Optimization in Finance: Linear and Nonlinear Programming Research Seminar (2011)

Stefan Kerbl

13th May 2011

・ロット (雪) ・ (日) ・ (日) ・ (日)

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# Motivation

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

#### Motivation

Linear Programming

Nonlinear Programming

Bibliography

# Applications of optimizing in finance

- asset liability management
- portfolio selection (mean variance optimization)
- risk management and again portfolio selection (actually the same: only variance substituted by a different risk measure)

- pricing of options and hedging with derivatives, finding of arbitrage possibilities
- via the intermediate purpose of statistics (e.g. ML-estimation)

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

#### Motivation

Linear Programming

Nonlinear Programming

# Application in other fields

AT THE MOVIES, I GET FRUSTRATED WHEN WE FILE INTO OUR ROW HAPHAZARDLY, IGNORING THE COMPUTATIONALLY DIFFICULT PROBLEM OF SEATING PEOPLE TOGETHER FOR MAXIMUM ENJOYMENT. FRIENDS IN A RELATIONSHIP ONE-WAY CRUSH ACQUAINTANCES GUYS! THIS IS NOT SOCIALLY OPTIMAL! Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# Linear Programming

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

Bibliography

・ロト・西ト・モン・ビー もくの

# The standard form LP

$$\min_{x} \quad c^{T}x \\ Ax = b \\ x > 0$$

tricks to get any LP in standard form:

 $\min_x c^T x = \max_x - c^T x$ 

- ► ≤, ≥ constraints can be coped by introducing "surplus variables"
- if  $x_1$  can be negative or positive, define  $x_1 := y_1 y_2$ with  $y_1, y_2 \ge 0$

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# The dual problem

$$\begin{array}{rcl} \max_{y,s} & b^T y \\ & A^T y & + & s & = & c \\ & & s & \geq & 0, \end{array}$$

c on the right hand side, b in the objective function aim is to find a bound to the objective function  $\Rightarrow$  identify feasible solutions as optimum: if primal and dual solutions are feasible and the objective values are equal, then the solution is optimal. Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# The simplex method

in short:

- 1. Split variables into dependent and independent
- 2. set independent to zero (basic feasible solution) and get induced values for dependent.
- 3. move variable with highest improvement in objective value from independent to dependent (leave basis).
- 4. Once all marginal effects are negative you have the optimum. (Simplex Iterations).

### features:

- ► finite number of basic feasible solutions → eventually simplex iterations will get to optimum.
- classical approach "'The Simplex Tableau"'
- ▶ algorithm: p. 33-37 in [Cornuejols and Ttnc, 2007].

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# Example with graphical interpretation



Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# Simplex in R

- package: Rglpk
- command: Rglpk\_solve\_LP
- features: min/max, equality/inequalities,
- integer/continuous/binary, bounded/unbounded
- + easy to use
- + flexible
- crashes if obj has not the respective dim as mat
- no direct feedback if problem unbound: status code not interpretable (see examples)
- no sensitivity output like SOLVER
- no R code  $\rightarrow$  black box, hard to personalize, adapt, replicate

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# Nonlinear Programming

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

Bibliography

・ロト・国ト・モン・ビー もくの

# Introduction

### Where does nonlinearity come from?:

- 1. multiplication of variables: e.g. through economics of scale, transaction costs
- 2. quadratic terms: variances, interest rates mean-variance optimization
- 3. nonlinear functions: e.g. quantiles in common risk measures

## Standard representation:

$$\min_{x} \quad \begin{array}{l} f(x) \\ g_{i}(x) &= 0, \quad i \in \mathcal{E} \\ g_{i}(x) &\geq 0, \quad i \in \mathcal{I}. \end{array}$$

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# Two simple univariate solutions

#### 1. binary search:

differentiates function and then searches roots for f'(x): find 2 points with f(A) < 0 and f(B) > 0calculate C = (A + B)/2 and replace A or B dependent on f(C)

repeat.

#### 2. golden section:

divide feasible space into 4 intervals, and successively drop the interval that has the lowest outer value choice of "golden ratio" for intermediate intervals optimizes algorithm's speed Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# Number of iterations possibly high ...



WE'VE DECIDED TO DROP THE CS DEPARTMENT FROM OUR WEEKLY DINNER PARTY HOSTING ROTATION.

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# Newton's Method: finding roots

multivariate method modified method of "steepest decent", that takes second derivative into account: first order Taylor series approximation to find root of (system of) function(s):

$$F(\mathbf{x}^k + \delta) \approx \hat{F}(\delta) := F(\mathbf{x}^k) + \nabla F(\mathbf{x}^k) \delta$$

how to choose  $\delta$  to find root?

$$\delta = -\nabla F(\mathbf{x}^k)^{-1} F(\mathbf{x}^k)$$

Newton's iteration:

$$\mathbf{x}^k + \delta = \mathbf{x}^k - \nabla F(\mathbf{x}^k)^{-1} F(\mathbf{x}^k)$$

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

Bibliography

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ● ● ● ● ● ● ● ●

# Newton's Method: optimizing

for optimizing a function g(x), F(x) equals  $\nabla g(x)$ the Jacobian Matrix  $\nabla F(x)$  becomes the Hessian  $\nabla^2 g(x)$ Hessian matrix is expensive to compute  $\rightarrow$  various approximations, "quasi-Newton methods" among them: BFGS and DFP Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

Bibliography

A D F 4 目 F 4 目 F 1 日 9 Q (P)

# Newton's Method in R

optim

- ''L-BFGS-B'' allows to set bounds on parameters
- but no general optimization under constraints!
- gradient and hessian matrix returned,
- manages to overcome local minima (see example)
- very flexible, yet does not always find minima

#### nlm

- use of Newton's Method,
- else: unclear distinction to optim
- gradient and hessian matrix returned,
- manages to overcome local minima (see example)

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# Further Methods in R

#### uniroot

- Fortran Code (Newton's method?)
- ▶ if no (or any even number of) root(s) is found, error is returned → bad to handle

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 else turned out to be able to handle quite complex functions Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

# R Applications in Finance

## Portfolio Optimization

fPortfolio Rmetrics tawny

Risk Management QRMlib

### Further

. .

55 findings of "optim" in package search 20 findings of "maxim" in package search

Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming

Cornuejols, G. and Ttnc, R. (2007). Optimization Methods in Finance, volume 1 of Mathematics, Finance and Risk. Cambridge University Press. Optimization in Finance: Linear and Nonlinear Programming

Stefan Kerbl

Motivation

Linear Programming

Nonlinear Programming