WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Sparse Principal Component

Analysis Formulations And Algorithms

Thomas Rusch Norbert Walchhofer, Department of Finance, Accounting and Statistics WU Vienna June 20, 2011

Outline

- Background
 - Reviw of Principal Component Analysis (PCA)?
- Generalized Power Method for Sparse PCA
- Problem Formulations and Reformulations
 - Single-unit sparsePCA
 - Single-unit sparsePCA via *l*₁-penalty
 - ▶ Single-unit sparsePCA via ℓ₀-penalty
 - Block sparsePCA
 - Power Method
- Proposed Algorithms and their Evaluation
 - Examplary Algorithm

Sac

- Method for dimension reduction
- Orthogonal transformation of possibly correlated variables into uncorrelated principal components
- Project a centered data matrix A or a (sample) covariance matrix thereof Σ = A^TA from R^p into R^m where q ≤ p
- Aims at finding a few linar combinations the p variables, pointing in orthogonal directions explaining as much variance as possible.

PCA - Formulation

$$z^{\star} = \max_{z^{T}z \leq 1} z^{T} \Sigma z$$

Extracting the first principal component can be done in two ways:

- computing the first eigenvector of Σ
- or the first right singular value of A.

Usually principal components are linear combinations of all input variables with loading vector z^* (score).

PCA aimes to reduce complexity, however there are some drawbacks:

- principal components depend on many variables
- interpretation of components can be agonizing
- individual loadings can be negligible

Sparse PCA simplifies mass of loadings and therefore

- highlights the most essential structures,
- is easier to interpret,
- amount of input variables can be controled for
- and it provides a reasonable *trade-off* between explained variance and usability.

Journée et al. (2010) provide following contributions:

- ► Formulations of for single-unit sparse PCA via ℓ₁ & cardinality (ℓ₀)-penalty
- Formulations of for block sparse PCA via ℓ_1 & cardinality-penalty
- Reformulations to convex optimization problems
- Application of the Power Method for sparse PCA
- Development of algorithms to solve the reformulated optimization problems

Single-unit optimization tries to find sparse loadings for one principal component, before calculating the next one.

Consider following optimization problem

$$\Phi_{\ell_1}(\gamma) \stackrel{\text{def}}{=} \max_{z \in B^n} \sqrt{z^T \Sigma z} - \gamma \|z\|_1 \tag{1}$$

with sparsity-controlling parameter $\gamma \ge 0$ and sample covariance matrix $\Sigma = A^T A$. By setting $\gamma = 0$ there can be shown that $\Phi_{\ell_1}(0)$ leads to

$$\gamma < \|\mathbf{a}_{i^{\star}}\|_2,\tag{2}$$

defining the upper bound for γ where i^* is obtained by $\max_i ||a_i||_2$

Sar

Reformulating the problem

$$\Phi_{\ell_1}(\gamma) = \max_{z \in B^n} ||Az||_2 - \gamma ||z||_1$$

$$= \max_{z \in B^n} \max_{x \in B^n} x^T A z - \gamma ||z||_1$$

$$= \max_{x \in B^n} \max_{z \in B^n} \sum_{i=1}^n z_i (a_i^T x) - \gamma ||z||_1$$

$$= \max_{x \in B^n} \max_{z' \in B^n} \sum_{i=1}^n |z'_i| (|a_i^T x| - \gamma)$$

$$(4)$$

$$(a_i^T x) z'_i.$$

where $z_i = \operatorname{sign}(a_i' x) z_i'$. Equation 2 proofs that there is a $x \in B^n$ for which $a_i^T x > \gamma$.

э

DQC

Further reformulating the problem

In view of 2, there is some $x \in B^n$ for which $a_i^T x > \gamma$. By fixing x, solving the inner maximization problem for z' we obtain a closed solution for z^* :

$$z_i^{\star} = z_i^{\star}(\gamma) = \frac{\operatorname{sign}(a_i^T x) \left[|a_i^T x| - \gamma \right]_+}{\sqrt{\sum_{k=1}^n \left[|a_k^T x| - \gamma \right]_+^2}}, \qquad i = 1, \dots, n.$$
(5)

Adjusting the objective function

Therefore Eq. 4 can be written as

$$\Phi_{\ell_1}^2(\gamma) = \max_{x \in S^p} \sum_{i=1}^n \left[|\boldsymbol{a}_i^T \boldsymbol{x}| - \gamma \right]_+^2.$$
 (6)

This results in a differentiable and **convex** objective function, where all local and global maximal must lie in den Eucledian sphere S^p , **reducing the search space** of our initial problem formulation (see Eq. 8) to dimension p with $p \ll n!$

What really happend...

- By introducing a vector x the optimization problem is split in two, solving x and z, respectively.
- x is solved in Eq. 6 providing a sparsity pattern for z^* .
- ► This sparsity pattern indicates which *z_i* are active, i.e. are not 0.
- Therefore loadings only have to be calculated for p of the n variables of A (for one component).

In contrast to the ℓ_1 -penalty (soft constraint) the ℓ_0 or cardinality-penalty directly penalizes the number of non-zero components of vector z (hard constraint).

Optimization problem formulated in d'Aspremont et al. (2008)

$$\Phi_{\ell_0}(\gamma) \stackrel{\text{def}}{=} \max_{z \in B^n} \sqrt{z^T \Sigma z} - \gamma \|z\|_0 \tag{7}$$

Analogue to the ℓ_1 case with derive the boundary for γ , optimization for z_i^* and x:

$$\begin{split} \gamma &< \|\boldsymbol{a}_{i^{\star}}\|_{2}^{2}, \\ z_{i}^{\star} &= z_{i}^{\star}(\gamma) = \frac{\left[\operatorname{sign}(\boldsymbol{a}_{i}^{T}\boldsymbol{x})^{2} - \gamma\right]_{+}\boldsymbol{a}_{i}^{T}\boldsymbol{x}}{\sqrt{\left[\operatorname{sign}(\boldsymbol{a}_{i}^{T}\boldsymbol{x})^{2} - \gamma\right]_{+}(\boldsymbol{a}_{i}^{T}\boldsymbol{x})^{2}}}, \qquad i = 1, \dots, n, \\ \Phi_{\ell_{1}}^{2}(\gamma) &= \max_{\boldsymbol{x} \in S^{p}} \sum_{i=1}^{n} \left[(\boldsymbol{a}_{i}^{T}\boldsymbol{x})^{2} - \gamma\right]_{+}. \end{split}$$

Block optimization tries to find sparse loadings for m principal components.

Consider following generalization of Eq. 3

$$\Phi_{\ell_1,m}(\gamma) \stackrel{\text{def}}{=} \max_{X \in S_m^{\text{pn}} Z \in [S^n]^m} \operatorname{Tr}(X^T A Z N) - \sum_{j=1}^m \gamma_j \sum_{i=1}^n |z_i j| \qquad (8)$$
where $\gamma = [\gamma_1, \dots, \gamma_m]^T \quad \forall \gamma_j \ge 0$ and $N = \operatorname{Diag}(\mu_1, \dots, \mu_m) \quad \forall \mu_j > 0.$

Each γ_j controls the sparsity for the corresponding component. For positve γ_j columns of Z are not expected to be orthogonal anymore! Note that distinct values of μ_j ensure the columns of X^* being the dominant m components, while also pursing more sparse and orthogonal vectors.

Since the columns of Z are decoupled the reformulation can be done analogue to the single-unit case. Hence, for every column of X every row element is optimzed, indicating the 'active-status' for each component of Z (i.e. variable of A) of each row Z. If $\mu_j |a_i^T x_i^*| > \gamma_j$ is fullfilled $z_i j^*$ is active.

Sac

The power method is a eigenvalue algorithm, given a matrix A trying to find the dominant eigenvalue λ and it corresponding eigenvector v such that $Av = \lambda v$. By avoiding a matrix decomposition it is very favorable for large sparse matricen since the computation afford is very low. The scalar $q = x^T x$ converges linearily against the dominant eigenvalue.

$$x_{k+1} = \frac{Ax_k}{\|Ax_k\|} \tag{9}$$

 x_0 can be an approxmiation or a random vector. The method works under following assumptions:

- A has an eigenvalue strictly greater than others
- Starting vector x₀ has a non-zero component in the direction of the eigenvector of the dominant eigenvalue.

Based on gradient method for maximizing convex functions the authors show that a convex function

$$f^{\star} = \max_{x \in Q} f(x) \tag{10}$$

can iteratively maximized by a subgradient, even if that f(x) is not assumed to be differentiable.

In our case we have to solve a quadratic objective function $f(x) = \frac{1}{2}x^T C x$ for $C \in S_{++}^p$, which can be solved by

$$x_{k+1} = \frac{C_{x_k}}{\|C_{x_k}\|}, \quad k \ge 0.$$
 (11)

Algorithm 4: Block sparse PCA algorithm based on the ℓ_1 -penalty (16)

 $\begin{aligned} \mathbf{input} : \text{Data matrix } A \in \mathbf{R}^{p \times n} \\ & \text{Sparsity-controlling vector } [\gamma_1, \dots, \gamma_m]^T \ge 0 \\ & \text{Parameters } \mu_1, \dots, \mu_m > 0 \\ & \text{Initial iterate } X \in \mathcal{S}_m^{p^*} \end{aligned}$ $\begin{aligned} \mathbf{output} : A \text{ locally optimal sparsity pattern } P \\ & \text{begin} \end{aligned}$ $\begin{aligned} \mathbf{repeat} \\ & \left| \begin{array}{c} \mathbf{for } j = 1, \dots, m \ \mathbf{do} \\ & \left\lfloor x_j \leftarrow \sum_{i=1}^n \mu_j [\mu_j] a_i^T x_j | -\gamma_j]_+ \operatorname{sign}(a_i^T x) a_i \\ & X \leftarrow -\operatorname{Polar}(X) \end{aligned} \right. \\ & \text{until } a \ stopping \ criterion \ is \ satisfied \\ & \text{Construct matrix } P \in \{0,1\}^{n \times m} \ \text{such that } \begin{cases} p_{ij} = 1 & \operatorname{if } \mu_j |a_i^T x_j| > \gamma_j \\ p_{ij} = 0 & \operatorname{otherwise.} \end{cases} \end{aligned}$

- ▶ All four GPower algorithms, two single-unit and two block sparse PCA each with ℓ_0 and ℓ_1 penalty
- Greedy search algorithm of d'Aspremont et al. (2008) (non-convex)
- SPCA from Zhou et al. (2006) (lasso penalty)
- ▶ $rSVD_{\ell_0}$ and $rSVD_{\ell_1}$ by Shen and Huang (2008)

Evaluation on Real Data - Explained Variance

DQC

Evaluation on Real Data - Computation Time I

DQC

W

		~

$p \times n$	50×500	100×1000	250×2500	500×5000	750 imes 7500	
$GPower_{\ell_1}$	0.22	0.56	4.62	12.6	20.4	
$GPower_{\ell_0}$	0.06	0.17	2.15	6.16	10.3	
$GPower_{\ell_1,m}$	0.09	0.28	3.50	12.4	23.0	
$GPower_{\ell_0,m}$	0.05	0.14	2.39	7.7	12.4	Ν
SPCA	0.61	1.47	13.4	48.3	113.3	15
$rSVD_{\ell_1}$	0.29	1.12	7.72	22.6	46.1	
$rSVD_{\ell_0}$	0.28	1.03	7.21	20.7	41.2	

Table 8: Average computational time for the extraction of m = 5 components (in seconds).

Sac

GPower algorithms show competitve behavior in terms of

- explained variance
- computation time
- control for sparsity pattern
- usability (data matrix and sample covariance matrix)

- A. d'Aspremont, F. Bach, and L. El Ghaoui. Optimal solutions for sparse principal component analysis. *Journal of Machine Learning*, 9:1269–1294, 2008.
- Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre. Generalized power method for sparse principal component analysis. *Journal of Machine Learning Research*, 11: 517–553, 2010.
- Haipeng Shen and Jianhua Z. Huang. Sparse principal component analysis via regularized low rank matrix approximation. *J. Multivar. Anal.*, 99:1015–1034, July 2008. ISSN 0047-259X. doi: 10.1016/j.jmva.2007.06.007.
- H. Zhou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. *Journal of Computational and Graphical Statistics*, 15:265–286, 2006.

Sac

3

Thomas Rusch Norbert Walchhofer

WU Wirtschaftsuniversität Wien Augasse 2–6, A-1090 Wien