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Chapter 1

Martingales

1.1 Definition and Examples

Let a probability space (Ω,F , P ) be given. A filtration (Fn)∞n=0 is an increasing sequence F0 ⊆
F1 ⊆ · · · of sub σ-algebras of F . A stochastic process (Xn)∞n=0 is a sequence of random variables

Xn : (Ω,F) → (Rm,Bm). A stochastic process (Xn)∞n=0 is adapted (not anticipating) (to the

filtration (Fn)∞n=0), if Xn is Fn-measurable for all n. It is predictable, if Xn is Fn−1-measurable for

all n ≥ 1 and X0 is F0-measurable.

Example 1.1 Let (Xn)∞n=0 be given. Define Fn = σ(X0, . . . , Xn). (Fn)∞n=0 is the filtration gener-

ated by (Xn)∞n=0, also called the history of (Xn)∞n=0.

Example 1.2 Let (Xn)∞n=0 be adapted to the filtration (Fn)∞n=0. Then a process (Hn) with Hn =

fn(X0, . . . , Xn−1) is predictable. For instance, if (Hn) is non-random (deterministic), Hn = f(n),

it is predictable. Or (Hn) = (Xn−1) is.

Example 1.3 A game with stochastic outcome is played repeatedly. Let (Xn)∞n=0 be the outcomes

and (Hn) the stakes a gambler chooses before the n-th game. (Xn)∞n=0 and the sequence of accumu-

lated gains are adapted to the history of (Xn)∞n=0, (Hn) is predictable.

Example 1.4 Let (Sn) be the price of a financial asset, Hn the number of assets a trader holds in

the interval (n− 1, n] and (Fn)∞n=0 the history of (Sn). The wealth of the trader at time n is

Vn = V0 +
n∑
k=1

Hk(Sk − Sk−1).

(Vn) is adapted (Fn)∞n=0, the trading strategy (Hn) is predictable.

Definition 1.5 A stochastic process (Xn)∞n=0 is a martingale (or a (Fn)∞n=0 martingale), if

1. E(|Xn|) <∞ for all n ≥ 0,
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2. (Xn)∞n=0 is adapted (to (Fn)∞n=0),

3. E(Xn | Fn−1) = Xn−1 for all n ≥ 1.

Theorem 1.6 Let (Xn)∞n=0 be adapted to (Fn)∞n=0 and integrable (i.e. for all n, E(|Xn|) < ∞).

Then the following statements are equivalent:

1. (Xn)∞n=0 is a (Fn)∞n=0 martingale.

2. E(Xn | Fm) = Xm for all m < n.

3. E(Xn −Xn−1 | Fn−1) = 0 for all n ≥ 1.

Furthermore, if (Xn)∞n=0 is a martingale, then E(Xn) = E(Xm) for all m < n.

Proof. Note that since Xn−1 is Fn−1-measurable,

E(Xn | Fn−1) = E(Xn −Xn−1 +Xn−1 | Fn−1) = E(Xn −Xn−1 | Fn−1) +Xn−1,

which proves the equivalence of 1. and 3. Statement 2. implies 1. It follows from 1. by iteration,

for instance,

Xn−2 = E(Xn−1 | Fn−2) = E(E(Xn | Fn−1) | Fn−2) = E(Xn | Fn−2).

Finally, for m < n,

E(Xm) = E(E(Xn | Fm)) = E(Xn).

2

If we do not refer to the filtration, we assume that it is the filtration generated by the stochastic

process, i.e. Fn = σ(X0, X1, . . . , Xn). In this case, (Xn) is automatically adapted.

Example 1.7 (Random Walk). Let (Zn) be a sequence of independent and integrable random

variables. Let Xn = Z0 +Z1 + · · ·+Zn. If (Zn)∞n=1 are identically distributed, the process is called

a random walk. If E(Zn) = 0 for all n ≥ 1 it is a martingale.

Special cases are the simple random walk. Here Zn ∈ {−1, 1}, i.e. the random walk jumps up or

down with jump size equal to 1 in absolute value. It is symmetric, if P (Zn = 1) = P (Zn = −1) =

1/2. The symmetric simple random walk is a martingale.

Example 1.8 (Geometric Random Walk). Let (Zn) be a sequence of independent and integrable

random variables. Let Xn = Z0Z1 · · ·Zn. If (Zn)∞n=1 are identically distributed, the process is called

a geometric random walk. If E(Zn) = 1 for all n ≥ 1 it is a martingale.

A special case is the (geometric) binomial process. It is the process underlying the model of

Cox, Ross and Rubinstein (CRR-model) in financial mathematics. Zn ∈ {U,D}, where D < U are
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constants. CRR-process jumps up or down. In the first case it is multiplied by U , in the second by

D. Let p denote the probability of an up and 1− p of a down. (Xn) is a martingale, if and only if

1 = E(Zn) = Up+D(1− p),

which hold if and only if D ≤ 1 ≤ U and

p =
1−D
U −D

.

Example 1.9 (Martingale Transform). Let (Fn)∞n=0 be a filtration and (Xn)∞n=0 a martingale.

Furthermore, let (Hn)∞n=0 be predictable. Assume either that both Hn and Xn are square-integrable

or that Hn is bounded. Let Y0 = H0X0 and for n ≥ 1,

Yn = H0X0 +
n∑
k=0

Hk(Xk −Xk−1). (1.1)

(Yn) is a martingale:

E(Yn | Fn−1) = E(Yn−1+Hn(Xn−Xn−1) | Fn−1) = Yn−1+HnE(Xn−Xn−1 | Fn−1) = Yn−1+Hn 0 = Yn−1.

The martingale transform of a martingale (Xn) and a predictable process (Hn) is denoted by

H •X.

1.2 Doob’s Decomposition

Definition 1.10 Let (Xn)∞n=0 be a stochastic process such that

1. E(|Xn|) <∞ for all n ≥ 0,

2. (Xn)∞n=0 is adapted (to (Fn)∞n=0).

It is called a supermartingale if for all n ≥ 1,

3. E(Xn | Fn−1) ≤ Xn−1.

It is called a submartingale if for all n ≥ 1,

3.’ E(Xn | Fn−1) ≥ Xn−1.

Proposition 1.11 Let (Xn)∞n=0 be a martingale and let f : R → R be measurable and convex

such that for all n the random variable f(Xn) is integrable. Let Yn = f(Xn). Then (Yn) is a

submartingale.

Proof. Jensen’s inequality for conditional expectations says that E(f(Xn) | Fn−1) ≥ f(E(Xn |
Fn−1)). Since (Xn) is a martingale, the r.h.s. is f(Xn−1) = Yn−1 and the l.h.s. is E(Yn | Fn−1). 2
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Theorem 1.12 (Doob Decomposition). Let (Fn)∞n=0 be a filtration and (Xn)∞n=0 an adapted inte-

grable process. There exists a martingale (Mn) and a predictable process (An) with A0 = 0 such that

Xn = Mn +An. If (Xn)∞n=0 is a submartingale, then the process is nondecreasing (i.e. An ≤ An+1

for all n). The decomposition is unique.

Proof. Let M0 = X0 and A0 = 0. Suppose such a decomposition is possible. Then

Xk = Mk +Ak,

E(Xk | Fk−1) = Mk−1 +Ak,

Xk−1 = Mk−1 +Ak−1,

which implies

Ak −Ak−1 = E(Xk | Fk−1)−Xk−1. (1.2)

Let us define

An =
n∑
k=1

(E(Xk | Fk−1)−Xk−1)

and Mn = Xn −An. Clearly, (An) is predictable. Furthermore,

E(Mn | Fn−1) = E(Xn −An | Fn−1)

= E(Xn | Fn−1)−An

= E(Xn | Fn−1)−An−1 − E(Xn | Fn−1) +Xn−1

= Mn−1.

Finally, (1.2) implies Ak ≥ Ak−1 iff E(Xk | Fk−1) ≥ Xk−1 2

Remark 1.13 1. The predictable process (An) is called the compensator of (Xn).

2. Let (Xn)∞n=0 be a square-integrable martingale. Proposition 1.11 implies that (X2
n) is a sub-

martingale. Hence, there exists a predictable process (An), the compensator of (X2
n), such that

X2
n −An is a martingale. (An) is called the quadratic variation of (Xn).

Example 1.14 Let (Xn)∞n=0 be a square integrable martingale. Then the quadratic variation is

An =
∑n
k=1 E((Xk −Xk−1)

2 | Fk−1).

Example 1.15 Let (Xn)∞n=0 be a square integrable random walk that is a martingale and let σ2

the variance of the innovations Zn = Xn −Xn−1. Then the quadratic variation is An = nσ2.

Example 1.16 Let (Xn)∞n=0 be a square integrable martingale with quadratic variation (An). Let

(Hn) be predictable and square integrable and let (Yn) be the martingale transform of (Xn) and (Hn).

Then the quadratic variation of (Yn) is Bn =
∑n
k=1H

2
kE((Xk −Xk−1)

2 | Fk−1), i.e. B = H2 •A.
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1.3 Stopping Times

Let N̄ = N0 ∪ {∞}.

Definition 1.17 A random variable T : Ω → N̄ is called a stopping time if for all n, the event

{T ≤ n} is Fn-measurable.

Note that T is a stopping time if and only if {T = n} ∈ Fn for all n.

Example 1.18 1. Let the stochastic process (Xn)∞n=0 be adapted to the filtration (Fn)∞n=0. Let b

be a constant and define T = min{n | Xn ≥ b}.
Since

{T ≤ n} = {X0 ≥ b} ∪ {X1 ≥ b} ∪ · · · ∪ {Xn ≥ b}

and the events {Xk ≥ b} ∈ Fk ⊆ Fn, we have {T ≤ n} ∈ Fn and T is a stopping time.

2. The time T = min{n | Xn+2 ≥ b} is not a stopping time.

3. Let m < n and A ∈ Fm. Define T (ω) = m if ω ∈ A and T (ω) = n if ω 6∈ A. T is a stopping

time.

A stopping time T is finite, if P (T = ∞) = 0. It is bounded, if there is a constant N s.t.

P (T ≤ N) = 1. For a finite stopping time T we define XT as

XT (ω) = XT (ω)(ω) =
∞∑
n=0

Xn(ω)I{T (ω)=n}. (1.3)

Proposition 1.19 Let T be a bounded stopping time and (Xn)∞n=0 a martingale. Then E(XT ) =

E(X0).

Proof. Let T be bounded by N . First note that XT may be written as

XT = X0 +
N∑
n=1

I{T≥n}(Xn −Xn−1) = X0 +
N∑
n=1

Hn(Xn −Xn−1),

with Hn = I{T≥n} = 1 − I{T≤n−1} Fn−1-measurable. That is, if (Yn) denotes the martingale

transform with coefficients (Hn) and driven by (Xn), then XT = YN . Since (Yn) is a martingale,

E(XT ) = E(X0) follows. 2

Definition 1.20 Let T be a stopping time. The stopping time σ-algebra FT is

FT = {A ∈ F | A ∩ {T ≤ n} ∈ Fn for all n}.

Fn is the collection of events that are measurable up to time n, analogously FT is the collection

of events that are measurable up to the random time T .
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Proposition 1.21 If T is a stopping time, then FT is a σ-algebra.

Proof. Clearly, ∅,Ω ∈ FT . If A ∈ FT then, since Ac ∩ {T ≤ n} = {T ≤ n} ∩ (A ∩ {T ≤ n})c, we

have Ac ∈ FT . Finally, if Ai ∈ FT , then

(∪∞i=1Ai) ∩ {T ≤ n} = ∪∞i=1(Ai ∩ {T ≤ n}) ∈ Fn

and therefore ∪∞i=1Ai ∈ FT . 2

Proposition 1.22 Let S and T be stopping times with S ≤ T . Then FS ⊆ FT .

Proof. Note that {T ≤ n} ⊆ {S ≤ n} and therefore, if A ∈ FS , then

A ∩ {T ≤ n} = A ∩ {S ≤ n} ∩ {T ≤ n}.

Since both A ∩ {S ≤ n} and {T ≤ n} are in Fn, we get A ∩ {T ≤ n} ∈ Fn. 2

Proposition 1.23 XT is FT -measurable.

Proof. Let B be a Borel set. We have to show that {XT ∈ B} ∩ {T ≤ n} ∈ Fn for all n. We have

{XT ∈ B} ∩ {T ≤ n} = ∪nk=0{XT ∈ B} ∩ {T = k}

= ∪nk=0{Xk ∈ B} ∩ {T = k}.

{Xk ∈ B} ∩ {T = k} ∈ Fk ⊆ Fn implies {XT ∈ B} ∩ {T ≤ n} ∈ Fn. 2

Theorem 1.24 (Doob’s Optional Sampling Theorem). Let (Xn)∞n=0 be a martingale and let S, T

be bounded stopping times with S ≤ T a.s. Then, a.s.,

E(XT | FS) = XS . (1.4)

Proof. Let T be bounded by N . XT is integrable, since |XT | ≤
∑N
k=0 |Xk|. We have to prove that

E(IAXT ) = E(IAXS) for every A ∈ FS . Let R(ω) = S(ω) if ω ∈ A and R(ω) = T (ω) if ω ∈ Ac. R
is a stopping time, since for all n,

{R ≤ n} = ({R ≤ n} ∩A) ∪ ({R ≤ n} ∩Ac) = ({S ≤ n} ∩A) ∪ ({T ≤ n} ∩Ac) ∈ Fn.

Proposition 1.19 implies that E(XR) = E(X0) = E(XT ). Finally

E(XT ) = E(XT IA) + E(XT IAc)

and

E(X0) = E(XR) = E(XSIA) + E(XT IAc) = E(XSIA) + E(X0)− E(XT IA)

implies E(XSIA) = E(XT IA). 2
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Theorem 1.25 Let (Xn)∞n=0 be adapted and integrable such that for all n, E(Xn) = E(X0). If for

all bounded stopping times T , E(XT ) = E(X0), then (Xn)∞n=0 is a martingale.

Proof. We may assume that X0 = 0, otherwise we replace Xn by Xn − X0. Let 0 ≤ m < n,

A ∈ Fm and define T (ω) = m if ω ∈ Ac and T (ω) = n if ω ∈ A. If E(XT ) = 0, then

0 = E(XT ) = E(IAXn) + E(IAcXm)

= E(IAXn) + E((1− IA)Xm)

= E(IAXn)− E(IAXm)

and therefore for all Fm-measurable A, E(IAXn) = E(IAXm), i.e. Xm = E(Xn | Fm). 2

1.4 Exercises

Exercise 1.1 Let (Xn)∞n=0 be a stochastic process and define Sn = X0 + · · · + Xn. Show that

(Xn)∞n=0 and (Sn)∞n=0 have the same history.

Exercise 1.2 Let (Xn) be a martingale. Prove

1. If (Xn) is predictable, then it is constant in time, i.e. Xn = X0 for all n.

2. If Xn is independent of Fn−1, then (Xn) is constant, i.e. Xn = E(X0) for all n.

Exercise 1.3 Let (Xn)∞n=0 be a random walk with innovations (Zn). Show that if eZn is integrable,

(Yn) with Yn = eXn is a geometric random walk.

Let (Yn) a positive geometric random walk and let Xn = log Yn. Show that (Xn) is a random

walk.

Exercise 1.4 (Continued) Show that if (Xn) is a martingale, then (Yn) is a submartingale, but

except in the trivial case, not a martingale. On the other hand, if (Yn) is a martingale, then (Xn)

is a supermartingale, but not a martingale.

Exercise 1.5 Let (Xn) be a martingale. Prove that martingale differences Xn −Xn−1 are uncor-

related to Fn−1, i.e. to all Fn−1 measurable random variables. Conclude that

V(Xn) = V(X0) +
n∑
k=1

V(Xk −Xk−1).

Exercise 1.6 Let (Xn) be a geometric random walk that is a martingale. Let Hn = Xn−1. Find a

martingale (Un) s.t. (Xn) is the martingale transform of (Un) and (Hn).
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Exercise 1.7 Let (Xn) be a geometric random walk that is a martingale. Let Dn = (1+r)n, where

r > 0 and Yn = DnXn. Compute the compensator of (Yn).

Exercise 1.8 Let (Xn) be a random walk with quadratic integrable innovations Zn = Xn −Xn−1

that is a martingale. Derive the quadratic variation of (Xn).

Exercise 1.9 Let (Xn) be a geometric random walk that is a martingale. Derive the quadratic

variation of (Xn).

Exercise 1.10 Let (Xn)∞n=0 be a submartingale and let f : R → R be measurable, increasing and

convex such that for all n the random variable f(Xn) is integrable. Let Yn = f(Xn). Show that

(Yn) is a submartingale.

Exercise 1.11 Prove that a supermartingale (Xn)∞n=0 may be written as Xn = Mm + An, where

(Mn) is a martingale, (An) is predictable and nonincreasing.

Exercise 1.12 Let Y be integrable and Xn = E(Y | Fn). Show that (Xn)∞n=0 is a martingale.

Exercise 1.13 Let (Xn) be adapted. Prove that (Xn) is a martingale, if for all predictable processes

(Hn) with H0 = 0, E((H •X)n) = 0 holds.

Exercise 1.14 Let (Fn)∞n=0 be a filtration and T : Ω → N0 ∪ {∞} a random variable. Show that

the following assertions are equivalent:

1. {T ≤ n} ∈ Fn for all n.

2. {T = n} ∈ Fn for all n.

3. {T < n} ∈ Fn−1 for all n.

4. {T ≥ n} ∈ Fn−1 for all n.

5. {T > n} ∈ Fn for all n.

Exercise 1.15 Let S and T be stopping times. Show that S ∨ T = max{S, T} and S ∧ T =

min{S, T} are stopping times.

Exercise 1.16 Let S and T be stopping times. Show that S + T is a stopping time.

Exercise 1.17 Let T be a stopping time. Show that k T is a stopping time if k ≥ 1 is an integer.

Exercise 1.18 Let S and T be stopping times. Show that FS∧T ⊆ FT ⊆ FS∨T .
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Exercise 1.19 Let (Xn)Nn=0 be a simple random walk with X0 = 0.

1. Write down carefully a suitable probability space (Ω,F , P ).

2. Let N = 3 and T = min{k > 0 | Xk = 0} ∧ 3. Show that T is a stopping time.

3. Derive FT and XT and the probability distribution of XT .

Exercise 1.20 (Cont.) Let (Xn)Nn=0 be a simple random walk with X0 = 0 and N = 3.

1. Let N = 3 and Si = min{k | Xk = i} ∧N for i = 1, 2.

2. Derive FSi and XSi and the probability distribution of XSi.

3. Compute E(XS2 | FS1).

11



Chapter 2

Random Walks and Boundary

Crossing Probabilities

2.1 Gambling

Example 2.1 (Gamblers Ruin I). Let (Xk)
∞
k=0 be the independent payoffs of a series of gambling

trials, X0 = 0, Sn = X0 +X1 + · · ·+Xn the accumulated payoff after n trials. In the simplest case,

Xk ∈ {−1, 1} with p = P (Xk = 1), P (Xk = −1) = 1 − p =: q. Let player A with fortune a play

against player B with fortune b.

The game is repeated until either player A or player B has lost his fortune, i.e. until Sn = −a
or Sn = b. Define

τa,b = min{n | Sn 6∈ [−a+ 1, b− 1]}, (2.1)

with τa,b =∞ if Sn ∈ [−a+ 1, b− 1] for all n.

Remark 2.2 If Xk has only the values 1 and −1, then, on {τa,b <∞}, Sτa,b = −a or Sτa,b = b.

Example 2.3 (Gamblers Ruin II). Assume that gambler A has unlimited fortune (a =∞). Let

τ b = min{n | Sn ≥ b}, (2.2)

with τ b =∞ if Sn < b for all n.

Typically, the following problems are of interest:

1. Is τa,b finite, i.e. is P (τa,b <∞) = 1?

2. Is E(τa,b) <∞?

3. If τa,b is finite, what is the probability of the ruin of A (of B)?

12



4. Is τ b finite?

5. Is E(τ b) <∞?

6. Derive the distribution of τa,b (of τ b).

The answers to 1. and 2. are “yes”, to 5. “no”, to 4. “yes” if p ≥ 1/2. The distribution

of τ b and the probability in 3. can be computed in closed form, for the distribution of τa,b series

expansions exist.

Closely related is the problem of the existence of strategies or stopping times with positive

expected payoff. Assume that player A chooses at time k−1 stakes Hk depending on the information

up to time k − 1, Hk = fk(X1, . . . , Xk−1) (H1 is constant). The payoff is then SHn = H1X1 + · · ·+
HkXk.

7. Let a <∞. Is there a stopping time T such that E(ST ) > 0?

8. Let a =∞. Is there a stopping time T such that E(ST ) > 0?

9. Do predictable stakes (Hk) exist, such that E(SHn ) > 0?

Example 2.4 (Ruin Problem). Denote by Xn the assets of an insurance company at the end of

year n. Each year, the company receives premiums b > 0 and claims Cn are paid. Assume that

(Cn) are i.i.d. with mean µ < b. We have Xn+1 = Xn + b − Cn+1. Ruin occurs, if Xn ≤ 0 for at

least one n.

Compute P (ruin) or give tight estimates of P (ruin). How does P (ruin) depend on X0, µ, b and

other parameters of Cn?

2.2 Calculations for the Simple Random walk

The random walk (Sn) with innovations Xn = Sn−Sn−1 is simple, if X0 = 0 and Xn ∈ {−1, 1}. Let

p = P (Xn = 1), q = 1− p = P (Xn = −1). The simple random walk (s.r.w.) is called symmetric, if

p = q = 1/2.

To derive the distribution of Sn, let

Bn = #{i ≤ n | Xi = 1}.

Then Sn = Bn − (n−Bn) = 2Bn − n and thus {Sn = k} = {Bn = (n+ k)/2}. Note that n is even

iff Sn is even. Thus if n and k are both even or both odd,

P (Sn = k) =

(
n

(n+ k)/2

)
p(n+k)/2q(n−k)/2. (2.3)

13



Example 2.5 Let (Sn) be a symmetric s.r.w. Then

P (S2n = 0) =

(
2n

n

)(
1

2

)2n

.

Since the innovations (Xn) are independent, (Sn) is a Markov process :

(Sn+k)
∞
k=1 | (S1, . . . , Sn) ∼ (Sn+k)

∞
k=1 | Sn.

Since the innovations (Xn) are identically distributed, (Sn) is homogeneous , i.e. its distribution

is invariant w.r.t. time-shifts : For n,m ∈ N,

(Sn+k)
∞
k=1 | Sn ∼ (Sm+k)

∞
k=1 | Sm.

Proposition 2.6 Let the s.r.w. (Sn) be symmetric. The first exit time τ b, defined by (2.2), is

finite a.s., i.e. P (τ b <∞) = 1.

Proof. Let for b ∈ N0, πb = P (τ b =∞) (= P (Sn 6= b for all n). We have π0 = 0 and

π1 = P (S1 = −1 and Sn 6= 1 for all n ≥ 2)

= P (S1 = −1)P (Sn 6= 2 for all n ≥ 1)

=
1

2
π2.

Similarly, for k ≥ 2 we have

πk = P (S1 = 1 and Sn 6= k for all n ≥ 2) + P (S1 = −1 and Sn 6= k for all n ≥ 2)

=
1

2
πk+1 +

1

2
πk−1.

Therefore, 2πk = πk+1 + πk−1,

πk+1 − πk = πk − πk−1 = · · · = π2 − π1 = π1

and

πk = (πk − πk−1) + · · ·+ (π2 − π1) + π1 = kπ1.

Since πk ≤ 1, we have π1 = 0 and thus πk = 0 for all k. 2

Proposition 2.7 Let the s.r.w. (Sn) be asymmetric, let p < q and θ = p/q. Let the first exit time

τ b be defined by (2.2). Then, for b ∈ N0,

P (τ b <∞) = θb. (2.4)

14



Proof. Again, let πk = 1 − P (τk < ∞). We have π0 = 0, π1 = qπ2, πk = pπk−1 + qπk+1 and

therefore

πk+1 − πk = θ(πk − πk−1) = · · · = θk−1(π2 − π1) = θkπ1.

Thus πk − πk−1 = θk−1π1 and

πk =
k∑
i=2

(πi − πi−1) + π1

=
k∑
i=1

θi−1π1 =
1− θk

1− θ
π1.

From Lemma 2.9 (limk→∞ πk = 1) it follows that π1 = (1− θ) and πk = 1− θk. 2

Corollary 2.8 Let (Sn) be a s.r.w. and M = max{Sn | n ≥ 0} with M =∞ if (Sn) is not bounded.

If p = q = 1/2, then M =∞ a.s. If p < q, then M + 1 is geometrically distributed with parameter

θ = p/q.

Proof. Let p < q. We have for k ≥ 1

P (M + 1 ≥ k) = P (M ≥ k − 1) = P (τk−1 <∞) = θk−1.

Therefore,

P (M + 1 = k) = P (M + 1 ≥ k)− P (M + 1 ≥ k + 1) = θk−1 − θk = θk−1(1− θ).

2

Lemma 2.9 Let (Sn) and τ b be the asymmetric s.r.w. and the first exit time of Proposition 2.7.

Then limk→∞ P (τk <∞) = 0.

Proof. Note that pq < 1/4 and

P (τk <∞) ≤
∞∑
n=k

P (Sn = k) =
∞∑

n=k,n+k even

(
n

(k + n)/2

)
p(n+k)/2q(n−k)/2.

Stirling’s approximation for n! (n! ≈
√

2πnn+1/2e−n) implies that there exists a constant c, inde-

pendent of k, such that (
n

(k + n)/2

)
≤ c 2n√

n
.

Therefore,

P (τk <∞) ≤
∞∑
n=k

c
2n√
n
p(n+k)/2q(n−k)/2

≤ c√
k

∞∑
n=0

(4pq)n/2 =
1√
k

c

(1−
√

4pq)
.

2
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2.3 Reflection Principle

Let the s.r.w. (Sn) be a symmetric. The computation of the probability of an event boils down

to the counting of the number of paths defining the event. Probabilities can often be derived from

the reflection principle. In its simplest form, the reflection principle is the following statement.

Let (Sn) be a s.r.w. and let n,m, k be nonnegative integers. Then the number of paths with

Sn = m that hit the boundary −k at some time up to n is the same as the number of paths with

Sn = −m − 2k (and therefore the number of paths with Sn = m + 2k). The idea is: take a path

(Si(ω)) that hits −k for the first time at τ ≤ n and reflect it at −k. The reflected path ends in

Sτ (ω)− (Sn(ω)− Sτ (ω)) = −k − (Sn(ω) + k).

Let T k = min{n ≥ 1 | Sn = k}, denote the first time after 0 that the symmetric s.r.w. (Sn)

reaches k.

Proposition 2.10 (Distribution of the first return to 0).

P (T 0 > 2n) = P (S2n = 0). (2.5)

Proof. We have

P (T 0 > 2n) = P (S2 = 2, Sk > 0 for k = 3, . . . , 2n) + P (S2 = −2, Sk < 0 for k = 3, . . . , 2n)

= 2P (S2 = 2, Sk > 0 for k = 3, . . . , 2n)

=
1

2
P (Sk > −2 for k = 0, . . . , 2n− 2)

=
1

2

n−1∑
m=0

P (S2n−2 = 2m,Sk > −2 for k = 0, . . . , 2n− 3)

=
1

2

n−1∑
m=0

(P (S2n−2 = 2m)− P (S2n−2 = 2m,Sk hits − 2, on k = 0, . . . , 2n− 3)) .

By the reflection principle,

P (S2n−2 = 2m,Sk hits − 2, on k = 0, . . . , 2n− 3) = P (S2n−2 = 2m+ 4)

and therefore

P (T 0 > 2n) =
1

2

n−1∑
m=0

(P (S2n−2 = 2m)− P (S2n−2 = 2m+ 4))

=
1

2
(P (S2n−2 = 0) + P (S2n−2 = 2))

=
1

2
P (S2n−2 = 0) +

1

4
P (S2n−2 = 2) +

1

4
P (S2n−2 = −2)

= P (S2n = 0 and S2n−2 = 0) + P (S2n = 0 and S2n−2 = 2) + P (S2n = 0 and S2n−2 = −2)

= P (S2n = 0).

2
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Proposition 2.11 Let k 6= 0. Then

P (T k = n) =
k

n
P (Sn = k). (2.6)

Proof. The set of paths that hit k at time n consist of

1. paths that hit k at n for the first time,

2. paths with Sn = k and Sn−1 = k + 1,

3. paths with Sn = k, Sn−1 = k − 1 and Si = k for some i ≤ n− 2.

By the reflection principle, the sets 2. and 3. have the same size. Therefore

P (T k = n) = P (Sn = k)− 2P (Sn−1 = k + 1, Sn = k)

=

(
n

(n+ k)/2

)(
1

2

)n
− 2

(
n− 1

(n+ k)/2

)(
1

2

)n−1 1

2

=

(
n

(n+ k)/2

)(
1

2

)n (
1− 2(n− k)/2

n

)

=

(
n

(n+ k)/2

)(
1

2

)n k
n
.

2

2.4 Optional Stopping

Martingale theory and especially optional sampling theorems are powerful tools for proving bound-

ary crossing probabilities. For motivation, consider the Gambler’s Ruin problem for the symmetric

s.r.w. (Sn). Note that (Sn) is a martingale and τa,b a stopping time, i.e. for all n ≥ 0, the event

{τa,b ≤ n} is in σ(S1, . . . , Sn), the σ-algebra generated by S1, . . . , Sn.

For bounded stopping times T , we have

E(ST ) = E(S0). (2.7)

If we knew that (2.7) holds for T = τa,b we could compute P (Sτa,b = b). We have

0 = E(Sτa,b) = −aP (Sτa,b = −a) + bP (Sτa,b = b)

= −a(1− P (Sτa,b = b)) + bP (Sτa,b = b)

and get

P (Sτa,b = b) =
a

a+ b
(2.8)

P (Sτa,b = −a) =
b

a+ b
. (2.9)
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Example 2.12 E(ST ) = E(S0) does not hold for all martingales (Sn) and all stopping times T .

Consider the strategy of doubling in a fair game. The player has unlimited fortune, doubles stakes

until the first win. If the player loses in the games 1, 2, . . . , n−1, his loss is 1+2+22+ · · ·+2n−1 =

2n − 1. We have Sn = Sn−1 + 2n with probability 1/2 and Sn = Sn−1 − 2n again with probability

1/2. (Sn) is a martingale. The game is stopped after the first win. Let T = T 1 = min{n | Xn = 1}.
T 1 is finite a.s., ST = 1 and therefore

1 = E(ST ) 6= 0 = E(S0).

A variety of theorems on optional stopping have been proved. The following is especially suitable

for applications concerning random walks.

Theorem 2.13 Let (Sn) be a martingale for which there exists a constant c such that for all n

E(|Sn+1 − Sn| | σ(S1, . . . , Sn)) ≤ c. for n < T, a.s. (2.10)

If T is a stopping time with E(T ) <∞, then

E(ST ) = E(S0). (2.11)

Proof. See [1], Chapter 6, Corollary 3.1.

Corollary 2.14 Let (Sn) be a random walk, Sn = X0 + X1 + · · · + Xn with integrable Xn. Then

(2.11) holds for any integrable stopping time T .

Corollary 2.15 For the symmetric s.r.w. (Sn), (2.8) and (2.9) hold.

Example 2.16 Let the s.r.w. (Sn) be symmetric. To compute E(τa,b), define Yn = S2
n − n. Note

that (Yn) is a martingale (Exercise 2.4). Since Xn+1 ∈ {−1, 1}, we have

|Yn+1 − Yn| = |X2
n+1 + 2SnXn+1 − 1| = |2SnXn+1| ≤ 2(max{a, b} − 1)

on n < τa,b. Now, since 0 = E(S2
τa,b
− τa,b) we have

E(τa,b) = E(S2
τa,b)

= b2
a

a+ b
+ a2

b

a+ b
= ab.

2.5 Exercises

Exercise 2.1 Let a, b > 0. Show that for the s.r.w. P (τa,b <∞) = 1 and E(τa,b) <∞.
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Hint. Note that if Xn+1 = · · · = Xn+a+b−1 = −1, then at least one of Sn, Sn+1, . . . , Sn+a+b−1 is

not in [−a+1, b−1]. The probability of a block of −1 of length a+b−1 is qa+b−1. Let m = a+b−1.

Then

P (τa,b > mk) ≤ P ((S1, . . . , Sm) is not a block of − 1′s,

(Sm+1, . . . , S2m is not a block of − 1′s,

(Sm(k−1)+1, . . . , Smk is not a block of − 1′s)

≤ (1− qm)k.

Conclude P (τa,b =∞) = limk→∞ P (τa,b > mk) = 0 and E(τa,b) =
∑∞
n=0 P (τa,b > n) <∞.

Exercise 2.2 Show that P (T 0 <∞) = 1 and E(T 0) =∞.

Hint. Use Stirling’s approximation to get

P (T 0 > 2n) = P (S2n = 0) =

(
2n

n

)(
1

2

)n
≈ c√

2n
.

Therefore limn→∞ P (T 0 > 2n) = 0 and for a suitable positive constant c,

E(T 0) =
∞∑
n=0

P (T 0 > n) ≥
∞∑
n=0

cn−1/2 =∞.

Exercise 2.3 Show that for k ≥ 1, P (T k <∞) = 1 and E(T k) =∞.

Hint. Use Proposition 2.11 and Stirling’s approximation to get P (T k = n) ≈ k
√

2/πn−3/2 for

n + k odd. For a suitable positive constants c1 and c2 we have c1n
−1/2 ≤ P (T k > n) ≤ c2n

−1/2.

Therefore, limn→∞ P (T k > n) = 0 and E(T k) =
∑∞
n=0 P (T 1 > n) ≥

∑∞
n=0 c1n

−1/2 =∞.

Exercise 2.4 Let (Sn) be a random walk with increments (Xn) having zero expectation and finite

variance σ2. Prove that Yn = S2
n − nσ2 is a martingale.

Exercise 2.5 Let (Sn) denote an asymmetric s.r.w. with p < q. Compute P (b) = P (Sτa,b = b),

P (a) = P (Sτa,b = −a) and E(τa,b).

Hint. First show that Yn = (q/p)Sn is a martingale which satisfies the assumptions of Theorem

2.13. Then

1 = E(Y0) = E(Yτa,b)) = P (b)(q/p)b + P (a)(q/p)−a

implies

P (b) =
1− (p/q)a

(q/p)b − (p/q)a
,

P (a) =
(q/p)b − 1

(q/p)b − (p/q)a
.
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Then apply the optional sampling theorem to the martingale (Sn − n(p− q)) to derive

E(τa,b) =
bP (b) + aP (a)

p− q
.

Exercise 2.6 (Wald’s identity I). Let (Sn) be a random walk with integrable increments (Xn). Let

µ = E(X1) and let τ be a finite stopping time with E(τ) <∞. Show that

E(Sτ ) = µE(τ).

Hint. Apply the optional sampling theorem to (Sn − µn).

Exercise 2.7 (Wald’s identity II). Let (Sn) be a random walk with increments (Xn) a having finite

moment generating function

m(θ) = E(eθX1).

Let θ satisfy m(θ) ≥ 1. Prove that for τ = τa,b,

E(m(θ)−τeθSτ ) = 1.

Hint. Show that (Yn) = (m(θ)−neθSn) is a martingale that satisfies the assumptions of Theorem

2.13.

Exercise 2.8 A typical application of Wald’s identity II is the computation of P (b) and P (a),

where P (b) is the probability that a random walk (Sn) leaves the interval ] − a, b[ through b, i.e.

P (b) = P (ST ≥ b) and P (a) = P (Sτ ≤ −a). In the general case Sτ /∈ {−a, b}. Choose θ 6= 0 s.t.

m(θ) = 1. Then E(eθSτ ) = 1 implies

1 ≈ P (b)eθb + P (a)e−θa

and therefore

P (b) ≈ 1− e−θa

eθb − e−θa
, (2.12)

P (b) ≈ eθb − 1

eθb − e−θa
. (2.13)

Show that if (Sn) is simple and a and b are integers, (2.12) and (2.13) holds exactly. Cf. Exercise

2.5, derive the nonzero solution of m(θ) = 1.
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Chapter 3

The Radon-Nikodym Theorem

3.1 Absolute Continuity

Let two probability measures P and Q be defined on a measurable space (Ω,F).

Definition 3.1 Q is absolutely continuous w.r.t. P (Q << P ) if for all A ∈ F , if P (A) = 0, then

Q(A) = 0. If Q << P and P << Q, then P and Q are called equivalent (P ∼ Q).

Example 3.2 Let f : (Ω,F)→ (R+,B) with f ≥ 0 and EP (f) = 1. Define Q by Q(A) = EP (IAf).

Q is a probability distribution and since EP (IAf) = 0 for all A with P (A) = 0, Q is absolutely

continuous w.r.t. P .

If f > 0 a.s., then P (A) = EQ(IA
1
f ) and P ∼ Q.

Theorem 3.3 (Radon-Nikodym Theorem). Let Q << P . Then there exists a (P -a.s.) unique

nonnegative and integrable random variable dQ
dP such that for all A ∈ F ,

Q(A) = EP (
dQ

dP
IA).

Proof. See [2]. 2

3.2 Exercises

Exercise 3.1 Let P (B) > 0 and define Q by Q(A) = P (A ∩ B)/P (B). Show that Q << P and

derive the Radon-Nikodym derivative dQ
dP .

Exercise 3.2 Let P and Q be defined on a measurable space (Ω,F). Show that there always exist

a probability measure R s.t. P << R and Q << R. Moreover, let P1, P2, . . . be countably many

probability measures. Show that there exist a probability measure R s.t. for all n, Pn << R.

Hint: Let πn > 0 with
∑
n πn = 1 and let R =

∑∞
n=1 πnPn.
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Exercise 3.3 Let X ∼ B(n, p) and Y ∼ N(0, 1). Let Z = X with probability 1/2 and Z = Y with

probability 1/2. Let the distributions of X, Y , Z be denoted by P , Q, R. Show that P << R and

Q << R. Find dQ
dR and dP

dR .

Exercise 3.4 Let µ 6= 0. Denote by P and Q the normal distributions with variance 1 and expec-

tations 0 and µ. Compute dQ
dP . Show that P ∼ Q.

Exercise 3.5 Denote by P the standard normal distribution and by and Q the exponential distri-

bution with rate 1. Compute dQ
dP . Show that Q << P and that P is not absolutely continuous with

respect to Q.

Exercise 3.6 Let Q << P and P << R. Prove that Q << R and that dQ
dR = dQ

dP
dP
dR .

Exercise 3.7 Let Z be, under P , Gaussian with mean 0 and variance 1, i.e. Z ∼P N(0, 1). Let

X = µ+ σZ. Find Q ∼ P , s.t. X is Gaussian under Q and EQ(X) = −VarQ(X)/2. Is Q unique?
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Chapter 4

Introduction to Mathematical Finance

4.1 Basic Concepts

Let a probability space (Ω,F , P ) be given. We consider a market model consisting of m+ 1 assets:

(Sn)Nn=0, with Sn = (S0
n, S

1
n, . . . , S

m
n ). Typically, (S0

n) is called the riskless asset and we always

assume that S0
n > 0 for all n = 0, . . . , N and S0

0 = 1. Furthermore, we always assume that Sn is

square integrable. In the simplest case m = 1 and the market consists of a riskless and a risky

asset. In this case, we use the notation S0
n = Bn and S1

n = Sn. N is always a finite time-horizon.

The discounted prices of the assets are denoted by (S̄n), i.e.

S̄kn = Skn/S
0
n.

Definition 4.1 (Trading Strategy) 1. A trading strategy (portfolio) is an Rm+1-valued predictable

and square-integrable process (φn), with φn = (φ0n, . . . , φ
m
n ). φkn denotes the number of shares of

asset k held in (n− 1, n] in the portfolio.

2. The price of the portfolio at time n is

Vn(φ) =
m∑
k=0

φkn S
k
n.

3. A trading strategy φ is self-financing, if for all n

m∑
k=0

φkn S
k
n =

m∑
k=0

φkn+1 S
k
n. (Balancing condition) (4.1)

Proposition 4.2 Let (φn) denote a trading strategy. The following statements are equivalent:

1. (φn) is self-financing.

2. (Vn) = ((φ • S)n), i.e. for all n,

Vn(φ) = V0(φ) +
n∑
k=1

〈φk, Sk − Sk−1〉.
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3. (V̄n) = ((φ • S̄)n), i.e. for all n,

V̄n(φ) = V0(φ) +
n∑
k=1

〈φk, S̄k − S̄k−1〉.

Proof. To establish the equivalence of 1. and 2., we have to prove that

Vn − Vn−1 = 〈φn, Sn − Sn−1〉

is equivalent to (φn) being self-financing. Note that

Vn − Vn−1 = 〈φn, Sn〉 − 〈φn−1, Sn−1〉

and that the balancing condition is

〈φn, Sn−1〉 = 〈φn−1, Sn−1〉.

The equivalence of 1. and 3. can be shown similarly:

V̄n − V̄n−1 = 〈φn, Sn〉/S0
n − 〈φn−1, Sn−1〉/S0

n−1

and therefore

V̄n − V̄n−1 = 〈φn, S̄n − S̄n−1〉+ 〈φn, Sn−1〉/S0
n−1 − 〈φn−1, Sn−1〉/S0

n−1.

Since 1. is the same as

〈φn, Sn−1〉/S0
n−1 = 〈φn−1, Sn−1〉/S0

n−1,

1. is equivalent to 3. 2

Corollary 4.3 Let Q denote a probability distribution such that (S̄n) is a square-integrable mar-

tingale under Q. Then (V̄n(φ)) is a martingale, for all self-financing trading strategies (φn) that

are square-integrable under Q.

Definition 4.4 1. A self-financing strategy is admissible, if there exists a constant c ≥ 0, such

that for all n ≤ N ,

Vn(φ) ≥ −c.

2. An arbitrage strategy is an admissible strategy (φn), such that V0(φ) = 0,

VN (φ) ≥ 0 and P (VN (φ) > 0) > 0. The market model is viable (arbitrage-free, NA), if there exists

no arbitrage strategy.
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No arbitrage is a fundamental assumption in mathematical finance. We aim at deriving a char-

acterization of arbitrage-free markets. This characterization allows to compute prices of contingent

claims, (derivatives, options). The price of a contingent claim depends on the so-called underlying.

Typically, the underlying is traded in a market.

Example 4.5 Bank Account. Typically, the riskless asset or numeraire is a bank account (Bn).

One Euro in time n = 0 gives Bn in n > 0. We assume that B0 = 1 and Bn ≤ Bn+1 for all n. If

the bank account is deterministic with constant (nominal) interest rate r, we have

Bn = ern.

Example 4.6 European Call. The European call gives the holder (the buyer) the right, but not

the obligation, to buy the underlying S at the exercise date (expiration date), N for a price K, the

exercise price (strike price) .

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

(S−K)+

Figure 4.1: Call: Payoff (SN −K)+

Let Cn denote the price (premium) of the option in time n. The contract specifies Cn at n = N :

If ST ≤ K, then the option will not be exercised. If ST > K, then SN is bought for the price K.

We have

CN =

 0 if SN ≤ K
SN −K if SN > K,

Thus

CN = (ST −K)+ = max{SN −K, 0}.

The option is in the money, if Sn > K, at the money, if Sn = K or out of the money, if Sn < K.
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Example 4.7 American Call. An American call is the right to buy the underlying for a price K

at any time in the interval [0, N ]. Again, if τ is the time when the option is exercised,

Cτ = (Sτ −K)+ = max{Sτ −K, 0}.

Example 4.8 European Put. The European put gives the holder the right to sell the underlying

at n = N for the fixed price K.

0 50 100 150 200 250 300

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

(K−S)+

Figure 4.2: Put: Payoff (K − SN )+

Let Pn denote its price at time n. Again, PN is specified by the contract. We have

PN = (K − SN )+ = max{K − SN , 0}.

The American put is the right to sell the underlying for the price K at any time between 0 and N .

Let τ ≤ N be the exercise date, then

Pτ = (K − Sτ )+ = max{K − Sτ , 0}.

The put is in the money, if Sn < K, at the money, if Sn = K and out of the money, if Sn > K.

Example 4.9 Barrier Option. Barriers allow, for instance, to exclude extreme situations and

adapt options accordingly.

(SN −K)+I{Sn≤B for all n≤N}
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is the payoff of a call with a knock-out barrier B. Let

Mn = max{Sn | 0 ≤ n ≤ N}.

The payoff can be written as

(SN −K)+I{MN≤B}.

A further example of a payoff with a barrier is

I{MN>B},

paying one unit, if the underlying is at least once (in the interval [0, N ]) above B.

Example 4.10 Bonds, Interest Models. The building block for interest rate models is the price of

a zero-coupon bond. It pays one unit in t = T . Let Bt(T ) denote its price in t, 0 ≤ t ≤ T . Various

products may be written as linear combinations of zero-coupon bonds. For instance,

C1Bt(T1) + C2Bt(T2) + · · ·+ CnBt(Tn)

is a coupon-paying bond. It pays C1, C2, . . . , Cn at times T1, T2, . . . , Tn.

Example 4.11 Exotic Options. There exists a zoo of contingent claims and options that are

typically traded “over the counter”. For instance, the payoff of an Asian option is(
1

T

∫ T

0
St dt−K

)+

,

it is the payoff of a call on the average price of the asset (St). Other contracts have payoffs such as

(max{St | 0 ≤ t ≤ T} −K)+ , ST−min{St | 0 ≤ t ≤ T},
(

max{St | 0 ≤ t ≤ T} −
1

T

∫ T

0
St dt

)+

.

It is often possible to derive prices or bounds on prices of certain contingent claims given prices

of different assets by arbitrage considerations only, without having to specify a model. A simple

but helpful tool for these parity considerations is the law of one price:

Proposition 4.12 Let an arbitrage free model be given. Then the law of one price (LOOP) holds:

If (Xn) and (Yn) are two assets, such that XN = YN a.s., then for all n = 0, . . . , N , Xn = Yn a.s.

Proof. Suppose, XN = YN , but Xn∗ > Yn∗ with positive probability. An arbitrage strategy is the

following. In n = n∗, if Xn > Yn, sell X and buy Y and put the positive gain (call it ε) into the

bank account. At n = N you have

YN −XN + ε
S0
N

S0
n∗

= ε
S0
N

S0
n∗
> 0.

2
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Example 4.13 Put-Call Parity. Assume that the model, containing a risky asset (Sn) and a

deterministic riskless (Bn) is arbitrage free. Denote by Pn(N,K) and Cn(N,K) the prices of a put

and a call on (Sn) with the same exercise date N and strike price K. Then for all n,

Cn(N,K)− Pn(N,K) = Sn −KBn/BN . (put-call parity)

To see that this parity holds, note that at n = N ,

CN (N,K)− PN (N,K) = (SN −K)+ − (K − SN )+ = SN −K.

The r.h.s. is the value of a portfolio, consisting of one unit of the risky asset and KBn/BN units

of the bank account short (sold).

Example 4.14 Let the price of the asset be S0 = 100, let Bt = ert with r = 0.03. Furthermore

C0(1, 100) = 26.8, P0(1, 100) = 24.5. We have to check whether an arbitrage opportunity exists.

According to the put-call parity, the price of the put should be

C0(1, 100)− S0 +Ke−r = 26.8− 100 + 97.045 = 23.845 < 24.5.

Therefore we buy 1000 calls, sell 1000 puts and 1000 units of the asset and put the difference, 97700,

into the bank.

In n = 1 we have 1000 calls, and are 1000 puts and 1000 assets short and have

97700× e0.03 = 100675.40

on the account. We can or have to buy the assets for a price of 1000 × 100 = 100000. The

gain is 645.40: If S1 > K = 100, the puts expire, we exercise the calls and get 1000 assets. If

S1 ≤ K = 100, the calls expire, the holder of the puts exercises, we have to buy the asset.

Example 4.15 Assume that the model, containing a risky asset (Sn) and a deterministic riskless

(Bn) is arbitrage free. Denote by Pn(N,K) and Cn(N,K) the prices of a put and a call on (Sn)

with exercise date N and strike price K.

CN (N,K) = (SN −K)+ ≥ SN −K

implies

Cn(N,K) ≥ Sn −KBn/BN .

Since Cn(N,K) is always nonnegative, we get a lower bound for the call,

Cn(N,K) ≥ (Sn −KBn/BN )+.

Analogously, we can show that

Pn(N,K) ≥ (KBn/BN − Sn)+.
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Let S0 = 100, Bt = ert with r = 0.03, K = 120. The put P0(1, 120) costs 12.5.

It should cost at least Ke−r−S0 = 16.45. Since the price of the put is too low, we buy puts and

assets S. For 100 assets and 100 puts we pay 100×100+100×12.5 = 11250, which we finance by a

credit from the bank account. In n = 1 we have 100 assets and puts and −11250×e0.03 = −11592.61

in the bank. We can sell the assets for a price of at least 120× 100 gaining at least 407.39.

Example 4.16 Assume that the model, containing a risky asset (Sn) and a deterministic riskless

(Bn) is arbitrage free. Denote by Cn(N,K) the price of a call on (Sn) with exercise date N and

strike price K.

We want to show that if N1 ≤ N2, then

Cn(N1,K) ≤ Cn(N2,K)

for n ≤ N1.

Assume, there exists a n0 ≤ N1 ≤ N2 with Cn0(N1,K) > Cn0(N2,K). In n0, we buy the call

with exercise date N2 and sell the call with exercise date N1. The difference is put into the bank.

We have to distinguish two cases: If SN1 ≤ K, the sold call expires, we have a call and a positive

bank account. If SN1 > K the sold call is exercised, we get K for the asset, K is put into the bank.

In n = N2 we have

−SN2 + (SN2 −K)+ +KBN2/BN1 + (Cn0(N1,K)− Ct0(N2,K))BN2/Bn0 .

Since

−SN2 + (SN2 −K)+ ≥ −K,

we have at least

K(BN2/BN1 − 1) + (Cn0(N1,K)− Cn0(N2,K))BN2/Bn0 > 0.

4.2 No Arbitrage

The following “Fundamental Theorem of Asset Pricing” gives a complete characterization of arbi-

trage free models. Recall that two probability distributions P and P ∗ are equivalent (P ∼ P ∗) if

for all A, P (A) = 0 if and only if P ∗(A) = 0.

Theorem 4.17 (Fundamental Theorem). The market model satisfies NA if and only if there exists

a probability distribution P ∗ on (Ω,F) such that P ∼ P ∗ and (S̄in) is a martingale under P ∗ for all

i = 1, . . . ,m.

Remark 4.18 Let P = {P ∗ | P ∼ P ∗ and (S̄in) is a P ∗-martingale, i = 1, . . . ,m}. The elements

of P are called equivalent martingale measures or risk neutral distributions.
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1. The market model is arbitrage free if and only if P 6= ∅.

2. Let the market model be arbitrage free, i.e. P 6= ∅. Assume a (European) derivative with

exercise date N and payoff h has to be priced. For any P ∗ ∈ P,

c̄n = E∗(h̄ | Fn) (4.2)

gives a (discounted) arbitrage free price.

3. Let P 6= ∅. If P consists of exactly one element P ∗, the (arbitrage free) prices of all derivatives

are unique. If P has more than one element, it has infinitely many elements and the (arbitrage

free) prices of derivatives are typically not unique. The set of all (arbitrage free) prices is

then an interval.

Proof (of Theorem 4.17). First assume that an equivalent martingale measure P ∗ exists. We

show that arbitrage is not possible. Assume, that (Vn) is the value of a portfolio with VN ≥ 0

and P (VN > 0) > 0. Then, since S0
N > 0 and P ∗ ∼ P , we have P ∗(V̄N > 0) > 0. Therefore,

E∗(V̄N ) > 0. Since E∗(V̄N ) = E∗(E∗(V̄N | F0)) = E∗(V0), it is impossible to have V0 = 0 P ∗-a.s.

The proof of the existence of a martingale measure in the case the market model is arbitrage

free is much more complicated. We sketch the proof for the case of a finite probability space only.

Let Ω = {ω1, . . . , ωK}, with F the power set of Ω and P ({ωi}) = pi > 0. In this simple situation,

expectations are scalar products, EP (X) = 〈P,X〉 =
∑K
i=1 piX(ωi), where P = (p1, . . . , pK) and

X = (X(ω1), . . . , X(ωK)).

G

Γ
Γ0

P

Figure 4.3: No Arbitrage
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Denote by G ⊆ RK the set of all gains from self-financing strategies, i.e.

G = {
N∑
n=1

〈φn, S̄n − S̄n−1〉 | (φn) predictable}

and let

Γ = {x ∈ RK | xi ≥ 0, xi > 0 for at least one i}.

Furthermore, let Γ1 = {x ∈ Γ | x1 + · · ·+ xK = 1}. NA is equivalent to Γ ∩ G = ∅.
Let us have a closer look at the structure of Γ, Γ1 and G. G is a subspace of RK , i.e. if G1, G2 ∈ G

and a1, a2 ∈ R, then a1G1+a1G2 ∈ G. Γ is convex, Γ1 is convex and compact (i.e. convex, bounded

and closed).

Therefore, the sets G and Γ1 can be separated by a hyperplane. There exists a P̃ = (p̃1, . . . , p̃K)

in RK , s.t. for all x ∈ Γ1, 〈P̃ , x〉 > 0 and 〈P̃ , G〉 = 0 for all G ∈ G. Let ei denote the unit

vector, that has components 0 except the i-th, which is 1. ei ∈ Γ1 implies 0 < 〈P̃ , ei〉 = p̃i. Let

P ∗ = P̃ /
∑K
i=1 P̃i. P

∗ is a probability distribution and

E∗(G) = 0

for all G ∈ G. If the probability distribution P ∗ satisfies E∗(G) = 0 for all G ∈ G, then (S̄n) is a

martingale under P ∗. 2

4.3 Models

4.3.1 Model of Cox, Ross and Rubinstein

We have a deterministic bank account

Bn = ern

with r ≥ 0 and one risky asset (Sn), a geometric random walk, S0 > 0 is deterministic and for

k ≥ 1,

Sn = S0

n∏
k=1

Zk

with (Zk) i.i.d. and P (Zk = U) = p, P (Zk = D) = 1− p, 0 < p < 1 and and 0 < D < U .

Let us first describe the distribution of (Sn)Nn=0. It is discrete. There are exactly 2N different

paths. These paths (sn)Nn=0 can be written as sn = S0
∏n
k=1 zk with zk ∈ {U,D}. Let πn denote

the number of U ’s in the path up to time n. Then

Sn = S0U
πnDn−πn .

Each path has probability

pπN (1− p)N−πN > 0.
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Therefore, a distribution Q is equivalent to P if and only if each path has a strictly positive

probability under Q.

Proposition 4.19 The CRR-model is arbitrage free if and only if 0 < D < er < U . The mar-

tingale measure P ∗ is then unique. Under P ∗ the process (Sn) is a geometric random walk with

P ∗(Zk = U) = p∗, P ∗(Zk = D) = 1− p∗, where

p∗ =
er −D
U −D

.

Proof. (S̄n) is a geometric random walk with S̄n = S0
∏n
k=1 Z̄k, (Z̄k) i.i.d. with P (Z̄k = Ū) =

p, P (Z̄k = D̄) = 1− p, where Ū = Ue−r and D̄ = De−r. Let P ∗ denote a probability distribution.

(S̄n) is a martingale under P ∗ if and only if

E∗(S̄n | Fn−1) = S̄n−1.

Since S̄n = S̄n−1Z̄n, this is equivalent to

E∗(Z̄n | Fn−1) = 1.

Let p∗n = p∗n(S1, . . . , Sn−1) denote the the conditional probability that Z̄n = Ū , given Fn−1, i.e.

given S1, . . . , Sn−1.

Ūp∗n + D̄(1− p∗n) = 1

holds if and only if

p∗n =
1− D̄
Ū − D̄

(
=
er −D
U −D

)
.

Note that the solution is unique, does not depend on n and not on S1, . . . , Sn−1. Therefore, even

under P ∗, (Sn) and (S̄n) are geometric random walks, i.e. both processes (Zn) and (Z̄n) are i.i.d.

2

Remark 4.20 The Radon-Nikodym derivative is

dP ∗

dP
=

(
p∗

p

)πN (1− p∗

1− p

)N−πN
.

Example 4.21 The structure of the CRR-process, the binomial tree, allows a simple computation

of conditional expectations and therefore of prices of derivatives.

Let U = 1.21, D = 0.88, P (Zn = U) = 0.5, S0 = 100 and er = 1.1. We have to compute the

price of a call with strike K = 100 and exercise time N = 3.

First, we have to compute the equivalent martingale measure. We have

p∗ =
er −D
U −D

=
1.1− 0.88

1.21− 0.88
=

2

3
.
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Figure 4.4: Binomial tree, (Sn)3n=0

To compute the price of the call, we may proceed as follows. Let C̄n denote the discounted price

at time n. Figure 4.4 shows the structure of the binomial tree. In n = 0 we have Sn = 100. In

n = 1 the process is either in the knot 100 × U = 121 or in 100 × D = 88. Each knot has two

successors. The upper knot corresponds to a jump up (a U), the lower to a jump down (a D). The

probability (w.r.t. P ∗) of an up is 2/3, of a down 1/3.

In the next step we compute the price at the exercise time N = 3, where the price is specified by

the contract, i.e. by the payoff given. Note that the option is in the money only in the two upper

knots. C̄3 is in the uppermost knot equal to

e−3r(100U3 − 100) = 58

and in the second knot

e−3r(100U2D − 100) = 21.7.

Results are rounded. Then the tree is filled from right to left. Into each knot the weighted mean of

the successor knots is written. For instance,

C̄2(S2 = 100U2) = p∗C̄3(S3 = 100U3) + (1− p∗)C̄3(S3 = 100U2D)

=
2

3
× 58 +

1

3
× 21.7

= 45.9

Finally one gets C0 = C̄0 = 26.8.
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Figure 4.5: C̄N
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Figure 4.6: C̄N−1

Example 4.22 The martingale measure and therefore the prices of derivatives depend on the size

of the jumps and on the interest rate only, not on the physical probability, especially not on the

probability that the option ends in the money.

Let U = 1.21, D = 0.99, er = 1.1, let S0 = 100 and K = 220 the strike price of a call that
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Figure 4.7: C̄0

expires in N = 5. The option is exercised only if there are no downs, because

100× 1.214 × 0.99 = 212.22 < K.

We have Ū = 1.21/1.1 = 1.1, D̄ = 0.99/1.1 = 0.9 and

p∗ =
1− 0.9

1.1− 0.9
=

0.1

0.2
=

1

2
.

The price of the option is

C0 = p∗5e−Nr(S0U
5 −K) = 0.764.

Let P (Sn/Sn−1 = U) = p. If p = 0.01, then the probability that the option is exercised, is

p5 = 10−10. If p = 0.99 it is p5 = 0.951.

4.3.2 Lognormal Returns

The lognormal model is a single period version of the famous model of Black and Scholes, a

continuous time model. To derive the results in a “general form”, we consider the two fixed

time points t < T .

The bank account is deterministic, Bu = eru, u ∈ {t, T}. We have one risky asset, (Su). St > 0

is the spot price (deterministic, i.e. known at t) and ST the terminal value, it is random. We

assume that log(ST /St) ∼ N((µ− σ2/2)(T − t), σ2(T − t)). Then

ST = St exp
(
(µ− σ2/2)(T − t) + σ

√
T − tZ

)
,

S̄T = S̄t exp
(
(µ− r − σ2/2)(T − t) + σ

√
T − tZ

)
,
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with Z ∼ N(0, 1).

Proposition 4.23 1.

E(S̄T | S̄t) = S̄te
(µ−r)(T−t).

(S̄u) is a martingale (under P ) if and only if r = µ.

2. Let λ = −(µ− r)
√
T − t/σ and define P ∗ ∼ P by its Radon-Nikodym derivative

dP ∗

dP
= eλZ−λ

2/2.

(S̄u) is a martingale under P ∗, i.e. E∗(S̄T | S̄t) = S̄t.

Proof. Remember that for Z ∼ N(0, 1), E(esZ) = es
2/2. Thus

E(S̄T | S̄t) = E(S̄te
(µ−r−σ2/2)(T−t)+σ

√
T−tZ)

= S̄te
(µ−r−σ2/2)(T−t)E(eσ

√
T−tZ)

= S̄te
(µ−r−σ2/2)(T−t)eσ

2(T−t)/2 = S̄te
(µ−r)(T−t).

Note that, again since E(eλZ) = eλ
2/2, E(dP ∗/dP ) = 1 and therefore defines an equivalent

distribution P ∗. We show that under P ∗, Z ∼ N(λ, 1). The characteristic function is

ϕ∗Z(s) = E∗(eisZ) = E(eisZeλZ−λ
2/2)

=

∫
eiszeλz−λ

2/2 1√
2π
e−z

2/2 dz

=

∫
eisz

1√
2π
e−(z−λ)

2/2 dz

= eisλ−s
2/2.

Let X = −λ+ Z. Then X ∼P ∗ N(0, 1) and since

S̄T = S̄te
(µ−r−σ2/2)(T−t)+σ

√
T−tZ = S̄te

−σ2/2(T−t)+σ
√
T−tX ,

E∗(S̄T | S̄t) = S̄t.

2

Remark 4.24 There exist infinitely many equivalent martingale measures for the lognormal model

(see chapter 3). However, in the continuous time model the martingale measure is unique, it is the

measure P ∗ of Proposition 4.23.

Proposition 4.25 (Pricing of contingent claims). Let a contingent claim (Ct, CT ) be defined by

its payoff CT = h(ST ). An arbitrage free price is

C̄t = E∗(h̄(ST )) = F̄ (St),
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where

F (x) =

∫ ∞
−∞

e−r(T−t)h(xe(r−σ
2/2)(T−t)+σ

√
T−tz)φ(z) dz. (4.3)

φ(z) is the density of the standard normal distribution.

Example 4.26 (Put). To derive “a formula” for the price of the put we have to compute in closed

form

F (x) =

∫
e−r(T−t)(K − xe(r−σ2/2)(T−t)+σ

√
T−tz)+φ(z)dz.

First, we have to identify the interval an which the integrand is strictly positive. We abbreviate the

time to expiration T − t by θ. We have

K − xe(r−σ2/2)θ+σ
√
θz > 0

iff

z < − log(x/K) + (r − σ2/2)θ

σ
√
θ

=: −d2(x).

Then

F (x) =

∫ −d2(x)
−∞

e−rθ(K − xe(r−σ2/2)θ+σ
√
θz)φ(z)dz

= e−rθKΦ(−d2(x))− x
∫ −d2(x)
−∞

e−θσ
2/2+σ

√
θz 1√

2π
e−z

2/2dz

= e−rθKΦ(−d2(x))− x
∫ −d2(x)
−∞

1√
2π
e−(z−

√
θσ)2/2dz

= e−rθKΦ(−d2(x))− x
∫ −d2(x)−√θσ
−∞

1√
2π
e−z

2/2dz

= e−rθKΦ(−d2(x))− xΦ(−d1(x)),

with

d1(x) =
log(x/K) + (r + σ2/2)θ

σ
√
θ

, (4.4)

d2(x) =
log(x/K) + (r − σ2/2)θ

σ
√
θ

. (4.5)

Figure 4.9 shows the price of the put for t ∈ [0, 1].

Example 4.27 (Call) The Put-Call-parity simplifies the computation. Ct(T,K, St)+Ke−r(T−t) =

Pt(T,K, St) + St (and θ = T − t) implies Ct(T,K, St) = F (St) with

F (x) = −Ke−rθ + e−rθKΦ(−d2(x))− xΦ(−d1(x)) + x

= x(1− Φ(−d1(x)))−Ke−rθ(1− Φ(−d2(x)))

= xΦ(d1(x))−Ke−rθΦ(d2(x)). (4.6)

Figure 4.10 shows the price of the call in the interval t ∈ [0, 1].
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Table 4.1: “Greek Variables”

Call Put

Price F (x) xΦ(d1(x))− e−rθKΦ(d2(x)) e−rθKΦ(−d2(x))− xΦ(−d1(x))

Delta ∂F (x)
∂x Φ(d1(x)) −Φ(−d1(x))

Gamma ∂2F (x)
∂x2

φ(d1(x))

xσ
√
θ

φ(d1(x))

xσ
√
θ

Vega ∂F (x)
∂σ e−rθK

√
θφ(d2(x)) e−rθK

√
θφ(d2(x))

Rho ∂F (x)
∂r e−rθθKΦ(d2(x)) −e−rθθKΦ(−d2(x))

The sensitivity of the prices of options w.r.t. the underlying or the parameters σ and r are

determined by the so-called Greeks, i.e. the partial derivatives.

Example 4.28 The Delta is the sensitivity of the price w.r.t. the underlying,

∆ =
∂

∂x
F (x).

In the case of a call,

∆(x) = Φ(d1(x)).

The fluctuation of the Delta is the Gamma:

Gamma =
∂

∂x
∆(x).

The partial derivatives with respect to σ and r are called the Vega and Rho.

Example 4.29 Binomial models are often used to approximate the lognormal model. This example

discussed briefly the calibration, i.e. the choice of the parameters U , D and p.

Let Ŝ0 = St and let ŜN = Ŝ0
∏N
n=1 Zn be an approximation to ST . We have

E(ST | St) = Ste
µ(T−t) and V(logST ) = σ2(T − t).

We choose U , D and p to match these moments: Let U = ea and D = 1/U = e−a. We have

E(ŜN | Ŝ0) = Ŝ0
(
pea + (1− p)e−a

)n
and V(log ŜN ) = 4a2p(1− p)n.

The equations (
pea + (1− p)e−a

)n
= eµ(T−t)

4a2p(1− p)n = σ2(T − t)

may be simplified to

p =
eµ(T−t)/n − e−a

ea − e−a
,

a =
σ
√
T − t

2p(1− p)
√
n
.
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Note that for n→∞, p→ 1/2 and a ≈ σ
√
T − t/

√
n.
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4.4 Hedging

We assume that the market model is arbitrage free.

Definition 4.30 A claim with payoff CN is attainable, if there is a self-financing portfolio φ such

that

VN (φ) = CN .

Proposition 4.31 Let the claim CN be attainable. Then E∗(C̄N ) does not depend on the choice

of P ∗ ∈ P.

Proof. Let (Vn) denote the value of the portfolio that replicates CN . The LOOP implies that (Vn)

is unique. Then for all P ∗ ∈ P,

E∗(C̄N ) = E∗(V̄N ) = V0.

2

Remark 4.32 An attainable claim has a unique arbitrage free price.

Definition 4.33 A market model is complete, if every (square-integrable) claim is attainable.

Theorem 4.34 A viable market is complete if and only if the equivalent martingale measure is

unique.

Example 4.35 Since the CRR-model has a unique martingale measure, it is complete. To find

the replicating (hedging, duplicating) strategy (φn) = (φ0n, φ
1
n) of a claim CN , we first identify (φ1n).

Let (Vn) denote the value of the replicating portfolio. φ1n is determined at time n− 1. Note that

V̄n = φ0n + φ1nS̄n.

Thus

V̄n − φ1nS̄n = φ0n.

Since the r.h.s. is predictable, the l.h.s. is also predictable. Therefore Vn − φ1nSn is predictable

and depends on Sn−1, not on Sn. Thus,

Vn(Sn−1U)− φ1nSn−1U = Vn(Sn−1D)− φ1nSn−1D

and

φ1n =
Vn(Sn−1U)− Vn(Sn−1D)

Sn−1U − Sn−1D
.

Finally, V̄n = φ0n + φ1nS̄n gives φ0n. Note that φ0n can alsobe drived from

V̄n−1 = φ0n + φ1nS̄n−1.
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Example 4.36 The trinomial process is a geometric random walk, Sn = S0
∏n
k=1 Zk, with Zk ∈

{U,M,D}, where D < M < D are constants. The riskless asset is deterministic, Bn = ern. Let

pU = P (Zk = U), pM = P (Zk = M), pD = P (Zk = D) and assume that these probabilities are

strictly positive. Let Ū = Ue−r, M̄ = Me−r, D̄ = De−r.

To find an equivalent martingale measure P ∗, let p∗n(U) = p∗n(U ;S1, . . . , Sn−1) denote the prob-

ability that Sn = Sn−1U conditional on S1, . . . , Sn−1. Similarly define p∗n(M) and p∗n(D). These

probabilities are the strictly positive solutions of

p∗n(U) + p∗n(M) + p∗n(D) = 1

p∗n(U)Ū + p∗n(M)M̄ + p∗n(D)D̄ = 1 (martingale property).

If U > er > D there are infinitely many solutions. These solutions may also depend on n and on

S1, . . . , Sn−1.
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Figure 4.8: Trinomial tree

4.5 Exercises

Exercise 4.1 The price of a call is 57.1. A put with the same exercise price K = 120 and

expiration date T = 2 costs 25.5, the underlying costs 130. The interest rate is 0.05. Find an

arbitrage opportunity!

Exercise 4.2 In an arbitrage-free market a call and a put cost 57.1 and 35.5 resp., the underlying
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120, the exercise price is K = 120 and T = 1 is the expiration date for both the call and the put.

Compute the constant interest rate.

Exercise 4.3 Let an arbitrage-free market consisting of an asset (Sn) and a deterministic riskless

asset (Bn) be given. Let Pn(N,K) and Cn(N,K) denote the price of the put and the call at time

n. K and N are the exercise price and the expiration date. Prove that for K ≤ K ′,

Cn(N,K ′) ≤ Cn(N,K) ≤ Cn(N,K ′) + (K ′ −K)Bn/BN ,

Pn(N,K) ≤ Pn(N,K ′) ≤ Pn(N,K) + (K ′ −K)Bn/BN .

Exercise 4.4 Let an arbitrage-free market consisting of an asset (Sn) and a deterministic riskless

asset (Bn) be given. Let Pn(N,K) and Cn(N,K) denote the price of the put and the call at time n.

K and N are the exercise price and the expiration date. Let α ∈ [0, 1] and K = αK1 + (1− α)K2.

Prove that

Cn(N,K) ≤ αCn(N,K1) + (1− α)Cn(N,K2),

Pn(N,K) ≤ αPn(N,K1) + (1− α)Pn(N,K2).

Exercise 4.5 (Binary Option). A binary option has the payoff h = IA(SN ), where A ⊆ R is

measurable (for instance an interval). Derive a parity relation for the European options with payoff

IA(SN ) and IAc(SN ).

Exercise 4.6 Derive a parity relation for calls, calls with knock-out barrier B and calls with knock-

in barrier B.

Exercise 4.7 Show that if P, the set of equivalent martingale measures, contains more than one

element, it contains infinitely many.

Hint. Let P0, P1 ∈ P. Show that for all 0 < α < 1, Pα = (1− α)P0 + αP1 ∈ P.

Exercise 4.8 Prove that for any predictable process (φ1n) and any F0-measurable V0 there exists

a unique predictable process (φ0n) such that the strategy (φn) = ((φ0n, φ
1
n)) is self-financing and its

initial value is V0.

Exercise 4.9 Consider the following modification of the CRR-model: Let S0 > 0 be deterministic

and Sn = Sn−1Zn with (Zn) a sequence of independent random variables. Let Bn = er1+···+rn,

B0 = 1, rn deterministic, and Zn ∈ {Un, Dn}, (Un), (Dn) are nonrandom sequences. Derive the

martingale measure.

Exercise 4.10 Let Ω = {ω1, ω2, ω3}, P ({ωi}) = 1/3, B0 = 1, B1 = 1.1, B2 = 1.2, S0 = 2,

S1(ω1) = 2.2, S1(ω2) = S1(ω3) = 1.5, S2(ω1) = 2.4, S2(ω2) = 2.0, S2(ω3) = 2.2. Show that

42



1. The model allows arbitrage.

2. There exists a probability distribution Q, such that (S̄n)2n=0 is a Q-martingale.

3. There exists no equivalent martingale measure.

Exercise 4.11 Let X0, Z1, . . . , ZN , U1, . . . , UN be independent, (Un) positive and integrable,

P (Zn = 1) = P (Zn) = −1) = 1/2. Let Xn = X0 + U1Z1 + · · ·+ UnZn.

Show that (Xn) is a martingale w.r.t. its history, but not w.r.t. the history of (Yn) = ((Xn, Zn+1)).

Discuss arbitrage opportunities (assume the interest rate is 0 and Xn is the price of an asset)

of an investor A who observes (Xn) and of an investor B who knows additionally whether the asset

moves up or down. What are the opportunities for investor C who observes (Xn, Un+1)?

Exercise 4.12 Let (Sn) be a CRR-process with P (Sn+1/Sn = U) = p = 0.7, U = 1.1, D = 0.9,

S0 = 100, and nominal interest rate r = 0. Compute for the call with strike price K = 100 and

expiration time N = 4 the prices and the probability that the options end in the money. Compute

the replicating portfolio φ3 = (φ03, φ
1
3) for S2 = 99.

Exercise 4.13 Let (Sn) be a CRR-process with P (Sn+1/Sn = U) = p = 0.7, U = 1.1, D = 0.9,

S0 = 100, and nominal interest rate r = 0. Compute for the binary option that pays one Euro

if S4 ∈ [100, 130], the price and the probability that the option ends in the money. Compute the

replicating portfolio φ3 = (φ03, φ
1
3) for S2 = 99.

Exercise 4.14 Let (S0, S1) be a trinomial process (one-period model), with U = 1.1,M = 1, D =

0.9 and interest rate r = 0. Let S0 = 100 and P (S1 = 110) = P (S1 = 100) = P (S1 = 90) = 1/3.

1. Find all equivalent martingale measures.

2. Compute all arbitrage free prices of a call with strike price K = 100.

3. Let the price of a binary option, that pays 1 if S1 > 0.95 cost 0.75. Compute the price of the

call with strike price K = 100.

Exercise 4.15 Let (Sn) and (Xn) denote two assets. The option with payoff (SN −XN )+ allows

to exchange asset X for asset S in n = N . Assume that the two processes are independent CRR-

processes with S0 = X0 = 100 and the same jump heights U = 1.1, D = 0.8. Furthermore assume

that for both processes p = 0.7 and that er = 1. Let N = 1.

Is the model arbitrage free? Is the martingale measure unique? Compute (all) prices.

Exercise 4.16 Compute for the lognormal model the price of a binary option, which pays 1 Euro

if ST ≤ K.
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Exercise 4.17 Derive the Greeks for the Call in the lognormal model.

Exercise 4.18 Let a European option with expiration date T have the payoff h(ST ), with

h(x) =


0 if x ≤ K1

x−K1 if K1 < x ≤ K2

K2 −K1 if x > K2.

.

K1 < K2 are constants. Derive the price at t for the lognormal model.
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Figure 4.9: Put price surface, K = 100, σ = 0.4, r = 0.05
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Chapter 5

American Options

5.1 The Problem

Let a multi-period financial model be given:

� (Ω,F , P ) a probability space.

� (Fn)Nn=0 a filtration F0 ⊆ F1 ⊆ · · · ⊆ FN ⊆ F , N a finite horizon.

� An adapted process (Sn)Nn=0, Sn = (S0
n, S

1
n, . . . , S

m
n ). (S0

n) is the numéraire (bank account),

(Skn), k > 0 the underlyings, risky assets.

� P ∗ ∼ P the martingale measure, i.e. (S̄kn) are P ∗-martingales, where S̄kn = Skn/S
0
k is the

discounted k-th underlying. We assume that (discounted) prices of European claims with

payoff Z in n = N are given by V̄n = E∗(Z̄ | Fn).

The American option is defined by its payoffs (Zn)Nn=0, it can be exercises at any time between

0 and N . If it is exercised at time n, the payoff is Zn.

Let m = 1, Sn = S1
n, Bn = S0

n.

� Zn = (Sn −K)+ American call.

� Zn = (K − Sn)+ American put.

� Zn = bnICn(Sn) American binary option.

1. What is the price of an American option? For instance from the sellers perspective?

2. Choice of an optimal exercise time? Let T0,N denote the class of stopping times with values

in {0, 1, . . . , N}. Choose T ∈ T0,N that maximizes E∗(Z̄T ) (among stopping times in T0,N ).

3. If the market is complete, how can American options be hedged?
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5.2 Prices

Let (Xn)Nn=0 be adapted and let T denote a stopping time. (XT
n )Nn=0, denotes the process stopped

at T , it is defined to be (XT (ω)∧n(ω))Nn=0, i.e. on {T = k},

XT
n =

 Xk if n ≥ k,
Xn if n < k.

Proposition 5.1 If (Xn)Nn=0 is a martingale (supermartingale, submartingale), the process (XT
n )Nn=0

is a martingale (supermartingale, submartingale).

Proof. (XT
n )Nn=0 is a martingale transform,

XT
n = X0 +

n∑
k=1

I{T≥k}(Xk −Xk−1).

Therefore, it is a martingale, if (Xn)Nn=0 is (see chapter 1). Similarly, if (Xn)Nn=0 is a supermartingale,

then

E(XT
n | Fn−1) = XT

n−1 + E(I{T≥n}(Xn −Xn−1) | Fn−1)

= XT
n−1 + I{T≥n}E(Xn −Xn−1 | Fn−1)

= XT
n−1 + I{T≥n}(E(Xn | Fn−1)−Xn−1)

≤ XT
n−1,

since E(Xn | Fn−1) ≤ Xn−1 and I{T≥n} ≥ 0. 2

Let (Z̄n) denote the (discounted) payoff and (Ūn) the (discounted) price of the American claim.

At time n, the seller of the options needs to have at least Z̄n, if the buyer exercises, or, if the

buyer does not exercise, the amount necessary to generate Ūn+1 at time n+ 1, i.e. E∗(Ūn+1 | Fn).

Therefore

Ūn ≥ max{Z̄n,E∗(Ūn+1 | Fn)}.

Definition 5.2 Let (Z̄n) be adapted. Define (Ūn) recursively by

Ūn =

 Z̄N if n = N,

max{Z̄n,E∗(Ūn+1 | Fn)} if 0 ≤ n < N.

(Ūn) is called the Snell envelope of (Z̄n).

Proposition 5.3 The Snell envelope (Ūn) is the smallest supermartingale dominating (Z̄n).
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Proof. Obviously, (Ūn) is a supermartingale and Ūn ≥ Z̄n for all n. To show that it is the smallest,

let (V̄n) denote another supermartingale dominating (Z̄n). We have to show that Ūn ≤ V̄n.

Since ŪN = Z̄N and V̄N ≥ Z̄N , we have ŪN ≤ V̄N . Now suppose, that the statement holds for

n+ 1, n+ 2, . . . , N . Then

V̄n ≥ E∗(V̄n+1 | Fn) ≥ E∗(Ūn+1 | Fn).

and V̄n ≥ Z̄n and therefore

V̄n ≥ max{Z̄n,E∗(Ūn+1 | Fn)} = Ūn.

2

We define the discounted price of the American claim to be the Snell envelope of the discounts

payoffs.

5.3 Optimal Exercise Times

Let T ∈ T0,N be a stopping time. Note that

ŪT = ŪTN .

Since (Ūn) is a supermartingale, we have

E∗(Ū0) = E∗(ŪT0 ) ≥ E∗(ŪTN ) = E∗(ŪT ) ≥ E∗(Z̄T ).

Thus,

max
T∈T0,N

E∗(Z̄T ) ≤ E∗(Ū0).

We show that there is a stopping time T for which E∗(Z̄T ) = E∗(Ū0). Therefore, a stopping time

T is optimal if and only if E∗(Z̄T ) = E∗(Ū0). Furthermore, note that for an optimal stopping time,

1. if we stop at T = n, then Z̄n = Ūn, and thus Z̄n ≥ E∗(Ūn+1 | Fn), i.e. stopping when

Z̄n < E∗(Ūn+1 | Fn) is not optimal,

2. if E∗(Ū0) = E∗(ŪT ), then the stopped supermartingale (ŪTn ) is in fact a martingale.

Let Ūn = Mn−An denote the Doob decomposition of the supermartingale (Ūn) into a martingale

(Mn) and an increasing predictable process (An). We define the minimal and the maximal optimal

stopping time:

Tmin = min{n | Z̄n = Ūn}, (5.1)

Tmax = max{n | An = 0}. (5.2)

Note that Tmax = min{n | An+1 > 0} is a stopping time, since (An) is predictable.
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Theorem 5.4 (a) Tmin and Tmax are optimal stopping times.

(b) A stopping time T is optimal, iff Z̄T = ŪT and (ŪTn ) is a martingale.

(c) For all optimal stopping times T , Tmin ≤ T ≤ Tmax.

Proof. (a) Let T = Tmin.

ŪT = Ū0 +
N∑
k=1

I{T≥k}(Ūk − Ūk−1)

and Ūk−1 = E∗(Ūk | Fk−1) on {k ≤ T} implies

E∗(I{T≥k}(Ūk − Ūk−1)) = E∗(I{T≥k}(Ūk − E∗(Ūk | Fk−1)) = 0

and therefore E∗(ŪT ) = E∗(Ū0), i.e. Tmin is optimal.

The definition of Tmax implies that ŪTmax = MTmax, which implies

E∗(ŪTmax) = E∗(MTmax) = E∗(M0) = E∗(Ū0).

(b) From

E∗(Ū0) ≥ E∗(ŪT ) ≥ E∗(Z̄T ) = E∗(Ū0)

we conclude that Z̄T = ŪT a.s. and E∗(ŪTn+1 | Fn) = ŪTn .

(c) (b) implies that optimal stopping times T satisfy Z̄T = ŪT and therefore T ≥ Tmin. Assume,

P (T > Tmax) > 0. Then ŪT < MT with positive probability and thus

E∗(ŪT ) < E∗(MT ) = E∗(M0) = E∗(Ū0),

i.e. T is not optimal. 2

Remark 5.5 Although for all optimal stopping times T , Tmin ≤ T ≤ Tmax, in the general case

not all stopping times between Tmin and Tmax are optimal!

5.4 Call Options and Examples

Let (Ūn) denote the price of an American claim with payoff (Z̄n) and (ūn) the price of the European

claim with payoff Z̄N . Note that (ūn) is a martingale. If ūn ≥ Z̄n for all n, then ūn ≥ Ūn for all n

and thus ūn = Ūn.

Example 5.6 The prices of the European and the American call options are the same (if no

dividends are paid). Denote the prices by c̄n and C̄n. We assume that the bank account (Bn)

is nondecreasing. We have

c̄n = E∗(
1

BN
(SN −K)+ | Fn)

= E∗((S̄N −K/BN )+ | Fn).
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Since

(S̄N −K/BN )+ ≥ S̄N −K/BN ≥ S̄N −K/Bn

we get

c̄n ≥ E∗(S̄N −K/Bn | Fn)

= S̄n −K/Bn.

Furthermore, c̄n ≥ 0, and therefore

c̄n ≥ (S̄n −K/Bn)+ = Z̄n.

Example 5.7 Figure 5.1 shows the binomial tree of a CRR-process (Sn)15n=0 with S0 = 20. We

have U = 1.05, D = 0.9 and r = 0. The price of an American claim with payoff

Zn =


0 if Sn ≤ 16

Sn − 16 if 16 < Sn < 25

9 if Sn ≥ 25

has to be computed. This claim is equivalent to the difference of two calls with strike prices 16 and

25. A path starts at the root and runs through the tree from left to right. There are three kind

of knots: Blue knots are continuation knots, here Un > Zn. If the path reaches such a knot, the

option is not exercised. The remaining knots are green, they are in the exercise region. Here we

have Un = Zn. If the path reaches such a knot, the option may be exercised. If the green knot is

additionally labeled with a red circle, the maximal optimal stopping time is reaches, the option has

to be exercised.

The price of the option is U0 = 4.6020.

5.5 Exercises

Exercise 5.1 Prove that if (Xn)∞n=0 is a supermartingale, then for all n ≥ 0, E(X0) ≥ E(Xn)

holds.

Exercise 5.2 Let the bank account be constant, Bn = 1. Show that the prices of the American and

the European put are the same. Hint: Use Jensen’s inequality.

Exercise 5.3 Consider the CRR-model with “up” = 1.21, “down” = 0.99, Bn = 1.1n, S0 = 1 and

N = 4. Find the price of the American claim with discounted payoff Z̄n = 1 if Sn ≤ 0.985 or

1.3 ≤ Sn ≤ 2 and Z̄n = 0 in all other cases. Compute (Z̄n), (Ūn), (E∗(Un+1 | Fn)), (An), Tmax

and Tmin.
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Figure 5.1: Claim C16 − C25
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Chapter 6

Brownian Motion and Boundary

Crossing Probabilities

6.1 Definition, Properties and Related Processes

Let (Ω,F , P ) be a probability space. A stochastic process in continuous time (Xt)0≤t<∞ is a

collection of random variables Xt : (Ω,F)→ (R,B).

Definition 6.1 A stochastic process (Wt)0≤t<∞ is called a Brownian motion if

1. W0 = 0,

2. paths t 7→Wt(ω) are continuous a.s.,

3. for all 0 < t1 < t2 < · · · < tn the increments Wt1, Wt2−Wt1, . . .Wtn−Wtn−1 are independent

and normally distributed with Wti −Wti−1 ∼ N(0, ti − ti−1).

The Brownian motion is also called Wiener process.

Proposition 6.2 Let (Wt) be a Brownian motion. Then

1. (Wt) is Gaussian process with E(Wt) = 0 and Cov(Ws,Wt) = s ∧ t.

2. (Wt) is a martingale.

3. (W 2
t − t) is a martingale.

Remark 6.3 A process (Xt) is Gaussian, if for all t1, . . . , tn, the distribution of (Xt1 , . . . , Xtn) is

Gaussian. To check the distribution of a Gaussian process, it is sufficient to check the distribution

of (Xs, Xt) for all s, t, i.e. to check E(Wt) and Cov(Ws,Wt).
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Figure 6.1: Paths of Brownian motion

Proof. Let s ≤ t. Wt −Ws is independent of Fs = σ(Wu, u ≤ s).
1. (Wt) has independent normally distributed increment. Therefore it is a Gaussian process.

E(Wt) = 0 by definition. It follows that Cov(Ws,Wt) = E(WsWt). Furthermore

E(Ws(Wt −Ws)) = 0. Then

E(WsWt) = E(Ws(Wt −Ws +Ws))

= E(Ws(Wt −Ws)) + E(W 2
s )

= 0 + s = s.

2. Since for Wt −Ws is independent of Fs = σ(Wu, u ≤ s), we have

E(Wt | Fs) = E(Wt −Ws +Ws | Fs) = E(Wt −Ws | Fs) +Ws = Ws.

3. We have

(W 2
t − t)− (W 2

s − s) = (Wt −Ws)
2 + 2Ws(Wt −Ws)− (t− s)
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and

E((Wt −Ws)
2 + 2Ws(Wt −Ws)− (t− s) | Fs) = E((Wt −Ws)

2 | Fs)

+2E(Ws(Wt −Ws) | Fs)− (t− s)

= E((Wt −Ws)
2) + 2WsE(Wt −Ws | Fs)− (t− s)

= t− s+ 0− (t− s) = 0.

2

The paths of the Brownian motion are continuous. However, with probability 1, they are

nowhere differentiable and the length of the paths on each finite interval is not finite.

Proposition 6.4 Let (Wt) be a Brownian motion. Then, for every t > 0 and every sequence of

0 = tn0 < tn1 < · · · < tnn = t of partitions of [0, t] with limn→∞maxi≤n |tni−1 − tni | = 0,

n∑
i=1

(Wtni
−Wtni−1

)2 →P t.

Cf. Proposition 6.2. The quadratic variation of the Brownian motion is deterministic and equals

the identity, Q(t) = t.

Proof. Let

Qn(t) =
n∑
i=1

(Wtni
−Wtni−1

)2.

Qn(t) is a random variable. We have to show that for all ε > 0, limn→∞ P (|Qn(t) − t| > ε) = 0.

We apply Chebyshev’s inequality:

P (|Qn(t)− E(Qn(t))| > ε) ≤ σ2(Qn(t))

ε2
.

We have

E(Qn(t)) =
n∑
i=1

E((Wtni
−Wtni−1

)2) =
n∑
i=1

(tni − tni−1) = t

and

σ2(Qn(t)) =
n∑
i=1

σ2((Wtni
−Wtni−1

)2) =
n∑
i=1

2(tni − tni−1)2

and therefore

σ2(Qn(t)) ≤ 2 max
i≤n
|tni − tni−1|

n∑
i=1

(tni − tni−1) = 2 max
i≤n
|tni − tni−1|t→ 0.

2

Definition 6.5 Let (Wt) be a Brownian motion, µ, x0 ∈ R, σ, s0 > 0.
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1. The generalized Brownian motion (Xt)0≤t<∞ is defined by Xt = x0 + µt+ σWt.

2. The geometric Brownian motion (St)0≤t<∞ is the process St = s0e
µt+σWt.

3. A Brownian bridge (Ut)0≤t≤1 is a Gaussian process with continuous paths and E(Ut) = 0 and

Cov(Us, Ut) = s(1− t) for 0 ≤ s ≤ t ≤ 1.

6.2 First Exit Times

6.2.1 Linear One-Sided Boundaries

Let (Wt) be a Brownian motion with (Ft) its filtration. Let T > 0 a a finite or infinite time-horizon,

a, b : [0, T ] → R continuous with a(t) ≤ b(t) for all t ∈ [0, T ] and a(0) ≤ 0 ≤ b(0). a and b are the

lower - and the upper boundary. We consider the boundary crossing time

τ = inf{t ≥ 0 |Wt ≥ b(t)} (one-sided case),

or

τ = inf{t ≥ 0 |Wt ≥ b(t) or Wt ≤ a(t)} (two-sided case).

τ is a stopping time, also called the first exit time or the first passage time. The corresponding

boundary crossing probabilities are

P (b ;T ) = P (Wt ≥ b(t) for a t ∈ [0, T ]) , (one-sided case) (6.1)

P (a, b ;T ) = P (Wt ≥ b(t) or Wt ≤ a(t) for a t ∈ [0, T ]) . (two-sided case) (6.2)

Note that P (b ;T ) = P (τ ≤ T ). In the one-sided case the distribution of τ is related to the

distribution of sup0≤s≤t(Ws − b(s)):

P (τ ≤ t) = P (Ws ≥ b(s) for an s ∈ [0, t])

= P (Ws − b(s) ≥ 0 for an s ∈ [0, t])

= P

(
sup
0≤s≤t

(Ws − b(s)) ≥ 0

)
.

Let us consider the one-sided case with either a constant boundary b(t) = α or a linear boundary

b(t) = α+ βt, where α > 0. We denote the boundary crossing time τ by τα or τα,β to indicate the

constant or the linear problem. Furthermore, define

W ∗t = sup
0≤s≤t

Wt.

Theorem 6.6 Let α ≥ 0. Define Φ̄(x) = 1− Φ(x). Then

P (W ∗t ≥ α) = 2Φ̄(α/
√
t). (6.3)
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Proof. To derive the law of W ∗t , we apply the following reflection principle (for a proof see

Proposition 6.8): Define for a path (Wt(ω)) that crosses α its reflection at α W̃t(ω) as W̃t(ω) =

Wt(ω) for t ≤ τ and W̃t(ω) = α− (Wt(ω)−α) = 2α−Wt(ω) for t > τ . τ denotes the first crossing

time of the boundary α. Then the events {Wt ≤ α and W ∗t ≥ α} and {W̃t ≥ α} have the same

probability. Note that (W̃t) is again a Brownian motion. Therefore P (W̃t ≥ α) = P (Wt ≥ α).

Assume that this reflection principle holds. Then, since {Wt ≥ α} ⊆ {W ∗t ≥ α},

P (W ∗t ≥ α) = P (W ∗t ≥ α,Wt > α) + P (W ∗t ≥ α,Wt ≤ α)

= P (W ∗t ≥ α,Wt ≥ α) + P (W ∗t ≥ α,Wt ≤ α)

= P (Wt ≥ α) + P (Wt ≥ α)

= 2P (Wt ≥ α) = 2Φ̄(α/
√
t).

2
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Figure 6.2: Paths of Brownian motion

For the proof of the reflection principle we need the following lemma.
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Lemma 6.7 Let f be bounded and measurable and define g(s) = E(f(Ws + α)). Then

E(f(Wt)I{τα≤t}) = E(g(t− τα)I{τα≤t}).

Proof. We have

E(f(Wt)I{τα≤t}) = E(f(Wt −Wτα +Wτα)I{τα≤t})

= E(f(Wt −Wτα + α)I{τα≤t})

Approximate τα by a sequence of stopping times τn that have only countably many values (tn,i)
∞
i=1

s.t. τn ↓ τα. For such stopping times we have

E(f(Wt −Wτn + α)I{τn≤t}) =
∑

i: tn,i≤t
E(f(Wt −Wtn,i + α)I{τn=tn,i}).

Note that Wt−Wtn,i has the same distribution as Wt−tn,i and is independent of τn (strong Markov

property). Therefore we get∑
i: tn,i≤t

E(f(Wt −Wtn,i + α)I{τn=tn,i}) =
∑

i: tn,i≤t
E(g(t− tn,i)I{τn=tn,i})

= E(g(t− τn)I{τn≤t})

→ E(g(t− τα)I{τα≤t}).

2

Proposition 6.8 (Reflection Principle). Let f be bounded and measurable. Then

E(f(Wt)I{τα≤t}) = E(f(2α−Wt)I{τα≤t}).

Proof. Note that E(f(Ws +α)) = E(f(−Ws +α)) and apply Lemma 6.7. Let (W̃t) be a Brownian

motion independent of (Wt).

E(f(Wt)I{τα≤t}) = E(E(f(W̃s + α) | s = t− τα)I{τα≤t})

= E(E(f(−W̃s + α) | s = t− τα)I{τα≤t})

= E(f(−(Wt −Wτα) + α)I{τα≤t})

= E(f(2α−Wt)I{τα≤t}).

2

Theorem 6.9 (Joint distribution of Wt and W ∗t ). (a) Let α ≥ 0, µ ≤ α.

P (Wt ≤ µ,W ∗t ≤ α) = P (Wt ≤ µ)− P (Wt ≥ 2α− µ) (6.4)

P (W ∗t ≤ α) = 2P (Wt ≤ α)− 1 (6.5)
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(b) (Wt,W
∗
t ) has a density f(x, y), with f(x, y) = 0 if y < 0 or x > y and

f(x, y) =
2(2y − x)√

2πt3
e−(2y−x)

2/2t, else.

(c) Let x ≤ α. Then

P (W ∗t ≥ α |Wt = x) = e−2α(α−x)/t. (6.6)

Proof. (a) Apply the reflection principle to f(Wt) = I{Wt≤µ}. Then

P (Wt ≤ µ,W ∗t ≥ α) = P (2α−Wt ≤ µ,W ∗t ≥ α)

= P (Wt ≥ 2α− µ,W ∗t ≥ α)

= P (Wt ≥ 2α− µ),

since 2α− µ ≥ α and therefore {Wt ≥ 2α− µ} ⊆ {W ∗t ≥ α}. Furthermore,

P (Wt ≤ µ,W ∗t ≤ α) = P (Wt ≤ µ)− P (Wt ≤ µ,W ∗t ≥ α)

= P (Wt ≤ µ)− P (Wt ≥ 2α− µ).

µ = α gives (6.5).

(b) f(x, y) is
∂2

∂µ∂α
P (Wt ≤ µ,W ∗t ≤ α) |x=µ, y=α .

(c) Note that the density of Wt is

fWt(x) =
1√
2πt

e−x
2/2t.

Thus

fW ∗t |Wt=x(y | x) =
f(x, y)

fWt(x)
=

2(2y − x)

t
e−2(y

2−xy)/t.

Therefore

P (W ∗t ≥ α |Wt = x) =

∫ ∞
α

2(2y − x)

t
e−2(y

2−xy)/t dy = e−2α(α−x)/t.

2

To derive the boundary crossing probabilities for the Brownian motion and a linear boundary

b(t) = α+ βt, note that

{Ws ≥ α+ βs for an s ∈ [0, t]} = {Ws − βs ≥ α for an s ∈ [0, t]}.

Let Xt = Wt − βt and X∗t = sup0≤s≤tXs.

Remark 6.10 (Xt) is a Brownian motion with drift. The conditional distribution of Xs given

Xt = x is, for 0 ≤ s ≤ t independent of β, see Exercise 6.6. A process (Us)0≤s≤t with the same

distribution as (Xs)0≤s≤t | (Xt = x) is called a Brownian bridge on [0, t].
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Theorem 6.11 Let α > 0. Then

P (X∗t ≥ α,Xt ≤ λ) =

 e−2αβΦ
(
λ−2α+βt√

t

)
, if λ ≤ α,

Φ
(
λ+βt√

t

)
− Φ

(
α+βt√

t

)
+ e−2αβΦ

(
βt−α√

t

)
, if λ > α,

(6.7)

and

P (X∗t ≥ α) = 1− Φ

(
α+ βt√

t

)
+ e−2αβΦ

(
βt− α√

t

)
. (6.8)

Proof. (6.7) implies (6.8). To prove (6.7), let λ ≤ α. Then

P (X∗t ≥ α,Xt ≤ λ) =

∫ λ

−∞
e−2α(α−x)/t

1√
2πt

e−(x+βt)
2/2tdx.

Since

4α(α− x) + (x+ βt)2 = (x+ βt− 2α)2 + 4αβt,

we have

P (X∗t ≥ α,Xt ≤ λ) =

∫ λ

−∞
e−2αβ

1√
2πt

e−(x+βt−2α)
2/2tdx

= e−2αβΦ

(
λ− 2α+ βt√

t

)
.

If λ > α, we have

P (X∗t ≥ α,Xt ≤ λ) = P (X∗t ≥ α,Xt ≤ α) + P (X∗t ≥ α, α < Xt ≤ λ)

= e−2αβΦ

(
βt− α√

t

)
+ P (α < Xt ≤ λ)

= e−2αβΦ

(
βt− α√

t

)
+ Φ

(
λ+ βt√

t

)
− Φ

(
α+ βt√

t

)
.

2

Remark 6.12 Let β > 0. Then

P (Wt ≥ α+ βt for a t ≥ 0) = e−2αβ. (6.9)

Let β ≤ 0. Then

P (Wt ≥ α+ βt for a t ≥ 0) = 1. (6.10)

6.2.2 Constant Two-Sided Boundaries

We consider two constant boundaries only. Let b(t) = β, a(t) = −α, α, β > 0. Let

τα,β = inf{t ≥ 0 |Wt ≥ β or Wt ≤ −α}. (6.11)
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Proposition 6.13 Let s ∈ R. Then

E(e−s
2τα,β/2) =

eαs − e−αs − eβs − e−βs

e(α+β)s − e−(α+β)s
. (6.12)

Proof. Let

Mt = esWt−ts2/2.

(Mt) is a martingale. τα,β ∧ n is a bounded stopping time. We may apply the optional sampling

theorem to get

1 = E(Mτα,β∧n)

= e−sαE
(
e−(τ

α,β∧n)s2/2I{τα,β∧n≤n,W
τα,β∧n=−α}

)
+ esβE

(
e−(τ

α,β∧n)s2/2I{τα,β∧n≤n,W
τα,β∧n=β}

)
+ E

(
esWτα,β∧n−ns

2/2I{τα,β∧n>n}

)
.

Now let n→∞. The third term is bounded by

e|s|(α∨β)−ns
2/2

and converges to 0. Define events A = {Wτα,β∧n = −α}, B = {Wτα,β∧n = β} and abbreviate

E
(
e−τ

α,βs2/2IA
)

by x and

E
(
e−τ

α,βs2/2IB
)

by y. Then we have

1 = e−sαx+ esβy.

Replace s by −s to get

1 = esαx+ e−sβy

with solutions

x =
eβs − e−βs

e(α+β)s − e−(α+β)s
,

y =
eαs − e−αs

e(α+β)s − e−(α+β)s
.

Since E(e−s
2τα,β/2) = x+ y, (6.12) follows.

2

The Laplace-transform of τα,β, i.e. the mapping v 7→ E(e−vτ
α,β

) characterizes the distribution

of τα,β uniquely. It may be inverted to derive a series expansion of the c.d.f. of τα,β. We sketch the

derivation of the c.d.f. for the symmetric case α = β only by applying again a reflection principle.

62



Let α = β. We abbreviate τα,β by τβ. τβ has Laplace-transform

E(e−vτ
α
) =

2

eβ
√
2v + e−β

√
2v

=
1

cosh(β
√

2v)
.

Let |W |∗t = sup0≤s≤t |Ws|. We define events A+ = {Ws = β for an s ∈ [0, t]},
A− = {Ws = −β for an s ∈ [0, t]}. Then

P (|W |∗t ≥ β) = P (A+ ∪A−) = P (A+) + P (A−)− P (A+ ∩A−).

A path in A+ ∩A− crosses β and −β. It is either in A+− = { paths that cross β before − β} or in

A−+ = { paths that cross − β before β}.
Paths in A+− are reflected at β and correspond to (certain) paths crossing 3β. The event

{W ∗t ≥ 3β} contains additionally to the reflected paths from A+− those from A−+− reflected at β.

Similarly, paths in A−+ are reflected at −β and correspond to paths crossing −3β. The procedure

is iterated by considering A+−+ and A−+− and reflecting its reflected paths a second time at 3β

and −3β respectively. We get

P (A+ ∪A−) = P (A+)− P (A+−) + P (A+−+)− P (A+−+−) + · · ·

+ P (A−)− P (A−+) + P (A−+−)− P (A−+−+) + · · ·

= 2 (P (A+)− P (A+−) + P (A+−+)− P (A+−+−) + · · ·)

= 2 (P (W ∗t ≥ β)− P (W ∗t ≥ 3β) + P (W ∗t ≥ 5β)− · · ·)

= 2
(
2Φ̄(β/

√
t)− 2Φ̄(3β/

√
t) + 2Φ̄(5β/

√
t)− · · ·

)
.

This proves

Proposition 6.14 Let β > 0. Then

P (|W |∗t ≥ β) = 4
∞∑
k=1

(−1)k−1Φ̄((2k − 1)β/
√
t). (6.13)

6.3 Exercises

Exercise 6.1 Prove that if Z ∼ N(0, h), then E(Z2) = h and σ(Z2) = 2h2.

Exercise 6.2 Let (Wt) be a Brownian motion. Show that the following processes are again Brow-

nian motions:

1. Let c 6= 0 and W̃t = cWt/c2 (transformation of time).

2. Let h > 0 and (W̃t) = (Wt+h −Wh).

3. Let τ > 0 be fixed and W̃t = Wt if t ≤ τ and W̃t = 2Wτ −Wt if t > τ . (W̃t) is the Brownian

motion reflected in w = Wτ .
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4. W̃t = tW1/t for t > 0 and W̃0 = 0. (To check the continuity of (W̃t) in 0, show only that for

ε > 0, P (|W̃t| > ε)→ 0 for t→ 0+.)

Exercise 6.3 A geometric Brownian motion (St) is a submartingale, if µ ≥ −σ2/2, a supermartin-

gale if µ ≤ −σ2/2. It is a martingale if and only if µ = −σ2/2.

Exercise 6.4 Let a geometric Brownian motion (St) be given. Prove that (Vt) = (1/St) is again

a geometric Brownian motion. Furthermore, prove that if (St) is a supermartingale, then (Vt) is a

submartingale. Is it possible that both (St) and (Vt) are submartingales or both supermartingales?

Exercise 6.5 Let Xt = x0 + µt + σWt be a (generalized) Brownian motion. Prove that (Xt) is a

martingale if and only if µ = 0.

Exercise 6.6 Let (Wt) be a Brownian motion and Xt = Wt + µt. Derive the distribution of

(Xt)0≤t≤u conditional on Wu = x.

Exercise 6.7 Let (Wt) be a Brownian motion and Ut = Wt− tW1 (for 0 ≤ t ≤ 1). Prove that (Ut)

is a Brownian bridge.

Exercise 6.8 Let (Ut)0≤t≤1 be a Brownian bridge and Wt = (1 + t)Ut/(1+t). Prove that (Wt)0≤t<∞

is a Brownian motion.

Exercise 6.9 Let (Wt) and (Vt) be independent Brownian motions. Let −1 ≤ r ≤ 1. Show that

(rWt +
√

1− r2Vt) is a Brownian motion.

Exercise 6.10 Let (Ut) and (Vt) be independent Brownian bridges. Let −1 ≤ r ≤ 1. Show that

(
√

1− r2Ut − rVt) is a Brownian bridge.

Exercise 6.11 Let (Ut)0≤t≤1 be a Brownian bridge. Prove that (Ut/2−U1−t/2) is again a Brownian

bridge.

Exercise 6.12 Show that τα, the first hitting time to the constant boundary, has the density (w.r.t.

Lebesgue measure)

f(t) =
α√
2πt3

e−α
2/2t

for t > 0 and f(t) = 0 for t ≤ 0. Derive that 1/τα is gamma-distributed with shape parameter 1/2

and rate parameter α2/2 and that E(τα) =∞.

Exercise 6.13 Let (St) be a geometric Brownian motion,

St = S0e
(µ−σ2/2)t+σWt ,

with µ constant and σ > 0, S0 > 0 constant.
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1. Let ν > 0. Compute

P (Su ≥ ν for a u ≤ t).

2. Let µ < σ2/2. Compute

P (Su ever crosses ν).
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Chapter 7

Poisson Process

7.1 Definition and Properties

Let (τi)
∞
i=1 be a sequence of independent exponentially (i.e. Γ(1, λ)) distributed random variables.

Let Tn =
∑n
i=1 τi and

Nt =
∞∑
n=1

I{Tn≤t}. (7.1)

(Nt)t∈[0,∞) is called the Poisson process with rate (intensity) λ.

(Tn) are the times, when an “event” occurs, Nt the number of “events” up to t. (Tn) are also

called arrival times, τi = Ti − Ti−1 the interarrival or waiting times.

Lemma 7.1 (Absence of memory). If T ∼ Γ(1, λ), then

P (T > t+ s | T > t) = P (T > s).

Proof. We have P (T > t) = e−λt. Therefore

P (T > t+ s | T > t) =
P (T > t+ s)

P (T > t)
= e−λs.

2

Lemma 7.2 Let X1, . . . , Xn be independent and exponentially distributed with rate λ. Then X1 +

· · ·+Xn ∼ Γ(n, λ).

Proof. Let X ∼ Γ(n, λ) and Y ∼ Γ(1, λ) be independent. We prove that X + Y ∼ Γ(n+ 1, λ).

Version I: The characteristic function ϕZ(s) of a Γ(n, λ)-distributed random variable Z is

(1− is/λ)−n.

Therefore ϕX(s)ϕY (s) = (1− is/λ)−(n+1) and X + Y ∼ Γ(n+ 1, λ).
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Version II: Denote by fX , fY and fZ the densities of X, Y and Z = X + Y . fZ is the convolution

of fX and fY . For z > 0 we have

fZ(z) =

∫
fX(z − y)fY (y)dy

=

∫ ∞
0

I[0,∞)(z − y)
λn

Γ(n)
(z − y)n−1e−λ(z−y)λe−λydy

=

∫ z

0

λn+1

Γ(n)
(z − y)n−1e−λzdy

=
λn+1

Γ(n)
e−λz

∫ z

0
(z − y)n−1dy

=
λn+1

Γ(n)
e−λz

zn

n

=
λn+1

Γ(n+ 1)
zne−λz.

Therefore Z = X + Y ∼ Γ(n+ 1, λ) 2

Lemma 7.3 Let (Nt) be a Poisson process with rate λ. Then Nt ∼ P (λt).

Proof. Let gn denote the density of Tn. Then

P (Nt = n) = P (Tn ≤ t, Tn+1 > t)

=

∫ t

0
P (Tn+1 > t | Tn = s)gn(s)ds

=

∫ t

0
e−λ(t−s)

λnsn−1

Γ(n)
e−λsds

= e−λt
λn

(n− 1)!

∫ t

0
sn−1ds

= e−λt
λn

(n− 1)!

tn

n

= e−λt
(λt)n

n!
.

2

Lemma 7.4 Let t > 0 and U1, . . . , Un be independent and U[0, t]-distributed. Let Y1, . . . , Yn denote

the order statistics of U1, . . . , Un, i.e. Y1 = U(1) ≤ Y2 = U(2) ≤ · · · ≤ Yn = U(n). Then (Y1, . . . , Yn)

has the density

f(y1, . . . , yn) =

 n!/tn if (y1, . . . , yn) ∈ S,
0 else,

where S = {(y1, . . . , yn) | 0 < y1 < · · · < yn < t}.

67



Proof. Note that for all i = 1, . . . , n − 1, P (Yi = Yi+1) = 0. (U1, . . . , Un) has a density, that

is constant (= 1/tn) on [0, t]n and 0 on the complement of [0, t]n. Furthermore, (Y1, . . . , Yn) is

a function of (U1, . . . , Un). If (u1, . . . , un) ∈ [0, t]n, with all ui’s different, there exists a unique

permutation π of {1, . . . , n} s.t. (u1, . . . , un) = (yπ(1), . . . , y(n)) with (y1, . . . , yn) ∈ S. Therefore,

for all bounded and measurable functions g,

E(g(Y1, . . . , Yn)) =

∫ t

0
· · ·
∫ t

0
g(y1, . . . , yn)

1

tn
du1 · · · dun

=
∑
π

∫
S
g(y1, . . . , yn)

1

tn
dy1 · · · dyn

=

∫
S
g(y1, . . . , yn)

n!

tn
dy1 · · · dyn.

2

Remark 7.5 The probability distribution of the order statistics of i.i.d. U[0, t]-distributed random

variables is called Dirichlet distribution Dn,t.

Proposition 7.6 Let (Ti) be the arrival times of a Poisson process (Nt) with rate λ. Then, con-

ditionally on Tn+1 = t,

(T1, . . . , Tn) ∼ Dn,t.

Remark 7.7 (a) (T1/Tn+1, . . . , Tn/Tn+1) is independent of Tn+1 and Dn,1-distributed.

(b) Let U1, . . . , Un, V be independent with Ui ∼ U[0, 1] and V ∼ Γ(n+ 1, λ). Then

(T1, . . . , Tn) ∼ (V U(1), . . . , V U(n)).

Proof of Proposition 7.6. Let τ1, . . . , τn+1 be the exponentially distributed waiting times and

Tk = τ1 + · · ·+ τk the arriving times. Consider the mapping Tk : (τ1, . . . , τn) 7→ τ1 + · · ·+ τk. Then

∂Tk
∂τi

=

 1 if i ≤ k
0 if i > k.

We have ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0

1 1 0 · · · 0

1 1 1 0 .

. .

1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1

and therefore the density of (T1, . . . , Tn) | (Tn+1 = t) is

f(t1, . . . , tn | t) =
λe−λt1λe−λ(t2−t1) · · ·λe−λ(t−tn)

λn+1tne−λt/Γ(n+ 1)

=
n!

tn
e−λ(t1+(t2−t1)+···+(t−tn))

e−λt

=
n!

tn
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on 0 < t1 < · · · < tn < t. 2

Corollary 7.8 Conditional on Nt = n,

(T1, . . . , Tn) ∼ Dn,t.

Proof. The density of (T1, . . . , Tn) is

f(t1, . . . , tn) = e−λtn
λntn−1n

Γ(n)

(n− 1)!

tn−1n
= e−λtnλn

on 0 < t1 < · · · < tn. Let A ⊆ [0, t]n be measurable. We have

P ((T1, . . . , Tn) ∈ A | Nt = n) =
P ((T1, . . . , Tn) ∈ A, Tn+1 > t)

P (Nt = n)

=

∫
A P (τn+1 > t− tn)f(t1, . . . , tn)dt1 · · · dtn

P (Nt = n)

=

∫
A e
−λ(t−tn)e−λtnλnI{0<t1<···<tn}dt1 · · · dtn

e−λt(λt)n/n!

=

∫
A

n!

tn
I{0<t1<···<tn}dt1 · · · dtn.

2

Theorem 7.9 Let (Nt) be a Poisson process with rate λ. Then, for 0 ≤ t1 < · · · < tn,

Nt1 , Nt2 −Nt1 , Nt3 −Nt2 , . . . , Ntn −Ntn−1 are independent and Nti −Nti−1 ∼ P(λ(ti − ti−1)).

Proof. Note that Nt1 = k1, Nt2 −Nt1 = k2, . . . , Ntn −Ntn−1 = kn if and only if

Tk1 ≤ t1, Tk1+1 > t1, Tk1+k2 ≤ t2, Tk1+k2+1 > t2, . . . , Tk1+···+kn ≤ tn, Tk1+···+kn+1 > tn.

Let N = k1 + · · ·+kn. We condition on TN+1 = s with s > tn. We draw N independent U[0, s]-

distributed random variables U1, . . . UN and compute the probability of the event that exactly k1

if the Ui’s are in [0, t1], k2 in (t1, t2], . . . , kn in (tn−1, tn]. This probability is

N !

k1!k2! · · · kn!

(
t1
s

)k1 ( t2 − t1
s

)k2
· · ·
(
tn − tn−1

s

)kn
.

Therefore,

P (Nt1 = k2, Nt2 −Nt1 = k2, . . . , Ntn −Ntn−1 = kn)

=

∫ ∞
tn

N !

k1!k2! · · · kn!

(
t1
s

)k1 ( t2 − t1
s

)k2
· · ·
(
tn − tn−1

s

)kn λN+1sN

Γ(N + 1)
e−λs ds

=
tk11 (t2 − t1)k2 · · · (tn − tn−1)tn

k1!k2! · · · kn!
λN

∫ ∞
tn

λe−λs ds

=
tk11 (t2 − t1)k2 · · · (tn − tn−1)tn

k1!k2! · · · kn!
λNe−λtn

=
(λt1)

k1e−λt1

k1!

(λ(t2 − t2))k1e−λ(t2−t1)

k2!
· · · (λ(tn − tn−1))kne−λ(tn−tn−1)

kn!
.2
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Summary: Let (Nt) be a Poisson process with rate λ.

1. The sample paths t 7→ Nt(ω) are piecewise constant with jumps of size 1.

2. The sample paths t 7→ Nt(ω) are continuous from the right with limits from the left (cadlag).

3. Nt is Poisson distributed with parameter λt. Increments Nt − Nu (u < t) are Poisson dis-

tributed with parameter λ(t− u) and if u1 < t1 ≤ u2 < t2, then Nt1 −Nu1 and Nt2 −Nu2 are

independent.

4. The increments are homogeneous, i.e. the distribution of Nt −Nu depends on t− u only and

is the same as the distribution of Nt−u.

5. (Nt) has the Markov property, for u < t and all integrable f ,

E(f(Nt) | σ(Nv, v ≤ u)) = E(f(Nt) | σ(Nu)).

Summary A Poisson process (Nt) is a

� Counting process: Let (random) times Tn with T1 ≤ T2 ≤ · · · and Tn → ∞ with probability

1. Let Xt = n if Tn ≤ t < Tn+1. (Xt) “counts” the number of “events” up to time t.

� Renewal process: Let (τi) be i.i.d., τi ≥ 0, Tn = τ1 + · · ·+ τn. A renewal process is a counting

process with independent and identically distributed waiting times.

� Point process: (Nt) “produces” a value of 1 at Tn. More generally, a point process consists

of (Tn, Xn)∞n=1, where (Tn) are times and (Xn) are values. If (Nt) is the counting process of

(Tn), Yt =
∑Nt
n=1Xn is a point process. In case (Xn) are i.i.d. and independent of (Nt) and

(Nt) is a Poisson process, (Yt) is a compound Poisson process.

The Poisson process may be generalized in different ways. One is the Compound Poisson process.

Let (Nt) denote independent Poisson processes with intensity λ, Q a probability distribution on

(R,B), (Xn)∞n=1 i.i.d. with distribution Q, also independent of (Nt). Let Yt =
∑Nt
n=1Xn, i.e.

Yt =


∑k
n=1Xn on Nt = k, k > 0,

0 on Nt = 0.

(Yt) is a compound Poisson process with intensity λ and jump distribution Q.

Remark 7.10 Let (Yt) denote a compound Poisson process with intensity λ and jump distribution

Q.

1. (Yt) has piecewise constant cadlag paths.
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2. Assume Q({0}) = 0. The jump times (Tn) have the same distribution as the jump times of

the Poisson distribution (Nt).

3. The jump sizes (Xn) are i.i.d.

4. (Yt) has stationary and independent increments.

7.2 Exercises

Exercise 7.1 Let (Nt) and (N ′t) denote independent Poisson processes with intensities λ and λ′

resp. Show that (Nt +N ′t) is a Poisson processes with intensity λ+ λ′.

Exercise 7.2 (Thinning). Let (Nt) denote a Poisson processes with intensity λ. Let (Tn) denote

its arrival times. For each n, keep (delete) Tn with probability p (1− p), independently for different

n’s. Denote by (T ′n) the arrival times that have not been deleted. Define

N ′t =
∞∑
n=1

I{T ′n≤t}.

Prove that (N ′t) is a Poisson process with intensity λp.

Exercise 7.3 (Compensator). Let (Nt) denote a Poisson processes with intensity λ. Show that

(Ñt), defined by Ñt = Nt − λt, is a martingale.

Exercise 7.4 (Continued). Let (Nt) denote a Poisson processes with intensity λ. Compute the

quadratic variation of (Ñt), where Ñt = Nt − λt.

Exercise 7.5 Let (Nt) denote a Poisson processes with intensity λ. Show that P (Nt <∞) = 1.

Hint: Apply Chebyshev’s inequality to prove that limn→∞ P (Tn ≤ t) = 0.

Exercise 7.6 Let (Yt) denote a compound Poisson process with intensity λ and jump distribution

Q. Let µX and σ2X denote the expectation and the variance of X ∼ Q. Compute the expectation

and variance of (Yt).

Solution: E(Yt) = λtµX , σ2Yt = λtσ2X + λtµ2X .

Exercise 7.7 Let (Yt) denote a compound Poisson process with intensity λ and jump distribution

Q. Let µX denote the expectation of X ∼ Q. Show that (Yt) is a martingale, if µX = 0. Compute

the compensator of (Yt) in case µX 6= 0.

Exercise 7.8 Let (Yt) denote a compound Poisson process with intensity λ and jump distribution

Q. Compute the characteristic function of Yt.

Solution: ϕYt(s) = e−λt(1−ϕX(s)).
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Chapter 8

Appendix: Conditional Expectation

As a motivation for the concept of the conditional expectation, consider the following problem of

predicting a random variable Y : Let a probability space (Ω,F , P ) and a square integrable random

variable Y : (Ω,F)→ (R,B) be given.

To predict Y without further information, a real number c = Ŷ has to chosen, s.t. E((Y − c)2)
is a small as possible. We know that the solution is the expectation c = E(Y ). With this choice

E((Y − c)2) is then the variance of Y .

Now assume that the prediction of Y may be based on information provided by a random

variable X, i.e. one has to choose a function g and predict Y by Ŷ = g(X). If (X,Y ) has a joint

distribution and if a conditional distribution of Y given X = x can be defined, then g(x) is the

expectation of this conditional distribution and Ŷ = g(X). Note that g(X) is a random variable,

since X is random.

Theorem 8.1 (Causality Theorem). Let X be an Rn-valued random variable on the measurable

space (Ω,F). Let Y be an R valued random variable. Y is σ(X)-measurable if and only if an

measurable g : Rn → R exists such that Y = g(X).

Proof. Only one direction has to be shown. Let us recall that σ(X) = {X−1(B) | B ∈ Bn}.
As usual, we first prove the theorem for the special case that Y is simple, i.e. Y =

∑k
i=1 ciIAi

with Ai ∈ σ(X) and (A1, . . . , Ak) a partition. Therefore, Y =
∑k
i=1 ciIX−1(Bi) with Bi ∈ Bn and

(B1, . . . , Bk) a partition. Then, if we define g by g(x) = ci if x ∈ Bi, we have Y = g(X).

In the general case, Y = limm→∞ Ym with Ym simple and σ(X)-measurable. Therefore, Ym =

gm(X). If we define g(x) = lim supm→∞ gm(x), then g is measurable and Y = g(X). 2

Given the Causality Theorem the problem of predicting Y may be generalized. Let a probability

space (Ω,F , P ), a sub σ-algebra G ⊆ F and a square integrable random variable Y be given. Find

the G-measurable random variable Ŷ that minimizes E((Y − Ŷ )2). Note that L2(G), the set of

G-measurable random variables, is a subspace of L2(F) and Ŷ is the projection of Y onto this
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subspace. Projections have (in this case) the property that Y − Ŷ is orthogonal to L2(G), i.e. for

all Z ∈ L2(G), E(Z(Y − Ŷ )) = 0, which may be written as

E(ZŶ ) = E(ZY ).

The random variable Ŷ is called the conditional expectation of Y given G and denoted by

E(Y | G). It is uniquely defined by two properteis: E(Y | G) is G-measurable and E(ZŶ ) = E(ZY )

holds for all Z ∈ L2(G).

Definition 8.2 Let a probability space (Ω,F , P ), a sub σ-algebra G ⊆ F and a random variable

Y be given. A random variable E(Y | G) is called the conditional expectation of Y given G if it

satisfies

E(Y | G) is G-measurable, (8.1)

E(ZE(Y | G)) = E(ZY ) for all bounded and G-measurable Z. (8.2)

Theorem 8.3 Let a probability space (Ω,F , P ), a sub σ-algebra G ⊆ F and a random variable Y

be given. If Y is integrable, then E(Y | G) exists and is a.s. unique in the sense that if any other

r.v. Ŷ satisfies (8.1) and (8.2), then Ŷ = E(Y | G) a.s.

Theorem 8.4 (Properties). Let a probability space (Ω,F , P ), a sub σ-algebra G ⊆ F and an

integrable random variables Y, Y1, Y2 be given.

1. E(Y | G) = Y if and only if Y is G-measurable.

2. E(Y | G) = E(Y ) if Y is independent of G.

3. E(αY1 + βY2 | G) = αE(Y1 | G) + βE(Y2 | G). α, β ∈ R.

4. If Y ≥ 0 then E(Y | G) ≥ 0.

5. E(E(Y | G)) = E(Y ).

6. If H ⊆ G is a sub σ-algebra, then E(E(Y | G) | H) = E(Y | H) (Tower property).

7. If Z is bounded and G-measurable, then E(ZY | G) = ZE(Y | G).

8. If G = {∅,Ω), then E(Y | G) = E(Y ).

9. If Y = g(X,Z), Z independent of X, then E(Y | σ(X)) = h(X), with h(x) = E(g(x, Z)).

10. If f is measurable and convex, then E(f(Y ) | G) ≥ f(E(Y | G)).

11. Let Y be square integrable. Then (8.2) holds for all square integrable and G-measurable Z.
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12. Let Ŷ be G-measurable. If E(Y IA) = E(Ŷ IA) for all A ∈ G, then Ŷ = E(Y | G).

Proof.

1. Trivial.

2. We have to show that the constant function E(Y ) is the conditional expectation of Y given

G. Constant functions are measurable w.r.t. all σ-algebras. To check (8.2), let Z be bounded

and G-measurable. Then Z and Y are independent and therefore

E(ZY ) = E(Z)E(Y ) = E(E(Y )Z).

3. We have to show that αE(Y1 | G) + βE(Y2 | G) is the conditional expectation of αY1 + βY2

given G. It is obviously G-measurable. To check (8.2), let Z be bounded and G-measurable.

Then

E(Z(αY1 + βY2)) = αE(ZY1) + βE(ZY2)

= αE(ZE(Y1 | G)) + βE(ZE(Y2 | G)) = E(Z(αE(Y1 | G) + βE(Y2 | G))).

4. Let A denote the event {E(Y | G) < 0}. IA is bounded and G-measurable. P (A) > 0 is not

possible, since otherwise

0 > E(IAE(Y | G)) = E(IAY ) ≥ 0.

5. Let, in (8.2), Z = 1.

6. We have to prove that E(E(Y | G) | H) is the conditional expectation of Y given H. It

is obviously H-measurable. Let Z be bounded and H-measurable. Since H ⊆ G, it is also

G-measurable. Therefore

E(ZE(E(Y | G) | H)) = E(ZE(Y | G)) = E(ZY ).

7. We have to prove that ZE(Y | G) is the conditional expectation of ZY given G. It is obviously

G-measurable. Let U be bounded and G-measurable. Then UZ is bounded and G-measurable.

Therefore

E(U(ZE(Y | G))) = E(UZE(Y | G)) = E(UZY ).

8. If G = {∅,Ω), then only the constant functions are measurable. From 5, it follows that this

constant is E(Y ).

9. Let h(x) = E(g(x, Z)). The Theorem of Tonelli-Fubini implies that h is measurable (w.r.t.

σ(X)) and h(X) is integrable. Let Z be bounded and measurable w.r.t. σ(X). The Causality
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Theorem implies that Z = u(X) for a bounded and measurable function u. To show that

h(X) is the conditional expectation of Y given σ(X), note that

E(ZY ) = E(u(X)g(X,Z)) and E(Zh(X)) = E(u(X)h(X)),

and the two expectations are the same, again by the Theorem of Tonelli-Fubini.

10. No proof.

11. No proof.

12. No proof.

2

E(Y | σ(X)) is abbreviated by E(Y | X).

Example 8.5 Let the σ-algebra G be generated by the partition (B1, . . . , Bn). Any G-measurable

function is a linear combination of the indicator functions IB1 , . . . , IBn. Therefore E(Y | G) =∑n
i=1 ciIBi. To identify the numbers ck, let Z = IBk . Z is bounded and G-measurable. From (8.2)

we get

E(ZY ) = E(ZE(Y | G)),

i.e.

E(IBkY ) = E(IBk

n∑
i=1

ciIBi) =
n∑
i=1

ciE(IBkIBi) = ckE(IBk) = ckP (Bk),

and therefore

ck =
E(IBkY )

P (Bk)
.

Exercise 8.1 Let (X,Y ) be bivariate Gaussian. Compute E(Y | X) and E(Y 2 | X).

Exercise 8.2 Let Y be square integrable. Prove that E(Y | G) and Y − E(Y | G) are uncorrelated.

Exercise 8.3 Let Y be square integrable. Prove that

σ2 = E((Y − E(Y | G))2) + E((E(Y | G)− E(Y ))2).

Conclude that E(Y | G) is also square integrable.

Exercise 8.4 Let X1, . . . , Xn be i.i.d. and integrable. Let S = X1+X2+ · · ·+Xn. Find E(X1 | S).

Exercise 8.5 Let X ∼ U([−1, 1]). Compute E(|X| | X) and E(X | |X|). Compute also E(X | |X|)
for X ∼ U([−1, 2]) and for X ∼ f , with f a density.
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Exercise 8.6 Let St, t = 0, 1, 2 denote the value of an asset at time t. Assume that S1 = S0e
µ+σX1

and S2 = S0e
2µ+σ(X1+X2), with σ > 0, S0, X1, X2 independent and both X1 and X2 Gaussian with

expectation 0 and variance 1. Compute E(S2 | S1).

Exercise 8.7 Show that if |Y | ≤ c, then |E(Y | G)| ≤ c.

Exercise 8.8 Let Y be square integrable, E(Y | X) = X and E(Y 2 | X) = X2. Show Y = X a.s.

Exercise 8.9 Let X ∼ P (λ) (Poisson). Let, conditional on X = x, Y ∼ B(x, p). Compute

E(Y | X) and E(X | Y ).
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