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Principle Component Analysis - Motivation

» Method for dimension reduction

» Orthogonal transformation of possibly correlated variables into
uncorrelated principal components

» Project a centered data matrix A or a (sample) covariance matrix
thereof ¥ = AT A from RP into R™ where g < p

» Aims at finding a few linar combinations the p variables, pointing in
orthogonal directions explaining as much variance as possible.

o = = = = 9ace

Background 3/25



Principal Component Analysis - Problem

PCA - Formulation
7" = max z' ¥z

zTz<1
Extracting the first principal component can be done in two ways:
» computing the first eigenvector of X

» or the first right singular value of A.

Usually principal components are linear combinations of all input variables
with loading vector z* (score).
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Principal Component Analysis - Disadvantage

PCA aimes to reduce complexity, however there are some drawbacks:
» principal components depend on many variables

» interpretation of components can be agonizing
» individual loadings can be negligible
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Sparse PCA - Motivation

Sparse PCA simplifies mass of loadings and therefore
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highlights the most essential structures,
is easier to interpret,
amount of input variables can be controled for

and it provides a reasonable trade-off between
explained variance and usability.

=] 5

Background 6/25



Overview

Journée et al. (2010) provide following contributions:

» Formulations of for single-unit sparse PCA via ¢1 & cardinality
(4o)-penalty
Formulations of for block sparse PCA via /1 & cardinality-penalty
Reformulations to convex optimization problems
Application of the Power Method for sparse PCA

Development of algorithms to solve the reformulated optimization
problems
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Optimization Problem

Single-unit optimization tries to find sparse loadings for one principal
component, before calculating the next one.

Consider following optimization problem
¥4, (7) & max V2T z — 4]zl
zeB"
Y = ATA.

with sparsity-controlling parameter v > 0 and sample covariance matrix

(1)

By setting v = 0 there can be shown that ®,,(0) leads to

v < lai |2,

defining the upper bound for v where i* is obtained by max;||a;||2

y.
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Reformulation |

Reformulating the problem
® _ Azll, —
6(7) = max||Azll> — 7]zl

;
= Az —
max max x " Az — 7z]lx

n
= maX max

(3)
max max >~ z(al x) — 7]lz1l

i=1
= maX max

n
)
max max > |2/|(|a7 x| — )
i=1

where z; = sign(a/ x)z!.

(4)
Equation 2 proofs that there is a x € B for which a,.Tx > 7.

y.
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Reformulation Il

B sign(a/ x) [|a] x| — 'y]+
Vi [lafx =2

Further reformulating the problem

In view of 2, there is some x € B" for which a,-Tx > 7. By fixing x, solving

the inner maximization problem for z’ we obtain a closed solution for z*:
2=z

i=1,.

., n.

(5)
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Reformulation Il

Adjusting the objective function
Therefore Eq. 4 can be written as

2
9%, (1) = max >~ [la x| -1 - (6)

This results in a differentiable and convex objective function, where all
local and global maximal must lie in den Eucledian sphere SP | reducing
the search space of our inital problem formulation (see Eq. 8) to
dimension p with p < n!
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Reformulation Summary

What really happend...

» By introducing a vector x the optimization problem is split in two,
solving x and z, respecitvely.

» x is solved in Eq. 6 providing a sparsity pattern for z*.
» This sparsity pattern indicates which z; are active, i.e. are not 0.

» Therefore loadings only have to be calculated for p of the n variables
of A (for one component).
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Optimization Problem

In contrast to the ¢1-penalty (soft constraint) the ¢y or cardinality-penalty
directly penalizes the number of non-zero components of vector z (hard

constraint).

Optimization problem formulated in d'Aspremont et al. (2008)
Py, (7) & max VzTrz —7z]o (7)

Analogue to the ¢; case with derive the boundary for , optimization for z* and x:
v < llai 3,
[sign(a/ x)? =], af x
\/ Isien(alx)2 = 7], (af x)?
o7, (7) = max y_[(afx)* =] .

XESP £
i=1

i=1,...,n,

zi =z (7) =

V.
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Optimization Problem

Block optimization tries to find sparse loadings for m principal
components.

Consider following generalization of Eq. 3

bgy m(7) € e B T XTAZN) - Z T ZIZIJI (8)

where v = [y1, ..., vm] " Vvj > 0 and N = Diag(p1, ..., ftm) Ypj > 0.

Each +; controls the sparsity for the corresponding component. For positve
~j columns of Z are not expected to be orthogonal anymore! Note that
distinct values of ji; ensure the columns of X* being the dominant m
components, while also pursing more sparse and orthogonal vectors.
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Reformulation

Since the columns of Z are decoupled the reformulation can be done
analogue to the single-unit case. Hence, for every column of X every row

element is optimzed, indicating the 'active-status’ for each component of
Z (i.e. variable of A) of each row Z.

If uj\a,ij*] > «; is fullfilled z;j* is active.
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Power Method

The power method is a eigenvalue algorithm, given a matrix A trying to
find the dominant eigenvalue A and it corresponding eigenvector v such
that Av = Av. By avoiding a matrix decomposition it is very favorable for
large sparse matricen since the computation afford is very low. The scalar

g = x " x converges linearily against the dominant eigenvalue.
AXk
Xk+l = T 9
[[A]|

Xp can be an approxmiation or a random vector. The method works under
following assumptions:

» A has an eigenvalue strictly greater than others

» Starting vector xpg has a non-zero component in the direction of the
eigenvector of the dominant eigenvalue.
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Generalization of the Power Method

Based on gradient method for maximizing convex functions the authors
show that a convex function

F* = max f 1
max f(x) (10)

can iteratively maximized by a subgradient, even if that f(x) is not
assumed to be differentiable.

In our case we have to solve a quadratic objective function f(x) = %XTCX
for C € SE ., which can be solved by

ka
Xes1 = . k>0 11
e o (1)
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Algorithm for Block sparse PCA

Algorithm 4: Block sparse PCA algorithm based on the £, -penalty (16)
input : Data matrix A € R

Sparsity-controlling vector [y1....Ym]" = 0
Parameters yy,. ..,y >0
Initial iterate X € Sf
output: A locally optimal sparsity pattern P
begin
repeat
for j=1,....mdo
L X milujlal x| =] sign(af x)a;
X +— Polar(X)
until a stopping criterion is satisfied

Construct matrix P € {0.1}"*" such that { pij=1 il pjlai x| >

pij=0 otherwise.
end
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Algorithms Evaluated

v

All four GPower algorithms, two single-unit and two block sparse PCA
each with £g and ¢; penalty

Greedy search algorithm of d'Aspremont et al. (2008) (non-convex)
SPCA from Zhou et al. (2006) (lasso penalty)
rSVDy, and rSVDy, by Shen and Huang (2008)
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Evaluation on Real Data - Explained Variance W.
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Evaluation on Real Data - Computation Time | W-
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Evaluation on Real Data - Computation Time [l “U

pxn 50500 100x 1000 250 x 2500 500 x 5000 750 x 7500
GPowery, 0.22 056 462 126 20.4
GPower;, 0.06 0.17 2.15 6.16 103
GPowery, ,,  0.09 0.28 3.50 124 23.0
GPower,,,  0.05 0.14 2.39 7.7 124
SPCA 0.61 147 13.4 483 113.3
rSVDy, 0.29 1.12 7.72 226 46.1
rSVDy, 0.28 1.03 7.21 20.7 41.2

Table 8: Average computational time for the extraction of m = 5 components (in seconds).




Evaluation on Real Data - Conclusion

GPower algorithms show competitve behavior in terms of
> explained variance
» computation time

» control for sparsity pattern

» usability (data matrix and sample covariance matrix)
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