have Y ≥ 0. For y ≥ 0 we get

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√y ≤ X ≤ √y) = Φ(
√
y)− Φ(−√y).
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Its derivative is

fY (y) = φ(
√
y)(
√
y)′ − φ(−√y)(−√y)′

= 2
1√
2π
e−y/2

y−1/2

2

=
y1/2−1

√
2Γ(π)

e−y/2.

For y < 0 the density is 0. This is the density of the Γ(1/2, 1/2)-distribution. It is also called the

χ2-distribution with 1 degree of freedom.

An application of Jacobi’s Transformation Formula shows how the densities of random vectors

transform. Recall that the Jacobian Jh(y) of a transformation h : Rn → Rn is the matrix of the

partial derivatives.

Theorem 5.19 Let X = (X1, . . . , Xn)T have a density fX . Let g : Rn → Rn be continuously

differentiable, injective, with det(Jg(x)) 6= 0 for all x. Denote the inverse of g by h. Then Y = g(X)

has density

fY (y) =

{
fX(h(y))|det(Jh(y))| if y is in the range of g,

0 otherwise .
(5.8)

Example 5.20 Let X = (X1, X2) with X1 and X2 independent and standard normal,

E(Xi) = 0,Var(Xi) = 1. Let Y = (Y1, Y2) with Y1 = X1 +X2 and Y2 = X1 −X2. Then

g(x1, x2) =

(
x1 + x2

x1 − x2

)
,

h(y1, y2) =

(
y1+y2

2
y1−y2

2

)
,

Jh(y1, y2) =

(
1
2

1
2

1
2 −1

2

)
,

|det(Jh(y1, y2)| = |1
2
× 1

2
− 1

2
× (−1

2
)| = |1

2
|.

Therefore,

fY (y1, y2) =
1

2
φ((y1 + y2)/2)φ(y1 − y2)/2)

=
1

2

1√
2π
e−(y1+y2)/2)2/2 1√

2π
e−(y1−y2)/2)2/2

=
1

4π
e−y

2
1/4−y22/4

=
1√
2π2

e−y
2
1/4 × 1√

2π2
e−y

2
2/4

= φ0,2(y1)φ0,2(y2).

Y1 and Y2 are again independent and normally distributed, with expectation 0 and variance 2.
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Example 5.21 Let X and Y be independent R-valued with densities fX and fY . We want to

compute the density of U = X + Y . We cannot apply Theorem 5.19, since the mapping (X,Y )→
x+ y is not invertible (in fact it is a mapping from R2 to R). We define V = Y and in a first step

compute the joint density of (U, V ). We have (X,Y ) = (U − V, V ) with Jacobian 1. Therefore,

f(U,V )(u, v) = fX(u− v)fY (v).

fU is then

fU (u) =

∫
fX(u− v)fY (v)dv. (5.9)

The density fU is called the convolution of fX and fY .

Example 5.22 Let X ∼ Γ(1, 1) and Y ∼ Γ(α, 1) and U = X +Y . The density of U is (for u > 0)

fU (u) =

∫
fX(u− v)fY (v)dv

=

∫
I{u−v>0}e

−(u−v)I{v>0}
vα−1

Γ(α)
e−v dv

= e−u
1

Γ(α)

∫ u

0
vα−1 dv

= e−u
uα

Γ(α)α
= e−u

u(α+1)−1

Γ(α+ 1)
.

X + Y is Γ(α+ 1, 1)-distributed.

Example 5.23 Let X and Y be independent and standard normal. We want to compute the

density of U = X/Y . Again, we cannot apply Theorem 5.19 directly. Note that X/Y has the

same distribution as X/|Y |. Let V = |Y |. The density of V is 2φ(v) on v > 0. We have

(X, |Y |) = (UV, V ) with Jacobian matrix (
v u

0 1

)

and Jacobian determinant v. Therefore,

f(U,V )(u, v) =
1√
2π
e−u

2v2/2 2√
2π
e−v

2/2v =
v

π
e−(u2+1)v2/2.

Therefore

fU (u) =

∫ ∞
0

v

π
e−(u2+1)v2/2 =

1

π

1

1 + u2
.

X/Y has a Cauchy distribution. The Cauchy distribution is the t-distribution with 1 degree of

freedom.
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5.4 Gaussian Distribution

Let X1, . . . , Xm be independent and Xi ∼ N(0, 1). The density of X = (X1, . . . , Xm)T is the

product of the densities of the marginal distributions. For x = (x1, x2, . . . , xm)T it is

f(x1, . . . , xm) =
1√
2π
e−x

2
1/2

1√
2π
e−x

2
2/2 · · · 1√

2π
e−x

2
m/2

=
1

(2π)m/2
e−(x21+x22+···+x2m)/2

=
1

(2π)m/2
e−x

′x/2.

expectation and covariance matrix of X are µ = 0 and Σ = Im, with 0 = (0, . . . , 0)T and Im the

m×m-unit matrix. We write X ∼ N(0, Im).

X = (X1, . . . , Xm)T is normally distributed (Gaussian), if for a matrix A, a vector

µ = (µ1, . . . , µm)′ and Z ∼ N(0, Im),

X = AZ + µ.

Then

E(X) = µ, Var(X) = AAT =: Σ.

We write X ∼ N(µ,Σ). If A is invertible, then X has a density

φµ,Σ(x) =
1

(2π)m/2det(Σ)1/2
e−(x−µ)TΣ−1(x−µ)/2. (5.10)

Properties of the Gaussian distribution:

• Independence: If X ∼ N(µ,Σ). The components of X are independent if and only if they are

uncorrelated, i.e. if Σ is diagonal.

• Linear combinations: If X ∼ N(µ,Σ) and M a d ×m-matrix of rank d ≤ m, then MX ∼
N(Mµ,MΣMT ). In particular, if w = (w1, . . . , wm)T is a vector, then w′X ∼ N(wTµ,wTΣw).

Let w = ei be the i-th unit vector, then

Xi = eTi X

E(Xi) = eTi µ = µi

V(Xi) = eTi Σei = σii.

The components Xi are normally distributed, Xi ∼ N(µi, σii).

Let Σ = UDUT be the spectral decomposition of Σ with U orthogonal and D diagonal. Then

UTΣU = UTUDUTU = D: The components of UTX are independent.
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• Conditional distribution: Let X = (X1, . . . , Xm)T be normally distributed and 1 ≤ k < m.

The conditional distribution of (X1, . . . , Xk)
T given (Xk+1, . . . , Xm)T is normal.

Let us consider the bivariate case only. Let X and Y be jointly Gaussian, with expectations

µX , µY , variances σ2
X , σ2

Y and correlation ρ. Then

Y | (X = x) ∼ N(µY +
ρσY
σX

(x− µX), σ2
Y (1− ρ2)). (5.11)

Example 5.24 Three assets are traded in a market. Let Xi denote the gain of asset i. We assume

that the gains (X1, X2, X3) are Gaussian with expectations µ1 = 7, µ2 = 10, µ3 = 0 and covariance

matrix

Σ =


10 0 3

0 15 5

3 5 5

 .

A portfolio consists of 100 shares of asset 1 and asset 2 and has gain G = 100X1 + 100X2. We

want to compute the distribution of the gain of the portfolio, given that X3 = −5.

Let

G = 100X1 + 100X2.

We have (
G

X3

)
=

(
100 100 0

0 0 1

)
X1

X2

X3

 .

(G,X3)′ is normally distributed with expectation

µ =

(
100× 7 + 100× 10

0

)
=

(
1700

0

)

and covariance matrix

(
100 100 0

0 0 1

)
10 0 3

0 15 5

3 5 5




100 0

100 0

0 1

 =

(
250000 800

800 5

)
.

The correlation of G and X3 is

ρ =
800√

250000× 5
= 0.716.

Thus,

G | X3 ∼ N(a+ bX3, σ
2
G(1− ρ2)),

with

b =
Cov[G,X3]

σ2
X3

=
800

5
= 160,
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a = µG − bµX3 = 1700− 160× 0 = 1700,

σ2
G(1− ρ2) = 250000(1− 0.7162) = 122000.

In particular, a+ b(−5) = 1700− 160× 5 = 900.

G | (X3 = −5) ∼ N(900, 122000).

Example 5.25 Let (X1, X2) ∼ f(x2, x2), with f(x1, x2) = 2φ(x1)φ(x2), if x1 and x2 have the

same sign (both positive or both negative) and f(x1, x2) = 0 else. We show that X1 is normally

distributed and by symmetry X2 is then also normally distributed. However, the vector (X1, X2) is

not. Let x1 > 0. Then ∫ ∞
−∞

f(x1, x2)dx2 =

∫ ∞
0

2φ(x1)φ(x2)dx2

= 2φ(x1)

∫ ∞
0

φ(x2)dx2

= 2φ(x1)1/2

= φ(x1).

If x1 < 0 then ∫ ∞
−∞

f(x1, x2)dx2 =

∫ 0

−∞
2φ(x1)φ(x2)dx2

= 2φ(x1)

∫ 0

−∞
φ(x2)dx2

= 2φ(x1)1/2

= φ(x1).

Thus X1 ∼ N(0, 1).

5.5 Exercises

Exercise 5.1 Let X and Y be independent real-valued with densities fX and fY . Let Y > 0 a.s.

Compute the density of U = XY and the conditional density of U given Y .

Exercise 5.2 Let X and Y be independent, X ∼ Γ(1, 1) and Y ∼ Γ(α, 1). Prove that X + Y ∼
Γ(α+ 1, 1).

Exercise 5.3 Let X and Y be independent and X,Y ∼ U([0, 1]). Compute the density of X + Y .

Exercise 5.4 Let X be exponentially distributed. Prove that P (X > s + t | X > s) = P (X > t)

for s, t ≥ 0. The exponential distribution is without memory!

42



Exercise 5.5 Prove that for invertible A, (5.10) is the density of X ∼ N(µ,Σ), if X = AZ + µ,

Σ = AAT and Z ∼ N(0, Im).

Exercise 5.6 Let Z be a real-valued random variable and g, h : (R,B) → (R,B) measurable func-

tions, either both increasing or both decreasing. Assume that X and Y are square-integrable. Prove

that X = g(Z) and Y = h(Z) are positively correlated, i.e. Cov(X,Y ) ≥ 0.

Exercise 5.7 Let X = (X1, X2, X3)T ∼ N(µ,Σ) with µ = (0, 5,−2)T and

Σ =


8.1 −1.7 −6.3

−1.7 0.4 1.3

−6.3 1.3 6.2

 .

Compute the distribution of (X1 +X2 +X3, X3)T and the conditional distribution of

X1 +X2 +X3 | (X3 = 0).

Exercise 5.8 Prove that ρ ∈ [−1, 1], where ρ is the correlation of X and Y .

Exercise 5.9 Let X and Y be square-integrable. Find constants a, b, s.t. X and aX + bY are

uncorrelated.

Exercise 5.10 Let X and Y be square-integrable and uncorrelated. Let ρ ∈ [−1, 1]. Find constants

a, b, s.t. the correlation of X and aX + bY is ρ.

Exercise 5.11 Let X ∼ N(0, 1), P (Z = 1) = P (Z = −1) = 1/2, independent of X. Let Y = XZ.

Prove that Y is again standard normal, but (X,Y ) is not normal.

Exercise 5.12 Let X be exponentially distributed with parameter b, i.e. its density is f(x) = be−bx

for x > 0 and f(x) = 0 else. Compute the density of Y =
√
X.

Exercise 5.13 Let X be uniformly distributed on [0, 1]. Compute the density of Y = X/(1 +X).

Exercise 5.14 Let X be a random variable on R with distribution function F . Let Y = X+ be the

positive part of X. Derive the distribution function of Y .

Exercise 5.15 Let X and Y be square-integrable random variables, both with expectations 0,

σ2(X) = 1, σ2(Y ) = 4 and correlation coefficient ρ(X,Y ) = 1/4. Let U = 3X and V = −5Y .

Compute the covariance and the correlation coefficient of (U, V ).
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Chapter 6

Characteristic Functions

6.1 Definition and Properties

Recall that for two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn the inner product (also called

the scalar product) is

〈x, y〉 = x1 y1 + x2 y2 + · · ·+ xn yn.

Furthermore, let i =
√
−1 be the imaginary unit. The exponential eis can be written as

eis = cos(s) + i sin(s).

Definition 6.1 Let µ be a probability measure on Rn. The characteristic function of µ̂ : Rn → C

is

µ̂(s) =

∫
ei〈s,x〉µ(dx) =

∫
cos(〈s, x〉)µ(dx) + i

∫
sin(〈s, x〉)µ(dx). (6.1)

The characteristic function (c.f.) is also called the Fourier transform of µ. If X ∼ µ we denote

µ̂ by ϕX .

Theorem 6.2 (Uniqueness Theorem). The characteristic function characterizes the distribution:

If two probability measures have the same characteristic function, then they are the same.

Theorem 6.3 The c.f. µ̂ of a probability measure µ is continuous, bounded (|µ̂(s)| ≤ 1) with

µ̂(0) = 1.

Proof. The function s 7→ ei〈s,x〉 is continuous and bounded, |ei〈s,x〉| = 1. The theorem of dominated

convergence implies that for all sequences (sn) with sn → s,

lim
n→∞

µ̂(sn) = lim
n→∞

∫
ei〈sn,x〉µ(dx) =

∫
lim
n→∞

ei〈sn,x〉µ(dx) =

∫
ei〈s,x〉µ(dx) = µ̂(s).
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µ̂(0) = 1 holds since ei〈0,x〉 = 1. Finally,

|µ̂(s)|2 =

(∫
cos(〈u, x〉)µ(dx)

)2

+

(∫
sin(〈u, x〉)µ(dx)

)2

≤
∫

cos(〈u, x〉)2µ(dx) +

∫
sin(〈u, x〉)2µ(dx)

=

∫ (
cos(〈u, x〉)2 + sin(〈u, x〉)2

)
µ(dx)

=

∫
1µ(dx) = 1.

2

Example 6.4 Let X ∼ B(n, p). Then

ϕX(s) =

n∑
k=0

eisk
(
n

k

)
pk (1− p)n−k

=

n∑
k=0

(
n

k

)(
eisp

)k
(1− p)n−k =

(
peis + 1− p

)n
.

Example 6.5 Let X ∼ P(λ). Then

ϕX(s) =

∞∑
k=0

eiske−λ
λk

k!

=

∞∑
k=0

e−λ
(eisλ)k

k!

= e−λ(1−eis).

Example 6.6 Let X ∼ N(µ, σ2). First, we compute the c.f. for the standard normal distribution.

We have

ϕX(s) =

∫
cos(sx)φ(x) dx+ i

∫
sin(sx)φ(x) dx.

Since φ is symmetric, φ(−x) = φ(x) and sin(−x) = − sin(x), the imaginary part of the c.f. is 0.

Theorem 6.8 implies that ϕX is differentiable. We have

ϕ′X(s) =

∫
(cos(sx))′ φ(x) dx =

1√
2π

∫
− sin(sx)xe−x

2/2 dx.

Integration by parts gives

ϕ′X(s) = − 1√
2π

∫
s cos(sx)xe−x

2/2 dx = −sϕX(s).

To solve this differential equation, i.e.

ϕ′X(s)

ϕX(s)
= −s,
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note that the l.h.s. is the derivative of logϕX(s). Thus,

logϕX(s) = −s
2

2
+ c1

and

ϕX(s) = c2e
−s2/2.

Finally, ϕX(0) = 1 implies

ϕX(s) = e−s
2/2.

If X ∼ N(µ, σ2), then X = µ+ σZ with Z ∼ N(0, 1). Therefore,

ϕX(s) = E(eis(µ+σZ) = eisµE(eisσZ) = eisµϕZ(sσ) = eisµ−σ
2s2/2.

Example 6.7 Let X be real-valued with c.f. ϕX and Y = a+ bX. Then

ϕY (s) = eisaϕX(bs).

More generally, let X be Rn-valued, Y = a + BX, where a ∈ Rm and B and m × n matrix. Then

for s ∈ Rm,

ϕY (s) = ei〈s,a〉ϕX(BT s).

Theorem 6.8 Let X be a real-valued random variable. If E(|X|k) < ∞, then ϕX is k-times

continuously differentiable and

ϕ
(k)
X (0) = ikE(Xk). (6.2)

Proof. We give the proof for k = 1 only. Note that if we are allowed to interchange taking the

derivative and taking expectation, then

ϕ′X(0) = lim
s→0

ϕX(s)− 1

s
= lim

s→0
E
(
eisX − 1

s

)
= E

(
lim
s→0

eisX − 1

s

)
= E(iX).

We have ∣∣∣∣eisX − 1

s

∣∣∣∣ ≤ |X|.
Therefore, both the real part and the imaginary part of the difference ratio are dominated by |X|.
If X is integrable, we may apply Lebesgue’s dominated convergence theorem. 2

6.2 Sums of Random Variables and the Central Limit Theorem

Theorem 6.9 Let X = (X1, . . . , Xn) be Rn-valued.

1. The R-valued random variables X1, . . . , Xn are independent if and only if for all s = (s1, . . . , sn)

ϕX(s) =
n∏
k=1

ϕXk(sk). (6.3)
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2. Let Y = u1X1 + u2X2 + · · ·+ unXn, with X1, . . . , Xn independent. The c.f. of Y is

ϕu1X1+···+unXn(s) =

n∏
k=1

ϕXk(s uk). (6.4)

3. Let the random variables be additionally identically distributed. Then

ϕX1+···+Xn(s) = ϕX1(s)n. (6.5)

Example 6.10 Let X = (X1, . . . , Xn) be Gaussian with expectation µ and covariance matrix Σ.

To compute the c.f. of X, let s = (s1, . . . , sn). 〈s,X〉 = s1X1 + · · · + snXn is again normal with

expectation sTµ and variance sTΣs. Therefore,

ϕX(s) = ϕs1X1+···+snXn(1) = eis
Tµ−sTΣs/2.

Example 6.11 Let X and Y be independent Poisson distributed with parameter λ1 and λ2 resp.

The c.f. of X + Y is

ϕX+Y (s) = ϕX(s)ϕY (s) = e−λ1(1−eis) e−λ2(1−eis) = e−(λ1+λ2)(1−eis),

X + Y therefore again Poisson with parameter λ1 + λ2.

Example 6.12 Let X = X1 + · · · + Xn with X1, . . . , Xn i.i.d. and Bernoulli distributed, i.e. X

has a binomial distribution with parameter n and p. The expectation of X1 is p and its variance is

p(1− p). Let

Yn =
X1 + · · ·+Xn − np√

n
.

Yn has c.f.

ϕYn(s) =
(
peis(1−p)/

√
n + (1− p)e−isp/

√
n
)n
.

In the following O(n−3/2) are terms of order n−3/2. We have

peis(1−p)/
√
n + (1− p)e−isp/

√
n = p

(
1 +

is√
n

(1− p) +
(is)2

2n
(1− p)2 +O(n−3/2)

)
+ (1− p)

(
1− is√

n
p+

(is)2

2n
p2 +O(n−3/2)

)
= 1− p(1− p)

2n
s2 +O(n−3/2).

Therefore, for n→∞,

ϕYn(s) =

(
1− p(1− p)

2n
s2 +O(n−3/2)

)n
→ e−p(1−p)s

2/2.

The c.f. of Yn converges to the c.f. of the normal distribution with the same expectation 0

and the same variance p(1− p). The distribution of Yn converges in a certain sense to the normal

distribution. To make this statement precise, we define

47



Definition 6.13 Let µn and µ be probability measures on Rn. The sequence (µn) converges weakly

to µ if for all bounded and continuous functions f : Rn → R,

lim
n→∞

∫
f dµn =

∫
f dµ. (6.6)

Theorem 6.14 (Lévy’s Continuity Theorem). Let µn be probability measures on Rn with c.f. µ̂.

1. If (µn) converges weakly to a probability measure µ, then µ̂n(s)→ µ̂(s) for all s ∈ Rn.

2. If (µ̂n(s)) converges to a function f(s) for all s ∈ Rn and if f is continuous at 0, then f is

the characteristic function of a probability measure µ and (µn) converges weakly to µ.

The generalization of Example 6.12 is the Central Limit Theorem (CLT): If (Xk) are i.i.d. and

independent with finite expectation µ and finite variance σ2. Let

Yn =
X1 + · · ·+Xn − nµ√

n
.

Then, given regularity conditions, the distribution of Yn converges weakly to the normal distribution

with expectation 0 and variance σ2. A proof expands the c.f. of Yn into a quadratic polynomial and

a remainder term. The regularity conditions imply that, exactly as in the example, the remainder

term is of order smaller than 1/n. This is the case, for instance, if the c.f. of Yn is three times

differentiable. The existence of a third moment guarantees the existence of a third derivative, see

Theorem 6.8.

Theorem 6.15 (Central Limit Theorem). Let (Xk) be a sequence of i.i.d. random variables with

variance σ2 > 0. Then the distribution of

X1 + · · ·+Xn − nE(X1)√
nσ

converges weakly to the standard normal distribution.

Let us remark that weak convergence implies the convergence of the c.d.f. at all points, where

the c.d.f. of the limit distribution is continuous. Since Φ is continuous, we have

lim
n→∞

P

(
X1 + · · ·+Xn − nE(X1)√

nσ
≤ x

)
= Φ(x)

for all x ∈ R.

6.3 Exercises

Exercise 6.1 Compute the characteristic function of the uniform distribution on [−a, a].
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Exercise 6.2 Compute the characteristic function of the geometric distribution distribution. Com-

pute the E(X) by means of the c.f.

Exercise 6.3 µ̂(s) = e−|s| is the c.f. of a real-valued random variable X. Prove that X is not

integrable. Remark: e−|s| is the c.f. of the Cauchy distribution.

Exercise 6.4 Let c > 0 and 0 < α ≤ 2. µ̂(s) = e−c|s|
α

is the c.f. of a real-valued random variable

X. Special cases are the Cauchy distribution for α = 1 and the normal distribution for α = 2.

1. Prove that X is not integrable for α ≤ 1 and not square-integrable for 1 < α < 2.

2. Prove that if X1, . . . , Xn are i.i.d. with c.f. µ̂(s) = e−c|s|
α

, then (X1 + · · ·+Xn)/n1/α and X1

have the same distribution.

Exercise 6.5 The c.f. of the gamma distribution with parameter α and β is

µ̂(s) =

(
β2 + isβ

β2 + s2

)α
.

Prove that X and Y independent, X ∼ Γ(α1, β) and Y ∼ Γ(α2, β), then X +Y ∼ Γ(α1 +α2, β). It

is sufficient to give a proof for β = 1.

Exercise 6.6 Let X be a real-valued random variable. Show that ϕX is real (i.e. the imaginary

part of ϕX(s) is 0 for all s) if and only if X and −X have the same distribution. In particular, if

X and Y are i.i.d. then X − Y has a symmetric distribution.

Exercise 6.7 Let X and Y be independent, X ∼ B(n, p), Y ∼ B(m, p). Using characteristic

functions compute the distribution of X+Y .

Exercise 6.8 Prove that ϕa+bX(s) = eisaϕX(bs).

Exercise 6.9 Let X1, X2, . . . be i.i.d. and N ∼ P(λ) independent of the X ′is. Let Y =
∑N

i=1Xi

with Y = 0 if N = 0. Prove that

ϕY (s) = eλ(ϕX1
(s)−1).

Compute the expectation and the variance of Y in terms of E(X) and σ2
X .

Exercise 6.10 Let Xn ∼ P(n). Prove that the distribution of (Xn − n)/
√
n converges weakly to

the standard normal distribution.
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Chapter 7

Conditional Expectation

As a motivation for the concept of the conditional expectation, consider the following problem of

predicting a random variable Y : Let a probability space (Ω,F , P ) and a square integrable random

variable Y : (Ω,F)→ (R,B) be given.

To predict Y without further information, a real number c = Ŷ has to chosen, s.t. E((Y − c)2)

is a small as possible. We know that the solution is the expectation c = E(Y ). With this choice

E((Y − c)2) is then the variance of Y .

Now assume that the prediction of Y may be based on information provided by a random

variable X, i.e. one has to choose a function g and predict Y by Ŷ = g(X). If (X,Y ) has a joint

distribution and if a conditional distribution of Y given X = x can be defined, then g(x) is the

expectation of this conditional distribution and Ŷ = g(X). Note that g(X) is a random variable,

since X is random.

Theorem 7.1 (Causality Theorem). Let X be an Rn-valued random variable on the measurable

space (Ω,F). Let Y be an R valued random variable. Y is σ(X)-measurable if and only if a

measurable g : Rn → R exists such that Y = g(X).

Proof. Only one direction has to be shown. Let us recall that σ(X) = {X−1(B) | B ∈ Bn}.
As usual, we first prove the theorem for the special case that Y is simple, i.e. Y =

∑k
i=1 ciIAi

with Ai ∈ σ(X) and (A1, . . . , Ak) a partition. Therefore, Y =
∑k

i=1 ciIX−1(Bi) with Bi ∈ Bn and

(B1, . . . , Bk) a partition. Then, if we define g by g(x) = ci if x ∈ Bi, we have Y = g(X).

In the general case, Y = limm→∞ Ym with Ym simple and σ(X)-measurable. Therefore, Ym =

gm(X). If we define g(x) = lim supm→∞ gm(x), then g is measurable and Y = g(X). 2

Given the Causality Theorem the problem of predicting Y may be generalized. Let a probability

space (Ω,F , P ), a sub σ-algebra G ⊆ F and a square integrable random variable Y be given. Find

the G-measurable random variable Ŷ that minimizes E((Y − Ŷ )2). Note that L2(G), the set of

G-measurable random variables, is a subspace of L2(F) and Ŷ is the projection of Y onto this
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subspace. Projections have (in this case) the property that Y − Ŷ is orthogonal to L2(G), i.e. for

all Z ∈ L2(G), E(Z(Y − Ŷ )) = 0, which may be written as

E(ZŶ ) = E(ZY ).

The random variable Ŷ is called the conditional expectation of Y given G and denoted by

E(Y | G). It is uniquely defined by two properteis: E(Y | G) is G-measurable and E(ZŶ ) = E(ZY )

holds for all Z ∈ L2(G).

Definition 7.2 Let a probability space (Ω,F , P ), a sub σ-algebra G ⊆ F and a random variable

Y be given. A random variable E(Y | G) is called the conditional expectation of Y given G if it

satisfies

E(Y | G) is G-measurable, (7.1)

E(ZE(Y | G)) = E(ZY ) for all bounded and G-measurable Z. (7.2)

Theorem 7.3 Let a probability space (Ω,F , P ), a sub σ-algebra G ⊆ F and a random variable Y

be given. If Y is integrable, then E(Y | G) exists and is a.s. unique in the sense that if any other

r.v. Ŷ satisfies (7.1) and (7.2), then Ŷ = E(Y | G) a.s.

Theorem 7.4 (Properties). Let a probability space (Ω,F , P ), a sub σ-algebra G ⊆ F and integrable

random variables Y, Y1, Y2 be given.

1. E(Y | G) = Y if and only if Y is G-measurable.

2. E(Y | G) = E(Y ) if Y is independent of G.

3. E(αY1 + βY2 | G) = αE(Y1 | G) + βE(Y2 | G). α, β ∈ R.

4. If Y ≥ 0, then E(Y | G) ≥ 0.

5. E(E(Y | G)) = E(Y ).

6. If H ⊆ G is a sub σ-algebra, then E(E(Y | G) | H) = E(Y | H) (Tower property).

7. If Z is bounded and G-measurable, then E(ZY | G) = ZE(Y | G).

8. If G = {∅,Ω}, then E(Y | G) = E(Y ).

9. If Y = g(X,Z), Z independent of X, then E(Y | σ(X)) = h(X), with h(x) = E(g(x, Z)).

10. If f is measurable and convex, then E(f(Y ) | G) ≥ f(E(Y | G)).

11. Let Y be square integrable. Then (7.2) holds for all square integrable and G-measurable Z.
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12. Let Ŷ be G-measurable. If E(Y IA) = E(Ŷ IA) for all A ∈ G, then Ŷ = E(Y | G).

Proof.

1. Trivial.

2. We have to show that the constant function E(Y ) is the conditional expectation of Y given

G. Constant functions are measurable w.r.t. all σ-algebras. To check (7.2), let Z be bounded

and G-measurable. Then Z and Y are independent and therefore,

E(ZY ) = E(Z)E(Y ) = E(E(Y )Z).

3. We have to show that αE(Y1 | G) + βE(Y2 | G) is the conditional expectation of αY1 + βY2

given G. It is obviously G-measurable. To check (7.2), let Z be bounded and G-measurable.

Then

E(Z(αY1 + βY2)) = αE(ZY1) + βE(ZY2)

= αE(ZE(Y1 | G)) + βE(ZE(Y2 | G)) = E(Z(αE(Y1 | G) + βE(Y2 | G))).

4. Let A denote the event {E(Y | G) < 0}. IA is bounded and G-measurable. P (A) > 0 is not

possible, since otherwise

0 > E(IAE(Y | G)) = E(IAY ) ≥ 0.

5. Let, in (7.2), Z = 1.

6. We have to prove that E(E(Y | G) | H) is the conditional expectation of Y given H. It

is obviously H-measurable. Let Z be bounded and H-measurable. Since H ⊆ G, it is also

G-measurable. Therefore

E(ZE(E(Y | G) | H)) = E(ZE(Y | G)) = E(ZY ).

7. We have to prove that ZE(Y | G) is the conditional expectation of ZY given G. It is obviously

G-measurable. Let U be bounded and G-measurable. Then UZ is bounded and G-measurable.

Therefore,

E(U(ZE(Y | G))) = E(UZE(Y | G)) = E(UZY ).

8. If G = {∅,Ω}, then only the constant functions are measurable. From 5, it follows that this

constant is E(Y ).

9. Let h(x) = E(g(x, Z)). The Theorem of Tonelli-Fubini implies that h is measurable (w.r.t.

σ(X)) and h(X) is integrable. Let Z be bounded and measurable w.r.t. σ(X). The Causality
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Theorem implies that Z = u(X) for a bounded and measurable function u. To show that

h(X) is the conditional expectation of Y given σ(X), note that

E(ZY ) = E(u(X)g(X,Z)) and E(Zh(X)) = E(u(X)h(X)),

and the two expectations are the same, again by the Theorem of Tonelli-Fubini.

10. No proof.

11. No proof.

12. No proof.

2

E(Y | σ(X)) is abbreviated by E(Y | X).

Example 7.5 Let the σ-algebra G be generated by the partition (B1, . . . , Bn). Any G-measurable

function is a linear combination of the indicator functions IB1 , . . . , IBn. Therefore, E(Y | G) =∑n
i=1 ciIBi. To identify the numbers ck, let Z = IBk . Z is bounded and G-measurable. From (7.2)

we get

E(ZY ) = E(ZE(Y | G)),

i.e.

E(IBkY ) = E(IBk

n∑
i=1

ciIBi) =
n∑
i=1

ciE(IBkIBi) = ckE(IBk) = ckP (Bk),

and therefore

ck =
E(IBkY )

P (Bk)
.

7.1 Exercises

Exercise 7.1 Let (X,Y ) be bivariate Gaussian. Compute E(Y | X) and E(Y 2 | X).

Exercise 7.2 Let Y be square integrable. Prove that E(Y | G) and Y − E(Y | G) are uncorrelated.

Exercise 7.3 Let Y be square integrable. Prove that

σ2 = E((Y − E(Y | G))2) + E((E(Y | G)− E(Y ))2).

Conclude that E(Y | G) is also square integrable.

Exercise 7.4 Let X1, . . . , Xn be i.i.d. and integrable. Let S = X1 +X2 + · · ·+Xn. Find E(X1 | S).

Exercise 7.5 Let X ∼ U([−1, 1]). Compute E(|X| | X) and E(X | |X|). Compute also E(X | |X|)
for X ∼ U([−1, 2]) and for X ∼ f , with f a density.
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Exercise 7.6 Let St, t = 0, 1, 2 denote the value of an asset at time t. Assume that S1 = S0e
µ+σX1

and S2 = S0e
2µ+σ(X1+X2), with σ > 0, S0, X1, X2 independent and both X1 and X2 Gaussian with

expectation 0 and variance 1. Compute E(S2 | S1).

Exercise 7.7 Show that if |Y | ≤ c, then |E(Y | G)| ≤ c.

Exercise 7.8 Let Y be square integrable, E(Y | X) = X and E(Y 2 | X) = X2. Show Y = X a.s.

Exercise 7.9 Let X ∼ P (λ) (Poisson). Let, conditional on X = x, Y ∼ B(x, p). Compute

E(Y | X) and E(X | Y ).
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Chapter 8

Appendix

8.1 Preliminaries and Notation

A. Sets.

1. Set Operations. Let Ω denote a set and A, B, Ai subsets of Ω.

A ∪B,
⋃∞
i=1Ai union

A ∩B,
⋂∞
i=1Ai intersection

Ac complement

A\B = A ∩Bc difference

P(Ω) = {A | A ⊆ Ω} power set

∅ empty set

P(Ω) is also denoted by 2Ω.

(Ai) is increasing, if A1 ⊆ A2 ⊆ A3 ⊆ · · ·.
(Ai) is decreasing, if A1 ⊇ A2 ⊇ A3 ⊇ · · ·.
(Ai) is monotone, if it is increasing or decreasing.

De Morgan’s Laws: (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.

2. Cartesian Products. A×B, the Cartesian product of A and B is

A×B = {(x, y) | x ∈ A, y ∈ B}.

A2 = A×A, An = A×A× · · · ×A (n-times).

x ∈ A1 ×A2 × · · · ×An, then x = (x1, . . . , xn), xi ∈ Ai are the components of x.

3. Countable Sets. An infinite set A (i.e. a set with infinitely many elements) is countable

(denumerable), if it can be written as a sequence, A = {a1, a2, . . .}. More precisely, A is countable,
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if there exists a function f of N onto A.

• N, Z, Q are countable, R is uncountable.

• If all sets An are countable, then A =
⋃∞
n=1An is countable.

• If A and B are countable, then A×B is countable.

• Let pi, i ∈ I be positive, pi > 0. If
∑

i∈I pi <∞, then I is countable (or finite).

B. Functions.

1. Definitions. Let X, Y be nonempty sets. A function (mapping) f : X → Y is a set of pairs

(x, f(x)) s.t. for all x ∈ X there exists exactly one f(x). X is the domain of f , Y the codomain of

f , f(X) = {f(x) | x ∈ X} the range of f .

f is injective (one to one, 1-1) if f(x1) = f(x2) implies x1 = x2.

f is surjective (onto) if for all y ∈ Y there exists (at least one) x ∈ X with y = f(x).

f is bijective if it is injective and surjective.

2. Preimages. Let f : X → Y , A ⊆ X, B ⊆ Y .

f(A) = {f(x) | x ∈ A} image of A

f−1(B) = {x | f(x) ∈ B} preimage of B

Facts:

f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2)

f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2)

f−1(Bc) = (f−1(B))c

f(A1 ∪A2) = f(A1) ∪ f(A2)

f(A1 ∩A2) ⊆ f(A1) ∩ f(A2)

f(A1 ∩A2) = f(A1) ∩ f(A2) if f is injective

f(f−1(B)) = f(X) ∩B

A ⊆ f−1(f(A))

Example. Let X = Y = R, f(x) = x2. If A1 = [0,∞), A2 = (−∞, 0], then f(A1) = f(A2) = [0,∞),

f(A1 ∩A2) = f({0}) = {0}. Furthermore, f−1(f(A1)) = R 6= A1. 2

3. Simple Functions. Let Ω 6= ∅. The indicator function IA of a subset A of Ω is defined as

IA(x) = 1 if x ∈ A and IA(x) = 0 if x 6∈ A.
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A function f : Ω→ R is called simple, if f(Ω) is finite. There exists a canonical representation

of simple functions: Let f(Ω) = {y1, . . . , yn} have n elements. Let Ai = f−1({yi}). Then

f =
n∑
i=1

yiIAi .

C. Real Numbers.

1. Order. R is an ordered set, x ≤ y. Let A ⊆ R. An upper bound of A is a real number y s.t. for

all x ∈ A, x ≤ y. A lower bound of A is a real number y s.t. for all x ∈ A, y ≤ x.

• If A is bounded from above, it has an upper bound. The set of upper bounds contains a

smallest element y, the least upper bound of A, called the supremum of A, y = supA. If A

is not bounded from above, supA =∞.

• If A is bounded from below, it has a lower bound. The set of lower bounds contains a greatest

element y, called the infimum of A, y = inf A. If A is not bounded from below, inf A = −∞.

• If A has a maximal element it is called the maximum, maxA. In that case, supA = maxA.

• If A has a minimal element it is called the minimum, minA. In that case, inf A = minA.

Example. Let A = [0, 1). maxA does not exist. supA = 1. minA exists and minA = inf A = 0.

Let A = (−2,∞). maxA and minA do not exist, supA =∞, inf A = −2.

2. Convergence. Let x ∈ A. A neighborhood A of x is a set s.t. there exists an open interval

(a, b) with x ∈ (a, b) and (a, b) ⊆ A. An open set is a union of open intervals. Complements of

open sets are called closed.

Example. (0, 1) is open. (2,∞) is open. [1, 2] is closed ([1, 2] = (−∞, 1)∪ (2,∞))c). (0, 1] is neither

open nor closed. {1/n | n ∈ N} is neither open nor closed. {1/n | n ∈ N} ∪ {0} is closed. 2

A sequence (xn) is a function with domain N. Let xn ∈ R. The sequence (xn) converges to a

limit x, if every neighborhood of x contains all but finitely many xn. xn → x, limn→∞ xn = x.

• Every bounded increasing sequence has a limit.

• Every bounded monotone sequence has a limit.

• An increasing sequence converges (if it is bounded) or diverges to ∞.

• Every bounded sequence has a converging subsequence.

• If F is closed and xn ∈ F for all n, then limxn ∈ F .
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Limits of subsequences are called accumulation points.

lim sup
n→∞

xn = limn→∞ supm≥n xm limes superior

lim inf
n→∞

xn = limn→∞ infm≥n xm limes inferior

If (xn) is bounded from above, lim supn→∞ xn <∞. Furthermore, lim supn→∞ xn = infn≥1 supm≥n xm.

lim supxn is the greatest accumulation point of (xn).

If (xn) is bounded from below, lim infn→∞ xn > −∞. Furthermore, lim infn→∞ xn = supn≥1 infm≥n xm.

lim inf xn is the smallest accumulation point of (xn).

Example. If xn = (−1)n, then lim supn→∞ xn = 1, lim infn→∞ xn = −1. If xn = (−1)nn/(n + 1),

then lim supn→∞ xn = 1, lim infn→∞ xn = −1. In both cases, 1 and −1 are the only accumulation

points. 2

3. Convergence in Rm. Let x, y ∈ Rm, x = (x1, . . . , xm), y = (y1, . . . , ym). The norm of x is

‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

m.

A sequence (xn) (∈ Rm) converges to y (∈ Rm) if ‖xn − y‖ → 0. xn → y, y = limn→∞ xn.

y = limn→∞ xn is equivalent to the convergence of all components of (xn) to the components of

y.

4. Continuity. Let Ω ⊆ Rm and f : Ω→ R. f is continuous at x, if xn → x implies f(xn)→ f(x).

f is continuous, if it is continuous at all x ∈ Ω. A function f : Ω → Rk is continuous, if all its

components f1, . . . , fk are continuous.

• f : Ω→ Rk is continuous, iff the preimages of all open sets U ⊆ Rk are open.

• f : Ω→ Rk is continuous, iff the preimages of all closed sets F ⊆ Rk are closed.

• f : Ω→ R is continuous, iff the preimages of all open intervals are open.

• f : Ω→ R is continuous, iff the preimages of all closed intervals are closed.

5. Convergence of Functions. Let fn, f : Ω → Rm. (fn) converges pointwise to f , if for all

x ∈ Ω, fn(x)→ f(x).

(fn) converges uniformly to f , if

lim
n→∞

sup
x∈Ω
‖fn(x)− f(x)‖ = 0.

Example. Let Ω = [0, 1), fn(x) = xn, f(x) = 0. Then fn → f pointwise, but not uniformly. 2
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6. Landau Symbols. Let sequences (an) and (bn) be given. (an) is O(bn), if there exists a

constant C s.t. for all n, |an| ≤ C|bn|. (an) is o(bn), if limn→∞ an/bn = 0.

D. Complex Numbers.

Complex numbers z are typically represented as z = x + iy, with x, y ∈ R. i is the imaginary

unit i =
√
−1. x is called the real part and y the imaginary part of z. The absolute value is

|z| =
√
x2 + y2. z̄ = x− iy is the complex conjugate of z = x+ iy.

Sometimes it is useful to write z in polar form as z = reiϕ. r is the absolute value of z, r = |z|,
also called the modulus of z. ϕ is called the argument (also the phase or the angle). We have

eiϕ = cosϕ+ i sinϕ.

eiϕ may be represented as a point on the unit circle in R2.
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