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Content 1

e \We want to discuss the role of primal and Lagrange dual
model representations following Suykens and Alzate (2010).
Hereby we discuss:

— kernels,

— Reproducing Kernel Hilbert Spaces (RKHS),
— Support Vector Machines (SVM),

— Least Square SVM,

— Ridge Regression,

— and Kernel PCA.
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Kernels

e Let X be a (non-empty) set. A mapping
k: X xX =R, (2,2) = k(z,2), (1)

is called a kernel if k is symmetric, i.e., k(z,z') = k(2/, z)

e A kernel k is positive definite, if its Gram Matrix K;,; =
k(xz;,x;) is positive definite Vz.

e The Cauchy-Schwarz inequality holds for p.d. kernels.

e Define a reproducing kernel map:

D :x— k(- 2), (2)

i.e., to each point = in the original space we associate a
function k(-,x).

e Another way to characterize p.d. Kkernels on a compact set
IS via Mercer’'s Theorem.

Vienna Jun. 17, 2011



NNNNNNNNN
\\\\\\\\\\\\
ccccccccc

kernel-based learning RS

Kernels 11

e linear kernel: k(z,z’) = (z,2').
e Gaussian kernel: Each point x maps to a Gaussian distribu-
tion centered at that point.

lz—=2')|2

k(z,z') =e 202 (3)

e Linear combinations of kernels are kernels.
e Construct a vector space containing all linear combinations
of functions k(-,x):

) =Y ik, 7). (4)
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Reproducing Kernel Hilbert Spaces (RKHS)

e k(-,-) is a reproducing kernel of a Hilbert space H if Vf € H,
f(x) = (k(z,-), f(-))

e A RKHS is a Hilbert space H with a reproducing kernel whose
span is dense in H.

e Construct a vector space via

n
{f(): Zazk(,azz) TLGN,QUZEX,CVZGR} (5)
1=1
and define <f, g) = Zi,j azﬂjk(a}j,azz)
e Note that (f,k(-,x)) = >; a;k(x,u;) = f(x), i.e., k has the
reproducing property.
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RKHS II

Given a training data set {(=z;,y;)_1} of N training data, with
z; € R% and y; € R. Find a function f that minimizes
1 N

ming 20 LG S + vl (6)

e L(-,-) denotes the chosen loss function and ||f||x the norm
in the RKHS H defined by kernel K.
e v COSt parameter.
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RKHS III

e f belongs to H.
e For any convex loss function L the solution of 6 has the form
(representer Theorem, Kimeldorf & Wahba, 1971 )

N
f@) =) o;K(x,z;) (7)
i=1
e [ he model has the reproducing property

fl@) =(f, Kz, )k (8)
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Loss functions

e Plugging-In different loss functions one obtains:
— regularization network:

L(y, f(z)) = (y — f(z))? (9)
— support vector regression:
L(y, f(z)) = |y — f(z)]e (10)
— SVM classification:
L(y, f(z)) = [1 —yf(2)]+ (11)
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Loss functions 11

e | - |¢ denotes the e-insensitive loss function with ¢ > 0. For
ly — f(x;)| <eitisset to 0. Otherwise it is |y — f(x;)| — €.

e T his result in a sparse solution, meaning that many «; are 0.
For e = 0 it corresponds to an L4 estimator.

e Regularization constant v controls the bias-variance trade-
off. For v to small, might result in overfitting the data,
while v to large might give inflexible models.

e Usually v is estimated via cross validation.
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Support Vector Classifiers

e a feature map ¢(-) : RY — R™ maps the data from input
space to higher dimensional space.
e [ he classifier model corresponds to

ny,
y = sign[ ) _ w;¢;(x) + b]. (12)
i=1

e feature map is usually not explicitly defined at the beginning,
but implicitly through a p.d. kernel.
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Support Vector Classifiers 11

T3+ 3=0

ITﬂﬁrﬁ3:1]

L"x\: g Jo
* \M\"\\ ‘I; - . * 1
o Red! * M= i
- - /s
L * o, froargirn
® L . i
Jﬂ-.l.r — m
Vienna

Jun. 17, 2011



NNNNNNN
uuuuuuuuuu

kernel-based learning o

Support Vector Classifiers, Primal vs. dual

e [ he Primal problem is stated as:

min O.SwTw—I—c 2 13
min 3 (13)

st.oyi(p(z)Tw+pB) >1—¢ ,& >0V |

e [ he dual Problem:

N N
mo§x — 0.5 Z yz-yjK(a:i,:Bj)aiozj + Z Qaj, (14)
ij=1 j=1
N
s.t. Z ay; =0 0<qa; <V,
=1
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Support Vector Classifiers, Primal vs. dual II

e where we have to use a p.d. kernel, satisfying

ng
K(z,z) = (¢(x) ¢(2)) = > ¢j(x)e;(2) (15)
J=1
for any pair z,z € R% (kernel trick).
e From optimality conditions we get w = >N | ayy;6(x;), such
that
g = sign[ Y oy K(x,x;) + b] (16)
1€SV
e where SV denotes the set of support vectors.
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Support Vector Classifiers

e One can read equation 15 in two ways: left to right and right
to left:

e |left to right: One fixes the choice of the p.d. kernel. This
guarantees the existence of an underlying feature map. So
one does not know an explicit expression of the feature map.

e From right to left: One may also explicitly define a feature
map and obtains the kernel via K(z, z) = ¢(z) ¢(2).
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LS-SVM core models

e L east square support vector machine works with equality con-
straints instead of inequality constraints and an Lo loss func-
tion.

e characterizing the conditions for optimality becomes simpler.

e possible to extend methodology to a wide range of problems.

e it captures the simple essence while still providing high per-
formant models.
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LS-SVM

o LS-SVM is formulated as:

N

min 0.5w'w + ~70.5 Z 67;2, (17)
wab7ei i=1

st.yi(p(z) w+b) =1—¢ Vi,

e Rewriting this into a Lagrangian problem with coefficients «;
and eliminating e,w one gets a square linear system.
e [ he classifier in the dual space has the form

g = sign[ ) a;y;K(z,z;) + b] (18)
€N
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LS-SVM 1II

e From optimality conditions yield:

N
w= > apypp(zy)

k=1

N
> agyp =0
k=1

O — YEL

yplwlo(xy) +b] — 14+ e, =0

(19)

(20)

(21)

(22)
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LS-SVM III

e Elimination of w and e results in:

0 y! b 0
| = (23)

Y Q4 1/~ Q 1y

e Now we apply the kernel rick to the matrix Q := Z1'Z, with

Qe = v d(zp) L o(x) = yry K (g, 27)

e For any point z* € R? we get

N
(D :) y* = sign|) oy K(z*, z;) + b] (24)
i=1
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Ridge Regression

e In a similar way one can perform ridge regression in the fea-
ture space with additional bias term b

N
min 0.5w'w +~0.5 Y e?, (25)

w,0,€;
Uy Cq i=1

sty =) wt+b+e; Vi,
e [ he corresponding primal and dual model representations

are:
e Primal:
g=w'¢(z)+b (26)
e Dual:
g= > oK(z,z;)+0b (27)
iEN
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Kernel Principal Component Analysis I

e Perform PCA for covariance matrix

[
C = % 3 00" (28)

e find eigenvalues A > O and eigenvectors V € ‘H satisfying
AV =CV

e We know that all solutions lie in the span of ¢(x1),...,o(x;).
e [ here exist coefficients aq,...,a; such that
l
V=) ajp(z;), (29)
i=1
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KPCA II

e Kernel PCA can be obtained as the dual problem of the
following LS-SVM formulation:

N
max — 0.5w'w + ~0.5 Z 62'2, (30)

w7b7ei i=1

sit.e; = d(x) w+b Vi,

e [ he corresponding primal and dual model representations

are:
e Primal:
e =w'¢(z)+b (31)
e Dual:
e= > oK(z,z;)+b (32)
ieN
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KPCA III

e [ he problem in the Lagrangian multipliers «o; related to the
constraints is then given by:

Qa = da Q;; = (¢(x;) — pig)(P(x) — tig) (33)

e Equation 30 describes the pool of of all candidate compo-
nents. EV which are a solution of 33 lead to a value zero for
—0.5whw + ~0. 521_1 <.

e Relevant Components: Component corresponding to Amax

results in maximizing v0.5 7Y ; e?.
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Primal or Dual?

Solving the Primal or Dual Problem?

e In case the feature map is finite dimensional and explicitly
known one has the choice between solving the primal or dual
problem.

e E.g., for the Gaussian kernel one can only solve the dual
problem.

e Consider linear regression § = wlz + b with w € R?

— dual representation: § =YXV ; ayzl'z; + b with a € RY.

— d small and N large: solving the primal problem in w € R4
IS more convenient.

— d large and N small: solving the dual problem in a € RY
IS more convenient.

Vienna Jun. 17, 2011



NNNNNNNNN
\\\\\\\\\\\\
ccccccccc

kernel-based learning RS

Kernel methods in R

R packages which allow to deal with kernel methods are e.g.,
el071, klaR and kernlab.

e ¢1071 offers an interface to libsvm, a very efficient SVM
implementation.

klaR includes an interface to SVMlight.

most of the libsvm and klaR SVM code is in C++.

kernlab uses S4 class system.

kernlab aims to allow the user to switch between kernels on
an existing algorithm and even to create and use own kernel
functions.
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kernlab

e \We will use economic growth data to illustrate the methods
described above.

e kernlab includes 7 different kernels (vanilladot, rbfdot,
polydot, tanhdot, besseldot, laplacedot, anovadot).

e kernelMatirx computes k(z,z’), i.e., it computes K where
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kernlab II

SVM can be estimated via ksvm

LS-SVM via 1lssvm

kernel PCA via kpca

is there a function for kernel ridge regression?
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