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Principle Component Analysis - Motivation

I Method for dimension reduction

I Orthogonal transformation of possibly correlated variables into
uncorrelated principal components

I Project a centered data matrix A or a (sample) covariance matrix
thereof Σ = ATA from IRp into IRm where q ≤ p

I Aims at finding a few linar combinations the p variables, pointing in
orthogonal directions explaining as much variance as possible.
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Principal Component Analysis - Problem

.
PCA - Formulation
..

.

. ..

.

.

z? = max
zT z≤1

zTΣz

Extracting the first principal component can be done in two ways:

I computing the first eigenvector of Σ

I or the first right singular value of A.

Usually principal components are linear combinations of all input variables
with loading vector z? (score).
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Principal Component Analysis - Disadvantage

PCA aimes to reduce complexity, however there are some drawbacks:

I principal components depend on many variables

I interpretation of components can be agonizing

I individual loadings can be negligible
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Sparse PCA - Motivation

Sparse PCA simplifies mass of loadings and therefore

I highlights the most essential structures,

I is easier to interpret,

I amount of input variables can be controled for

I and it provides a reasonable trade-off between
explained variance and usability.
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Overview

Journée et al. (2010) provide following contributions:

I Formulations of for single-unit sparse PCA via `1 & cardinality
(`0)-penalty

I Formulations of for block sparse PCA via `1 & cardinality-penalty

I Reformulations to convex optimization problems

I Application of the Power Method for sparse PCA

I Development of algorithms to solve the reformulated optimization
problems
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Optimization Problem

Single-unit optimization tries to find sparse loadings for one principal
component, before calculating the next one.
.
Consider following optimization problem
..

.

. ..

.

.

Φ`1(γ)
def
= max

z∈Bn

√
zTΣz − γ‖z‖1 (1)

with sparsity-controlling parameter γ ≥ 0 and sample covariance matrix
Σ = ATA.
By setting γ = 0 there can be shown that Φ`1(0) leads to

γ < ‖ai?‖2, (2)

defining the upper bound for γ where i? is obtained by maxi‖ai‖2
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Reformulation I

.
Reformulating the problem
..

.

. ..

.

.

Φ`1(γ) = max
z∈Bn

‖Az‖2 − γ‖z‖1

= max
z∈Bn

max
x∈Bn

xTAz − γ‖z‖1 (3)

= max
x∈Bn

max
z∈Bn

n∑
i=1

zi (a
T
i x)− γ‖z‖1

= max
x∈Bn

max
z ′∈Bn

n∑
i=1

|z ′i |(|aTi x | − γ) (4)

where zi = sign(aTi x)z
′
i .

Equation 2 proofs that there is a x ∈ Bn for which aTi x > γ.
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Reformulation II

.
Further reformulating the problem
..

.

. ..

.

.

In view of 2, there is some x ∈ Bn for which aTi x > γ. By fixing x , solving
the inner maximization problem for z ′ we obtain a closed solution for z?:

z?i = z?i (γ) =
sign(aTi x)

[
|aTi x | − γ

]
+√∑n

k=1

[
|aTk x | − γ

]2
+

, i = 1, . . . , n. (5)
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Reformulation III

.
Adjusting the objective function
..

.

. ..

.

.

Therefore Eq. 4 can be written as

Φ2
`1(γ) = max

x∈Sp

n∑
i=1

[
|aTi x | − γ

]2
+
. (6)

This results in a differentiable and convex objective function, where all
local and global maximal must lie in den Eucledian sphere Sp , reducing
the search space of our inital problem formulation (see Eq. 8) to
dimension p with p � n!
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Reformulation Summary

What really happend...

I By introducing a vector x the optimization problem is split in two,
solving x and z , respecitvely.

I x is solved in Eq. 6 providing a sparsity pattern for z?.

I This sparsity pattern indicates which zi are active, i.e. are not 0.

I Therefore loadings only have to be calculated for p of the n variables
of A (for one component).

Problem Formulations and Reformulations 12 / 25



. . . . . .

Optimization Problem

In contrast to the `1-penalty (soft constraint) the `0 or cardinality-penalty
directly penalizes the number of non-zero components of vector z (hard
constraint).
.
Optimization problem formulated in d’Aspremont et al. (2008)
..

.

. ..

.

.

Φ`0(γ)
def
= max

z∈Bn

√
zTΣz − γ‖z‖0 (7)

Analogue to the `1 case with derive the boundary for γ, optimization for z?i and x :

γ < ‖ai?‖22,

z?i = z?i (γ) =

[
sign(aTi x)

2 − γ
]
+
aTi x√[

sign(aTi x)
2 − γ

]
+
(aTi x)

2
, i = 1, . . . , n,

Φ2
`1(γ) = max

x∈Sp

n∑
i=1

[
(aTi x)

2 − γ
]
+
.
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Optimization Problem

Block optimization tries to find sparse loadings for m principal
components.
.
Consider following generalization of Eq. 3
..

.

. ..

.

.

Φ`1,m(γ)
def
= max

X∈Spm Z∈[Sn]m
Tr(XTAZN)−

m∑
j=1

γj

n∑
i=1

|zi j | (8)

where γ = [γ1, . . . , γm]
T ∀γj ≥ 0 and N = Diag(µ1, . . . , µm) ∀µj > 0.

Each γj controls the sparsity for the corresponding component. For positve
γj columns of Z are not expected to be orthogonal anymore! Note that
distinct values of µj ensure the columns of X ? being the dominant m
components, while also pursing more sparse and orthogonal vectors.
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Reformulation

Since the columns of Z are decoupled the reformulation can be done
analogue to the single-unit case. Hence, for every column of X every row
element is optimzed, indicating the ’active-status’ for each component of
Z (i.e. variable of A) of each row Z .
If µj |aTi x?j | > γj is fullfilled zi j

? is active.
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Power Method

The power method is a eigenvalue algorithm, given a matrix A trying to
find the dominant eigenvalue λ and it corresponding eigenvector v such
that Av = λv . By avoiding a matrix decomposition it is very favorable for
large sparse matricen since the computation afford is very low. The scalar
q = xT x converges linearily against the dominant eigenvalue.

xk+1 =
Axk
‖Axk‖

(9)

x0 can be an approxmiation or a random vector. The method works under
following assumptions:

I A has an eigenvalue strictly greater than others

I Starting vector x0 has a non-zero component in the direction of the
eigenvector of the dominant eigenvalue.
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Generalization of the Power Method

Based on gradient method for maximizing convex functions the authors
show that a convex function

f ? = max
x∈Q

f (x) (10)

can iteratively maximized by a subgradient, even if that f (x) is not
assumed to be differentiable.
In our case we have to solve a quadratic objective function f (x) = 1

2x
TCx

for C ∈ Sp++, which can be solved by

xk+1 =
Cxk

‖Cxk‖
, k ≥ 0. (11)
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Algorithm for Block sparse PCA
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Algorithms Evaluated

I All four GPower algorithms, two single-unit and two block sparse PCA
each with `0 and `1 penalty

I Greedy search algorithm of d’Aspremont et al. (2008) (non-convex)

I SPCA from Zhou et al. (2006) (lasso penalty)

I rSVD`0 and rSVD`1 by Shen and Huang (2008)
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Evaluation on Real Data - Explained Variance
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Evaluation on Real Data - Computation Time I
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Evaluation on Real Data - Computation Time II
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Evaluation on Real Data - Conclusion

GPower algorithms show competitve behavior in terms of

I explained variance

I computation time

I control for sparsity pattern

I usability (data matrix and sample covariance matrix)
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