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1
Introduction

1.1 Overview

• Topology

• Analysis

• Integration

• Multiple integrals

• Ordinary differential equations (ODE) of first and second order

– initial value problem

– linear and logistic differential equation

• Autonomous differential equation

– phase diagram

– stability of solutions

• Systems of differential equations

– stationary points (stable, unstable, saddle points)

– characterization using eigenvalues

– Saddle path solutions

• Control theory

– Hamilton function

– transversality condition

1





2
Sequences and Series

What happens when we proceed ad infinitum?

2.1 Limits of Sequences

Sequence. A sequence (xn)∞n=1 of real numbers is an ordered list of Definition 2.1
real numbers. Formally it can be defined as a function that maps the

x : N→R, n 7→ xnnatural numbers into R. Number xn is called the nth term of the se-
quence. We write (xn) for short to denote a squence if there is no risk if
confusion. Sequences can also be seen as vectors of infinite length.

Convergence and divergence. A sequence (xn)∞n=1 in R converges Definition 2.2
to a number x if for every ε> 0 there exists an index N = N(ε) such that
|xn − x| < ε for all n ≥ N, or equivalently xn ∈ (x−ε, x+ε). The number x
is then called the limit of the sequence. We write

xn → x as n →∞, or lim
n→∞xn = x .

a1 a2a5 a6a9

a3 a4a7 a8

0

(
−ε

)
ε

−ε

ε

0 n

an

A sequence that has a limit is called convergent. Otherwise it is called
divergent.

Notice that the limit of a convergent sequence is uniquely deter-
mined, see Problem 2.5.

3



4 SEQUENCES AND SERIES

lim
n→∞ c = c for all c ∈R

lim
n→∞nα =


∞, for α> 0,
1, for α= 0,
0, for α< 0.

lim
n→∞qn =


∞, for q > 1,
1, for q = 1,
0, for −1< q < 1,
̸ ∃, for q ≤−1.

lim
n→∞

na

qn =


0, for |q| > 1,
∞, for 0< q < 1,
̸ ∃, for −1< q < 0,

for |q| ̸∈ {0,1}.

lim
n→∞

(
1+ 1

n
)n = e = 2.7182818. . .

Table 2.5

Limits of important
sequences

The sequencesExample 2.3

(
an

)∞
n=1 =

(
1
2n

)∞
n=1

=
(

1
2

,
1
4

,
1
8

,
1

16
, . . .

)
→ 0

(
bn

)∞
n=1 =

(
n−1
n+1

)∞
n=1

=
(
0,

1
3

,
2
4

,
3
5

,
4
6

,
5
7

, . . .
)
→ 1

converge as n →∞, i.e.,

lim
n→∞

(
1
2n

)
= 0 and lim

n→∞

(
n−1
n+1

)
= 1 . ♦

The sequenceExample 2.4 (
cn

)∞
n=1 =

(
(−1)n)∞

n=1 = (−1,1,−1,1,−1,1, . . .)(
dn

)∞
n=1 =

(
2n)∞

n=1 = (2,4,8,16,32, . . .)

diverge. However, in the last example the sequence is increasing and not
bounded from above. Thus we may write in abuse of language

lim
n→∞2n =∞ . ♦

Computing limits can be a very challenging task. Thus we only look
at a few examples. Table 2.5 lists limits of some important sequences.
Notice that the limit of lim

n→∞
na

qn just says that in a product of a power
sequence with an exponential sequence the latter dominates the limits.

We prove one of these limits in Lemma 2.12 below. For this purpose
we need a few more notions.



2.1 LIMITS OF SEQUENCES 5

Bounded sequence. A sequence (xn)∞n=1 of real numbers is called Definition 2.6
bounded if there exists an M such that

bounded sequence
|xn| ≤ M for all n ∈N.

Two numbers m and M are called lower and upper bound, respec- lower bound
tively, if

m ≤ xn ≤ M, for all n ∈N.

The greatest lower bound and the smallest upper bound are called infi-

m

M

0

mum and supremum of the sequence, respectively, denoted by sup xn

inf xninf
n∈N

xn and sup
n∈N

xn, respectively.

Notice that for a bounded sequence (xn), Lemma 2.7

xn ≤ sup
k∈N

xk for all n ∈N

and for all ε> 0, there exists an m ∈N such that

xm >
(
sup
k∈N

xk

)
−ε

since otherwise
(
supk∈N xk

)−ε were a smaller upper bound, a contradic-
tion to the definition of the supremum.

sup xn −ε ε
sup xn

xm

Do not mix up supremum (or infimum) with the maximal (and minimal) Example 2.8
value of a sequence. If a sequence (xn) has a maximal value, then obvi-
ously maxn∈N xn = supn∈N xn. However, a maximal value need not exist.
The sequence

(
1− 1

n
)∞
n=1 is bounded and we have

sup
n∈N

(
1− 1

n

)
= 1 .

However, 1 is never attained by this sequence and thus it does not have
a maximum. ♦

sup xn

Monotone sequence. A sequence (an)∞n=1 is called monotone if ei- Definition 2.9
ther an+1 ≥ an (increasing) or an+1 ≤ an (decreasing) for all n ∈N.

Convergence of a monotone sequence. A monotone sequence Lemma 2.10
(an)∞n=1 is convergent if and only if it is bounded. We then find lim

n→∞an =
sup
n∈N

an if (an) is increasing, and lim
n→∞an = inf

n∈N
an if (an) is decreasing.

PROOF IDEA. If (an) is increasing and bounded, then there is only a
finite number of elements that are less than sup

n∈N
an −ε.

If (an) is increasing and convergent, then there is only a finite num-
ber of elements greater than lim

n→∞ an +ε or less than lim
n→∞ an −ε. These

have a maximum and minimum value, respectively.



6 SEQUENCES AND SERIES

PROOF. We consider the case where (an) is increasing. Assume that
(an) is bounded and M = supn∈N an. Then for every ε > 0, there exists
an N such that aN > M − ε (Lemma 2.7). Since (an) is increasing we
find M ≥ an > M − ε and thus |an − M| < ε for all n ≥ N. Consequently,
(an)→ M as n →∞.

M−ε εM

aN

Conversely, if (an) converges to a, then there is only a finite number
of elements a1, . . . ,am which do not satisfy |an − a| < 1. Thus an < M =
max{a+1,a1, . . . ,am}<∞ for all n ∈N. Moreover, since (an) is increasing
we also find an ≥ a1. Thus the sequence is bounded. The case where the
sequence is decreasing follows completely analogously.

a−1 ε
a

am

|an −a| < 1finitely many

For any q ∈R, the sequence (qn)∞n=0 is called a geometric sequence.Definition 2.11

Convergence of geometric sequence. lim
n→∞qn = 0 for all q ∈ (−1,1) .Lemma 2.12

PROOF. Observe that for 0 ≤ q < 1 we find 0 ≤ qn = q · qn−1 ≤ qn−1 for
all n ≥ 2 and hence qn is decreasing and bounded from below. Hence it
converges by Lemma 2.10 and lim

n→∞qn = inf
n≥1

qn.

Now suppose that m = inf
n≥1

qn > 0 for some 0 < q < 1 and let ε =
m(1/q−1)> 0. By Lemma 2.7 there exists a k such that qk < m+ε. Then
qk+1 = q · qk < q(m+m(1/q−1))= m, a contradiction. Hence lim

n→∞ qn = 0.
If −1< q < 0, then lim

n→∞ |qn| = 0 and hence lim
n→∞ qn = 0 (Problem 2.6).

Divergence of geometric sequence. For |q| > 1 the geometric se-Lemma 2.13
quence diverges. Moreover, for q > 1 we find lim

n→∞qn =∞.

PROOF. Suppose M = sup
n∈N

|qn| <∞. Then |(1/q)n| ≥ 1/M > 0 for all n ∈N
and M = inf

n∈N
|(1/q)n| > 0, a contradiction to Lemma 2.12, as |1/q| < 1.

Limits of sequences with more complex terms can be reduced to the
limits listed in Table 2.5 by means of the rules listed in Theorem 2.14
below. Notice that Rule (1) implies that taking the limit of a sequence is
a linear operator on the set of all convergent sequences.

Rules for limits. Let (an)∞n=1 and (bn)∞n=1 be convergent sequences in RTheorem 2.14
and (cn)∞n=1 be a bounded sequence in R. Then

(1) lim
n→∞(αan +βbn)=α lim

n→∞an +β lim
n→∞bn for all α,β ∈R

(2) lim
n→∞(an ·bn)= lim

n→∞an · lim
n→∞bn

(3) lim
n→∞

an

bn
= limn→∞ an

limn→∞ bn
(if lim

n→∞bn ̸= 0)

(4) lim
n→∞ar

n =
(

lim
n→∞an

)r

(5) lim
n→∞(an · cn)= 0 (if lim

n→∞an = 0)
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For the proof of these (and other) properties of sequences the triangle
inequality plays a prominent rôle.

Triangle inequality. For two real numbers a and b we find Lemma 2.15

|a+b| ≤ |a|+ |b| .

PROOF. See Problem 2.4.

Here we just prove Rule (1) from Theorem 2.14 (see also Problem 2.7).
The other rules remain stated without proof.

Sum of covergent sequences. Let (an) and (bn) be two sequences in Lemma 2.16
R that converge to a and b, resp. Then

lim
n→∞(an +bn)= a+b .

PROOF IDEA. Use the triangle inequality for each term (an+bn)−(a+b).

PROOF. Let ε > 0 be arbitrary. Since both (an) → a and (bn) → b there
exists an N = N(ε) such that |an−a| < ε/2 and |bn−b| < ε/2 for all n > N.
Then we find

|(an +bn)− (a+b)| = |(an −a)+ (bn −b)|
≤ |an −a|+ |bn −b| < ε

2 + ε
2 = ε

for all n > N. But this means that (an +bn)→ (a+b), as claimed.

The rules from Theorem 2.14 allow to reduce limits of composite terms Example 2.17
to the limits listed in Table 2.5.

lim
n→∞

(
2+ 3

n2

)
= 2+3 lim

n→∞n−2︸ ︷︷ ︸
=0

= 2+3 ·0= 2

lim
n→∞(2−n ·n−1)= lim

n→∞
n−1

2n = 0

lim
n→∞

1+ 1
n

2− 3
n2

=
lim

n→∞
(
1+ 1

n
)

lim
n→∞

(
2− 3

n2

) = 1
2

lim
n→∞ sin(n)︸ ︷︷ ︸

bounded

· 1
n2︸︷︷︸
→0

= 0 ♦

Exponential function. Theorem 2.14 allows to compute ex as the limit Example 2.18
of a sequence:

ex =
(

lim
m→∞

(
1+ 1

m

)m)x
= lim

m→∞

(
1+ 1

m

)mx
= lim

n→∞

(
1+ 1

n/x

)n

= lim
n→∞

(
1+ x

n

)n

where we have set n = mx. ♦
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2.2 Series

Series. Let (xn)∞n=1 be a sequence of real numbers. Then the associatedDefinition 2.19
series is defined as the ordered formal sum

∞∑
n=1

xn = x1 + x2 + x3 + . . . .

The sequence of partial sums associated to series
∑∞

n=1 xn is defined aspartial sum

Sn =
n∑

i=1
xi for n ∈N.

The series converges to a limit S if sequence (Sn)∞n=1 converges to S,convergent
i.e.,

S =
∞∑

i=1
xi if and only if S = lim

n→∞Sn = lim
n→∞

n∑
i=1

xi .

Otherwise, the series is called divergent.

We have already seen that a geometric sequence converges if |q| < 1,
see Lemma 2.12. The same holds for the associated geometric series.

Geometric series. The geometric series converges if and only if |q| < 1Lemma 2.20
and we find

∞∑
n=0

qn = 1+ q+ q2 + q3 +·· · = 1
1− q

.

PROOF IDEA. We first find a closed form for the terms of the geometric
series and then compute the limit.

PROOF. We first show that for any n ≥ 0,

Sn =
n∑

k=0
qk = 1− qn+1

1− q
.

In fact,

Sn(1− q)= Sn − qSn =
n∑

k=0
qk − q

n∑
k=0

qk =
n∑

k=0
qk −

n∑
k=0

qk+1

=
n∑

k=0
qk −

n+1∑
k=1

qk = q0 − qn+1 = 1− qn+1

and thus the result follows. Now by the rules for limits of sequences
we find by Lemma 2.12 lim

n→∞
∑n

k=0 qn = lim
n→∞

1−qn+1

1−q = 1
1−q if |q| < 1. Con-

versely, if |q| > 1, the sequence diverges by Lemma 2.13. If q = 1, the
we trivially have

∑∞
n=0 1=∞. For q =−1 the sequence of partial sums is

given by Sn = ∑n
k=0(−1)k = 1+ (−1)n which obviously does not converge.

This completes the proof.
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Harmonic series. The so called harmonic series diverges, Lemma 2.21

∞∑
n=1

1
n
= 1+ 1

2
+ 1

3
+ 1

4
+·· · =∞ .

PROOF IDEA. We construct a new series which is component-wise smaller
than or equal to the harmonic series. This series is then transformed by
adding some its terms into a series with constant terms which is obvi-
ously divergent.

PROOF. We find
∞∑

n=1

1
n
= 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
+ 1

9
+·· ·+ 1

16
+ 1

17
+ . . .

> 1 + 1
2
+ 1

4
+ 1

4
+ 1

8
+ 1

8
+ 1

8
+ 1

8
+ 1

16
+·· ·+ 1

16
+ 1

32
+ . . .

= 1+ 1
2
+

(
1
4
+ 1

4

)
+

(
1
8
+ 1

8
+ 1

8
+ 1

8

)
+

(
1

16
+·· ·+ 1

16

)
+

(
1

32
+ . . .

= 1+ 1
2
+

(
1
2

)
+

(
1
2

)
+

(
1
2

)
+

(
1
2

)
+ . . .

=∞ .

More precisely, we have
2k∑

n=1

1
n > 1+ k

2 →∞ as k →∞.

The trick from the above proof is called the comparison test as we
compare our series with a divergent series. Analogously one also may
compare the sequence with a convergent one.

Comparison test. Let
∑∞

n=1 an and
∑∞

n=1 bn be two series with 0≤ an ≤ Lemma 2.22
bn for all n ∈N.

(a) If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges.

(b) If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

PROOF. (a) Suppose that B = ∑∞
k=1 bk <∞ exists. Then by our assump-

tions 0≤∑n
k=1 ak ≤

∑n
k=1 bk ≤ B for all n ∈N. Hence

∑n
k=1 ak is increasing

and bounded and thus the series converges by Lemma 2.10.
(b) On the other hand, if

∑∞
k=1 ak diverges, then for every M there

exists an N such that M ≤∑n
k=1 ak ≤

∑n
k=1 bk for all n ≥ N. Hence

∑∞
k=1 bk

diverges, too.

Such tests are very important as it allows to verify whether a series
converges or diverges by comparing it to a series where the answer is
much simpler. However, it does not provide a limit when (bn) converges
(albeit it provides an upper bound for the limit). Nevertheless, the proof
of existence is also of great importance. The following example demon-
strates that using expressions in a naïve way without checking their
existence may result in contradictions.
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Grandi’s series. Consider the following series that has been extensivelyExample 2.23
discussed during the 18th century. What is the value of

S =
∞∑

n=0
(−1)n = 1−1+1−1+1−1+ . . . ?

One might argue in the following way:

1−S = 1− (1−1+1−1+1−1+ . . .)= 1−1+1−1+1−1+1− . . .

= 1−1+1−1+1− . . .= S

and hence 2S = 1 and S = 1
2 . Notice that this series is just a special case

of the geometric series with q = −1. Thus we get the same result if we
misleadingly use the formula from Lemma 2.20.

However, we also may proceed in a different way. By putting paren-
theses we obtain

S = (1−1)+ (1−1)+ (1−1)+ . . .= 0+0+0+ . . .= 0 , and

S = 1+ (−1+1)+ (−1+1)+ (−1+1)+ . . .= 1+0+0+0+ . . .= 1 .

Combining these three computations gives

S = 1
2 = 0= 1

which obviously is not what we expect from real numbers. The error in
all these computation is that the expression S cannot be treated like a
number since the series diverges. ♦

If we are given a convergent sequence (an)∞n=1 then the sequence of
its absolute values also converges (Problem 2.6). The converse, however,
may not hold. For the associated series we have an opposite result.

Let
∑∞

n=1 an be some series. If
∑∞

n=1 |an| converges, then
∑∞

n=1 an alsoLemma 2.24
converges.

PROOF IDEA. We split the series into a positive and a negative part.

PROOF. Let P = {n ∈N : an ≥ 0} and N = {n ∈N : an < 0}. Then

m+ = ∑
n∈P

|an| ≤
∞∑

n=1
|an| <∞ and m− = ∑

n∈N

|an| ≤
∞∑

n=1
|an| <∞

and therefore
∞∑

n=1
an = ∑

n∈P

|an|−
∑

n∈N

|an| = m+−m−

exists.

Notice that the converse does not hold. If series
∑∞

n=1 an converges
then

∑∞
n=1 |an| may diverge.
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It can be shown that the alternating harmonic series Example 2.25
∞∑

n=1

(−1)n+1

n
= 1− 1

2
+ 1

3
− 1

4
+ 1

5
− . . .= ln2

converges, whereas we already have seen in Lemma 2.21 that the har-
monic series

∑∞
n=1

∣∣∣ (−1)n+1

n

∣∣∣=∑∞
n=1

1
n does not not. ♦

A series
∑∞

n=1 an is called absolutely convergent if
∑∞

n=1 |an| converges. Definition 2.26

Ratio test. A series
∑∞

n=1 an converges if there exists a q < 1 and an Lemma 2.27
N <∞ such that∣∣∣∣an+1

an

∣∣∣∣≤ q < 1 for all n ≥ N.

Similarly, if there exists an r > 1 and an N <∞ such that∣∣∣∣an+1

an

∣∣∣∣≥ r > 1 for all n ≥ N

then the series diverges.

PROOF IDEA. We compare the series with a geometric series and apply
the comparison test.

PROOF. For the first statement observe that |an+1| < |an|q implies |aN+k| <
|aN |qk. Hence

∞∑
n=1

|an| =
N∑

n=1
|an|+

∞∑
k=1

|aN+k| <
N∑

n=1
|an|+ |aN |

∞∑
k=1

qk <∞

where the two inequalities follows by Lemmata 2.22 and 2.20. Thus∑∞
n=1 an converges by Lemma 2.24. The second statement follows simi-

larly but requires more technical details and is thus omitted.

There exist different variants of this test. We give a convenient ver-
sion for a special case.

Ratio test. Let
∑∞

n=1 an be a series where lim
n→∞

∣∣∣ an+1
an

∣∣∣ exists. Lemma 2.28
Then

∑∞
n=1 an converges if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣< 1 .

It diverges if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣> 1 .

PROOF. Assume that L = lim
n→∞

∣∣∣ an+1
an

∣∣∣ exists and L < 1. Then there ex-

ists an N such that
∣∣∣ an+1

an

∣∣∣ < q = 1− 1
2 (1−L) < 1 for all n ≥ N. Thus the

series converges by Lemma 2.27. The proof for the second statement is
completely analogous.
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— Exercises

2.1 Compute the following limits:

(a) lim
n→∞

(
7+

(
1
2

)n)
(b) lim

n→∞
2n3 −6n2 +3n−1

7n3 −16

(c) lim
n→∞

nmod10
(−2)n (d) lim

n→∞
n2 +1
n+1

(e) lim
n→∞

(
n2 − (−1)n n3)

(f) lim
n→∞

(
7n

2n−1
− 4n2 −1

5−3n2

)

2.2 Compute the limits of sequence (an)∞n=1 with the following terms:

(a) an = (−1)n (
1+ 1

n
)

(b) an = n
(n+1)2

(c) an = (
1+ 2

n
)n (d) an = (

1− 2
n
)n

(e) an = 1p
n (f) an = n

n+1 + 1p
n

(g) an = n
n+1 +

p
n (h) an = 4+pn

n

2.3 Compute the following limits:

(a) lim
n→∞

(
1+ 1

n

)nx
(b) lim

n→∞

(
1+ x

n

)n
(c) lim

n→∞

(
1+ 1

nx

)n

— Problems

2.4 Prove the triangle inequality in Lemma 2.15.
HINT: Look at all possible cases where a ≥ 0 or a < 0 and b ≥ 0 and b < 0.

2.5 Let (an) be a convergent sequence. Show by means of the triangle
inequality (Lemma 2.15) that its limit is uniquely defined.
HINT: Assume that two limits a and b exist and show that |a−b| = 0.

2.6 Let (an) be a convergent sequence with lim
n→∞an = a. Show thatHINT: Use inequality∣∣|a|− |b|∣∣≤ |a−b|.

lim
n→∞ |an| = |a| .

State and disprove the converse statement.

2.7 Let (an) be a sequence in R that converge to a and c ∈R. Show that

lim
n→∞ c an = c a .

2.8 Let (an) be a sequence in R that converge to 0 and (cn) be a bounded
sequence. Show that

lim
n→∞ cn an = 0 .
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2.9 Let (an) be a convergent sequence with an ≥ 0. Show that

lim
n→∞an ≥ 0 .

Disprove that lim
n→∞an > 0 when all elements of this convergent se-

quence are positive, i.e., an > 0 for all n ∈N.

2.10 When we inspect the second part of the proof of Lemma 2.10 we
find that monotonicity of sequence (an) is not required. Show that
every convergent sequence (an) is bounded.

Also disprove the converse claim that every bounded sequence is
convergent.

2.11 Compute
∞∑

k=1
qn.

2.12 Show that for any a ∈R, HINT: There exists an
N > |a|.

lim
n→∞

an

n!
= 0 .

2.13 Cauchy’s covergence criterion. A sequence (an) in R is called
a Cauchy sequence if for every ε> 0 there exists a number N such
that |an −am| < ε for all n,m > N.
Show: If a sequence (an) converges, then it is a Cauchy sequence. HINT: Use the triangle in-

equality.
(Remark: The converse also holds. If (an) is a Cauchy sequence,
then it converges.)

2.14 Show that
∞∑

n=1

1
n!

converges. HINT: Use the ratio test.

2.15 Someone wants to show the (false!) “theorem”:

If
∑∞

n=1 an converges, then
∑∞

n=1 |an| also converges.

He argues as follows:

Let P = {n ∈N : an ≥ 0} and N = {n ∈N : an < 0}. Then

∞∑
n=1

an = ∑
n∈P

an +
∑

n∈N

an = ∑
n∈P

|an|−
∑

n∈N

|an| <∞

and thus both m+ =∑
n∈P |an| <∞ and m− =∑

n∈N |an| <∞. There-
fore

∞∑
n=1

|an| =
∑

n∈P

|an|+
∑

n∈N

|an| = m++m− <∞

exists.





3
Topology

We need the concepts of neighborhood and boundary.

The fundamental idea in analysis can be visualized as roaming in foggy
weather. We explore a function locally around some point by making
tiny steps in all directions. However, we then need some conditions that
ensure that we do not run against an edge or fall out of our function’s
world (i.e., its domain). Thus we introduce the concept of an open neigh-
borhood.

3.1 Open Neighborhood

Interior, exterior and boundary points. Recall that for any point x ∈ Definition 3.1
Rn the Euclidean norm ∥x∥ is defined as

∥x∥ =
p

x′x=
√

n∑
i=1

x2
i .

The Euclidean distance d(x,y) between any two points x,y ∈ Rn is
given as

d(x,y)= ∥x−y∥ =
√

(x−y)′(x−y) .

These terms allow us to get a notion of points that are “nearby” some

a
r

Br(a)

point x. The set

Br(a)= {
x ∈Rn : d(x,a)< r

}
is called the open ball around a with radius r (> 0). A point a ∈ D is

a

Bε(a)

b Bε(b)

called an interior point of a set D ⊆ Rn if there exists an open ball
centered at a which lies inside D, i.e., there exists an ε > 0 such that
Bε(a) ⊆ D. An immediate consequence of this definition is that we can
move away from some interior point a in any direction without leaving
D provided that the step size is sufficiently small. Notice that every set
contains all its interior points.

15
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A point b ∈ Rn is called a boundary point of a set D ⊆ Rn if every
open ball centered at b intersects both D and its complement Dc =Rn\D.
Notice that a boundary point b needs not be an element of D.

A point x ∈ Rn is called an exterior point of a set D ⊆ Rn if it is an
interior point of its complement Rn \ D.

A set D ⊆ Rn is called an open neighborhood of a if a is an interiorDefinition 3.2
point of D, i.e., if D contains some open ball centered at a.

A set D ⊆Rn is called open if all its members are interior points of D, i.e.,Definition 3.3
if for each a ∈ D, D contains some open ball centered at a (that is, have
an open neighborhood in D). On the real line R, the simplest example of
an open set is an open interval (a,b)= {x ∈R : a < x < b}.

A set D ⊆Rn is called closed if it contains all its boundary points. On
the real line R, the simplest example of a closed set is a closed interval
[a,b]= {x ∈R : a ≤ x ≤ b}.

Show that H = {(x, y) ∈R2 : x > 0} is an open set.Example 3.4

SOLUTION. Take any point (x0, y0) in H and set ε= x0/2. We claim that
B = Bε(x0, y0) is contained in H. Let (x, y) ∈ B. Then ε> ∥(x, y)− (x0, y0)∥ =√

(x− x0)2 + (y− y0)2 ≥
√

(x− x0)2 = |x− x0|. Consequently, x > x0 − ε =
x0 − x0

2 = x0
2 > 0 and thus (x, y) ∈ H as claimed.

A set D ⊆Rn is closed if and only if its complement Dc is open.Lemma 3.5

PROOF. See Problem 3.6.

Properties of open sets.Theorem 3.6

(1) The empty set ; and the whole space Rn are both open.

(2) Arbitrary unions of open sets are open.

(3) The intersection of finitely many open sets is open.

PROOF IDEA. (1) Every ball of centered at any point is entirely in Rn.
Thus Rn is open. For the empty set observe that it does not contain any
element that violates the condition for “interior point”.

(2) Every open ball Bε(x) remains contained in a set D if we add
points to D. Thus interior points of D remain interior points in any
superset of D.

(3) If x is an interior point of open sets D1, . . . ,Dm, then there exist
open balls Bi(x) ⊆ D i centered at x. Since they are only finitely many,
there is a smallest one which is thus entirely contained in the intersec-
tion of all D i ’s.

PROOF. (1) Every ball Bε(a) ⊆ Rn and thus Rn is open. All members of
the empty set ; are inside balls that are contained entirely in ;. Hence
; is open.
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(2) Let {D i}i∈I be an arbitrary family of open sets in Rn, and let D =⋃
i∈I D i be the union of all these. For each x ∈ D there is at least one i ∈ I

such that x ∈ D i. Since D i is open, there exists an open ball Bε(x)⊆ D i ⊆
D. Hence x is an interior point of D.

(3) Let {D1,D2, . . . ,Dm} be a finite collection of open sets in Rn, and
let D = ⋂m

i=1 D i be the intersection of all these sets. Let x be any point
in D. Since all D i are open there exist open balls Bi = Bεi (x) ⊆ D i with
center x. Let ε be the smallest of all radii εi. Then x ∈ Bε(x) =⋂m

i=1 Bi ⊆ ε is the minimum of a finite
set of numbers.⋂m

i=1 D i = D and thus D is open.

The intersection of an infinite number of open sets needs not be open,
see Problem 3.10.

Similarly by De Morgan’s law we find the following properties of
closed sets, see Problem 3.11.

Properties of closed sets. Theorem 3.7

(1) The empty set ; and the whole space Rn are both closed.

(2) Arbitrary intersections of closed sets are closed.

(3) The union of finitely many closed sets is closed.

Each y ∈ Rn is either an interior, an exterior or a boundary point of
some set D ⊆ Rn. As a consequence there is a corresponding partition of
Rn into three mutually disjoint sets.

For a set D ⊆Rn, the set of all interior points of D is called the interior Definition 3.8
of D. It is denoted by D◦ or int(D).

The set of all boundary points of a set D is called the boundary of
D. It is denoted by ∂D or bd(D).

The union D ∪∂D is called the closure of D. It is denoted by D or
cl(D).

A point a is called an accumulation point of a set D if every open Definition 3.9
neighborhood of a (i.e., open ball Bε(a)) has non-empty intersection with
D (i.e., D∩Bε(a) ̸= ;). Notice that a need not be an element of D.

A set D is closed if and only if D contains all its accumulation points. Lemma 3.10

PROOF. See Problem 3.12.

3.2 Convergence

A sequence (xk)∞k=1 in Rn is a function that maps the natural numbers Definition 3.11

x : N→Rn, k 7→ xk
into Rn. A point xk is called the kth term of the sequence.
Sequences can also be seen as vectors of infinite length.
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Recall that a sequence (xk) in R converges to a number x if for every
ε> 0 there exists an index N such that |xk− x| < ε for all k > N. This can
be easily generalized.

Convergence and divergence. A sequence (xk) in Rn convergesDefinition 3.12
to a point x if for every ε > 0 there exists an index N = N(ε) such that
xk ∈ Bε(x), i.e., ∥xk −x∥ < ε, for all k > N.

Equivalently, (xk) converges to x if d(xk,x) → 0 as k →∞. The point

x
x is then called the limit of the sequence. We write

xk → x as k →∞, or lim
k→∞

xk = x .

Notice, that the limit of a convergent sequence is uniquely determined.
A sequence that is not convergent is called divergent.

We can look at each of the component sequences in order to deter-
mine whether a sequence of points does converge or not. Thus the fol-
lowing theorem allows us to reduce results for convergent sequences in
Rn to corresponding results for convergent sequences of real numbers.

Convergence of each component. A sequence (xk) in Rn convergesTheorem 3.13
to the vector x in Rn if and only if for each j = 1, . . . ,n, the real number
sequence

(
x( j)

k

)∞
k=1

, consisting of the jth component of each vector xk,

converges to x( j), the jth component of x.

PROOF IDEA. For the proof of the necessity of the condition we use
the fact that maxi |xi| ≤ ∥x∥. For the sufficiency observe that ∥x∥2 ≤
nmaxi |xi|2.

PROOF. Assume that xk → x. Then for every ε > 0 there exists an N
such that ∥xk −x∥ < ε for all k > N. Consequently, for each j one has
|x( j)

k − x( j)| ≤ ∥xk −x∥ < ε for all k > N, that is, x( j)
k → x( j).

Now assume that x( j)
k → x( j) for each j. Then given any ε> 0, for each

j there exists a number N j such that |x( j)
k − x( j)| ≤ ε/

p
n for all k > N j. It

follows that

∥xk −x∥ =
√

n∑
i=1

|x(i)
k − x(i)|2 <

√
n∑

i=1
ε2/n =

√
ε2 = ε

for all k >max{N1, . . . , Nn}. Therefore xk → x as k →∞.

We will see in Section 3.3 below that this theorem is just a conse-
quence of the fact that Euclidean norm and supremum norm are equiv-
alent.

The next theorem gives a criterion for convergent sequences. The
proof of the necessary condition demonstrates a simple but quite power-
ful technique.
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A sequence (xk) in Rn is called a Cauchy sequence if for every ε > 0 Definition 3.14
there exists a number N such that ∥xk −xm∥ < ε for all k,m > N.

Cauchy’s covergence criterion. A sequence (xk) in Rn is convergent Theorem 3.15
if and only if it is a Cauchy sequence.

PROOF IDEA. For the necessity of the Cauchy sequence we use the trivial
equality ∥xk −xm∥ = ∥(xk −x)+ (x−xm)∥ and apply the triangle inequal-
ity for norms.

For the sufficiency assume that ∥xk −xm∥ ≤ 1
j for all m > k ≥ N j

and construct closed balls B1/ j(xN j ) for all j ∈ N. Their intersection⋂∞
j=1 B1/ j(xN j ) is closed by Theorem 3.7 and is either a single point or

the empty set. The latter can be excluded by an axiom of the real num-
bers.

PROOF. Assume that (xk) converges to x. Then there exists a number N
such that ∥xk −x∥ < ε/2 for all k > N. Hence by the triangle inequality
we find

∥xk −xm∥ = ∥(xk −x)+ (x−xm)∥ ≤ ∥xk −x∥+∥x−xm∥ < ε

2
+ ε

2
= ε

for all k,m > N. Thus (xk) is a Cauchy sequence.
For the converse assume that for all ε = 1/ j there exists an N j such

that ∥xk −xm∥ ≤ 1
j for all m > k ≥ N j, i.e., xm ∈ B1/ j(xN j ) for all m > N j.

Let D j = ⋂ j
i=1 B1/i(xNi ). Then xm ∈ D j for all m > N j and thus D j ̸= ;

for all j ∈N. Moreover, the diameter of D j ≤ 2/ j → 0 for j →∞. By The-
orem 3.7, D = ⋂∞

i=1 B1/i(xNi ) is closed. Therefore, either D = {a} consists
of a single point or D =;. The latter can be excluded by a fundamental
property (i.e., an axiom) of the real numbers. (However, this step is out
of the scope of this course.)

The next theorem is another example of an application of the triangle
inequality.

Sum of covergent sequences. Let (xk) and (yk) be two sequences in Theorem 3.16
Rn that converge to x and y, resp. Then

lim
k→∞

(xk +yk)= x+y .

PROOF IDEA. Use the triangle inequality for each term ∥(xk +yk)− (x+y)∥ =
∥(xk −x)+ (yk −y)∥.

PROOF. Let ε > 0 be arbitrary. Since (xk) is convergent, there exists a
number Nx such that ∥xk −x∥ < ε/2 for all k > Nx. Analogously there
exists a number Ny such that ∥yk −y∥ < ε/2 for all k > Ny. Let N be the
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greater of the two numbers Nx and Ny. Then by the triangle inequality
we find for k > N,

∥(xk +yk)− (x+y)∥ = ∥(xk −x)+ (yk −y)∥
≤ ∥xk −x∥+∥yk −y∥ < ε

2
+ ε

2
= ε .

But this means that (xk +yk)→ (x+y), as claimed.

We can use convergent sequences to characterize closed sets.

Closure and convergence. A set D ⊆Rn is closed if and only if everyTheorem 3.17
convergent sequence of points in D has its limit in D.

PROOF IDEA. For any sequence in D with limit x every ball Bε(x) con-
tains almost all elements of the sequence. Hence it belongs to the closure
of D. So if D is closed then x ∈ D.

Conversely, if x ∈ cl(D) we can select points xk ∈ B1/k(x)∩D. Then
sequence (xk) → x converges. If we assume that every convergent se-
quence of points in D has its limit in D it follows that x ∈ D and hence D
is closed.

PROOF. Assume that D is closed. Let (xk) be a convergent sequence with
limit x such that xk ∈ D for all k. Hence for all ε > 0 there exists an N
such that xk ∈ Bε(x) for all k > N. Therefore Bε(x)∩D ̸= ; and x belongs
to the closure of D. Since D is closed, limit x also belongs to D.

Conversely, assume that every convergent sequence of points in D
has its limit in D. Let x ∈ cl(D). Then B1/k(x)∩ D ̸= ; for every k ∈
N and we can choose an xk in B1/k(x)∩D. Then xk → x as k → ∞ by
construction. Thus x ∈ D by hypothesis. This shows cl(D) ⊆ D, hence D
is closed.

There is also a smaller brother of the limit of a sequence.

A point a is called an accumulation point of a sequence (xk) if everyDefinition 3.18
open ball Bε(a) contains infinitely many elements of the sequence.

The sequence
(
(−1)k)∞

k=1 = (−1,1,−1,1. . .) has accumulation points −1Example 3.19
and 1 but neither point is a limit of the sequence. ♦

3.3 Equivalent Norms

Our definition of open sets and convergent sequences is based on the Eu-
clidean norm (or metric) in Rn. However, we have already seen that the
concept of norm and metric can be generalized. Different norms might
result in different families of open sets.

Two norms ∥·∥ and ∥·∥′ are called (topologically) equivalent if everyDefinition 3.20
open set w.r.t. ∥·∥ is also an open set w.r.t. ∥·∥′ and vice versa.
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Thus every interior point w.r.t. ∥·∥ is also an interior point w.r.t. ∥·∥’
and vice versa. That is, there must exist two strictly positive constants
c and d such that

c ∥x∥ ≤ ∥x∥′ ≤ d ∥x∥

for all x ∈Rn.
An immediate consequence is that every sequence that is convergent

w.r.t. some norm is also convergent in every equivalent norm.

Euclidean norm ∥·∥2, 1-norm ∥·∥1, and supremum norm ∥·∥∞ are equiv- Theorem 3.21
alent in Rn.

PROOF. By a straightforward computation we find

∥x∥∞ = max
i=1,...,n

|xi| ≤
n∑

i=1
|xi| = ∥x∥1 ≤

n∑
i=1

(
max

j=1,...,n
|x j|

)
= n∥x∥∞

∥x∥∞ = max
i=1,...,n

|xi| =
√

max
i=1,...,n

|xi|2 ≤
√

n∑
i=1

|xi|2 = ∥x∥2

∥x∥2 =
√

n∑
i=1

|xi|2 ≤
√√√√ n∑

i=1

(
max

j=1,...,n
|x j|

)2
=p

n∥x∥∞

Equivalence of Euclidean norm and 1-norm can be derived from Minkowski’s
inequality. Using x=∑n

i=1 xiei we find

∥x∥2 =
∥∥∥∥∥ n∑

i=1
xiei

∥∥∥∥∥
2

≤
n∑

i=1
∥xiei∥2 =

n∑
i=1

√
|xi|2 = ∥x∥1 .

Conversly we find

∥x∥1 =
(

n∑
i=1

|xi|
)2

=
n∑

i=1

n∑
j=1

|xi||x j|

= n
n∑

i=1
|xi|2 −

(
n

n∑
i=1

|xi|2 −
n∑

i=1

n∑
j=1

|xi||x j|
)

= n
n∑

i=1
|xi|2 − 1

2

n∑
i=1

n∑
j=1

(|xi|− |x j|)2

≤ n
n∑

i=1
|xi|2 = n∥x∥2

2

and thus

∥x∥1 ≤
p

n∥x∥2
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Notice that the equivalence of Euclidean norm and supremum norm
immediately implies Theorem 3.13.

Theorem 3.21 is a corollary of a much stronger result for norms in Rn

which we state without proof.

Finitely generated vector space. All norms in a finitely generatedTheorem 3.22
vector space are equivalent.

For vector spaces which are not finitely generated this theorem does
not hold any more. For example, in probability theory there are different
concepts of convergence for sequences of random variates, e.g., conver-
gence in distribution, in probability, almost surely. The corresponding
norms or metrices are not equivalent. E.g., a sequence that converges in
distribution need not converge almost surely.

3.4 Compact Sets

Bounded set. A set D in Rn is called bounded if there exists a number
M such that ∥x∥ ≤ M for all x ∈ D. A set that is not bounded is called
unbounded.

M

Obviously every convergent sequence is bounded (see Problem 3.15).
However, the converse is not true. A sequence in a bounded set need
not be convergent. But it always contains an accumulation point and a
convergent subsequence.

Subsequence. Let (xk)∞k=1 be a sequence in Rn. Consider a strictlyDefinition 3.23
increasing sequence k1 < k2 < k3 < k4 < . . . of natural numbers, and let
y j = xk j , for j ∈N. Then the sequence (y j)∞j=1 is called a subsequence of
(xk). It is often denoted by (xk j )

∞
j=1.

Let (xk)∞k=1 = (
(−1)k 1

k
)∞
k=1 = (−1, 1

2 ,−1
3 , 1

4 ,−1
5 , 1

6 ,−1
7 , . . .

)
. Then (yk)∞k=1 =Example 3.24 ( 1

2k
)∞
k=1 = (1

2 , 1
4 , 1

6 , 1
8 , . . .

)
and (zk)∞k=1 = (− 1

2k−1
)∞
k=1 = (−1,−1

3 ,−1
5 ,−1

7 , . . .
)

are two subsequences of (xk). ♦

Now let (xk) be a sequence in a bounded subset D ⊆ R2. Since D is
bounded there exists a bounding square K0 ⊇ D of edge length L. Divide
K0 into four equal squares, each of which has sides of length L/2. At least
one of these squares, say K1, must contain infinitely many elements xk
of this sequence. Pick one of these, say xk1 . Next divide K1 into four
squares of edge length L/4. Again in at least one of them, say K2, there
will still be an infinite number of terms from sequence (xk). Take one of
these, xk2 , with k2 > k1.

Repeating this procedure ad infinitum we eventually obtain a subse-
quence (xk j ) of the original sequence that converges by Cauchy’s crite-
rion. It is quite obvious that this approach also works in any Rn where
n may not equal to 2. Then we start with a bounding n-cube which is
recursively divided into 2n subcubes.
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We summarize our observations in the following theorem (without
giving a stringent formal proof).

Bolzano-Weierstrass. A subset D of Rn is bounded if and only if every Theorem 3.25
sequence of points in D has a convergent subsequence.

A subset D of Rn is bounded if and only if every sequence has an accu- Corollary 3.26
mulation point.

We now have seen that convergent sequences can be used to charac-
terize closed sets (Theorem 3.17) and bounded sets (Theorem 3.25).

Compact set. A set D in Rn is called compact if it is closed and Definition 3.27
bounded.

Compactness is a central concept in mathematical analysis, see, e.g.,
Theorems 3.36 and 3.37 below. When we combine the results of Theo-
rems 3.17 and 3.25 we get the following characterization.

Bolzano-Weierstrass. A subset D of Rn is compact if and only if every Theorem 3.28
sequence of points in D has a subsequence that converges to a point in
D.

3.5 Continuous Functions

Recall that a univariate function f : R→R is called continuous if (roughly
spoken) small changes in the argument cause small changes of the func-
tion value. One of the formal definitions reads: f is continuous at a point
x0 ∈ R if f (xk) → f (x0) for every sequence (xk) of points that converge to
x0. By our concept of open neighborhood this can easily be generalized
for vector-valued functions.

Continuous functions. A function f = ( f1, . . . , fm) : D ⊆ Rn → Rm is said Definition 3.29
to be continuous at a point x0 if f(xk)→ f(x0) for every sequence (xk) of
points in D that converges to x0. We then have

lim
k→∞

f(xk)= f( lim
k→∞

xk) .

If f is continuous at every point x0 ∈ D, we say that f is continuous on D.

x0

f (x0)

The easiest way to show that a vector-valued function is continuous,
is by looking at each of its components. We get the following result by
means of Theorem 3.13.

Continuity of each component. A function f = ( f1, . . . , fm) : D ⊆ Rn → Theorem 3.30
Rm is continuous at a point x0 if and only if each component function
f j : D ⊆Rn →R is continuous at x0.
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There exist equivalent characterizations of continuity which are also
used for alternative definitions of continuous functions in the literature.
The first one uses open balls.

Continuity and images of balls. A function f : D ⊆Rn →Rm is contin-Theorem 3.31
uous at a point x0 in D if and only if for every ε> 0 there exists a δ> 0
such that∥∥f(x)− f(x0)

∥∥< ε for all x ∈ D with
∥∥x−x0∥∥< δ

or equivalently,

Bδ(x0)

Bε( f (x0))

f
(
Bδ(x0)∩D

)⊆ Bε

(
f(x0)

)
.

PROOF IDEA. Assume that the condition holds and let (xk) be a conver-
gent sequence with limit x0. Then for every ε> 0 we can find an N such
that

∥∥f(xk)− f(x0)
∥∥< ε for all k > N, i.e., f(xk)→ f(x0), which means that

f is continuous at x0.
Now suppose that there exists an ε0 > 0 where the condition is vio-

lated. Then there exists an xk ∈ Bδ(x0) with f(xk) ∈ f
(
Bδ(x0)

)
\ Bε0

(
f(x0)

)
for every δ= 1

k , k ∈N. By construction xk → x0 but f(xk) ̸→ f(x0). Thus f
is not continuous at x0.

PROOF. Suppose that the condition holds. Let ε> 0 be given. Then there
exists a δ > 0 such that

∥∥f(x)− f(x0)
∥∥ < ε whenever

∥∥x−x0∥∥ < δ. Now
let (xk) be a sequence in D that converges to x0. Thus for every δ > 0
there exists a number N such that

∥∥xk −x0∥∥< δ for all k > N. But then∥∥f(xk)− f(x0)
∥∥< ε for all k > N, and consequently f(xk)→ f(x0) for k →∞,

which implies that f is continuous at x0.
Conversely, assume that f is continuous at x0 but the condition does

not hold, that is, there exists an ε0 > 0 such that for all δ = 1/k, k ∈
N, there is an x ∈ D with

∥∥f(x)− f(x0)
∥∥ ≥ ε0 albeit

∥∥x−x0∥∥ < 1/k. Now
pick a point xk in D with this property for all k ∈ N. Then sequence
(xk) converges to x0 by construction but f(xk) ̸∈ Bε0

(
f(x0)

)
. This means,

however, that (f(xk)) does not converge to f(x0), a contradiction to our
assumption that f is continuous.Bδ(x0)

Bε0 ( f (x0))

Continuous functions f : Rn → Rm can also be characterized by their
preimages. While the image f(D) of some open set D ⊆Rn need not neces-
sarily be an open set (see Problem 3.18) this always holds for the preim-
age of some open set U ⊆Rm,

f−1(U)= {x : f(x) ∈U} .

For the statement of the general result where the domain of f is not
necessarily open we need the notion of relative open sets.

Let D be a subset in Rn. ThenDefinition 3.32
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(a) A is relatively open in D if A =U ∩D for some open set U in Rn.

(b) A is relatively closed in D if A = F∩D for some closed set F in Rn.

Obviously every open subset of an open set D ⊆Rn is relatively open.
The usefulness of the concept can be demonstrated by the following ex-
ample.

Let D = [0,1] ⊆ R be the domain of some function f . Then A = (1/2,1] Example 3.33
obviously is not an open set in R. However, A is relatively open in D as
A = (1/2,∞)∩ [0,1]= (1/2,∞)∩D. ♦
Characterization of continuity. A function f : D ⊆Rn →Rm is continu- Theorem 3.34
ous if and only if either of the following equivalent conditions is satisfied:

(a) f−1(U) is relatively open for each open set U in Rm.

(b) f−1(F) is relatively closed for each closed set F in Rm.

PROOF IDEA. If U ⊆ Rm is open, then for all x ∈ f−1(U) there exists an
ε> 0 such that Bε(f(x)) ⊆U . If in addition f is continuous, then Bδ(x) ⊆
f−1(Bε(f(x)))⊆ f−1(U) by Theorem 3.31 and hence f−1(U) is open.

Conversely, if f−1(Bε(f(x))) is open for all x ∈ D and all ε > 0, then
there exists a δ > 0 such that Bδ(x) ⊆ f−1(Bε(f(x))) and thus f (Bδ(x)) ⊆
Bε(f(x)), i.e., f is continuous at x by Theorem 3.31.

PROOF. For simplicity we only prove the case where D =Rn.
(a) Suppose f is continuous and U is an open set in Rm. Let x be

any point in f−1(U). Then f(x) ∈ U . As U is open there exists an ε> 0
such that Bε(f(x)) ⊆ U . By Theorem 3.31 there exists a δ > 0 such that
f (Bδ(x))⊆ Bε(f(x))⊆U . Thus Bδ(x) belongs to the preimage of U . There-
fore x is an interior point of f−1(U) which means that f−1(U) is an open
set.

Conversely, assume that f−1(U) is open for each open set U ⊆ Rm.
Let x be any point in D. Let ε > 0 be arbitrary. Then U = Bε(f(x)) is
an open set and by hypothesis the preimage f−1(U) is open in D. Thus
there exists a δ > 0 such that Bδ(x) ⊆ f−1(U) = f−1 (Bε(f(x))) and hence
f (Bδ(x)) ⊆ U = Bε(f(x)). Consequently, f is continuous at x by Theo-
rem 3.31. This completes the proof.

(b) This follows immediately from (a) and Lemma 3.5.

Let U(x) = U(x1, . . . , xn) be a household’s real-valued utility function, Example 3.35
where x denotes its commodity vector and U is defined on the whole
of Rn. Then for a number a the upper level set Γa = {x ∈ Rn : U(x) ≥ a}
consists of all vectors where the household values are at least as much
as a. Let F be the closed interval [a,∞). Then

Γa = {x ∈Rn : U(x)≥ a}= {x ∈Rn : U(x) ∈ F}=U−1(F) .

According to Theorem 3.34, if U is continuous, then Γa is closed for each
value of a. Hence, continuous functions generate close upper level sets.
They also generate closed lower level sets. ♦
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Let f be a continuous function. As already noted the image f(D)
of some open set needs not be open. Similarly neither the image of a
closed set is necessarily closed, nor needs the image of a bounded set be
bounded (see Problem 3.18). However, there is a remarkable exception.

Continuous functions preserve compactness. Let f : D ⊆ Rn → RmTheorem 3.36
be continuous. Then the image f(K)= {f(x) : x ∈ K} of every compact sub-
set K of D is compact.

PROOF IDEA. Take any sequence (yk) in f(K) and a sequence (xk) of its
preimages in K , i.e., yk = f(xk). We now apply the Bolzano-Weierstrass
Theorem twice: (xk) has a subsequence (xk j ) that converges to some
point x0 ∈ K . By continuity yk j = f(xk j ) converges to f(x0) ∈ f(K). Hence
f(K) is compact by the Bolzano-Weierstrass Theorem.

PROOF. Let (yk) be any sequence in f(K). By definition, for each k
there is a point xk ∈ K such that yk = f(xk). By Theorem 3.28 (Bolzano-
Weierstrass Theorem), there exists a subsequence (xk j ) that converges
to a point x0 ∈ K . Because f is continuous, f(xk j )→ f(x0) as j →∞ where
f(x0) ∈ f(K). But then (yk j ) is a subsequence of (yk) that converges to
f(x0) ∈ f(K). Thus f(K) is compact by Theorem 3.28, as claimed.

We close this section with an important result in optimization theory.

Extreme-value theorem. Let f : K ⊆ Rn → R be a continuous functionTheorem 3.37
on a compact set K . Then f has both a maximum point and a minimum
point in K .

PROOF IDEA. By Theorem 3.36, f(K) is compact. Thus f(K) is bounded
and closed, that is, f(K) = [a,b] for a,b ∈ R and f attains its minimum
and maximum in respective points xm,xM ∈ K .

PROOF. By Theorem 3.36, f (K) is compact. In particular, f (K) is bounded,
and so −∞< a = infx∈K f (x) and b = supx∈K f (x)<∞. Clearly a and b are
boundary points of f (K) which belong to f (K), as f (K) is closed. Hence
there must exist points xm and xM such that f (xm) = a and f (xM) = b.
Obviously xm and xM are minimum point and a maximum point of K ,
respectively.
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— Exercises

3.1 Is Q = {(x, y) ∈R2 : x > 0, y≥ 0} open, closed, or neither?

3.2 Is H = {(x, y) ∈R2 : x > 0, y≥ 1/x} open, closed, or neither? HINT: Sketch set H.

3.3 Let F = {(1/k,0) ∈R2 : k ∈N}. Is F open, closed, or neither? HINT: Is (0,0) ∈ F?

— Problems

3.4 Show that the open ball D = Br(a) is an open set.
HINT: Take any point x ∈ Br(a) and an open ball Bε(x) of sufficiently small radius
ε. (How small is “sufficiently small”?) Show that Bε(x) ⊆ D by means of the
triangle inequality.

3.5 Give respective examples for non-empty sets D ⊆R2 which are

(a) neither open nor closed, or
(b) both open and closed, or
(c) closed and have empty interior, or
(d) not closed and have empty interior.

3.6 Show that a set D ⊆Rn is closed if and only if its complement Dc = HINT: Look at boundary
points of D.Rn \ D is open (Lemma 3.5).

3.7 Show that a set D ⊆ Rn is open if and only if its complement Dc is HINT: Use Lemma 3.5.

closed.

3.8 Show that closure cl(D) and boundary ∂D are closed for any D ⊆ HINT: Suppose that there is
a boundary point of ∂D that
is not a boundary point of D.

Rn.

3.9 Let D and F be subsets of Rn such that D ⊆ F. Show that

int(D)⊆ int(F) and cl(D)⊆ cl(F) .

3.10 Recall the proof of Theorem 3.6.

(a) Where exactly do you need the assumption that there is an
intersection of finitely many open sets in statement (3)?

(b) Let D be the intersection of the infinite family B1/k(0), k = HINT: Is there any point in
D other than 0?1,2, . . ., of open balls centered at 0. Is D open or closed?

3.11 Prove Theorem 3.7. HINT: Use Theorem 3.6 and
De Morgan’s law.

3.12 Prove Theorem 3.10.

3.13 Show that the limit of a convergent sequence is uniquely defined. HINT: Suppose that two
limits exist.

3.14 Show that for any points x,y ∈Rn and every j = 1, . . . ,n,

|x j − yj| ≤ ∥x−y∥2 ≤
p

n max
i=1,...,n

|xi − yi| .
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3.15 Show that every convergent sequence (xk) in Rn is bounded.

3.16 Give an example for a bounded sequence that is not convergent.

3.17 For fixed a ∈Rn, show that the function f : Rn →R defined by f (x)=HINT: Use Theorem 3.31 and
inequality∣∣∥x∥−∥y∥ ∣∣≤ ∥x−y∥.

∥x−a∥ is continuous.

3.18 Give examples of non-empty subsets D of R and continuous func-
tions f : R→R such that

(a) D is closed, but f (D) is not closed.
(b) D is open, but f (D) is not open.
(c) D is bounded, but f (D) is not bounded.

3.19 Prove that the set

D = {x ∈Rn : g j(x)≤ 0, j = 1, . . . ,m}

is closed if the functions g j are all continuous.
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Derivatives

We want to have the best linear approximation of a function.

Derivatives are an extremely powerful tool for investigating properties
of functions. For univariate functions it allows to check for monotonic-
ity or concavity, or to find candidates for extremal points and verify its
optimality. Therefore we want to generalize this tool for multivariate
functions.

4.1 Roots of Univariate Functions

The following theorem seems to be trivial. However, it is of great impor-
tance as is assures the existence of a root of a continuous function.

Intermediate value theorem (Bolzano). Let f : [a,b] ⊆ R→ R be a Theorem 4.1
continuous function and assume that f (a) > 0 and f (b) < 0. Then there
exists a point c ∈ (a,b) such that f (c)= 0.

PROOF IDEA. We use a technique called interval bisectioning: Start with
interval [a0,b0]= [a,b], split the interval at c1 = (a1+b1)/2 and continue
with the subinterval where f changes sign. By iterating this procedure
we obtain a sequence of intervals [an,bn] of lengths (b− a)/2n → 0. By
Cauchy’s convergence criterion sequence (cn) converges to some point c
with 0≤ lim

n→∞ f (cn)≤ 0. As f is continuous, we find f (c)= lim
n→∞ f (cn)= 0.

a bc

PROOF. We construct a sequence of intervals [an,bn] by a method called
interval bisectioning. Let [a0,b0]= [a,b]. Define cn = an+bn

2 and

[an+1,bn+1]=
{

[cn,bn] if f (cn)≥ 0,

[an, cn] if f (cn)< 0,
for n = 1,2, . . .

Notice that |ak−an| < 2−N (b−a) and |bk−bn| < 2−N (b−a) for all k,n ≥ N.
Hence (ai) and (bi) are Cauchy sequences and thus converge to respec-
tive points c+ and c− in [a,b] by Cauchy’s convergence criterion. More-
over, for every ε> 0, |c+−c−| ≤ |ak−c+|+|bk−c−| < ε for sufficiently large

29
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k and thus c+ = c− = c. By construction f (ak) ≥ 0 and f (bk) ≤ 0 for all
k. By assumption f is continuous and thus f (c) = limk→∞ f (ak) ≥ 0 and
f (c)= limk→∞ f (bk)≤ 0, i.e., f (c)= 0 as claimed.

Interval bisectioning is a brute force method for finding a root of some
function f . It is sometimes used as a last resort. Notice, however, that
this is a rather slow method. Newton’s method, secant method or regula
falsi are much faster algorithms.

4.2 Limits of a Function

For the definition of derivative we need the concept of limit of a function.

Limit. Let f : D ⊆ R → R be some function. Then the limit of f as xDefinition 4.2
approaches x0 is y0 if for every convergent sequence of arguments xk →
x0, the sequences of images converges to y0, i.e., f (xk) → y0 as k → ∞.
We write

lim
x→x0

f (x)= y0, or f (x)→ y0 as x → x0 .

Notice that x0 need not be an element of domain D and (in abuse of
language) may also be ∞ or −∞.

x0

y0

Thus results for limits of sequences (Theorem 2.14) translates imme-
diately into results on limits of functions.

Rules for limits. Let f : R→R and g : R→R be two functions where bothTheorem 4.3
lim
x→x0

f (x) and lim
x→x0

g(x) exist. Then

(1) lim
x→x0

(
α f (x)+βg(x)

)=α lim
x→x0

f (x)+β lim
x→x0

g(x) for all α,β ∈R

(2) lim
x→x0

(
f (x) · g(x)

)= lim
x→x0

f (x) · lim
x→x0

g(x)

(3) lim
x→x0

f (x)
g(x)

= limx→x0 f (x)
limx→x0 g(x)

(if limx→x0 g(x) ̸= 0)

(4) lim
x→x0

(
f (x)

)α = (
lim
x→x0

f (x)
)α (for α ∈R, if

(
limx→x0 f (x)

)α is defined)

The notion of limit can be easily generalized for arbitrary transfor-
mations.

Let f : D ⊆Rn →Rm be some function. Then the limit of f as x approachesDefinition 4.4
x0 is y0 if for every convergent sequence of arguments xk → x0, the se-
quences of images converges to y0, i.e., f(x0)→ y0. We write

lim
x→x0

f(x)= y0, or f(x)→ y0 as x→ x0 .

The point x0 need not be an element of domain D.
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Writing lim
x→x0

f(x) = y0 means that we can make f(x) as close to y0 as

we want when we put x sufficiently close to x0. Notice that a limit at
some point x0 may not exist.

Similarly to our results in Section 3.5 we get the following equiva-
lent characterization of the limit of a function. It is often used as an
alternative definition of the term limit.

Let f : D ⊆ Rn → Rm be a function. Then lim
x→x0

f(x) = y0 if and only if for Theorem 4.5

every ε> 0 there exists a δ> 0 such that

f (Bδ(x0)∩D)⊆ Bε(y0)) .

Bδ(x0)

Bε(y0)

4.3 Derivatives of Univariate Functions

Recall that the derivative of a function f : D ⊆R→R at some point x is Definition 4.6
defined as the limit

f ′(x)= lim
h→0

f (x+h)− f (x)
h

.

If this limit exists we say that f is differentiable at x. If f is differen-
tiable at every point x ∈ D, we say that f is differentiable on D.

x

1

f ′(x0)

Notice that the term derivative is a bit ambiguous. The derivative at
point x is a number, namely the limit of the difference quotient of f
at point x, that is

f ′(x)= d
dx

f (x)= lim
∆x→0

∆ f (x)
∆x

= lim
∆x→0

f (x+∆x)− f (x)
∆x

.

This number is sometimes called differential coefficient. The differ-
ential notation d f

dx is an alternative notation for the derivative which is
due to Leibniz. It is very important to remind that differentiability is a
local property of a function.

On the other hand, the derivative of f is a function that assigns
every point x the derivative d f

dx at x. Its domain is the set of all points
where f is differentiable. Thus d

dx is called the differential operator
which maps a given function f to its derivative f ′. Notice that the dif-
ferential operator is a linear map, that is

d
dx

(
α f (x)+βg(x)

)
=α

d
dx

f (x)+β d
dx

g(x)

for all α,β ∈R, see rules (1) and (2) in Table 4.9.
Differentiability is a stronger property than continuity. Observe that

the numerator f (x+h)− f (x) of the difference quotient must coverge to
0 for h → 0 if f is differentiable in x since otherwise the differential
quotient would not exist. Thus limh→0 f (x+h)= f (x) and we find:
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f (x) f ′(x)

c 0

xα α · xα−1 (Power rule)

ex ex

ln(x)
1
x

sin(x) cos(x)

cos(x) −sin(x)

Table 4.8

Derivatives of some
elementary functions.

If f : D ⊆R→R is differentiable at x, then f is also continuous at x.Lemma 4.7

Computing limits is a hard job. Therefore, we just list derivatives ofSee Problem 4.14 for a spe-
cial case. some elementary functions in Table 4.8 without proof.

In addition, there exist a couple of rules to reduce the derivative of a
given expression to those of elementary functions. Table 4.9 summarizes
these rules. Their proofs are straightforward and we given some of these
below. See Problem 4.20 for the summation rule and Problem 4.21 for
the quotient rule.

PROOF OF RULE (3). Let F(x)= f (x) · g(x). Then we find by Theorem 4.3

F ′(x)= lim
h→0

F(x+h)−F(x)
h

= lim
h→0

[ f (x+h) · g(x+h)]− [ f (x) · g(x)]
h

= lim
h→0

f (x+h)g(x+h)− f (x)g(x+h)+ f (x)g(x+h)− f (x)g(x)
h

= lim
h→0

f (x+h)− f (x)
h

g(x+h)+ lim
h→0

f (x)
g(x+h)− g(x)

h

= lim
h→0

f (x+h)− f (x)
h

[
g(x+h)− g(x)

h
h+ g(x)

]
+ lim

h→0
f (x)

g(x+h)− g(x)
h

= f ′(x)g(x)+ f (x)g′(x)

as proposed.

PROOF OF RULE (4). Let F(x)= ( f ◦ g)(x)= f (g(x)). Then

F ′(x)= lim
h→0

F(x+h)−F(x)
h

= lim
h→0

f (g(x+h))− f (g(x))
h

The change from x to x+h causes the value of g change by the amount
k = g(x+h)− g(x). As lim

h→0
k = lim

h→0

[
g(x+h)−g(x)

h

]
·h = g′(x) ·0= 0 we find by
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Let g be differentiable at x and f be differentiable at x and g(x).
Then sum f + g, product f · g, composition f ◦ g, and quotient f /g (for
g(x) ̸= 0) are differentiable at x, and

(1) (c · f (x))′ = c · f ′(x)

(2) ( f (x)+ g(x))′ = f ′(x)+ g′(x) (Summation rule)

(3) ( f (x) · g(x))′ = f ′(x) · g(x)+ f (x) · g′(x) (Product rule)

(4) ( f (g(x)))′ = f ′(g(x)) · g′(x) (Chain rule)

(5)
(

f (x)
g(x)

)′
= f ′(x) · g(x)− f (x) · g′(x)

(g(x))2 (Quotient rule)

Table 4.9

Rules for
differentiation.

Theorem 4.3

F ′(x)= lim
h→0

f (g(x)+k))− f (g(x))
k

· k
h

= lim
h→0

f (g(x)+k))− f (g(x))
k

· g(x+h)− g(x)
h

= f ′(g(x)) · g′(x)

as claimed.

The chain rule can be stated in a quite convenient form by means of
differential notation. Let y be function of u, i.e. y= y(u), and u itself is a
function of x, i.e., u = u(x), then we find for the derivative of y(u(x)),

d y
dx

= d y
du

· du
dx

.

An important application of the chain rule is in the computation of
derivatives when variables are changed. Problem 4.24 discusses the case
when linear scale is replaces by logarithmic scale.

4.4 Higher Order Derivatives

We have seen that the derivative f ′ of a function f is again a function.
This function may again be differentiable and we then can compute the
derivative of derivative f ′. It is called the second derivative of f and
denoted by f ′′. Recursively, we can compute the third, forth, fifth, . . .
derivatives denote by f ′′′, f iv, f v, . . . .

The nth order derivative is denoted by f (n) and we have

f (n) = d
dx

(
f (n−1)

)
with f (0) = f .



34 DERIVATIVES

4.5 The Mean Value Theorem

Our definition of the derivative of a function,

f ′(x)= lim
∆x→0

f (x+∆x)− f (x)
∆x

,

implies for small values of ∆x

f (x+∆x)≈ f (x)+ f ′(x)∆x .

The deviation of this linear approximation of function f at x+∆x becomes
small for small values of |∆x|. We even may improve this approximation.

Mean value theorem. Let f be continuous in the closed bounded inter-Theorem 4.10
val [a,b] and differentiable in (a,b). Then there exists a point ξ ∈ (a,b)
such that

f ′(ξ)= f (b)− f (a)
b−a

.

In particular we find

x

f (x)

a bξ

f (b)= f (a)+ f ′(ξ) (b−a) .

PROOF IDEA. We first consider the special case where f (a)= f (b). Then
by Theorem 3.37 (and w.l.o.g.) there exists a maximum ξ ∈ (a,b) of f . We
then estimate the limit of the differential quotient when x approaches ξ
from the left hand side and from the right hand side, respectively. For
the first case we find that f ′(ξ)≥ 0. The second case implies f ′(ξ)≤ 0 and
hence f ′(ξ)= 0.

PROOF. Assume first that f (a) = f (b). If f is constant, then we trivially
have f ′(x) = 0 = f (b)− f (a)

b−a for all x ∈ (a,b). Otherwise there exists an x
with f (x) ̸= f (a). Without loss of generality, f (x) > f (a). (Otherwise we
consider − f .) Let ξ be a maximum of f , i.e., f (ξ) ≥ f (x) for all x ∈ [a,b].ξ exists by Theorem 3.37.

By our assumptions, ξ ∈ (a,b). Now construct sequences xk → ξ as k →∞
with xk ∈ [a,ξ) and yk → ξ as k →∞ with yk ∈ (ξ,b]. Then we find

0≤ lim
k→∞

f (yk)− f (ξ)
yk −ξ︸ ︷︷ ︸
≥0

= f ′(ξ)= lim
k→∞

f (xk)− f (ξ)
xk −ξ︸ ︷︷ ︸
≤0

≤ 0 .

Consequently, f ′(ξ)= 0 as claimed.
For the general case consider the function

g(x)= f (x)− f (b)− f (a)
b−a

(x−a) .

Then g(a)= g(b) and there exists a point ξ ∈ (a,b) such that g′(ξ)= 0, i.e.,
f ′(ξ)− f (a)− f (b)

b−a = 0. Thus the proposition follows.

The special case where f (a)= f (b) is also known as Rolle’s theorem.



4.6 GRADIENT AND DIRECTIONAL DERIVATIVES 35

4.6 Gradient and Directional Derivatives

The partial derivative of a multivariate function f (x) = f (x1, . . . , xn) Definition 4.11
with respect to variable xi is given as

∂ f
∂xi

= lim
h→0

f (. . . , xi +h, . . .)− f (. . . , xi, . . .)
h

that is, the derivative of f when all variables x j with j ̸= i are held con-
stant.

In the literature there exist several symbols for the partial derivative of
f :

∂ f
∂xi

. . . derivative w.r.t. xi

fxi (x) . . . derivative w.r.t. variable xi
f i(x) . . . derivative w.r.t. the ith variable
f ′i (x) . . . ith component of the gradient f ′

∂ f
∂x1

∂ f
∂x2

x

Notice that the notion of partial derivative is equivalent to the deriva-
tive of the univariate function g(t)= f (x+ tei) at t = 0, where ei denotes
the ith unit vector,

fxi (x)= ∂ f
∂xi

= dg
dt

∣∣∣∣
t=0

= d
dt

f (x+ t ·ei)
∣∣∣∣
t=0

We can, however, replace the unit vectors by arbitrary normalized
vectors h (i.e., ∥h∥ = 1). Thus we obtain the derivative of f when we
move along a straight line through x in direction h.

The directional derivative of f (x)= f (x1, . . . , xn) at x with respect to h Definition 4.12
is given by

fh = ∂ f
∂h

= dg
dt

∣∣∣∣
t=0

= d
dt

f (x+ t ·h)
∣∣∣∣
t=0

Partial derivatives are special cases of directional derivatives.

∂ f
∂h

h
xThe directional derivative can be computed by means of the partial

derivatives of f . For the bivariate case (n = 2) we find

∂ f
∂h

= lim
t→0

f (x+ th)− f (x)
t

= lim
t→0

(
f (x+ th)− f (x+ t h1 e1))

)+ (
f (x+ t h1 e1)− f (x)

)
t

= lim
t→0

f (x+ th)− f (x+ t h1 e1)
t

+ lim
t→0

f (x+ t h1 e1)− f (x)
t

Notice that th= t h1 e1+ t h2 e2. By the mean value theorem there exists

ξ1(t)

ξ2(t)

x

x+ th

x+ th1e1

a point ξ1(t) ∈ {x+θh1 e1 : θ ∈ (0, t)} such that

f (x+ t h1 e1)− f (x)= fx1(ξ1(t)) · t h1
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and a point ξ2(t) ∈ {x+ t h1 e1 +θh2 e2 : θ ∈ (0, t)} such that

f (x+ t h1 e1 + t h2 e2)− f (x+ t h1 e1)= fx2(ξ2(t)) · t h2 .

Consequently,

∂ f
∂h

= lim
t→0

fx2(ξ2(t)) · t h2

t
+ lim

t→0

fx1(ξ1(t)) · t h1

t
= lim

t→0
fx2(ξ2(t))h2 + lim

t→0
fx1(ξ1(t))h1

= fx2(x)h2 + fx1(x)h1

The last equality holds if the partial derivatives fx1 and fx2 are continu-
ous functions of x.

The continuity of the partial derivatives is crucial for our deduction.
Thus we define the class of continuously differentiable functions,
denoted by C 1.

A function f : D ⊆Rn →R belongs to class C m if all its partial derivativesDefinition 4.13
of order m or smaller are continuous. The function belongs to class C ∞

if partial derivatives of all orders exist.

It also seems appropriate to collect all first partial derivatives in a
row vector.

Gradient. Let f : D ⊆Rn →R be a C 1 function. Then the gradient of fDefinition 4.14
at x is the row vector

f ′(x)=∇ f (x)= (
fx1(x), . . . , fxn (x)

)
[ called “nabla f ”. ]

We can summarize our observations in the following theorem.

The directional derivative of a C 1 function f (x) = f (x1, . . . , xn) at xTheorem 4.15
with respect to direction h with ∥h∥ = 1 is given by

∂ f
∂h

(x)= fx1(x) ·h1 +·· ·+ fxn (x) ·hn =∇ f (x) ·h .

This theorem implies some nice properties of the gradient.

Properties of the gradient. Let f : D ⊆Rn →R be a C 1 function. ThenTheorem 4.16
we find

(1) ∇ f (x) points into the direction of the steepest directional derivative
at x.

(2) ∥∇ f (x)∥ is the maximum among all directional derivatives at x.

(3) ∇ f (x) is orthogonal to the level set through x.∇ f
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PROOF. By the Cauchy-Schwarz inequality we have

∇ f (x)h≤ |∇ f (x)h| ≤ ∥∇ f (x)∥ · ∥h∥︸︷︷︸
=1

=∇ f (x)
∇ f (x)
∥∇ f (x)∥

where equality holds if and only if h = ∇ f (x)/∥∇ f (x)∥. Thus (1) and (2)
follow. For the proof of (3) we need the concepts of level sets and implicit
functions. Thus we skip the proof.

4.7 Higher Order Partial Derivatives

The functions fxi are called first-order partial derivatives. Provided Definition 4.17
that these functions are again differentiable, we can generate new func-
tions by taking their partial derivatives. Thus we obtain second-order
partial derivatives. They are represented as

∂

∂x j

(
∂ f
∂xi

)
= ∂2 f
∂x j∂xi

and
∂

∂xi

(
∂ f
∂xi

)
= ∂2 f
∂x2

i
.

Alternative notations are

fxi x j and fxi xi or f ′′i j and f ′′ii .

There are n2 many second-order derivatives for a function f (x1, . . . , xn).
Fortunately, for essentially all our functions we need not take care about
the succession of particular derivatives. The next theorem provides a
sufficient condition. Notice that we again need that all the requested
partial derivatives are continuous.

Young’s theorem, Schwarz’ theorem. Let f : D ⊆ Rn → R be a C m Theorem 4.18
function, that is, all the mth order partial derivatives of f (x1, . . . , xn) exist
and are continuous. If any two of them involve differentiating w.r.t. each
of the variables the same number of times, then they are necessarily
equal. In particular we find for every C 2 function f ,

∂2 f
∂xi∂x j

= ∂2 f
∂x j∂xi

.

A proof of this theorem is given in most advanced calculus books.

Hessian matrix. Let f : D ⊆ Rn → R be a two times differentiable func- Definition 4.19
tion. Then the n×n matrix

f ′′(x)=H f (x)=

 f ′′11 . . . f ′′1n
...

. . .
...

f ′′n1 . . . f ′′nn


is called the Hessian of f .

By Young’s theorem the Hessian is symmetric for C 2 functions.
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4.8 Derivatives of Multivariate Functions

We want to generalize the notion of derivative to multivariate functions
and transformations. Our starting point is the following observation for
univariate functions.

Linear approximation. A function f : D ⊆ R→ R is differentiable at anTheorem 4.20
interior point x0 ∈ D if and only if there exists a linear function ℓ such
that

lim
h→0

|( f (x0 +h)− f (x0))−ℓ(h)|
|h| = 0.

We have ℓ(h)= f ′(x0) ·h (i.e., the differential of f at x0).

PROOF. Assume that f is differentiable in x0. Then

lim
h→0

( f (x0 +h)− f (x0))− f ′(x0)h
h

= lim
h→0

f (x0 +h)− f (x0)
h

− f ′(x0)

= f ′(x0)− f ′(x0)= 0.

Since the absolute value is a continuous function of its argument, the
proposition follows.

Conversely, assume that a linear function ℓ(h)= ah exists such that

lim
h→0

|( f (x0 +h)− f (x0))−ℓ(h)|
|h| = 0 .

Then we find

0= lim
h→0

|( f (x0 +h)− f (x0))−ah|
|h| = lim

h→0

( f (x0 +h)− f (x0))−ah
h

= lim
h→0

f (x0 +h)− f (x0)
h

−a

and consequently

lim
h→0

f (x0 +h)− f (x0)
h

= a .

But then the limit of the difference quotient exists and f is differentiable
at x0.

An immediate consequence of Theorem 4.20 is that we can use the
existence of such a linear function for the definition of the term differen-
tiable and the linear function ℓ for the definition of derivative. With the
notion of norm we can easily extend such a definition to transformations.

A function f : D ⊆ Rn → Rm is differentiable at an interior point x0 ∈ DDefinition 4.21
if there exists a linear function ℓ such that

lim
h→0

∥(f(x0 +h)− f(x0))−ℓ(h)∥
∥h∥ = 0.

The linear function (if it exists) is then given by an m×n matrix A, i.e.,
ℓ(h)=Ah. This matrix is called the (total) derivative of f and denotedderivative
by f′(x0) or Df(x0).
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A function f = ( f1(x), . . . , fm(x))′ : D ⊆ Rn → Rm is differentiable at an in- Lemma 4.22
terior point x0 of D if and only if each component function f i : D → R is
differentiable.

PROOF. Let A be an m×n matrix and R(h)= (f(x0+h)−f(x0))−Ah. Then
we find for each j = 1, . . . ,m,

0≤ |R j(h)| ≤ ∥R(h)∥2 ≤ ∥R(h)∥1 =
m∑

i=1
|Ri(h)| .

Therefore, lim
h→0

∥R(h)∥
∥h∥ = 0 if and only if lim

h→0

|R j(h)|
∥h∥ = 0 for all j = 1, . . . ,m.

The derivative can be computed by means of the partial derivatives
of all the components of f.

Computation of derivative. Let f= ( f1(x), . . . , fm(x))′ : D ⊆Rn →Rm be Theorem 4.23
differentiable at x0. Then

Df(x0)=


∂ f1
x1

(x0) . . . ∂ f1
xn

(x0)
...

. . .
...

∂ fm
x1

(x0) . . . ∂ fm
xn

(x0)

=

∇ f1(x0)
...

∇ fm(x0)


This matrix is called the Jacobian matrix of f at x0.

PROOF IDEA. In order to compute the components of f′(x0) we estimate
the change of f j as function of the kth variable.

PROOF. Let A = (a1, . . . ,am)′ denote the derivative of f at x0 where a′
j is

the jth row vector of A. By Lemma 4.22 each component function f j is
differentiable at x0 and thus

lim
h→0

|( f j(x0 +h)− f j(x0))−a′
jh|

∥h∥ = 0.

Now set h= tek where ek denotes the kth unit vector in Rn. Then

0= lim
t→0

|( f j(x0 + tek)− f j(x0))− ta′
jek|

|t|
= lim

t→0

f j(x0 + tek)− f j(x0)
t

−a′
jek

= ∂ f j

∂xk
(x0)−a jk .

That is, a jk = ∂ f j
∂xk

(x0), as proposed.
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Notice that an immediate consequence of Theorem 4.23 is that the
derivative f′(x0) is uniquely defined (if it exists).

If f : D ⊆ Rn → R, then the Jacobian matrix reduces to a row vector
and we find f ′(x)=∇ f (x), i.e., the gradient of f .

The computation by means of the Jacobian matrix suggests that the
derivative of a function exists whenever all its partial derivatives exist.
However, this need not be the case. Problem 4.25 shows a counterexam-
ple. Nevertheless, there exists a simple condition for the existence of the
derivative of a multivariate function.

Existence of derivatives. If f is a C 1 function from an open set D ⊆RnTheorem 4.24
into Rm, then f is differentiable at every point x ∈ D.

SKETCH OF PROOF. Similar to the proof of Theorem 4.15 on page 36.

Differentiability is a stronger property than continuity as the follow-
ing result shows.

If f : D ⊆ Rn → Rm is differentiable at an interior point x0 ∈ D, then f isTheorem 4.25
also continuous at x0.

PROOF. Let A denote the derivative at x0. Then we find

∥f(x0 +h)− f(x0)∥ = ∥f(x0 +h)− f(x0)−Ah+Ah∥

≤ ∥h∥︸︷︷︸
→0

· ∥f(x0 +h)− f(x0)−Ah∥
∥h∥︸ ︷︷ ︸
→0

+∥Ah∥︸ ︷︷ ︸
→0

→ 0 as h→ 0.

The ratio tends to 0 since f is differentiable. Thus f is continuous at x0,
as claimed.

Chain rule. Let f : D ⊆ Rn → Rm and g : B ⊆ Rm → Rp with f(D) ⊆ B.Theorem 4.26
Suppose f and g are differentiable at x and f(x), respectively. Then the
composite function g◦ f : D →Rp defined by (g◦ f)(x)= g(f(x)) is differen-
tiable at x, and

(g◦ f)′(x)= g′(f(x)
) · f′(x)) .

PROOF IDEA. A heuristic derivation for the chain rule using linear ap-
proximation is obtained in the following way:

(g◦ f)′(x)h≈ (g◦ f)(x+h)− (g◦ f)(x)

= g
(
f(x+h)

)−g
(
f(x)

)
≈ g′(f(x)

)[
f(x+h)− f(x)

]
≈ g′(f(x)

)
f′(x)h

for “sufficiently short” vectors h.
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PROOF. Let R f (h)= f(x+h)−f(x)−f′(x)h and Rg(k)= g
(
f(x)+k

)−g
(
f(x)

)−
g′(f(x)

)
k. As both f and g are differentiable at x and f(x), respectively,

lim
h→0

∥∥R f (h)
∥∥ /∥h∥ = 0 and lim

k→0

∥∥Rg(k)
∥∥ /∥k∥ = 0. Define k(h) = f(x+h)−

f(x). Then we find

R(h)= g
(
f(x+h)

)−g
(
f(x)

)−g′(f(x)
)
f′(x)h

= g
(
f(x)+k(h)

)−g
(
f(x)

)−g′(f(x)
)
f′(x)h

= g′(f(x)
)
k(h)+Rg

(
k(h)

)−g′(f(x)
)
f′(x)h

= g′(f(x)
)[

k(h)− f′(x)h
]+Rg

(
k(h)

)
= g′(f(x)

)[
f(x+h)− f(x)− f′(x)h

]+Rg
(
k(h)

)
= g′(f(x)

)
R f (h)+Rg

(
k(h)

)
.

Thus by the triangle inequality we have

∥R(h)∥
∥h∥ ≤

∥∥g′(f(x))R f (h)
∥∥

∥h∥ +
∥∥Rg(k(h))

∥∥
∥h∥ .

The right hand side converges to zero as h → 0 and hence proposition
follows1.

Notice that the derivatives in the chain rule are matrices. Thus the
derivative of a composite function is the composite of linear functions.

Let f(x, y) =
(
x2 + y2

x2 − y2

)
and g(x, y) =

(
ex

ey

)
be two differentiable functions Example 4.27

defined on R2. Compute the derivative of g◦ f at x by means of the chain
rule.

SOLUTION. Since f′(x)=
(
2 x 2 y
2 x −2 y

)
and g′(x)=

(
ex 0
0 ey

)
, we have

(g◦ f)′(x)= g′(f(x))f′(x)=
(
ex2+y2

0
0 ex2−y2

)
·
(
2 x 2 y
2 x −2 y

)

=
(
2x ex2+y2

2y ex2+y2

2x ex2−y2 −2y ex2−y2

)

♦

Derive the formula for the directional derivative from Theorem 4.15 by Example 4.28
means of the chain rule.

SOLUTION. Let f : D ⊆Rn →R some differentiable function and h a fixed
direction (with ∥h∥ = 1). Then s : R→ D ⊆ Rn, t 7→ x0 + th is a path in Rn

and we find

f ′(s(0))= f ′(x0)=∇ f (x0) and s′(0)=h
1At this point we need some tools from advanced calculus which we do not have

available. Thus we unfortunately still have an heuristic approach albeit on some higher
level.
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and therefore

∂ f
∂h

(x0)= ( f ◦s)′(0)= f ′(s(0)) ·s′(0)=∇ f (x0) ·h

as claimed. ♦

Let f (x1, x2, t) be a differentiable function defined on R3. Suppose thatExample 4.29
both x1(t) and x2(t) are themselves functions of t. Compute the total
derivative of z(t)= f

(
x1(t), x2(t), t

)
.

SOLUTION. Let x : R→R3, t 7→
x1(t)

x2(t)
t

. Then z(t)= ( f ◦x)(t) and we have

dz
dt

= ( f ◦x)′(t)= f ′
(
x(t)

) ·x′(t)

=∇ f
(
x(t)

) ·
x′1(t)

x′2(t)
1

=
(
fx1

(
x(t)

)
, fx2

(
x(t)

)
, f t

(
x(t)

)) ·
x′1(t)

x′2(t)
1


= fx1

(
x(t)

) · x′1(t)+ fx2

(
x(t)

) · x′2(t)+ f t
(
x(t)

)
= fx1(x1, x2, t) · x′1(t)+ fx2(x1, x2, t) · x′2(t)+ f t(x1, x2, t) . ♦
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— Exercises

4.1 Estimate the following limits:

(a) lim
x→∞

1
x+1 (b) lim

x→0
x2 (c) lim

x→∞ ln(x)

(d) lim
x→0

ln |x| (e) lim
x→∞

x+1
x−1

4.2 Sketch the following functions.
Which of these are continuous functions?
In which points are these functions not continuous?

(a) D =R, f (x)= x (b) D =R, f (x)= 3x+1

(c) D =R, f (x)= e−x −1 (d) D =R, f (x)= |x|
(e) D =R+, f (x)= ln(x) (f) D =R, f (x)= [x]

(g) D =R, f (x)=


1 for x ≤ 0
x+1 for 0< x ≤ 2
x2 for x > 2

HINT: Let x = p+ y with p ∈Z and y ∈ [0,1). Then [x]= p.

4.3 Differentiate:

(a) 3x2 +5cos(x)+1 (b) (2x+1)x2

(c) x ln(x) (d) (2x+1)x−2

(e) 3x2−1
x+1 (f) ln(exp(x))

(g) (3x−1)2 (h) sin(3x2)

(i) 2x (j) (2x+1)(x2−1)
x+1

(k) 2 e3x+1(5x2+1)2+ (x+1)3

x−1 −2x

4.4 Compute the second and third derivatives of the following func-
tions:

(a) f (x)= e−
x2
2 (b) f (x)= x+1

x−1
(c) f (x)= (x−2)(x2 +3)

4.5 Compute all first and second order partial derivatives of the fol-
lowing functions at (1,1):

(a) f (x, y)= x+ y (b) f (x, y)= x y

(c) f (x, y)= x2 + y2 (d) f (x, y)= x2 y2

(e) f (x, y)= xα yβ, α,β> 0 (f) f (x, y)=
√

x2 + y2

4.6 Compute gradient and Hessian matrix of the functions in Exer-
cise 4.5 at (1,1).
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4.7 Let f (x) = ∑n
i=1 x2

i . Compute the directional derivative of f into
direction a using

(a) function g(t)= f (x+ ta);
(b) the gradient ∇ f ;
(c) the chain rule.

4.8 Let f (x, y) be a differentiable function. Suppose its directional
derivative in (0,0) in maximal in direction a = (1,3) with ∂ f

∂a = 4.
Compute the gradient of f in (0,0).

4.9 Let f (x, y) = x2 + y2 and g(t) =
(
g1(t)
g2(t)

)
=

(
t
t2

)
. Compute the deriva-

tives of the compound functions f ◦ g and g ◦ f by means of the
chain rule.

4.10 Let f(x)= (x3
1−x2, x1−x3

2)′ and g(x)= (x2
2, x1)′. Compute the deriva-

tives of the compound functions f◦g and g◦f by means of the chain
rule.

4.11 Let A be a regular n×n matrix, b ∈Rn and x the solution of the lin-
ear equation Ax = b. Compute ∂xi

∂bi
. Also give the Jacobian matrix

of x as a function of b.HINT: Use Cramer’s rule.

4.12 Let F(K ,L, t) be a production function where L = L(t) and K = K(t)
are also functions of time t. Compute dF

dt .

— Problems

4.13 Prove Theorem 4.5.HINT: See proof of Theo-
rem 3.31.

4.14 Let f (x)= xn for some n ∈N. Show that f ′(x)= n xn−1 by computing
the limit of the difference quotient.

HINT: Use the binomial theoremSay “n choose k”.

(a+b)n =
n∑

k=0

(
n
k

)
ak ·bn−k

4.15 Show that f (x)= |x| is not differentiable on R.

HINT: Recall that a function is differentiable on D if it is differentiable on every
x ∈ D.

4.16 Show that

f (x)=
{p

x, for x ≥ 0,
−p−x, for x < 0,

is not differentiable on R.
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4.17 Construct a function that is differentiable but not twice differen-
tiable.
HINT: Recall that a function is differentiable on D if it is differentiable on every
x ∈ D.

4.18 Show that the function

f (x)=
{

x2 sin
(1

x
)
, for x ̸= 0,

0, for x = 0,

is differentiable in x = 0 but not continuously differentiable.

4.19 Compute the derivative of f (x)= ax (a > 0). HINT: ax = eln(a) x

4.20 Prove the summation rule. (Rule (2) in Table 4.9).
HINT: Let F(x)= f (x)+ g(x) and apply Theorem 4.3 for the limit.

4.21 Prove the quotient rule. (Rule (5) in Table 4.9). HINT: Use chain rule, prod-
uct rule and power rule.

4.22 Verify the Square Root Rule:
HINT: Use the rules from
Tabs. 4.8 and 4.9.(p

x
)′ = 1

2
p

x

4.23 Let f : R→ (0,∞) be a differentiable function. Show that

(ln( f (x)))′ = f ′(x)
f (x)

4.24 Let f : (0,∞)→ (0,∞) be a differentiable function. Then the term

ε f (x)= x · f ′(x)
f (x)

is called the elasticity of f at x. It describes relative changes of
f w.r.t. relative changes of its variable x. We can, however, de-
rive the elasticity by changing from a linear scale to a logarithmic
scale. Thus we replace variable x by its logarithm v = ln(x) and
differentiate the logarithm of f w.r.t. v and find HINT: Differentiate

y(v)= ln( f (ev)) and
substitute v = ln(x).

ε f (x)= d(ln( f (x)))
d(ln(x))

Derive this formula by means of the chain rule.

4.25 Let

f (x, y)=


xy2

x2 + y4 , for (x, y) ̸= 0,

0, for (x, y)= 0.

(a) Plot the graph of f (by means of the computer program of
your choice).
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(b) Compute all first partial derivatives for (x, y) ̸= 0.

(c) Compute all first partial derivatives for (x, y) = 0 by comput-
ing the respective limits

fx(0,0)= lim
t→0

f (t,0)− f (0,0)
t

f y(0,0)= lim
t→0

f (0, t)− f (0,0)
t

(d) Compute the directional derivative at 0 into some direction
h′ = (h1,h2),

fh(0,0)= lim
t→0

f (th1, th2)− f (0,0)
t

What do you expect if f were differentiable at 0?

4.26 Let f : Rn →Rm be a linear function with f(x)=Ax for some matrix
A.

(a) What are the dimensions of matrix A (number of rows and
columns)?

(b) Compute the Jacobian matrix of f.

4.27 Let A be a symmetric n×n matrix. Compute the Jacobian matrix
of the corresponding quadratic form q(x)= x′Ax.

4.28 A function f (x) is called homogeneous of degree k, if

f (αx)=αk f (x) for all α ∈R.

(a) Give an example for a homogeneous function of degree 2 and
draw level lines of this function.

(b) Show that all first order partial derivatives of a differentiable
homogeneous function of degree k (k ≥ 1) are homogeneous of
degree k−1.

(c) Show that the level lines are parallel along each ray from the
origin. (A ray from the origin in direction r ̸= 0 is the halfline
{x=αr : α≥ 0}.)

HINT: Differentiate both sides of equation f (αx)=αk f (x) w.r.t. xi .

4.29 Let f and g be two n times differentiable functions. Show by in-
duction that

( f · g)(n)(x)=
n∑

k=0

(
n
k

)
f (k)(x) · g(n−k)(x) .

HINT: Use the recursion
(n+1
k+1

)= (n
k
)+ ( n

k+1
)

for k = 0, . . . ,n−1.
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4.30 Let

f (x)=
{

exp
(
− 1

x2

)
, for x ̸= 0,

0, for x = 0.

(a) Show that f is differentiable in x = 0.

(b) Show that f ′(x)=
{

2x−3 f (x), for x ̸= 0,
0, for x = 0.

(c) Show that f is continuously differentiable in x = 0.

(d) Argue why all derivatives of f vanish in x = 0, i.e., f (n)(0) = 0
for all n ∈N.

HINT: For (a) use limx→0 f (x) = limx→∞ f
(

1
x

)
; for (b) use the chain rule for the

case where x ̸= 0; for (d) use the formula from Problem 4.29.





5
Taylor Series

We need a local approximation of a function that is as simple as possible,
but not simpler.

5.1 Taylor Polynomial

The derivative of a function can be used to find the best linear approxi-
mation of a univariate function f , i.e.,

f (x)≈ f (x0)+ f ′(x0)(x− x0) .

Notice that we evaluate both f and its derivative f ′ at x0. By the mean
value theorem (Theorem 4.10) we have

f (x)= f (x0)+ f ′(ξ)(x− x0)

for some appropriate point ξ ∈ (x, x0). When we need to improve this first-
order approximation, then we have to use a polynomial pn of degree n.
We thus select the coefficients of this polynomial such that its first n
derivatives at some point x0 coincides with the first k derivatives of f at
x0, i.e.,

p(k)
n (x0)= f (k)(x0) , for k = 0, . . . ,n.

We then find

f (x)=
n∑

k=0

f (k)(x0)
k!

(x− x0)k +Rn(x) .

The term Rn is called the remainder and is the error when we approx-
imate function f by this so called Taylor polynomial of degree n.

Let f be an n times differentiable function. Then the polynomial Definition 5.1

T f ,x0,n(x)=
n∑

k=0

f (k)(x0)
k!

(x− x0)k

is called the nth-order Taylor polynomial of f around x = x0. The term
f (0) refers to the “0-th derivative”, i.e., function f itself.

49
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The special case with x0 = 0 is called the Maclaurin polynomial.

If we expand the summation symbol we can write the Maclaurin
polynomial as

T f ,0,n(x)= f (0)+ f ′(0) x+ f ′′(0)
2!

x2 + f ′′′(0)
3!

x3 +·· ·+ f (n)(0)
n!

xn .

Exponential function. The derivatives of f (x) = ex at x0 = 0 are givenExample 5.2

1

1

exp(x)

T1

T2
T3

by

f (n)(x)= ex hence f (n)(0)= 1 for all n ≥ 0.

Therefore we find for the nth order Maclaurin polynomial

T f ,0,n(x)=
n∑

k=0

f (k)(0)
k!

xk =
n∑

k=0

xk

k!
. ♦

Logarithm. The derivatives of f (x)= ln(1+ x) at x0 = 0 are given byExample 5.3

1−1

1 ln(1+ x)

T1

T2

T5

T6

f (n)(x)= (−1)n+1(n−1)!(1+ x)−n

hence f (n)(0)= (−1)n+1(n−1)! for all n ≥ 1. As f (0)= ln(1)= 0 we find for
the nth order Maclaurin polynomial

T f ,0,n(x)=
n∑

k=0

f (k)(0)
k!

xk =
n∑

k=1

(−1)k+1(k−1)!
k!

xk =
n∑

k=1
(−1)k+1 xk

k
. ♦

Obviously, the approximation of a function f by its Taylor polynomial
is only useful if the remainder Rn(x) is small. Indeed, the error will go
to 0 faster than (x− x0)n as x tends to x0.

Taylor’s theorem. Let function f : R→ R be n times differentiable atTheorem 5.4
the point x0 ∈R. Then there exists a function hn : R→R such that

f (x)= T f ,x0,n(x)+hn(x)(x− x0)n and lim
x→x0

hn(x)= 0 .

There are even stronger results. The error term can be estimated
more precisely. The following theorem gives one such result. Observe
that Theorem 5.4 is then just a corollary when the assumptions of Theo-
rem 5.5 are met.

Lagrange’s form of the remainder. Suppose f is n+1 times differ-Theorem 5.5
entiable in the interval [x, x0]. Then the remainder for T f ,x0,n can be
written as

Rn(x)= f (n+1)(ξ)
(n+1)!

(x− x0)n+1

for some point ξ ∈ (x, x0).
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PROOF IDEA. We construct a function

g(t)= Rn(t)− (t− x0)n+1

(x− x0)n+1 Rn(x)

and show that all derivatives g(k)(x0)= 0 vanish for all k = 0, . . . ,n. More-
over, g(ξ0) = 0 for ξ0 = x and thus Rolle’s Theorem implies that there
exists a ξ1 ∈ (ξ0, x0) such that g′(ξ1)= 0. Repeating this argument recur-
sively we eventually obtain a ξ = ξn+1 ∈ (ξk, x0) ⊆ (x, x0) with g(n+1)(ξ) =
f (n+1)(ξ)− (n+1)!

(x−x0)n+1 Rn(x)= 0 and thus the result follows.

PROOF. Let Rn(x)= f (x)−T f ,x0,n(x) and

g(t)= Rn(t)− (t− x0)n+1

(x− x0)n+1 Rn(x) .

We then find g(x) = 0. Moreover, g(x0) = 0 and g(k)(x0) = 0 for all k =
0, . . . ,n since the first n derivatives of f and T f ,x0,n coincide at x0 by
construction (Problem 5.9). Thus g(x) = g(x0) and the mean value the-
orem (Rolle’s Theorem, Theorem 4.10) implies that there exists a ξ1 ∈
(x, x0) such that g′(ξ1) = 0 and thus g′(ξ1) = g′(x0) = 0. Again the mean
value theorem implies that there exists a ξ2 ∈ (ξ1, x0) ⊆ (x, x0) such that
g′′(ξ2) = 0. Repeating this argument we find ξ1,ξ2, . . . ,ξn+1 ∈ (x, x0) such
that g(k)(ξk) = 0 for all k = 1, . . . ,n+1. In particular, for ξ= ξn+1 we then
have

0= g(n+1)(ξ)= f (n+1)(ξ)− (n+1)!
(x− x0)n+1 Rn(x)

and thus the formula for Rn follows.

Lagrange’s form of the remainder can be seen as a generalization of
the mean value theorem for higher order derivatives.

5.2 Taylor Series

Taylor series expansion. The series Definition 5.6
∞∑

n=0

f (n)(x0)
n!

(x− x0)n

is called the Taylor series of f at x0. We say that we expand f into a
Taylor series around x0.

If the remainder Rn(x) → 0 as n → ∞, then the Taylor series con-
verges to f (x), i.e., we them have

f (x)=
∞∑

n=0

f (n)(x0)
n!

(x− x0)n .

Table 5.7 lists Maclaurin series of some important functions. The mean-
ing of ρ is explained in Section 5.4 below.

In some cases it is quite straightforward to show the convergence of
the Taylor series.
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f (x) Maclaurin series ρ

exp(x) =
∞∑

n=0

xn

n!
= 1+ x+ x2

2!
+ x3

3!
+ x4

4!
+·· · ∞

ln(1+ x) =
∞∑

n=1
(−1)n+1 xn

n
= x− x2

2
+ x3

3
− x4

4
+·· · 1

sin(x) =
∞∑

n=0
(−1)n x2n+1

(2n+1)!
= x− x3

3!
+ x5

5!
− x7

7!
+·· · ∞

cos(x) =
∞∑

n=0
(−1)n x2n

(2n)!
= 1− x2

2!
+ x4

4!
− x6

6!
+·· · ∞

1
1− x

=
∞∑

n=0
xn = 1+ x+ x2 + x3 + x4 +·· · 1

Table 5.7

Maclaurin series of
some elementary
functions.

Convergence of remainder. Assume that all derivatives of f areTheorem 5.8
bounded in the interval (x, x0) by some number M, i.e., | f (k)(ξ)| ≤ M for
all ξ ∈ (x, x0) and all k ∈N. Then

|Rn(x)| ≤ M
|x− x0|n+1

(n+1)!
for all n ∈N

and thus lim
n→∞Rn(x)= 0 as n →∞.

PROOF. Immediately by Theorem 5.5 and hypothesis of the theorem.

We have seen in Example 5.2 that f (n)(x)= ex for all n ∈N. Thus | f (n)(ξ)| ≤Example 5.9
M = max{|ex|, |ex0 |} for all ξ ∈ (x, x0) and all k ∈N. Then by Theorem 5.8,
ex =∑∞

n=0
f (n)(0)

n! xn for all x ∈R. ♦

The required order of the Taylor polynomial for the approximation
of a function f of course depends on the particular task. A first-order
Taylor polynomial may be used to linearize a given function near some
point of interest. This also may be sufficient if one needs to investigate
local monotonicity of some function. When local convexity or concavity
of the function are of interest we need at least a second-order Taylor
polynomial.

5.3 Landau Symbols

If all derivatives of f are bounded in the interval (x, x0), then Lagrange’s
form of the remainder Rn(x) is expressed as a multiple of the nth power
of the distance between the point x of interest and the expansion point
x0, that is, C|x− x0|n+1 for some positive constant C. The constant itself
is often hard to compute and thus it is usually not specified. However, in
many cases this is not necessary at all.
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Suppose we have two terms C1|x−x0|k and C2|x−x0|k+1 with C1,C2 >
0, then for values of x sufficiently close to x0 the second term becomes
negligible small compared to the first one as

C2|x− x0|k+1

C1|x− x0|k
= C2

C1
· |x− x0|→ 0 as x → x0.

More precisely, this ratio can be made as small as desired provided that
x is in some sufficiently small open ball around x0. This observation
remains true independent of the particular values of C1 and C2. Only
the diameter of this “sufficiently small open ball” may vary.

Such a situation where we want to describe local or asymptotic be-
havior of some function up to some non-specified constant is quite com-
mon in mathematics. For this purpose the so called Landau symbol is
used.

Landau symbol. Let f (x) and g(x) be two functions defined on some Definition 5.10
subset of R. We write

f (x)=O
(
g(x)

)
as x → x0 (say “ f (x) is big O of g”)

if there exist positive numbers M and δ such that

| f (x)| ≤ M |g(x)| for all x with |x− x0| < δ.

f (x)
M g(x)

−M g(x)By means of this notation we can write Taylor’s formula with the
Lagrange form of the remainder as

f (x)=
n∑

k=0

f (k)(x0)
k!

(x− x0)k +O(|x− x0|n+1)

(provided that f is n+1 times differentiable at x0).
Observe that f (x)=O

(
g(x)

)
implies that there exist positive numbers

M and δ such that∣∣∣∣ f (x)
g(x)

∣∣∣∣≤ M for all x with |x− x0| < δ.

We also may have situations where we know that this fraction even con-
verges to 0. Formally, we then write

f (x)= o
(
g(x)

)
as x → x0 (say “ f (x) is small O of g”)

if for every ε> 0 there exists a positive δ such that

| f (x)| ≤ ε|g(x)| for all x with |x− x0| < δ.

Using this notation we can write Taylor’s Theorem 5.4 as

f (x)=
n∑

k=0

f (k)(x0)
k!

(x− x0)k + o(|x− x0|n)

The symbols O(·) and o(·) are called Landau symbols.
The notation “ f (x)=O

(
g(x)

)
” is a slight abuse of language as it merely

indicates that f belongs to a family of functions that locally behaves sim-
ilar to g(x). Thus this is sometimes also expressed as

f (x) ∈O
(
g(x)

)
.
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5.4 Power Series and Analytic Functions

Taylor series are a special case of so called power series

p(x)=
∞∑

n=1
an(x− x0)n .

Suppose that limn→∞
∣∣∣ an+1

an

∣∣∣ exists. Then the ratio test (Lemma 2.28)
implies that the power series converges if

lim
n→∞

∣∣∣∣an+1(x− x0)n+1

an(x− x0)n

∣∣∣∣= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ |x− x0| < 1

that is, if

|x− x0| < lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ .

Similarly we find that the series diverges if

|x− x0| > lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ .

For the exponential function in Example 5.2 we find an = 1/n!. ThusExample 5.11

lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣= lim
n→∞

(n+1)!
n!

= lim
n→∞n+1=∞ .

Hence the Taylor series converges for all x ∈R. ♦

For function f (x) = ln(1+ x) the situation is different. Recall that forExample 5.12
function f (x)= ln(1+ x), we find an = (−1)n+1/n (see Example 5.3).

lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣= lim
n→∞

n+1
n

= 1 .

Hence the Taylor series converges for all x ∈ (−1,1); and diverges for x > 1
or x <−1.
For x = −1 we get the divergent harmonic series, see Lemma 2.21. For
x = 1 we get the convergent alternating harmonic series, see Lemma 2.25.
However, a proof requires more sophisticated methods. ♦

Example 5.12 demonstrates that a Taylor series need not converge
for all x ∈ R. Instead there is a maximal distance ρ such that the series
converges for all x ∈ Bρ(x0) but diverges for all x with |x− x0| > ρ. The
value ρ is called the radius of convergence of the power series. Ta-
ble 5.7 also lists this radius for the given Maclaurin series. ρ =∞ means
that the series converges for all x ∈R.

There is, however, a subtle difference between Examples 5.9 and
5.11. In the first example we have show that

∑∞
n=0

f (n)(0)
n! xn = ex for all

x ∈R while in the latter we have just shown that
∑∞

n=0
f (n)(0)

n! xn converges.
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Similarly, we have shown in Example 5.12 that the Taylor series which
we have computed in Example 5.3 converges, but we have not given a
proof that

∑n
k=1(−1)k+1 xk

k = ln(1+ x).
Indeed functions f exist where the Taylor series converge but do not

coincide with f (x).

The function Example 5.13

f (x)=
{

exp
(
− 1

x2

)
, for x ̸= 0,

0, for x = 0.

is infinitely differentiable in x = 0 and f (n)(0) = 0 for all n ∈N (see Prob-
lem 4.30). Consequently, we find for all Maclaurin polynomials T f ,n,0(x)=
0 for all x ∈ R. Thus the Maclaurin series converges to 0 for all x ∈ R.
However, f (x) > 0 for all x ̸= 0, i.e., albeit the series converges we find∑∞

n=0
f (n)(0)

n! xn ̸= f (x). ♦
Analytic function. An infinitely differentiable function f is called ana- Definition 5.14
lytic in an open interval Br(x0) if its Taylor series around x0 converges
and

f (x)=
∞∑

n=0

f (n)(x0)
n!

(x− x0)n for all x ∈ Br(x0).

5.5 Defining Functions

Computations with power series are quite straightforward. Power series
can be

• added or subtracted termwise,

• multiplied,

• divided,

• differentiated and integrated termwise.

We get the Maclaurin series of the exponential function by differentiat- Example 5.15
ing the Maclaurin series of ex:

(
exp(x)

)′ = ( ∞∑
n=0

1
n!

xn

)′
=

∞∑
n=0

1
n!

(
xn)′ = ∞∑

n=1

n
n!

xn−1 =
∞∑

n=1

1
(n−1)!

xn−1

=
∞∑

n=0

1
n!

xn = exp(x) .

We get the Maclaurin series of f (x)= x2·sin(x) by multiplying the Maclau- Example 5.16
rin series of sin(x) by x2:

x2 ·sin(x)= x2 ·
∞∑

n=0
(−1)n x2n+1

(2n+1)!
=

∞∑
n=0

(−1)nx2 x2n+1

(2n+1)!

=
∞∑

n=0
(−1)n x2n+3

(2n+1)!
.
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We also can substitute x in the Maclaurin series from Table 5.7 by
some polynomial.

We obtain the Maclaurin series of exp(−x2) by substituting −x2 into theExample 5.17
Maclaurin series of the exponential function.

exp(−x2)=
∞∑

n=0

1
n!

(−x2)n =
∞∑

n=0

(−1)n

n!
x2n .

For that reason it is quite convenient to define analytic functions by
its Taylor series.

exp(x) :=
∞∑

n=0

1
n!

xn

5.6 Taylor’s Formula for Multivariate Functions

Taylor polynomials can also be established for multivariate functions.
We then construct a polynomial where all its kth order partial deriva-
tives coincide with the corresponding partial derivatives of f at some
given expansion point x0.

In opposition to the univariate case the number of coefficients of a
polynomial in two or more variables increases exponentially in the de-
gree of the polynomial. Thus we restrict our interest to the 2nd order
Taylor polynomials which can be written as

p2(x1, . . . , xn)= a0 +
n∑

i=1
aixi +

n∑
i=1

n∑
j=1

ai jxix j

or, using vectors and quadratic forms,

p2(x)= a0 +a′x+x′Ax

where A is an n×n matrix with [A]i j = ai j and a′ = (a1, . . . ,an).
If we choose the coefficients ai and ai j such that all first and second

order partial derivatives of p2 at x0 = 0 coincides with the corresponding
derivatives of f we find,

p2(x)= f (0)+ f ′(0)x+ 1
2

x′ f ′′(0)x

For a general expand point x0 we get the following analog to Taylor’s
Theorem 5.4 which we state without proof.

Taylor’s formula for multivariate functions. Suppose that f is a C 3Theorem 5.18
function in an open set containing the line segment [x0,x0 +h]. Then

f (x0 +h)= f (x0)+ f ′(x0) ·h+ 1
2

h′ · f ′′(x0) ·h+O(∥h∥3) .
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Let f (x, y)= ex2−y2 + x. Then gradient and Hessian matrix are given by Example 5.19

f ′(x, y)=
(
2x ex2−y2 +1, −2y ex2−y2

)
f ′′(x, y)=

(
(2+4x2) ex2−y2 −4xy ex2−y2

−4xy ex2−y2
(−2+4y2) ex2−y2

)
and thus we get for the 2nd order Taylor polynomial around x0 = 0

f (x, y)= f (0,0)+ f ′(0,0)(x, y)′+ 1
2

(x, y) f ′′(0,0)(x, y)′+O(∥(x, y)∥3)

= 1+ (1,0)(x, y)′+ 1
2

(x, y)
(
2 0
0 −2

)
(x, y)′+O(∥(x, y)∥3)

= 1+ x+ x2 − y2 +O(∥(x, y)∥3) .
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— Exercises

5.1 Expand f (x)= 1
2−x into a Maclaurin polynomial of

(a) first order;

(b) second order.

Draw the graph of f (x) and of these two Maclaurin polynomials in
the interval [−3,5].
Give an estimate for the radius of convergence.

5.2 Expand f (x)= (x+1)1/2 into the 3rd order Taylor polynomial around
x0 = 0.

5.3 Expand f (x)= sin(x10) into a Maclaurin polynomial of degree 30.

5.4 Expand f (x)= sin(x2 −5) into a Maclaurin polynomial of degree 4.

5.5 Expand f (x) = 1/(1+ x2) into a Maclaurin series. Compute its ra-
dius of convergence.

5.6 Expand the density of the standard normal distribution f (x) =
exp

(
− x2

2

)
into a Maclaurin series. Compute its radius of conver-

gence.

5.7 Expand f (x, y) = ex2+y2
into a 2nd order Taylor series around x0 =

(0,0).

— Problems

5.8 Expand the exponential function exp(x) into a Taylor series about
x0 = 0. Give an upper bound of the remainder Rn(1) as a function
of order n. When is this bound less than 10−16?

5.9 Assume that f is n times differentiable in x0. Show that for the
first n derivative of f and of its n-order Taylor polynomial coincide
in x0, i.e.,(

T f ,x0,n
)(k) (x0)= f (k)(x0) , for all k = 0, . . . ,n.

5.10 Verify the Maclaurin series from Table 5.7.

5.11 Show by means of the Maclaurin series from Table 5.7 that

(a) (sin(x))′ = cos(x) (b)
(
ln(1+ x)

)′ = 1
1+x



6
Inverse and Implicit

Functions

Can we invert the action of some function?

6.1 Inverse Functions

Inverse function. Let f : D f ⊆Rn →Wf ⊆Rm, x 7→ y= f(x) be some func- Definition 6.1
tion. Suppose that there exists a function f−1 : Wf → D f , y 7→ x = f−1(y)
such that

f−1 ◦ f= f◦ f−1 = id

that is, f−1(f(x)) = f−1(y) = x for all x ∈ D f , and f(f−1(y)) = f(x) = y for all
y ∈Wf . Then f−1 is called the inverse function of f.

Obviously, the inverse function exists if and only if f is a bijection. Lemma 6.2

We get the function term of the inverse function by solving equation
y= f(x) w.r.t. to x.

Affine function. Suppose that f : Rn → Rm, x 7→ y = f(x) = Ax+b where Example 6.3
A is an m×n matrix and b ∈Rm. Then we find

y=Ax+b ⇔ x=A−1 y−A−1 b=A−1 (y−b)

provided that A is invertible. In particular we must have n = m. Thus
we have f−1(y)=A−1 (y−b). Observe that

Df−1(y)=A−1 = (Df(x))−1 . ♦

For an arbitrary function the inverse need not exist. E.g., the func-
tion f : R→R, x 7→ x2 is not invertible. However, if we restrict the domain
of our function to some (sufficiently small) open interval D = Bε(x0) ⊂
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(0,∞) then the inverse exists. Motivated by Example 6.3 above we ex-
pect that this always works whenever f ′(x0) ̸= 0, i.e., when 1

f ′(x0) exists.

Moreover, it is possible to compute the derivative
(
f −1)′ of its inverse in

y0 = f (x0) as
(
f −1)′ (y0) = 1

f ′(x0) without having an explicit expression for
f −1.

This useful fact is stated in the inverse function theorem.

Inverse function theorem. Let f : D ⊆ Rn → Rn be a C k function inTheorem 6.4
some open set D containing x0. Suppose that the Jacobian determi-
nant of f at x0 is nonzero, i.e.,

∂( f1, . . . , fn)
∂(x1, . . . , xn)

= ∣∣f′(x0)
∣∣ ̸= 0 for x= x0.

Then there exists an open set U around x0 such that f maps U one-to-
one onto an open set V around y0 = f(x0). Thus there exists an inverse
mapping f−1 : V → U which is also in C k. Moreover, for all y ∈ V , we
have

(f−1)′(y0)= (f′(x0))−1 .

x−ε x+ε

y

x

In other words, a C k function f with a nonzero Jacobian determinant
at x0 has a local inverse around f(x0) which is again C k.

This theorem is an immediate corollary of the Implicit Function The-
orem 6.11 below, see Problem 6.10. The idea behind the proof is that we
can locally replace function f by its differential in order to get its local
inverse.

For the case n = 1, that is, a function f : R→R, we find

( f −1)′(y0)= 1
f ′(x0)

where y0 = f (x0).

Let f : R→ R, x 7→ y = f (x) = x2 and x0 = 3. Then f ′(x0) = 6 ̸= 0 thus f −1Example 6.5
exists in open ball around y0 = f (x0)= 9. Moreover

( f −1)′(9)= 1
f ′(3)

= 1
6

.

We remark here that Theorem 6.4 does not imply that function f −1 does
not exist in any open ball around f (0). As f ′(0) = 0 we simply cannot
apply the theorem in this case. ♦

Let f : R2 → R2, x 7→ f(x) =
(
x2

1 − x2
2

x1 x2

)
. Then we find Df(x) =

(
2x1 −2x2
x2 x1

)
Example 6.6

and thus
∂( f1, f2)
∂(x1, x2)

= |Df(x)| =
∣∣∣∣2x1 −2x2

x2 x1

∣∣∣∣= 2x2
1 +2x2

2 ̸= 0

for all x ̸= 0. Consequently, f−1 exists around all y = f(x) where x ̸= 0.
The derivative at y= f(1,1) is given by

D(f−1)(y)= (Df(1,1))−1 =
(
2 −2
1 1

)−1

=
( 1

4
2
4

−1
4

2
4

)
. ♦
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6.2 Implicit Functions

Suppose we are given some function F(x, y). Then equation F(x, y) = 0
describes a relation between the two variables x and y. Then if we fix x
then y is implicitly given. Thus we call this an implicit function. One
may ask the question whether it is possible to express y as an explicit
function of x.

Linear function. Let F(x, y) = ax+ by = 0 for a,b ∈ R. Then we easily Example 6.7
find y = f (x) =− a

b x provided that b ̸= 0. Observe that Fx = a and Fy = b.
Thus we find

y=−Fx

Fy
x and

dy
dx

=−Fx

Fy
provided that Fy ̸= 0. ♦

For non-linear functions this need not work. E.g., for

F(x, y)= x2 + y2 −1= 0

it is not possible to globally express y as a function of x. Nevertheless,
we may try to find such an explicit expression that works locally, i.e.,
within an open rectangle around a given point (x0, y0) that satisfies this
equation. Thus we replace F locally by its total derivative

dF = Fxdx+Fyd y= d0= 0

and obtain formally the derivative

d y
dx

=−Fx

Fy
.

Obviously this only works when Fy(x0, y0) ̸= 0.

Implicit function theorem. Let F : D ⊆R2 →R be a differentiable func- Theorem 6.8
tion in some open set D. Consider an interior point (x0, y0) ∈ D where

F(x0, y0)= 0 and Fy(x0, y0) ̸= 0 .

Then there exists an open rectangle R around (x0, y0), such that y

x

(x0, y0)

• F(x, y)= 0 has a unique solution y= f (x) in R, and

•
d y
dx

=−Fx

Fy
.

Let F(x, y) = x2 + y2 −8 = 0 and (x0, y0) = (2,2). Since F(x0, y0) = 0 and Example 6.9
Fy(x0, y0)= 2 y0 = 4 ̸= 0, there exists a rectangle R around (2,2) such that
y can be expressed as an explicit function of x and we find

d y
dx

(x0)=−Fx(x0, y0)
Fy(x0, y0)

=−2x0

2y0
=−4

4
=−1 .
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Observe that we cannot apply Theorem 6.8 for the point (
p

8,0) as then
Fy(

p
8,0) = 0. Thus the hypothesis of the theorem is violated. Notice,

however, that this does not necessarily imply that the requested local
explicit function does not exist at all. ♦

We can generalize Theorem 6.8 to the functions with arbitrary num-
bers of arguments. Thus we first need a generalization of the partial
derivative.

Jacobian matrix. Let F : Rn+m →Rm be a differentiable function withDefinition 6.10

(x,y) 7→F(x,y)=

 F1(x1, . . . , xn, y1, . . . , ym)
...

Fm(x1, . . . , xn, y1, . . . , ym)


Then the matrix

∂F(x,y)
∂y

=


∂F1
∂y1

. . . ∂F1
∂ym

...
. . .

...
∂Fm
∂y1

. . . ∂Fm
∂ym


is called the Jacobian matrix of F(x,y) w.r.t. y.

Implicit function theorem. Let F : D ⊆Rn+m →Rm be C k in some openTheorem 6.11
set D. Consider an interior point (x0,y0) ∈ D where

F(x0,y0)= 0 and
∣∣∣∣∂F(x,y)

∂y

∣∣∣∣ ̸= 0 for (x,y)= (x0,y0).

Then there exist open balls B(x0)⊆Rn and B(y0)⊆Rm around x0 and y0,
respectively, with B(x0)×B(y0) ⊆ D such that for every x ∈ B(x0) there
exists a unique y ∈ B(y0) with F(x,y) = 0. In this way we obtain a C k

function f : B(x0)⊆Rn → B(y0)⊆Rm with f(x)= y. Moreover,

∂y
∂x

=−
(
∂F
∂y

)−1
·
(
∂F
∂x

)
The proof of this theorem requires tools from advanced calculus which

are beyond the scope of this course. Nevertheless, the rule for the deriva-
tive for the local inverse function (if it exists) can be easily derived by
means of the chain rule, see Problem 6.12.

Obviously, Theorem 6.8 is just a special case of Theorem 6.11. For
the special case where F : Rn+1 →R, (x, y) 7→ F(x, y)= F(x1, . . . , xn, y), and
some point (x0, y) with F(x0, y0) = 0 and Fy(x0, y0) ̸= 0 we then find that
there exists an open rectangle around (x0, y) such that y= f (x) and

∂y
∂xi

=−Fxi

Fy
.
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Let Example 6.12

F(x1, x2, x3, x4)= x2
1 + x2 x3 + x2

3 − x3 x4 −1= 0 .

We are given a point (x1, x2, x3, x4)= (1,0,1,1). We find F(1,0,1,1)= 0 and
Fx2(1,0,1,1)= 1 ̸= 0. Thus there exists an open rectangle where x2 can be
expressed locally by an explicit function of the remaining variables, x2 =
f (x1, x3, x4), and we find for the partial derivative w.r.t. in (x1, x3, x4) =
(1,1,1),

∂x2

∂x3
=−Fx3

Fx2

=− x2 +2 x3 − x4

x3
=−1 .

Notice that we cannot apply the Implicit Function Theorem neither at
(1,1,1,1) nor at (1,1,0,1) as F(1,1,1,1) ̸= 0 and Fx2(1,1,0,1) = 0, respec-
tively. ♦

Let Example 6.13

F(x,y)=
(
F1(x1, x2, y1, y2)
F2(x1, x2, y1, y2)

)
=

(
x2

1 + x2
2 − y2

1 − y2
2 +3

x3
1 + x3

2 + y3
1 + y3

2 −11

)
and some point (x0,y0)= (1,1, 1,2).

∂F
∂x

=
(∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

)
=

(
2x1 2x2

3x2
1 3x2

2

)
and

∂F
∂x

(1,1, 1,2)=
(
2 2
3 3

)

∂F
∂y

=
(∂F1
∂y1

∂F1
∂y2

∂F2
∂y1

∂F2
∂y2

)
=

(−2y1 −2y2

3y2
1 3y2

2

)
and

∂F
∂y

(1,1, 1,2)=
(−2 −4

3 12

)

Since F(1,1, 1,2) = 0 and
∣∣∣∂F(x,y)

∂y

∣∣∣ = −12 ̸= 0 we can apply the Implicit
Function Theorem and get

∂y
∂x

=−
(
∂F
∂y

)−1
·
(
∂F
∂x

)
=− 1

−12

(
12 4
−3 −2

)
·
(
2 2
3 3

)
=

(
3 3
−1 −1

)
. ♦
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— Exercises

6.1 Let f : R2 →R2 be a function with

x 7→ f(x)= y=
(
y1
y2

)
=

(
x1 − x1x2

x1x2

)
(a) Compute the Jacobian matrix and determinant of f.
(b) Around which points is it possible to find a local inverse of f?
(c) Compute the Jacobian matrix for the inverse function.
(d) Compute the inverse function (where it exists).

6.2 Let T : R2 →R2 be a function with

(x, y) 7→ (u,v)= (ax+by, cx+d y)

where a, b, c, and d are non-zero constants.

Show: If the Jacobian determinant of T equals 0, then the image
of T is a straight line through the origin.

6.3 Give a sufficient condition for f and g such that the equations

u = f (x, y), v = g(x, y)

can be solved w.r.t. x and y.

Suppose we have the solutions x = F(u,v) and y=G(u,v). Compute
∂F
∂u and ∂G

∂u .

6.4 Show that the following equations define y as a function of x in an
interval around x0. Compute y′(x0).

(a) y3 + y− x3 = 0, x0 = 0
(b) x2 + y+sin(xy)= 0, x0 = 0

6.5 Compute dy
dx from the implicit function x2 + y3 = 0.

For which values of x does an explicit function y = f (x) exist lo-
cally?
For which values of y does an explicit function x = g(y) exist lo-
cally?

6.6 Which of the given implicit functions can be expressed as z = g(x, y)
in a neighborhood of the given point (x0, y0, z0).
Compute ∂g

∂x and ∂g
∂y .

(a) x3 + y3 + z3 − xyz−1= 0, (x0, y0, z0)= (0,0,1)
(b) exp(z)− z2 − x2 − y2 = 0, (x0, y0, z0)= (1,0,0)

6.7 Compute the marginal rate of substitution of K for L for the fol-
lowing isoquant of the given production function, that is dK

dL :

F(K ,L)= AKαLβ = F0
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6.8 Compute the derivative dxi
dx j

of the indifference curve of the utility
function:

(a) u(x1, x2)=
(
x

1
2
1 + x

1
2
2

)2

(b) u(x1, . . . , xn)=
(

n∑
i=1

x
θ−1
θ

i

) θ
θ−1

(θ > 1)

— Problems

6.9 Prove Lemma 6.2.

6.10 Derive Theorem 6.4 from Theorem 6.11. HINT: Consider function
F(x,y)= f(x)−y= 0.

6.11 Does the inverse function theorem (Theorem 6.4) provide a nec-
essary or a sufficient condition for the existence of a local inverse
function or is the condition both necessary and sufficient?

If the condition is not necessary, give a counterexample. HINT: Use a function
f : R→R.

If the condition is not sufficient, give a counterexample.

6.12 Let f : Rn → Rn be a C 1 function that has a local inverse function
f−1 around some point x0. Show by means of the chain rule that(

f−1)′(y0)= (
f′(x0)

)−1 where y0 = f(x0).

HINT: Notice that f−1◦f= id, where id denotes the identity function, i.e, id(x)= x.
Compute the derivatives on either side of the equation. Use the chain rule for the
left hand side. What is the derivative of id?





7
Convex Functions

Is there a panoramic view over our entire function?

7.1 Convex Sets

Convex set. A set D ⊆Rn is called convex, if each pair of points x,y ∈ D Definition 7.1
can be joints by a line segment lying entirely in D, i.e., if

(1− t)x+ ty ∈ D for all x,y ∈ D and all t ∈ [0,1].

The line segment between x and y is the set

[x,y]= {
z= (1− t)x+ ty : t ∈ [0,1]

}
.

whose elements are so called convex combinations of x and y. Hence x
y

[x,y] is also called the convex hull of these points.

The following sets are convex: Example 7.2

The following sets are not convex:

Intersection. The intersection of convex sets is convex. Theorem 7.3

PROOF. See Problem 7.7.

Notice that the union of convex need not be convex.
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Half spaces. Let p ∈Rn, p ̸= 0, and m ∈R. Then the setExample 7.4

H = {x ∈Rn : p′ ·x= m}

is called a hyperplane in Rn. It divides Rn into two so called half
spaces

H+ = {x ∈Rn : p′ ·x≥ m} and H− = {x ∈Rn : p′ ·x≤ m} .

All sets H, H+, and H− are convex, see Problem 7.8. ♦

7.2 Convex and Concave Functions

Convex and concave function. A function f : D ⊆Rn →R is convexDefinition 7.5
if D is convex and

f
(
(1− t)x1 + tx2

)≤ (1− t) f (x1)+ t f (x2)

for all x1,x2 ∈ D and all t ∈ [0,1]. This is equivalent to the property that
the set

{
(x, y) ∈Rn+1 : y≥ f (x)

}
is convex.x1 x2

Function f is concave if D is convex and

f
(
(1− t)x1 + tx2

)≥ (1− t) f (x1)+ t f (x2)

for all x1,x2 ∈ D and all t ∈ [0,1].

x1 x2 Notice that a function f is concave if and only if − f is convex, see Prob-
lem 7.9.

Strictly convex function. A function f : D ⊆Rn →R is strictly convexDefinition 7.6
if D is convex and

f
(
(1− t)x1 + tx2

)< (1− t) f (x1)+ t f (x2)

for all x1,x2 ∈ D with x1 ̸= x2 and all t ∈ (0,1). Function f is strictly
concave if this equation holds with “<” replaced by “>”.

Linear function. Let a ∈Rn be constant. Then f (x)= a′ ·x is both convexExample 7.7
and concave:

f
(
(1− t)x1 + tx2

)= a′ · ((1− t)x1 + tx2
)= (1− t)a′ ·x1 + ta′ ·x2

= (1− t) f (x1)+ t f (x2)

However, it is neither strictly convex nor strictly concave. ♦
Quadratic function. Function f (x)= x2 is strictly convex:Example 7.8

f ((1− t) x+ t y)− [
(1− t) f (x)+ t f (y)

]
= (

(1− t) x+ t y
)2 − [

(1− t) x2 + t y2]
= (1− t)2 x2 +2(1− t)t xy+ t2 y2 − (1− t) x2 − t y2

=−t(1− t) x2 +2(1− t)t xy− t(1− t) y2

=−t(1− t) (x− y)2 < 0

for x ̸= y and 0< t < 1. ♦
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Convex sum. Let α1, . . . ,αk > 0. If f1(x), . . . , fk(x) are convex (concave) Theorem 7.9
functions, then

g(x)=
k∑

i=1
αi f i(x)

is convex (concave). Function g(x) is strictly convex (strictly concave) if
at least one of the functions f i(x) is strictly convex (strictly concave).

PROOF. See Problem 7.12.

An immediate consequence of this theorem and Example 7.8 is that
a quadratic function f (x)= ax2 +bx+ c is strictly convex if a > 0, strictly
concave if a < 0 and both convex and concave if a = 0.

Quadratic form. Let A be a symmetric n× n matrix. Then quadratic Theorem 7.10
form q(x) = x′Ax is strictly convex if and only if A is positive definite. It
is convex if and only if A is positive semidefinite.

Similarly, q is strictly concave if and only if A is negative definite. It
is concave if and only if A is negative semidefinite.

PROOF IDEA. We first show by a straightforward computation that the
univariate function g(t)= q

(
(1−t)x1+tx2

)
is strictly convex for all x1,x2 ∈

Rn if and only if A is positive definite.

PROOF. Let x1 and x2 be two distinct points in Rn. Then

g(t)= q
(
(1− t)x1 + tx2

)= q
(
x1 + t(x2 −x1)

)
= (

x1 + t(x2 −x1)
)′A(

x1 + t(x2 −x1)
)

= t2(x2 −x1)′A(x2 −x1)+2t (x′
1Ax2 −x′

1Ax1)+x′
1Ax1

= q(x1 −x2) t2 +2(x′
1Ax2 − q(x1)) t+ q(x1)

is a quadratic function in t which is strictly convex if and only if q(x1 −
x2)> 0. This is the case for each pair of points x1 and x2 if and only if A
is positive definite. We then find

q
(
(1− t)x1 + tx2

)= g(t)= g
(
(1− t)0+ t1

)
> (1− t)g(0)+ tg(1)= (1− t)q(x1)+ tq(x2)

for all t ∈ (0,1) and hence q is strictly convex as well. The cases where q
is convex and (strictly) concave follow analogously.

Recall from Linear Algebra that we can determine the definiteness
of a symmetric matrix A by means of the signs of its eigenvalues or by
the signs of (leading) principle minors.
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Tangents of convex functions. A C 1 function f is convex in an open,Theorem 7.11
convex set D if and only if

f (x)− f (x0)≥∇ f (x0) · (x−x0) (7.1)

for all x and x0 in D, i.e., the tangent is always below the function.
x0 Function f is strictly convex if and only if inequality (7.1) is strict for

x ̸= x0.
A C 1 function f is concave in an open, convex set D if and only if

f (x)− f (x0)≤∇ f (x0) · (x−x0)

for all x and x0 in D, i.e., the tangent is always above the function.
x0

PROOF IDEA. For the necessity of condition (7.1) we transform the in-
equality for convexity (see Definition 7.5) into an inequality about differ-
ence quotients and apply the Mean Value Theorem. Using continuity of
the gradient of f yields inequality (7.1).

We note here that for the case of strict convexity we need some tech-
nical trick to obtain the requested strict inequality.

For sufficiency we split an interval [x0,x] into two subintervals [x0,z]
and [z,x] and apply inequality (7.1) on each.

PROOF. Assume that f is convex, and let x0,x ∈ D. Then we have by
definition

f
(
(1− t)x0 + tx

)≤ (1− t) f (x0)+ t f (x)

and thus

f (x)− f (x0)≥ f
(
x0 + t(x−x0)

)− f (x0)
t

=∇ f (ξ(t)) · (x−x0)

by the mean value theorem (Theorem 4.10) where ξ(t) ∈ [x0,x0+t(x−x0)].
(Notice that the central term is the difference quotient corresponding to
the directional derivative.) Since f is a C 1 function we find

f (x)− f (x0)≥ lim
t→0

∇ f (ξ(t)) · (x−x0)=∇ f (x0) · (x−x0)

as claimed.
Conversely assume that (7.1) holds for all x0,x ∈ D. Let t ∈ [0,1] and

z= (1− t)x0 + tx. Then z ∈ D and by (7.1) we find

(1− t)
(
f (x0)− f (z)

)+ t
(
f (x)− f (z)

)
≥ (1− t)∇ f (z) (x0 −z)+ t ∇ f (z) (x−z)

=∇ f (z)
(
(1− t)x0 + tx−z)

)=∇ f (z) 0= 0 .

Consequently,

(1− t) f (x0)+ t f (x)≥ f (z)= f
(
(1− t)x0 + tx

)



7.2 CONVEX AND CONCAVE FUNCTIONS 71

and thus f is convex.
The proof for the case where f is strictly convex is analogous. How-

ever, in the first part of the proof f (x)− f (x0)>∇ f (ξ(t)) · (x−x0) does not
imply strict inequality in

f (x)− f (x0)≥ lim
t→0

∇ f (ξ(t)) · (x−x0) .

So we need a technical trick. Assume x ̸= x0 and let x1 = (x+x0)/2. By
strict convexity of f we have f (x1)< 1

2 ( f (x)+ f (x0)). Hence we find

2(x1 −x0)= x−x0 and 2( f (x1)− f (x0))< f (x)− f (x0)

and thus

f (x)− f (x0)> 2( f (x1)− f (x0))≥ 2∇ f (x0) · (x1 −x0)=∇ f (x0) · (x−x0)

as claimed.

There also exists a version for functions that are not necessarily dif-
ferentiable.

Subgradient and supergradient. Let f be a convex function on a Theorem 7.12
convex set D ⊆ Rn, and let x0 be an interior point of D. If f is convex,
then there exists a vector p such that

f (x)− f (x0)≥p′ · (x−x0) for all x ∈ D.

If f is a concave function on D, then there exists a vector q such that
x0

f (x)− f (x0)≤q′ · (x−x0) for all x ∈ D.

The vectors p and q are called subgradient and supergradient, resp.,
of f at x0.

We omit the proof and refer the interested reader to [2, Sect. 2.4].

Jensen’s inequality, discrete version. A function f on a convex do- Theorem 7.13
main D ⊆Rn is concave if and only if

f

(
k∑

i=1
αixi

)
≥

k∑
i=1

αi f (xi)

for all xi ∈ D and αi ≥ 0 with
∑k

i=1αi = 1.

PROOF. See Problem 7.13.

We finish with a quite obvious proposition.

Restriction of a function. Let f : D ⊆ Rn → Rm be some function and Definition 7.14
S ⊂ D. Then the function f

∣∣
S : S → Rm defined by f

∣∣
S(x) = f (x) for all

x ∈ S is called the restriction of f to S.
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Let f be a (strictly) convex function on a convex set D ⊂ Rn and S ⊂ D aLemma 7.15
convex subset. Then f

∣∣
S is (strictly) convex.

We close this section with a few useful results.

Function f (x) is convex if and only if
{
(x, y) : x ∈ D f , f (x)≤ y

}
is convex.Lemma 7.16

Function f (x) is concave if and only if
{
(x, y) : x ∈ D f , f (x)≥ y

}
is convex.

PROOF. Observe that
{
(x, y) : x ∈ D f , f (x) ≤ y

}
is the region above the

graph of f . Thus the result follows from Definition 7.5.

Minimum and maximum of two convex functions.Lemma 7.17

(a) If f (x) and g(x) are concave, then min
{
f (x), g(x)

}
is concave.

(b) If f (x) and g(x) are convex, then max
{
f (x), g(x)

}
is convex.

PROOF. See Problem 7.14.

Composite functions. Suppose that f : D f ⊆ Rn → R and F : DF ⊆ R→Theorem 7.18
R are two functions such that f (D f )⊆ DF . Then the following holds:

(a) If f (x) is concave and F(u) is concave and increasing, then G(x) =
F( f (x)) is concave.

(b) If f (x) is convex and F(u) is convex and increasing, then G(x) =
F( f (x)) is convex.

(c) If f (x) is concave and F(u) is convex and decreasing, then G(x) =
F( f (x)) is convex.

(d) If f (x) is convex and F(u) is concave and decreasing, then G(x) =
F( f (x)) is concave.

PROOF. We only show (a). Assume that f (x) is concave and F(u) is
concave and increasing. Then a straightforward computation gives

G
(
(1− t)x+ ty

)= F
(
f ((1− t)x+ ty)

)≥ F
(
(1− t) f (x)+ t f (y)

)
≥ (1− t)F( f (x))+ tF( f (y))= (1− t)G(x)+ tG(y)

where the first inequality follows from the concavity of f and the mono-
tonicity of F. The second inequality is implied by the concavity of F.

7.3 Monotone Univariate Functions

We now want to use derivatives to investigate the convexity or concavity
of a given function. We start with univariate functions and look at the
simpler case of monotonicity.



7.3 MONOTONE UNIVARIATE FUNCTIONS 73

Monotone function. A function f : D ⊆R→R is called monotonically Definition 7.19

x1 x2

f (x1)

f (x2)

increasing [monotonically decreasing] if

x1 ≤ x2 ⇒ f (x1)≤ f (x2)
[
f (x1)≥ f (x2)

]
.

It is called strictly increasing [strictly decreasing] if

x1 < x2 ⇒ f (x1)< f (x2)
[
f (x1)> f (x2)

]
.

Notice that a function f is (strictly) monotonically decreasing if and
only if − f is (strictly) monotonically increasing. Moreover, the implica-
tion in Definition 7.19 can be replaced by an equivalence relation.

A function f : D ⊆R→R is [strictly] monotonically increasing if and only Lemma 7.20
if

x1 ≤ x2 ⇔ f (x1)≤ f (x2)
[
f (x1)< f (x2)

]
.

For a C 1 function f we can use its derivative to verify monotonicity.

Monotonicity and derivatives. Let f : D ⊆ R→ R be a C 1 function. Theorem 7.21
Then the following holds.

(1) f is monotonically increasing on its domain D if and only if f ′(x)≥ 0
for all x ∈ D.

(2) f is strictly increasing if f ′(x)> 0 for all x ∈ D.

(3) If f ′(x0) > 0 for some x0 ∈ D, then f is strictly increasing in an open
neighborhood of x0.

These statements holds analogously for decreasing functions.

Notice that (2) is a sufficient but not a necessary condition for strict
monotonicity, see Problem 7.15.

Condition (2) can be replaced by a weaker condition that we state
without proof:

(2’) f is strictly increasing if f ′(x)> 0 for almost all x ∈ D (i.e., for all but
a finite or countable number of points).

PROOF. (1) Assume that f ′(x)≥ 0 for all x ∈ D. Let x1, x2 ∈ D with x1 < x2.
Then by the mean value theorem (Theorem 4.10) there exists a ξ ∈ [x1, x2]
such that

f (x2)− f (x1)= f ′(ξ)(x2 − x1)≥ 0 .

Hence f (x1) ≤ f (x2) and thus f is monotonically increasing. Conversely,
if f (x1)≤ f (x2) for all x1, x2 ∈ D with x1 < x2, then

f (x2)− f (x1)
x2 − x1

≥ 0 and thus f ′(x1)= lim
x2→x1

f (x2)− f (x1)
x2 − x1

≥ 0

for all x1 ∈ D. For the proof of (2) and (3) see Problem 7.15.
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7.4 Convexity of C 2 Functions

For univariate C 2 functions we can use the second derivative to verify
convexity of the function, similar to Theorem 7.21.

Convexity of univariate functions. Let f : D ⊆R→R be a C 2 functionTheorem 7.22
on an open interval D ⊆R. Then f is convex [concave] in D if and only if
f ′′(x)≥ 0

[
f ′′(x)≤ 0

]
for all x ∈ D.

PROOF IDEA. In order to verify the necessity of the condition we apply
Theorem 7.11 to show that f ′ is increasing. Thus f ′′(x) ≥ 0 by Theo-
rem 7.21.

The sufficiency of the condition immediately follows from the La-
grange form of the reminder of the Taylor polynomial similar to the proof
of Theorem 7.21.

PROOF. Assume that f is convex. Then Theorem 7.11 implies

f ′(x1)≤ f (x2)− f (x1)
x2 − x1

≤ f ′(x2)

for all x1, x2 ∈ D with x1 < x2. Hence f ′ is monotonically increasing and
thus f ′′(x)≥ 0 for all x ∈ D by Theorem 7.21, as claimed.

Conversely, assume that f ′′(x) ≥ 0 for all x ∈ D. Then the Lagrange’s
form of the remainder of the first order Taylor series (Theorem 5.5) gives

f (x)= f (x0)+ f ′(x0) (x− x0)+ f ′′(ξ)
2

(x− x0)2 ≥ f (x0)+ f ′(x0) (x− x0)

and thus

f (x)− f (x0)≥ f ′(x0) (x− x0) .

Hence f is convex by Theorem 7.11.

Similarly, we obtain a sufficient condition for strict convexity.

Let f : D ⊆R→R be a C 2 function on an open interval D ⊆R. If f ′′(x0)> 0Theorem 7.23
for some x0 ∈ D, then f is strictly convex in an open neighborhood of x0.

PROOF. Since f is a C 2 function there exists an open ball Bε(x0) such
that f ′′(x) > 0 for all x ∈ Bε(x0). Using the same argument as for Theo-
rem 7.22 the statement follows.

These results can be generalized for multivariate functions.

Convexity of multivariate functions. A C 2 function is convex (con-Theorem 7.24
cave) on a convex, open set D ⊆ Rn if and only if the Hessian matrix
f ′′(x) is positive (negative) semidefinite for each x ∈ D.
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PROOF IDEA. We reduce the convexity of f to the convexity of all uni-
variate reductions of f and apply Theorems 7.22 and 7.10.

PROOF. Let x,x0 ∈ D and t ∈ [0,1]. Define

g(t)= f
(
(1− t)x0 + tx

)= f
(
x0 + t(x−x0)

)
.

If g is convex for all x,x0 ∈ D and t ∈ [0,1], then

f
(
(1− t)x0 + tx

)= g(t)= g
(
(1− t) ·0+ t ·1)

≤ (1− t) g(0)+ tg(1)= (1− t) f (x0)+ t f (x)

i.e., f is convex. Similarly, if f is convex then g is convex. Applying the
chain rule twice gives

g′(t)=∇ f
(
x0 + t(x−x0)

) · (x−x0) , and

g′′(t)= (x−x0)′ f ′′
(
x0 + t(x−x0)

) · (x−x0) .

By Theorem 7.22, g is convex if and only if g′′(t) ≥ 0 for all t. The latter
is the case for all x,x0 ∈ D if and only if f ′′(x) is positive semidefinite for
each x ∈ D by Theorem 7.10.

By a similar argument we find the multivariate extension of Theo-
rem 7.23.

Let f be a C 2 function on a convex, open set D ⊆Rn and x0 ∈ D. If f ′′(x0) Theorem 7.25
is positive (negative) definite, then f is strictly convex (strictly concave)
in an open ball Bε(x0) centered at x0.

PROOF IDEA. Completely analogous to the proof of Theorem 7.24 except
that we replace inequalities by strict inequalities.

We can combine the results from Theorems 7.24 and 7.25 and our
results from Linear Algebra as following. Let f be a C 2 function on a
convex, open set D ⊆ Rn and x0 ∈ D. Let Hr(x) denotes the rth leading
principle minor of f ′′(x) then we find

• Hr(x0)> 0 for all r =⇒ f is strictly convex in some open ball Bε(x0).

• (−1)rHr(x0)> 0 for all r =⇒ f is strictly concave in Bε(x0).

The condition for semidefiniteness requires evaluations of all prin-
ciple minors. Let Mi1,...,ir denote a generic principle minor of order r of
f ′′(x). Then we have the following sufficient condition:

• Mi1,...,ir ≥ 0 for all x ∈ D and all i1 < . . . ir for r = 1, . . . ,n
⇐⇒ f is convex in D.

• (−1)rMi1,...,ir ≥ 0 for all x ∈ D and all i1 < . . . ir for r = 1, . . . ,n
⇐⇒ f is concave in D.
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Logarithm and exponential function. The logarithm functionExample 7.26

log: D = (0,∞)→R, x 7→ log(x)

is strictly concave as its second derivative (log(x))′′ = −1
x < 0 is negative

for all x ∈ D. The exponential function

exp: D =R→ (0,∞), x 7→ ex

is a strictly convex as its second derivative (exp(x))′′ = ex > 0 is positive
for all x ∈ D. ♦

1

1

e

log(x)

1

1

e

exp(x)

Function f (x, y)= x4 + x2 −2 x y+ y2 is strictly convex in D =R2.Example 7.27

SOLUTION. Its Hessian matrix is

f ′′(x, y)=
(
12 x2 +2 −2

−2 2

)
with leading principle minors H1 = 12 x2 + 2 > 0 and H2 = | f ′′(x, y)| =
24 x2 ≥ 0. Observe that both are positive on D0 = {(x, y) : x ̸= 0}. Hence f
is strictly convex on D0. Since f is a C 2 function and the closure of D0
is D0 = D we can conclude that f is convex on D. ♦

Cobb-Douglas function. The Cobb-Douglas functionExample 7.28

f : D = (0,∞)2 →R , (x, y) 7→ f (x, y)= xαyβ

with α,β≥ 0 and α+β≤ 1 is concave.

SOLUTION. The Hessian matrix at (x, y) and its principle minors are

f ′′(x, y)=
(
α(α−1) xα−2 yβ αβxα−1 yβ−1

αβxα−1 yβ−1 β(β−1) xαyβ−2

)
,

M1 =α (α−1) xα−2 yβ ≤ 0 ,

M2 =β (β−1) xαyβ−2 ≤ 0 ,

M1,2 =αβ (1−α−β) x2α−2 y2β−2 ≥ 0 .

The Cobb-Douglas function is strict concave if α,β> 0 and α+β< 1. ♦
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7.5 Quasi-Convex Functions

Convex and concave functions play a prominent rôle in static optimiza-
tion. However, in many theorems convexity and concavity can be re-
placed by weaker conditions. In this section we introduce a notion that
is based on level sets.

Level set. The set Definition 7.29

Uc = {x ∈ D : f (x)≥ c}= f −1(
[c,∞)

)
is called a upper level set of f . The set

Lc = {x ∈ D : f (x)≤ c}= f −1(
(−∞, c]

)
is called a lower level set of f .

c
c

upper level set lower level set

Level sets of convex functions. Let f : D ⊆ Rn → R be a convex func- Lemma 7.30
tion and c ∈R. Then the lower level set Lc = {x ∈ D : f (x)≤ c} is convex.

PROOF. Let x1,x2 ∈ {x ∈ D : f (x) ≤ c}, i.e., f (x1) ≤ c and f (x2) ≤ c. Then
for every y= (1− t)x1 + tx2 with t ∈ [0,1] we find

f (y)= f
(
(1− t)x1 + tx2

)≤ (1− t) f (x1)+ t f (x2)≤ (1− t)c+ tc = c

that is, y ∈ {x ∈ D : f (x) ≤ c}. Thus the lower level set {x ∈ D : f (x) ≤ c} is
convex, as claimed. x1

x2
y

We will see in the next chapter that functions where all its lower level
sets are convex behave in many situations similar to convex functions,
that is, they are quasi convex. This motivates the following definition.

Quasi-convex. A function f : D ⊆ Rn → R is called quasi-convex if Definition 7.31
each of its lower level sets Lc = {x ∈ D : f (x)≤ c} are convex.

Function f is called quasi-concave if each of its upper level sets
Uc = {x ∈ D : f (x)≥ c} are convex.

Analogously to Problem 7.9 we find that a function f is quasi-concave
if and only if − f is quasi-convex, see Problem 7.16.

Obviously every concave function is quasi-concave but not vice versa
as the following examples shows.

Function f (x)= e−x2
is quasi-concave but not concave. ♦ Example 7.32
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Characterization of quasi-convexity. A function f on a convex setTheorem 7.33
D ⊆Rn is quasi-convex if and only if

f
(
(1− t)x1 + tx2

)≤max
{
f (x1), f (x2)

}
for all x1,x2 ∈ D and t ∈ [0,1]. The function is quasi-concave if and only
if

f
(
(1− t)x1 + tx2

)≥min
{
f (x1), f (x2)

}
for all x1,x2 ∈ D and t ∈ [0,1].

x1 x2 x1 x2
quasi-convex quasi-concave

PROOF IDEA. For c =max
{
f (x1), f (x2)

}
we find that

(1− t)x1 + tx2 ∈ Lc = {x ∈ D : f (x)≤ c}

is equivalent to

f
(
(1− t)x1 + tx2

)≤ c =max
{
f (x1), f (x2)

}
.

PROOF. Let x1,x2 ∈ D and t ∈ [0,1]. Let c = max
{
f (x1), f (x2)

}
and as-

sume w.l.o.g. that c = f (x2) ≥ f (x1). If f is quasi-convex, then (1− t)x1 +
tx2 ∈ Lc = {x ∈ D : f (x)≤ c} and thus f ((1−t)x1+tx2)≤ c =max

{
f (x1), f (x2)

}
.

Conversely, if f ((1− t)x1 + tx2) ≤ c = max
{
f (x1), f (x2)

}
, then (1− t)x1 +

tx2 ∈ Lc and thus f is quasi-convex. The case for quasi-concavity is
shown analogously.

In Theorem 7.18 we have seen that some compositions of functions
preserve convexity. Quasi-convexity is preserved under even milder con-
dition.

Composite functions. Suppose that f : D f ⊆ Rn → R and F : DF ⊆ R→Theorem 7.34
R are two functions such that f (D f )⊆ DF . Then the following holds:

(a) If f (x) is quasi-convex (quasi-concave) and F(u) is increasing, then
G(x)= F( f (x)) is quasi-convex (quasi-concave).

(b) If f (x) is quasi-convex (quasi-concave) and F(u) is decreasing, then
G(x)= F( f (x)) is quasi-concave (quasi-convex).

PROOF IDEA. Monotone transformations preserve (in some sense) level
sets of functions.
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−1
−4

−9

−1
−4

−9

e−1
e−4

e−9

e−1
e−4

e−9

f (x, y)=−x2 − y2 exp(−x2 − y2)

PROOF. Assume that f is quasi-convex and F is increasing. Thus by
Theorem 7.33 f

(
(1− t)x1 + tx2

)≤ max
{
f (x1), f (x2)

}
for all x1,x2 ∈ D and

t ∈ [0,1]. Moreover, F(y1)≤ F(y2) if and only if y1 ≤ y2. Hence we find for
all x1,x2 ∈ D and t ∈ [0,1],

F
(
f ((1− t)x1 + tx2)

)≤ F
(
max{ f (x1), f (x2)}

)≤max
{
F( f (x1)), f ( f (x2))

}
and thus F◦ f is quasi-convex. The proof for the other cases is completely
analogous.

Theorem 7.34 allows to determine quasi-convexity or quasi-concavity
of some functions. In Example 7.28 we have shown that the Cobb-Douglas
function is concave for appropriate parameters. The computation was a
bit tedious and it is not straightforward to extend the proof to functions
of the form

∑n
i=1 xαi

i . Quasi-concavity is much easier to show. Moreover,
it holds for a larger range of parameters and our computation easily gen-
eralizes to many variables.

Cobb-Douglas function. The Cobb-Douglas function Example 7.35

f : D = (0,∞)2 →R , (x, y) 7→ f (x, y)= xαyβ

with α,β≥ 0 is quasi-concave.

SOLUTION. Observe that f (x, y) = exp
(
α log(x)+β log(y)

)
. Notice that

log(x) is concave by Example 7.26. Thus α log(x)+β log(y) is concave by
Theorem 7.9 and hence quasi-concave. Since the exponential function
exp is monotonically increasing, it follows that the Cobb-Douglas func-
tion is quasi-concave if α,β> 0. ♦

Notice that it is not possible to apply Theorem 7.18 to show concavity
of the Cobb-Douglas function when α+β≤ 1.

CES function. Let a1, . . . ,an ≥ 0. Then function Example 7.36

f (x)=
(

n∑
i=1

aixr
i

)1/r

is quasi-concave for all r ≤ 1 and quasi-convex for all r ≥ 1.

SOLUTION. Since
(
xr

i
)′′ = r(r − 1)xr−2

i , we find that xr
i is concave for

r ∈ [0,1] and convex otherwise. Hence the same holds for
∑n

i=1 aixr
i by

Theorem 7.9. Since F(y) = y1/r is monotonically increasing if r > 0 and
decreasing if r < 0, Theorem 7.34 implies that f (x) is quasi-concave for
all r ≤ 1 and quasi-convex for all r ≥ 1. ♦
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In opposition to Theorem 7.9 the sum of quasi-convex functions need
not be quasi-convex.

The two functions f1(x) = exp
(− (x−2)2)

and f2(x) = exp
(− (x+2)2)

areExample 7.37
quasi-concave as each of their upper level sets are intervals (or empty).
However, f1(x)+ f2(x) has two local maxima and thus cannot be quasi-
concave.

There is also an analog to strict convexity. However, a definition us-
ing lower level set were not useful. So we start with the characterization
of quasi-convexity in Theorem 7.33.

Strictly quasi-convex. A function f on a convex set D ⊆ Rn is calledDefinition 7.38
strictly quasi-convex if

f
(
(1− t)x1 + tx2

)<max
{
f (x1), f (x2)

}
for all x1,x2 with x1 ̸= x2, and t ∈ (0,1). It is called strictly quasi-
concave if

f
(
(1− t)x1 + tx2

)>min
{
f (x1), f (x2)

}
for all x1,x2 with x1 ̸= x2, and t ∈ (0,1).

Our last result shows, that we also can use tangents to characterize
quasi-convex function. Again, the condition is weaker than the corre-
sponding condition in Theorem 7.11.

Tangents of quasi-convex functions. A C 1 function f is quasi-convexTheorem 7.39
in an open, convex set D if and only if

f (x)≤ f (x0) implies ∇ f (x0) · (x−x0)≤ 0

for all x,x0 ∈ D. It is quasi-concave if and only if

f (x)≥ f (x0) implies ∇ f (x0) · (x−x0)≥ 0

for all x,x0 ∈ D.

PROOF. Assume that f is quasi-convex and f (x) ≤ f (x0). Define g(t) =
f
(
(1− t)x0+ tx

)= f
(
x0+ t(x−x0

)
. Then Theorem 7.33 implies that g(0)=

f (x0)≥ g(t) for all t ∈ [0,1] and hence g′(0)≤ 0. By the chain rule we find
g′(t)=∇ f

(
x0+t(x−x0)

)
(x−x0) and consequently g′(0)=∇ f (x0)·(x−x0)≤

0 as claimed.
For the converse assume that f is not quasi-convex. Then there exist

x,x0 ∈ D with f (x) ≤ f (x0) and a z = x0 + t(x−x0) ∈ D for some t ∈ (0,1)
such that f (z) > f (x0). Define g(t) as above. Then g(t) > g(0) and there
exists a τ ∈ (0,1) such that g′(τ) > 0 by the Mean Value Theorem, and
thus ∇ f (z0) · (x−z0)> 0, where z0 = g(τ). We state without proof that we
can find such a point z0 where f (z0) ≥ f (x). Thus the given condition is
violated for some points.

The proof for the second statement is completely analogous.
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— Exercises

7.1 Let

f (x)= x4 + 4
3

x3 −24x2 +8 .

(a) Determinte the regions where f is monotonically increasing
and monotonically decreasing, respectively.

(b) Determinte the regions where f is concave and convex, re-
spectively.

7.2 A function f : R→ (0,∞) is called log-concave if ln◦ f is a concave
function.

Which of the following functions is log-concave?

(a) f (x)= 3 exp(−x4)

(b) g(x)= 4 exp(−x7)

(c) h(x)= 2 exp(x2)

(d) s : (−1,1)→ (0,∞), x 7→ s(x)= 1− x4

7.3 Determine whether the following functions are convex, concave or
neither.

(a) f (x)= exp
(−px

)
on D = [0,∞).

(b) f (x)= exp
(−∑n

i=1
p

xi
)

on D = [0,∞)n.

HINT: Use Theorem 7.18.

7.4 Determine whether the following functions on R2 are (strictly) con-
vex or (strictly) concave or neither.

(a) f (x, y)= x2 −2xy+2y2 +4x−8

(b) g(x, y)= 2x2 −3xy+ y2 +2x−4y−2

(c) h(x, y)=−x2 +4xy−4y2 +1

7.5 Show that function

f (x, y)= ax2 +2bxy+ cy2 + px+ qy+ r

is strictly concave if ac− b2 > 0 and a < 0, and strictly convex if
ac−b2 > 0 and a > 0.

Find necessary and sufficient conditions for (strict) convexity/concavity
of f .

7.6 Show that f (x, y)= exp(−x2− y2) is quasi-concave in D =R2 but not
concave. Apply Theorem 7.34.

Is there a domain where f is (strictly) concave? Compute the
largest of such domains.
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— Problems

7.7 Let S1, . . . ,Sk be convex sets in Rn. Show that their intersection⋂k
i=1 Si is convex (Theorem 7.3).

Give an example where the union of convex sets is not convex.

7.8 Show that the sets H, H+, and H− in Example 7.4 are convex.

7.9 Show that a function f : D ⊆Rn →R is (strictly) concave if and only
if function g : D ⊆Rn →R with g(x)=− f (x) is (strictly) convex.

7.10 A function f : R→ (0,∞) is called log-concave if ln◦ f is a concave
function.

Show that every concave function f : R→ (0,∞) is log-concave.

7.11 Let T : (0,∞) → R be a strictly monotonically increasing twice dif-
ferentiable transformation. A function f : R→ (0,∞) is called T-
concave if T ◦ f is a concave function.

Consider the family Tc(x), c ≤ 0, of transformations with T0(x) =
ln(x) and Tc(x)=−xc for c < 0.

(a) Show that all transformations Tc satisfy the above condi-
tions for all c ≤ 0.

(b) Show that f (x)= exp(−x2) is T−1/2-concave.

(c) Show that f (x)= exp(−x2) is Tc-concave for all c ≤ 0.

7.12 Prove Theorem 7.9.

7.13 Prove Jensen’s inequality (Theorem 7.13).
HINT: For k = 2 the theorem is equivalent to the definition of concavity. For k ≥ 3
use induction.

7.14 Prove Lemma 7.17.HINT: Use Lemma 7.16.

7.15 Prove (2) and (3) of Theorem 7.21.

Condition (2) (i.e., f ′(x) > 0 for all x ∈ D) is sufficient for f be-HINT: Give a strictly in-
creasing function f where
f ′(0)= 0.

ing strictly monotonically increasing. Give a counterexample that
shows that this condition is not necessary.

Suppose one wants to prove the (false!) statement that f ′(x)> 0 for
each x ∈ D f for every strictly increasing function f . Thus he or she
uses the same argument as in the proof of Theorem 7.21(1). Where
does this argument fail?

7.16 Show that a function f : D ⊆ Rn → R is (strictly) quasi-concave if
and only if function g : D ⊆ Rn → R with g(x) = − f (x) is (strictly)
quasi-convex.
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Static Optimization

We want to find the highest peak in our world.

8.1 Extremal Points

We start with so called global extrema.

Extremal points. Let f : D ⊆ Rn → R. Then x∗ ∈ D is called a (global) Definition 8.1
maximum of f if

f (x∗)≥ f (x) for all x ∈ D.

It is called a strict maximum if the inequality is strict for x ̸= x∗.
Similarly, x∗ ∈ D is called a (global) minimum of f if f (x∗)≤ f (x) for

all x ∈ D.

A stationary point x0 of a function f is a point where the gradient Definition 8.2
vanishes, i.e,

∇ f (x0)= 0 .

Necessary first-order conditions. Let f be a C 1 function on an open Theorem 8.3
set D ⊆ Rn and let x∗ ∈ D be an extremal point. Then x∗ is a stationary
point of f , i.e.,

∇ f (x∗)= 0 .

PROOF. If x∗ is an extremal point then all directional derivatives are 0
and thus the result follows.

Sufficient conditions. Let f be a C 1 function on an open set D ⊆ Rn Theorem 8.4
and let x∗ ∈ D be a stationary point of f .

If f is (strictly) convex in D, then x∗ is a (strict) minimum of f .
If f is (strictly) concave in D, then x∗ is a (strict) maximum of f .
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PROOF. Assume that f is strictly convex. Then by Theorem 7.11

f (x)− f (x∗)>∇ f (x∗) · (x−x∗)= 0 · (x−x∗)= 0

and hence f (x) > f (x∗) for all x ̸= x∗, as claimed. The other statements
follow analogously.

Cobb-Douglas function. We want to find the (global) maxima ofExample 8.5

f : D = [0,∞)2 →R, f (x, y)= 4 x
1
4 y

1
4 − x− y .

SOLUTION. A straightforward computation yields

fx = x−
3
4 y

1
4 −1

f y = x
1
4 y−

3
4 −1

and thus x0 = (1,1) is the only stationary point of this function. As f is
strictly concave (see Example 7.28) x0 is the global maximum of f . ♦

Local extremal points. Let f : D ⊆ Rn → R. Then x∗ ∈ D is called aDefinition 8.6
local maximum of f if there exists an ε> 0 such that

f (x∗)≥ f (x) for all x ∈ Bε(x∗).

It is called a strict local maximum if the inequality is strict for x ̸= x∗.
Similarly, x∗ ∈ D is called a local minimum of f if there exists an

ε> 0 such that f (x∗)≤ f (x) for all x ∈ Bε(x∗).

Local extrema necessarily are stationary points.

Sufficient conditions for local extremal points. Let f be a C 2 func-Theorem 8.7
tion on an open set D ⊆Rn and let x∗ ∈ D be a stationary point of f .

If f ′′(x∗) is positive definite, then x∗ is a strict local minimum of f .
If f ′′(x∗) is negative definite, then x∗ is a strict local maximum of f .

PROOF. Assume that f ′′(x∗) is positive definite. Since f ′′ is continuous,
there exists an ε such that f ′′(x) is positive definite for all x ∈ Bε(x∗)
and hence f is strictly convex in Bε(x∗). Consequently, x∗ is a strict
minimum in Bε(x∗) by Theorem 8.4, i.e., a strict local minimum of f .

We want to find all local maxima ofExample 8.8

f (x, y)= 1
6

x3 − x+ 1
4

x y2 .

SOLUTION. The partial derivative of f are given as

fx = 1
2

x2 −1+ 1
4

y2,

f y = 1
2

x y,
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and hence we find the stationary points x1 = (0,2), x2 = (0, −2), x3 =
(
p

2, 0), and x4 = (−p2, 0). In order to apply Theorem 7.25 we need the
Hessian of f ,

f ′′(x, y)=
(

fxx(x) fxy(x)
f yx(x) f yy(x)

)
=

(
x 1

2 y
1
2 y 1

2 x

)
.

We then find f ′′(x3) =
(p

2 0
0

p
2

2

)
. Its leading principle minors are both

positive, H1 =p
2 > 0 and H2 = 1 > 0, and hence x3 is a local minimum.

Similarly we find that x4 is a local maximum. ♦
Besides (local) extrema there are also other types of stationary points.

Saddle point. Let f be a C 2 function on an open set D ⊆Rn. A station- Definition 8.9
ary point x0 ∈ D is called a saddle point if f ′′(x0) is indefinite, that is,
if f is neither convex nor concave in any open ball around x∗.

In Example 8.8 we have found two additional stationary points: x1 = Example 8.10
(0,2) and x2 = (0, −2). However, the Hessian of f at x1,

f ′′(x1)=
(
0 1
1 0

)
is indefinite as it has leading principle minors H1 = 0 and H2 = −1 < 0.
Consequently x1 is a saddle point. ♦

8.2 The Envelope Theorem

Let f (x,r) be a C 1 function with (endogenous) variable x ∈ D ⊆ Rn and
parameter (exogenous variable) r ∈ Rk. An extremal point of f may de-
pend on r. So let x∗(r) denote an extremal point for a given parameter r
and let

f ∗(r)=max
x∈D

f (x,r)= f (x∗(r),r)

be the value function.

Envelope theorem. Let f (x,r) be a C 1 function on D ×Rk where D ⊆ Theorem 8.11
Rn. Let x∗(r) denote an extremal point for a given parameter r and
assume that r 7→ x∗(r) is differentiable. Then

∂ f ∗(r)
∂r j

= ∂ f (x,r)
∂r j

∣∣∣∣
x=x∗(r)

PROOF IDEA. The chain rule implies

∂ f ∗(r)
∂r j

= ∂ f (x∗(r),r)
∂r j

=
n∑

i=1
fxi (x

∗(r),r)︸ ︷︷ ︸
=0

·∂x∗i (r)

∂r j
+ ∂ f (x,r)

∂r j

∣∣∣∣
x=x∗(r)

= ∂ f (x,r)
∂r j

∣∣∣∣
x=x∗(r)
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as claimed.

The following figure illustrates this theorem. Let f (x, r)=p
x−rx and

f ∗(r) = maxx f (x, r). gx(r) = f (r, x) denotes function f with argument x
fixed. Observe that f ∗(r)=maxx gx(r).

r

g4/11
g1/2

g2/3

g1

g3/2
f ∗(r)

See Lecture 11 in Mathematische Methoden for further examples.

8.3 Constraint Optimization – The Lagrange
Function

In this section we consider the optimization problem

max (min) f (x1, . . . , xn)

subject to g j(x1, . . . , xn)= c j, j = 1, . . . ,m (m < n)

or in vector notation

max (min) f (x) subject to g(x)= c .

Lagrange function. FunctionDefinition 8.12

L (x;λ)= f (x)−λ′(g(x)−c)= f (x)−
m∑

j=1
λ j(g j(x)− c j)

is called the Lagrange function (or Lagrangian) of the above con-
straint optimization problem. The numbers λ j are called Lagrange
multipliers .Lagrange multiplier

In order to find candidates for solutions of the constraint optimiza-
tion problem we have to find stationary points of the Lagrange function.
We state this condition without a proof.

Necessary condition. Suppose that f and g are C 1 functions andTheorem 8.13
x∗ (locally) solves the constraint optimization problem and g′(x∗) has
maximal rank m, then there exist a unique vector λ∗ = (λ∗

1 , . . . ,λ∗
m) such

that ∇L (x∗,λ∗)= 0.
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This necessary condition implies that ∂ f ′(x∗)=λ∗g′(x∗). The follow-
ing figure illustrates the situation for the case of two variables x and y
and one constraint g(x, y) = c. Then we have find ∇ f = λ∇g, that is, in
an optimal point ∇ f is some multiple of ∇g.

1

2
g(x, y)= c

∇g

∇ f ∇ f =λ∇g
x∗

Also observe that a point x is admissible (i.e., satisfies constraint
g(x)= c) if and only if ∂L

∂λ
(x,λ)= 0 for some vector λ= 0.

Sufficient condition. Let f and g be C 1. Suppose there exists a λ∗ = Theorem 8.14
(λ∗

1 , . . . ,λ∗
m) and an admissible x∗ such that (x∗,λ∗) is a stationary point

of L , i.e., ∇L (x∗,λ∗) = 0. If L (x,λ∗) is concave (convex) in x, then x∗

solves the constraint maximization (minimization) problem.

PROOF. By Theorem 8.4 these conditions imply that x∗ is a maximum of
L (x,λ∗) w.r.t. x, i.e.,

L (x∗;λ∗)= f (x)∗−
m∑

j=1
λ∗

j (g j(x∗)− c j)

≥ f (x)−
m∑

j=1
λ∗

j (g j(x)− c j)=L (x;λ∗) .

However, all admissible x satisfy g j(x) = c j for all j and thus f (x∗) ≥
f (x) for all admissible x. Hence x∗ solves the constraint maximization
problem.

Similar to Theorem 8.7 we can find sufficient conditions for local so-
lutions of the constraint optimization problem. That is, (x∗,λ∗) is a sta-
tionary point of L and L w.r.t. x is strictly concave (strictly convex) in
some open ball around (x∗,λ∗), then x∗ solves the local constraint maxi-
mization (minimization) problem. Such an open ball exists if the Hessian
of L w.r.t. x is negative (positive) definite in (x∗,λ∗).

However, such a condition is too strong. There is no need to in-
vestigate the behavior of L for points x that do not satisfy constraint
g(x) = c. Hence (roughly spoken) it is sufficient that the Lagrange func-
tion L is strictly concave on the affine subspace spanned by the gradi-
ents ∇g1(x∗), . . . ,∇gm(x∗). Again it is sufficient to look at the definite-
ness of the Hessian L ′′ at x∗. (L ′′ denotes the Hessian w.r.t. x.)
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Let f and g be C 2. Suppose there exists a λ∗ = (λ∗
1 , . . . ,λ∗

m) and an ad-Lemma 8.15
missible x∗ such that ∇L (x∗,λ∗)= 0. If there exists an open ball around
x∗ such that the quadratic form

h′L ′′(x∗;λ∗)h

is negative (positive) definite for all h ∈ span
(∇g1(x∗), . . . ,∇gm(x∗)

)
, then

x∗ solves the local constraint maximization (minimization) problem.

This condition can be verified by means of a theorem from Linear
Algebra which requires the concept of the bordered Hessian.

Bordered Hessian. The matrixDefinition 8.16

H̄(x;λ)=
(

0 g′(x)
(g′(x))′ L ′′(x;λ)

)

=



0 . . . 0 ∂g1
∂x1

. . . ∂g1
∂xn

...
. . .

...
...

. . .
...

0 . . . 0 ∂gm
∂x1

. . . ∂gm
∂xn

∂g1
∂x1

. . . ∂gm
∂x1

Lx1x1 . . . Lx1xn

...
. . .

...
...

. . .
...

∂g1
∂xn

. . . ∂gm
∂xn

Lxnx1 . . . Lxnxn


is called the bordered Hessian of L (x;λ)= f (x)−λ′(g(x)−c).
We denote its leading principal minors by

Br(x)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 . . . 0 ∂g1
∂x1

(x;λ) . . . ∂g1
∂xr

(x;λ)
...

. . .
...

...
. . .

...
0 . . . 0 ∂gm

∂x1
(x;λ) . . . ∂gm

∂xr
(x;λ)

∂g1
∂x1

(x;λ) . . . ∂gm
∂x1

(x;λ) Lx1x1(x;λ) . . . Lx1xr (x;λ)
...

. . .
...

...
. . .

...
∂g1
∂xr

(x;λ) . . . ∂gm
∂xr

(x;λ) Lxr x1(x;λ) . . . Lxr xr (x;λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Sufficient condition for local optimum. Let f and g be C 1. Sup-Theorem 8.17
pose there exists a λ∗ = (λ∗

1 , . . . ,λ∗
m) and an admissible x∗ such that

∇L (x∗,λ∗)= 0.

(a) If (−1)rBr(x) > 0 for all r = m+1, . . . ,n, then x∗ solves the local con-
straint maximization problem.

(b) If (−1)mBr(x) > 0 for all r = m+1, . . . ,n, then x∗ solves the local con-
straint minimization problem.

See Lecture 12 in Mathematische Methoden for examples.
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8.4 Kuhn-Tucker Conditions

In this section we consider the optimization problem

max f (x1, . . . , xn)

subject to g j(x1, . . . , xn)≤ c j, j = 1, . . . ,m (m < n),

and xi ≥ 0, i = 1, . . .n (non-negativity constraint)

or in vector notation

max f (x) subject to g(x)≥ c and x≥ 0.

Again let

L (x;λ)= f (x)−λ′(g(x)−c)= f (x)−
m∑

j=1
λ j(g j(x)− c j)

denote the Lagrange function of this problem.

Kuhn-Tucker condition. The conditions Definition 8.18

∂L

∂x j
≤ 0, x j ≥ 0 and x j

∂L

∂x j
= 0

∂L

∂λi
≥ 0, λi ≥ 0 and λi

∂L

∂λi
= 0

are called the Kuhn-Tucker conditions of the problem.

Kuhn-Tucker sufficient condition. Suppose that f and g are C 1 func- Theorem 8.19
tions and there exists a λ∗ = (λ∗

1 , . . . ,λ∗
m) and an admissible x∗ such that

(1) The objective function f is concave.

(2) The functions g j are convex for j = 1, . . . ,m.

(3) The point x∗ satisfies the Kuhn-Tucker conditions.

Then x∗ solves the constraint maximization problem.

See Lecture 13 in Mathematische Methoden for examples.
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— Exercises

8.1 Compute all local and global extremal points of the functions

(a) f (x)= (x−3)6

(b) g(x)= x2+1
x

8.2 Compute the local and global extremal points of the functions

(a) f : [0,∞]→R, x 7→ 1
x + x

(b) f : [0,∞]→R, x 7→p
x− x

(c) g : R→R, x 7→ e−2x +2x

8.3 Compute all local extremal points and saddle points of the follow-
ing functions. Are the local extremal points also globally extremal.

(a) f (x, y)=−x2 + xy+ y2

(b) f (x, y)= 1
x ln(x)− y2 +1

(c) f (x, y)= 100(y− x2)2 + (1− x)2

(d) f (x, y)= 3 x+4 y− ex − ey

8.4 Compute all local extremal points and saddle points of the follow-
ing functions. Are the local extremal points also globally extremal.

f (x1, x2, x3)= (x3
1 − x1) x2 + x2

3 .

8.5 We are given the following constraint optimization problem

max(min) f (x, y)= x2 y subject to x+ y= 3.

(a) Solve the problem graphically.

(b) Compute all stationary points.

(c) Use the bordered Hessian to determine whether these sta-
tionary points are (local) maxima or minima.

8.6 Compute all stationary points of the constraint optimization prob-
lem

max (min) f (x1, x2, x3)= 1
3

(x1 −3)3 + x2 x3

subject to x1 + x2 = 4 and x1 + x3 = 5.

Use the bordered Hessian to determine whether these stationary
points are (local) maxima or minima.
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8.7 A household has an income m and can buy two commodities with
prices p1 and p2. We have

p1 x1 + p2 x2 = m

where x1 and x2 denote the quantities. Assume that the household
has a utility function

u(x1, x2)=α ln(x1)+ (1−α) ln(x2)

where α ∈ (0,1).

(a) Solve this constraint optimization problem.

(b) Compute the change of the optimal utility function when the
price of commodity 1 changes.

(c) Compute the change of the optimal utility function when the
income m changes.

8.8 We are given the following constraint optimization problem

max f (x, y)=−(x−2)2 − y subject to x+ y≤ 1, x, y≥ 0 .

(a) Solve the problem graphically.

(b) Solve the problem by means of the Kuhn-Tucker conditions.

— Problems

8.9 Our definition of a local maximum (Definition 8.6) is quite simple
but has unexpected consequences: There exist non-constant func-
tions where a global minimum is a local maximum. Give an exam-
ple for such a function. How could Definition 8.6 be “repaired”?

8.10 Let f : Rn →R and T : R→R be a strictly monotonically increasing
transformation. Show that x∗ is a maximum of f if and only if x∗

is a maximum of the transformed function T ◦ f .





9
Integration

We know the boundary of some domain. What is its area?

In this chapter we deal with two topics that seem to be quite distinct: We
want to invert the result of differentiation and we want to compute the
area of a region that is enclosed by curves. These two tasks are linked
by the Fundamental Theorem of Calculus.

9.1 The Antiderivative of a Function

A univariate function F is called an antiderivative of some function f Definition 9.1
if F ′(x)= f (x).

Motivated by the Fundamental Theorem of Calculus (p. 98) the an-
tiderivative is usually called the indefinite integral (or primitive in-
tegral) of f and denoted by

F(x)=
∫

f (x)dx .

Finding antiderivatives is quite a hard issue. In opposition to dif-
ferentiation often no straightforward methods exist. Roughly spoken we
have to do the following:

Make an educated guess and verify by differentiation.

Find the antiderivative of f (x)= ln(x). Example 9.2

SOLUTION. Guess: F(x)= x (ln(x)−1).
Verify: F ′(x)= (x (ln(x)−1))′ = 1 · (ln(x)−1)+ x · 1

x = ln(x). ♦

It is quite obvious that F(x)= x(ln(x)−1)+123 is also an antideriva-
tive of ln(x) as is F(x)= x(ln(x)−1)+ c for every c ∈R.

If F(x) is an antiderivative of some function f (x), then F(x)+ c is also Lemma 9.3
an antiderivative of f (x) for every c ∈ R. The constant c is called the
integration constant.
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f (x)
∫

f (x)dx

0 c

xα 1
α+1 · xα+1 + c for α ̸= −1

ex ex + c
1
x

ln |x|+ c

cos(x) sin(x)+ c

sin(x) −cos(x)+ c

Table 9.4

Table of antiderivatives
of some elementary
functions.

Summation rule:
∫
α f (x)+βg(x)dx =α

∫
f (x)dx+β

∫
g(x)dx

By parts:
∫

f (x) · g′(x)dx = f (x) · g(x)−
∫

f ′(x) · g(x)dx

By substitution:
∫

f
(
g(x)

) · g′(x)dx =
∫

f (z)dz

where z = g(x) and dz = g′(x)dx

Table 9.5

Rules for indefinite
integrals.

Fortunately there exist some tools that ease the task of “guessing”
the antiderivative. Table 9.4 lists basic integrals. Observe that we get
these antiderivatives simply by exchanging the columns in our table of
derivatives (Table 4.8).

Table 9.5 lists integration rules that allow to reduce the issue of
finding indefinite integrals of complicated expressions to simpler ones.
Again these rules can be directly derived from the corresponding rules in
Table 4.9 for computing derivatives. There exist many other such rules
which are, however, often only applicable to special functions. Computer
algebra systems like Maxima thus use much larger tables for basic inte-
grals and integration rules for finding indefinite integrals.

DERIVATION OF THE INTEGRATION RULES. The summation rule is just
a consequence of the linearity of the differential operator.

For integration by parts we have to assume that both f and g are
differentiable. Thus we find by means of the product rule

f (x) · g(x)=
∫ (

f (x) · g(x)
)′ dx =

∫ (
f ′(x) g(x)+ f (x) g′(x)

)
dx

=
∫

f ′(x) g(x)dx+
∫

f (x) g′(x)dx

and hence the rule follows.
For integration by substitution let F denote an antiderivative of f .
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Then we find∫
f (z)dz = F(z)

= F
(
g(x)

)= ∫ (
F

(
g(x)

))′
dx =

∫
F ′(g(x)

)
g′(x)dx

=
∫

f
(
g(x)

)
g′(x)dx

that is, if the integrand is of the form f
(
g(x)

)
g′(x) we first compute the

indefinite integral
∫

f (z)dz and then substitute z = g(x).

Compute the indefinite integral of f (x)= 4 x3 − x2 +3 x−5. Example 9.6

SOLUTION. By the summation rule we find∫
f (x)dx =

∫
4 x3 − x2 +3 x−5dx

= 4
∫

x3 dx−
∫

x2 dx+3
∫

x dx−5
∫

dx

= 4
1
4

x4 − 1
3

x3 +3
1
2

x2 −5x+ c

= x4 − 1
3

x3 + 3
2

x2 −5x+ c . ♦

Compute the indefinite integral of f (x)= x ex. Example 9.7

SOLUTION. Integration by parts yields∫
f (x)dx =

∫
x︸︷︷︸
f

· ex︸︷︷︸
g′

dx = x︸︷︷︸
f

· ex︸︷︷︸
g

dx−
∫

1︸︷︷︸
f ′

· ex︸︷︷︸
g

dx = x · ex − ex + c .

f (x)= x ⇒ f ′(x)= 1
g′(x)= ex ⇒ g(x)= ex ♦

Compute the indefinite integral of f (x)= 2x ex2
. Example 9.8

SOLUTION. By substitution we find∫
f (x)dx

∫
exp( x2︸︷︷︸

g(x)

) · 2x︸︷︷︸
g′(x)

dx =
∫

exp(z)dz = ez + c = ex2 + c .

z = g(x)= x2 ⇒ dz = g′(x)dx = 2x dx ♦

Compute the indefinite integral of f (x)= x2 cos(x). Example 9.9

SOLUTION. Integration by parts yields∫
f (x)dx

∫
x2︸︷︷︸
f

·cos(x)︸ ︷︷ ︸
g′

dx = x2︸︷︷︸
f

·sin(x)︸ ︷︷ ︸
g

−
∫

2x︸︷︷︸
f ′

·sin(x)︸ ︷︷ ︸
g

dx .
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For the last term we have to apply integration by parts again:∫
2x︸︷︷︸
f

·sin(x)︸ ︷︷ ︸
g′

dx = 2x︸︷︷︸
f

· (−cos(x))︸ ︷︷ ︸
g

−
∫

2︸︷︷︸
f ′

· (−cos(x))︸ ︷︷ ︸
g

dx

=−2x ·cos(x)−2 · (−sin(x))+ c .

Therefore we have∫
x2 cos(x)dx = x2 sin(x)− (−2x cos(x)+2 sin(x)+ c

)
= x2 sin(x)+2x cos(x)−2 sin(x)+ c .

♦

Sometimes the application of these integration rules might not be
obvious as the following examples shows.

Compute the indefinite integral of f (x)= ln(x).Example 9.10

SOLUTION. We write f (x)= 1 · ln(x). Integration by parts yields∫
ln(x)︸ ︷︷ ︸

f

· 1︸︷︷︸
g′

dx = ln(x)︸ ︷︷ ︸
f

· x︸︷︷︸
g

dx−
∫

1
x︸︷︷︸
f ′

· x︸︷︷︸
g

dx = ln(x) · x− x+ c

f (x)= ln(x) ⇒ f ′(x)= 1
x

g′(x)= 1 ⇒ g(x)= x
♦

We again want to note that there are no simple recipes for finding
indefinite integrals. Even with integration rules like those in Table 9.5
there remains still trial and error. (Of course experience increases the
change of successful guesses significantly.)

There are even two further obstacles: (1) not all functions have an
antiderivative; (2) the indefinite integral may exist but it is not possible
to express it in terms of elementary functions. The density of the normal
distribution, ϕ(x)= exp(−x2), is the most prominent example.

9.2 The Riemann Integral

Suppose we are given some nonnegative function f over some interval
[a,b] and we have to compute the area A below the graph of f . If f (x)=
c is a constant function, then this task is quite simple: The region in
question is a rectangle and we find by basic geometry (length of base ×
height)

c

a b
A = c · (b−a) .

For general functions with “irregular”-shaped graphs we may ap-
proximate the function by a step function (or staircase function), i.e.
a piecewise constant function. The area for the step function can then be
computed for each of the rectangles and added up for the total area.

a b

Thus we select points x0 = 0 < x1 < . . . < xn = b and compute f at
intermediate points ξ ∈ (xi−1, xi), for i = 1, . . . ,n.
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x0 ξ1 x1 ξ2 x2

f (ξ1)

f (ξ2)

Hence we find for the area

A ≈
n∑

i=1
f (ξi) · (xi − xi−1) .

x0 ξ1 x1 ξ2 x2

f (x0)

f (x1)

f (x2)

If f is a monotonically decreasing function and the points x0, x1, . . . , xn
are selected equidistant, i.e., (xi − xi−1) = 1

n (b− a), then we find for the
approximation error∣∣∣∣∣A−

n∑
i=1

f (ξi) · (xi − xi−1)

∣∣∣∣∣≤ ( fmax − fmin) (b−a)
1
n
→ 0 as n →∞.

Thus when we increase the number of points n, then this so called Rie-
mann sum converges to area A. For a nonmonotone function the limit
may not exist. If it exists we get the area under the graph.

Riemann integral. Let f be some function defined on [a,b]. Let (Zk) = Definition 9.11({
x(k)

0 , x(k)
1 , . . . , x(k)

n(k)

})
be a sequence of point sets such that x(k)

0 = a < x(k)
1 <

. . . x(k)
k−1 < x(k)

n(k) = b for all k = 1,2, . . . and maxi=1,...,n(k)

(
x(k)

i − x(k)
i−1

)
→ 0 as

k →∞. Let ξ(k)
i ∈

(
x(k)

i−1, x(k)
i

)
. If the Riemann sum

Ik =
n(k)∑
i=1

f (ξ(k)
i ) ·

(
x(k)

i − x(k)
i−1

)
converges for all such sequences (Zk) then the function f : [a,b] → R is
Riemann integrable. The limit is called the Riemann integral of f
and denoted by∫ b

a
f (x)dx = lim

k→∞

n(k)∑
i=1

f (ξ(k)
i ) ·

(
x(k)

i − x(k)
i−1

)
.

This definition requires some remarks.

• This limit (if it exists) is uniquely determined.

• Not all functions are Riemann integrable, that is, there exist func-
tions where this limit does not exist for some choices of sequence
(Zk). However, bounded “nice” (in particular continuous) functions
are always Riemann integrable.
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Let f and g be integrable functions and α,β ∈R. Then we find∫ b

a
(α f (x)+βg(x))dx =α

∫ b

a
f (x)dx+β

∫ b

a
g(x)dx

∫ b

a
f (x)dx =−

∫ a

b
f (x)dx∫ a

a
f (x)dx = 0

∫ c

a
f (x)dx =

∫ b

a
f (x)dx+

∫ c

b
f (x)dx

∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx if f (x)≤ g(x) for all a ≤ x ≤ b

Table 9.12

Properties of definite
integrals.

• There also exist other concepts of integration. However, for contin-
uous functions these coincide. Thus we will say integrable and
integral for short.

• As we will see in the next section integrals are usually called defi-
nite integrals.

• From the definition of the integral we immediately see that for
regions where function f is negative the integral also is negative.

• Similarly, as the definition of Riemann sum contains the term(
x(k)

i − x(k)
i−1

)
instead of its absolute value

∣∣∣x(k)
i − x(k)

i−1

∣∣∣, the integral
of a positive function becomes negative if the interval (a,b) is tra-
versed from right to left.

Table 9.12 lists important properties of the definite integral. These
can be derived from the definition of integrals and the rules for limits
(Theorem 4.3 on p. 30).

9.3 The Fundamental Theorem of Calculus

We have defined the integral as the limit of Riemann sums. However,
we still need a efficient method to compute the integral. On the other
hand we did not establish any condition that ensure the existence of the
antiderivative of a given function. Astonishingly these two apparently
distinct problems are closely connected.

A(x)

x+hx

fmin

fmax

Let f be some continuous function and suppose that the area of f
under the graph in the interval [0, x] is given by A(x). We then get the
area under the curve of f in the interval [x, x+h] for some h by subtrac-
tion, A(x+h)−A(x). As f is continuous it has a maximum fmax(h) and a
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minimum fmin(h) on [x, x+h]. Then we find

fmin(h) ·h ≤ A(x+h)− A(x)≤ fmax(h) ·h

fmin(h)≤ A(x+h)− A(x)
h

≤ fmax(h)

If h → 0 we then find by continuity of f ,

lim
h→0

fmin(h)= lim
h→0

fmax(h)= f (x)

and hence

f (x)≤ lim
h→0

A(x+h)− A(x)
h︸ ︷︷ ︸

=A′(x)

≤ f (x) .

Consequently, A(x) is differentiable and we arrive at

A′(x)= f (x)

that is, A(x) is an antiderivative of f .
This observation is formally stated in the two parts of the Funda-

mental Theorem of Calculus which we state without a stringent proof.

First fundamental theorem of calculus. Let f : [a,b]→R be a contin- Theorem 9.13
uous function that admits an antiderivative F on [a,b], then∫ b

a
f (x)dx = F(b)−F(a) .

Second fundamental theorem of calculus. Let f : [a,b] → R be a Theorem 9.14
continuous function and F defined for all x ∈ [a,b] as the integral

F(x)=
∫ x

a
f (t)dt .

Then F is differentiable on (a,b) and

F ′(x)= f (x) for all x ∈ (a,b).

An immediate corollary is that every continuous function has an an-
tiderivative, namely the integral function F.

Notice that the first part states that we simply can use the indefinite
integral to compute the integral of continuous functions,

∫ b
a f (x)dx. In

contrast, the second part gives us a sufficient condition for the existence
of the antiderivative of a function.
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By parts:
∫ b

a
f (x) g′(x)dx = f (x) g(x)

∣∣∣b

a
−

∫ b

a
f ′(x) g(x)dx

By substitution:
∫ b

a
f (g(x)) · g′(x)dx =

∫ g(b)

g(a)
f (z)dz

where z = g(x) and dz = g′(x)dx

Table 9.17

Rules for definite
integrals.

9.4 The Definite Integral

Theorem 9.13 provides a method to compute the integral of a function
without dealing with limits of Riemann sums. This motivates the term
definite integral.

Let f : [a,b] → R be a continuous function and F an antiderivative of f .Definition 9.15
Then ∫ b

a
f (x)dx = F(x)

∣∣∣b

a
= F(b)−F(a)

is called the definite integral of f .

Compute the definite integral of f (x)= x2 in the interval [0,1].Example 9.16

SOLUTION.
∫ 1

0
x2 dx = 1

3 x3
∣∣∣1
0
= 1

3 ·13 − 1
3 ·03 = 1

3
. ♦

The rules for indefinite integrals in Table 9.5 can be easily translated
into rules for the definite integral, see Table 9.17

Compute
∫ 10

e

1
log(x)

· 1
x

dx.Example 9.18

SOLUTION.∫ 10

e

1
log(x)

· 1
x

dx =
∫ log(10)

1

1
z

dz

z = log(x) ⇒ dz = 1
x

dx

= log(z)
∣∣∣log(10)

1
= log(log(10))− log(1)≈ 0.834 . ♦

Compute
∫ 2

−2
f (x)dx whereExample 9.19

−1 0 1

f (x)=


1+ x for −1≤ x < 0
1− x for 0≤ x < 1
0 for x <−1 and x ≥ 1
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SOLUTION.∫ 2

−2
f (x)dx =

∫ −1

−2
f (x)dx+

∫ 0

−1
f (x)dx+

∫ 1

0
f (x)dx+

∫ 2

1
f (x)dx

=
∫ −1

−2
0dx+

∫ 0

−1
(1+ x)dx+

∫ 1

0
(1− x)dx+

∫ 2

1
0dx

=
(
x+ 1

2
x2

)∣∣∣∣0−1
+

(
x− 1

2
x2

)∣∣∣∣1
0

= 1
2
+ 1

2
= 1 . ♦

9.5 Improper Integrals

Suppose we want to compute
∫ b

0
e−λx dx. We then get Example 9.20

∫ b

0
e−λx dx =

∫ −λb

0
ez (− 1

λ

)
dz =− 1

λ
ez

∣∣∣−λb

0
= 1
λ

(
1− e−λb

)
. ♦

a

So what happens if b tends to ∞, i.e., when the domain of integration is
unbounded. Obviously

lim
b→∞

∫ b

0
e−λx dx = lim

b→∞
1
λ

(
1− e−λb

)
= 1
λ

.

Thus we may use the symbol∫ ∞

0
f (x)dx

for this limit. Similarly we may want to compute the integral
1∫
0

1p
x dx.

But then 0 does not belong to the domain of f as f (0) is not defined. We
then replace the lower bound 0 by some a > 0, compute the integral and
find the limit for a → 0. We again write∫ 1

0

1p
x

dx = lim
a→0+

∫ 1

a

1p
x

dx

where 0+ indicates that we are looking at the limit from the right hand
side.

Integrals of functions that are unbounded at a or b or have unbounded Definition 9.21
domain (i.e., a = −∞ or b =∞) are called improper integrals . They

improper integralare defined as limits of proper integrals. If the limit∫ b

0
f (x)dx = lim

t→b

∫ t

0
f (x)dx

exists we say that the improper integral converges. Otherwise we say
that it diverges.
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For practical reasons we demand that this limit exists if and only if

lim
t→∞

∫ t

0

∣∣ f (x)
∣∣dx exists.

Compute the improper integral
∫ 1

0

1p
x

dx.Example 9.22

SOLUTION.∫ 1

0

1p
x

dx = lim
t→0

∫ 1

t
x−

1
2 dx = lim

t→0
2
p

x
∣∣∣1
t
= lim

t→0
(2−2

p
t)= 2 . ♦

Compute the improper integral
∫ ∞

1

1
x2 dx.Example 9.23

SOLUTION.∫ ∞

1

1
x2 dx = lim

t→∞

∫ t

1
x−2 dx = lim

t→∞ −1
x

∣∣∣∣t

1
= lim

t→∞−1
t
− (−1)= 1 . ♦

Compute the improper integral
∫ ∞

1

1
x

dx.Example 9.24

SOLUTION.∫ ∞

1

1
x

dx = lim
t→∞

∫ t

1

1
x

dx = lim
t→∞ log(x)

∣∣∣t

1
= lim

t→∞ log(t)− log(1)=∞ .

The improper integral diverges. ♦

9.6 Differentiation under the Integral Sign

We are given some continuous function f with antiderivative F, i.e.,
F ′(x) = f (x). If we differentiate the definite integral

∫ x
a f (t)dt = F(x)−

F(a) w.r.t. its upper bound we obtain

d
dx

∫ x

a
f (t)dt = (F(x)−F(a))′ = F ′(x)= f (x) .

That is, the derivative of the definite integral w.r.t. the upper limit of
integration is equal to the integrand evaluated at that point.

We can generalize this result. Suppose that both lower and upper
limit of the definite integral are differentiable functions a(x) and b(x),
respectively. Then we find by the chain rule

d
dx

∫ b(x)

a(x)
f (t)dt = (F(b(x))−F(a(x)))′ = f (b(x)) b′(x)− f (a(x)) a′(x) .

Now suppose that f (x, t) is a continuous function of two variables and
consider the function F(x) defined by

F(x)=
∫ b

a
f (x, t)dt .
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Its derivative F ′(x) can be computed as

F ′(x)= lim
h→0

F(x+h)−F(x)
h

= lim
h→0

∫ b

a

f (x+h, t)− f (x, t)
h

dt

=
∫ b

a
lim
h→0

f (x+h, t)− f (x, t)
h

dt

=
∫ b

a

∂ f (x, t)
∂x

dt .

That is, in order to get the derivative of the integral with respect to
parameter x we differentiate under the integral sign.

Of course the partial derivative fx(x, t) must be an integrable func-
tion which is satisfied whenever it is continuous by the Fundamental
Theorem.

It is important to note that both the (Riemann-) integral and the
partial derivative are limits. Thus we have to exchange these two limits
in our calculation. Notice, however, that this is a problematic step and In general exchanging limits

can change the result!its validation requires tools from advanced calculus.
We now can combine our observations into a single formula.

Leibniz’s formula. Let Theorem 9.25

F(x)=
∫ b(x)

a(x)
f (x, t)dt

where the function f (x, t) and its partial derivative fx(x, t) are continuous
in both x and t in the region

{
(x, t) : x0 ≤ x ≤ x1, a(x) ≤ t ≤ b(x)

}
and the

functions a(x) and b(x) are C 1 functions over [x0, x1]. Then

F ′(x)= f (x,b(x)) b′(x)− f (x,a(x)) a′(x)+
∫ b(x)

a(x)

∂ f (x, t)
∂x

dt .

PROOF. Let H(x,a,b) =
b∫
a

f (x, t)dt. Then F(x) = H(x,a(x),b(x)) and we

find by the chain rule

F ′(x)= Hx +Haa′(x)+Hbb′(x) .

Since Hx = ∫ b
a fx(x, t)dt, Ha = − f (x,a) and Hb = f (x,b), the result fol-

lows.

Compute F ′(x), x ≥ 0, when F(x)= ∫ 2x
x t x2 dt. Example 9.26

SOLUTION. Let f (x, t)= t x2, a(x)= x and b(x)= 2x. By Leibniz’s formula
we find

F ′(x)= (2 x) · x2 ·2− (x) · x2 ·1+
∫ 2x

x
2x t dt

= 4x3 − x3 + (2x
1
2

t2)
∣∣∣2x

x
= 4x3 − x3 + (4x3 − x3)= 6x3 .

♦
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Leibniz formula also works for improper integrals provided that the
integral

∫ b(x)
a(x) f ′x(x, t)dt converges:

d
dx

∫ ∞

a
f (x, t)dt =

∫ ∞

a

∂ f (x, t)
∂x

dt

Let K(t) denote the capital stock of some firm at time t, and let p(t) beExample 9.27
the price per unit of capital. Let R(t) denote the rental price per unit of
capital and let r be some constant interest rate. In capital theory, one
principle for the determining of the correct price of the firm’s capital is
given by the equation

p(t)K(t)=
∫ ∞

t
R(τ)K(τ) e−r(τ−t) dτ for all t.

That is, the current cost of capital should equal the discounted present
value of the returns from lending it. Find an expression for R(t) by dif-
ferentiating the equation w.r.t. t.

SOLUTION. By differentiation the left hand side using the product rule
and the right hand side using Leibniz’s formula we arrive at

p′(t)K(t)+ p(t)K ′(t)=−R(t)K(t)+
∫ ∞

t
R(τ)K(τ) r e−r(τ−t) dτ

=−R(t)K(t)+ r p(t)K(t)

and consequently

R(t)=
(
r− K ′(t)

K(t)

)
p(t)− p′(t) . ♦
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— Exercises

9.1 Compute the following indefinite integrals:

(a)
∫

x ln(x)dx (b)
∫

x2 sin(x)dx (c)
∫

2 x
√

x2 +6 dx

(d)
∫

ex2
x dx (e)

∫
x

3 x2 +4
dx (f)

∫
x
p

x+1dx

(g)
∫

3 x2 +4
x

dx (h)
∫

ln(x)
x

dx

9.2 Compute the following definite integrals:

(a)
∫ 4

1
2x2 −1dx (b)

∫ 2

0
3ex dx

(c)
∫ 4

1
3x2 +4x dx (d)

∫ π
3

0

−sin(x)
3

dx

(e)
∫ 1

0

3 x+2
3 x2 +4 x+1

dx

9.3 Compute the following improper integrals:

(a)
∫ ∞

0
−e−3x dx (b)

∫ 1

0

2
4px3

dx (c)
∫ ∞

0

x
x2 +1

dx

9.4 The marginal costs for a cost function C(x) are given by 30−0.05 x.
Reconstruct C(x) when the fixed costs are c2000.

9.5 Compute the expectation of a so called half-normal distributed
random variate which has domain [0,∞) and probability density
function

f (x)=
√

2
π

exp
(
− x2

2

)
.

HINT: The expectation of a random variate X with density f is defined as

E(X )=
∫ ∞

−∞
x f (x)dx .

9.6 Compute the expectation of a normal distributed random variate HINT:
∞∫

−∞
f (x)dx =

0∫
−∞

f (x)dx+
∞∫
0

f (x)dx
with probability density function

f (x)= 1p
2π

exp
(
− x2

2

)
.

9.7 Compute F(x)=
∫ x

−2
f (t)dt for function

f (x)=


1+ x, for −1≤ x < 0,
1− x, for 0≤ x < 1,
0, for x <−1 and x ≥ 1.
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— Problems

9.8 For which value of α ∈ R do the following improper integrals con-
verge? What are their values?

(a)
1∫

0

xα dx (b)
∞∫

1

xα dx (c)
∞∫

0

xα dx

9.9 Let X be a so called Cauchy distributed random variate with prob-HINT: Show that the im-

proper integral
∞∫

−∞
xf (x)dx

diverges.

ability density function

f (x)= 1
π(1+ x2)

.

Show that X does not have an expectation.

Why is the following approach incorrect?

E(X )= lim
t→∞

∫ t

−t

x
π(1+ x2)

dx = lim
t→∞0= 0 .

9.10 Compute for T ≥ 0

d
dx

∫ g(x)

0
U(x) e−(t−T) dt .

Which conditions on g(x) and U(x) must be satisfied?

9.11 Let f be the probability density function of some absolutely con-
tinuous distributed random variate X . The moment generating
function of f is defined as

M(t)= E(etX )=
∫ ∞

−∞
etx f (x)dx .

Show that M′(0)= E(X ), i.e., the expectation of X .

9.12 The gamma function Γ(z) is an extension of the factorial function.
That is, if n is a positive integer, then

Γ(n)= (n−1)!

For positive real numbers z it is defined as

Γ(z)=
∫ ∞

0
tz−1 e−t dt .

(a) Use integration by parts and show that

Γ(z+1)= zΓ(z) .

(b) Compute Γ′(z) by means of Leibniz’s formula.
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Multiple Integrals

What is the volume of a smooth mountain?

The idea of Riemann integration can be extended to the computation of
volumes under the graph of bivariate and multivariate functions. How-
ever, difficulties arise as the domain of such functions are not simple
intervals in general but can be irregular shaped regions. x

y

z

b
d

10.1 The Riemann Integral

Let us start with the simple case where the domain of some bivariate
function is the Cartesian product of two closed intervals, i.e., a rectangle

R = [a,b]× [c,d]= {(x, y) ∈R2 : a ≤ x ≤ b, c ≤ y≤ d} .

Analogously to Section 9.2 we partition R into rectangular subregions

a bxi−1 xi

c

d

yj−1

yj

Ri j = [xi−1, xi]× [yj−1, yj] for 1≤ i ≤ n and 1≤ j ≤ k

where a = x0 < x1 < . . .< xn = b and c = y0 < y1 < . . .< yk = d.
For f : R ⊂ R2 → R we compute f (ξi,ζi) for points (ξi,ζ j) ∈ Ri j and

approximate the volume V under the graph of f by the Riemann sum

V ≈
n∑

i=1

k∑
j=1

f (ξi,ζ j) (xi − xi−1) (yj − yj−1) ,

Observe that (xi − xi−1) (yj − yj−1) simply is the area of rectangle Ri j.
Each term in this sum is just the volume of the bar [xi−1, xi]× [yj−1, yj]×
[0, f (ξi,ζ j)].

x

y

z

b
d

Now suppose that we refine this partition such that the diameter of
the largest rectangle tends to 0. If the Riemann sum converges for every
such sequence of partitions for arbitrarily chosen points (ξi,ζi) then this
limit is called the double integral of f over R and denoted byÏ

R
f (x, y)dx dy= lim

diam(Ri j)→0

n∑
i=1

k∑
j=1

f (ξi,ζ j) (xi − xi−1) (yj − yj−1) .

107
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Let f and g be integrable functions over some domain D. Let D1,D2
be a partition of D, i.e., D1 ∪D2 = D and D1 ∩D2 =;. Then we findÏ

D
(α f (x, y)+βg(x, y))dx dy

=α

Ï
D

f (x, y)dx dy+β
Ï

D
g(x, y)dx dyÏ

D
f (x, y)dx =

Ï
D1

f (x, y)dx dy+
Ï

D2

f (x, y)dx dyÏ
D

f (x, y)dx dy≤
Ï

D
g(x, y)dx d y

if f (x, y)≤ g(x, y) for all (x, y) ∈ D

Table 10.1

Properties of double
integrals.

It must be noted here that for the definition of the Riemann integral
the partition of R need not consist of rectangles. Thus the same idea also
works for non-rectangular domains D which may have a quite irregular
shape. However, the process of convergence requires more technical de-
tails than for the case of univariate functions. For example, the partition
has to consist of subdomains D i of D for which we can determine their
areas. Then we haveÏ

D
f (x, y)dx dy= lim

diam(D i)→0

n∑
i=1

f (ξi,ζi) A(D i)

where A(D i) denotes the area of subdomain D i. Of course this only
works if this limit exists and if it is independent from the particular
partition D i and the choice of the points (ξi,ζi) ∈ D i.

By this definition we immediately get properties that are similar to
those of definite integrals, see Table 10.1.

10.2 Double Integrals over Rectangles

As far we only have a concept for the volume below the graph of a bivari-
ate function. However, we also need a convenient method to compute it.
So let us again assume that f is a continuous positive function defined
on a rectangular domain R = [a,b]× [c,d]. We then writeÏ

R
f (x, y)dx dy=

∫ b

a

∫ d

c
f (x, y)dydx

in analogy to univariate definite integrals.
Let t be an arbitrary point in [a,b]. Then let V (t) denote the volume

V (t)=
∫ t

a

∫ d

c
f (x, y)d ydx .
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We also obtain a univariate function g(y)= f (t, y) defined on the interval
[c,d]. Thus

A(t)=
∫ d

c
g(y)d y=

∫ d

c
f (t, y)d y

is the area of the (2-dimensional) set {(t, y, z) : 0 ≤ z ≤ f (t, y), y ∈ [c,d]}.
Hence we find

V (t+h)−V (t)≈ A(t) ·h
and consequently

V ′(t)= lim
h→0

V (t+h)−V (t)
h

= A(t)

that is, V (t) is an antiderivative of A(t). Here we have used (but did not
formally proof) that A(t) is also a continuous function of t. t+ht

A(t+h)

By this observation we only need to compute the definite integral∫ d
c f (t, y)d y for every t and obtain some function A(t). Then we compute

the definite integral
∫ b

a A(x)dx. In other words: For that reasonÎ
R f (x, y)dx dy is called

double integral.
Ï

R
f (x, y)dx dy=

∫ b

a

(∫ d

c
f (x, y)d y

)
dx .

This result has the following interpretation in probability theory: As-
sume that f is a joint density of a bivariate distribution. For fixed x we
get a multiple of the density f (y|X = x) for the univariate conditional
distribution of Y which is illustrated by the red slice of the graph (blue)
of f below. Its integral fX (x)= ∫ d

c f (x, y)d y is then the marginal density
at x and shown as green graph.

y

x

z

fX (x)=
∫ d

c
f (x, y)dy

x

Obviously our arguments remain valid if we exchange the rôles of x
and y. ThusÏ

R
f (x, y)dx dy=

∫ d

c

(∫ b

a
f (x, y)dx

)
d y .

We summarize our results in the following theorem which we state
without a formal proof.
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Fubini’s theorem. Let f : R = [a,b]× [c,d] ⊂ R2 → R be a continuousTheorem 10.2
function. ThenÏ

R
f (x, y)dx dy=

∫ b

a

(∫ d

c
f (x, y)d y

)
dx =

∫ d

c

(∫ b

a
f (x, y)dx

)
d y .

By this theorem we have the following recipe to compute the double
integral of a continuous function f (x, y) defined on the rectangle [a,b]×
[c,d].

(1) Keep y fixed and compute the inner integral w.r.t. x from x = a to
x = b. This gives

∫ b
a f (x, y)dx, a function of y.

(2) Now integrate
∫ b

a f (x, y)dx w.r.t. y from y = c to y = d to obtain∫ d
c

(∫ b
a f (x, y)dx

)
d y.

Of course we can reverse the order of integration, that is, we first com-
pute

∫ d
c f (x, y)d y and obtain a function of x which is then integrated

w.r.t. x and obtain
∫ b

a

(∫ d
c f (x, y)d y

)
dx. By Fubini’s theorem the results

of these two procedures coincide.

Compute
∫ 1

−1

∫ 1

0
(1− x− y2 + xy2)dx dy.Example 10.3

SOLUTION. We have to integrate two times.∫ 1

−1

∫ 1

0
(1− x− y2 + xy2)dx dy=

∫ 1

−1

(
x− 1

2
x2 − xy2 + 1

2
x2 y2

∣∣∣∣1
0

)
d y

=
∫ 1

−1

(
1
2
− 1

2
y2

)
d y= 1

2
y− 1

6
y3

∣∣∣∣1−1
= 1

2
− 1

6
−

(
−1

2
+ 1

6

)
= 2

3
.

We can also perform the integration in the reverse order.∫ 1

0

∫ 1

−1
(1− x− y2 + xy2)d ydx =

∫ 1

0

(
y− xy− 1

3
y3 + 1

3
xy3

∣∣∣∣1−1

)
dx

=
∫ 1

0

(
1− x− 1

3
+ 1

3
x−

(
−1+ x+ 1

3
− 1

3
x
))

dx

=
∫ 1

0

(
4
3
− 4

3
x
)

dx = 4
3

x− 4
6

x2
∣∣∣∣1
0
= 2

3
.

We obtain the same result by both procedures. ♦

We can extend our results for multivariate functions. Let

Ω= [a1,b1]×·· ·× [an,bn]= {
(x1, . . . , xn) ∈Rn : ai ≤ xi ≤ bi, i = 1, . . . ,n

}
be the Cartesian product of closed intervals [a1,b1], . . . , [an,bn]. We call
Ω an n-dimensional rectangle .n-dimensional

rectangle
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If f : Ω→ R is a continuous function, then the multiple integral of
f over Ω is defined asÏ

· · ·
∫
Ω

f (x1, . . . , xn)dx1 . . .dxn

=
∫ b1

a1

(∫ b2

a2

. . .
(∫ bn

an

f (x1, . . . , xn)dxn

)
. . .dx2

)
dx1 .

It is important to note that the inner integrals are evaluated at first.

10.3 Double Integrals over General Domains

Consider now a domain D ⊆R2 defined as

D = {(x, y) : a ≤ x ≤ b, c(x)≤ y≤ d(x)}

for two functions c(x) and d(x). Let f (x, y) be a continuous function de-

x

y
y= d(x)

y= c(x)

D

a b
fined over D. As in the case of rectangular domains we can keep x fixed
and compute the area

A(x)=
∫ d(x)

c(x)
f (x, y)d y .

We then can argue in the same way that the volume is given byÏ
D

f (x, y)d ydx =
∫ b

a
A(x)dx =

∫ b

a

(∫ d(x)

c(x)
f (x, y)d y

)
dx .

Let D = {(x, y) : 0≤ x ≤ 2, 0≤ y≤ 4− x2} and let f (x, y)= x2 y be defined on Example 10.4
D. Compute

Î
D f (x, y)d ydx. y

x

D

SOLUTION.Ï
D

f (x, y)d ydx =
∫ 2

0

∫ 4−x2

0
x2 yd ydx =

∫ 2

0

(∫ 4−x2

0
x2 yd y

)
dx

=
∫ 2

0

(
1
2

x2 y2
∣∣∣∣4−x2

0

)
dx =

∫ 2

0

(
1
2

x2(4− x2)2
)

dx

=
∫ 2

0

1
2

(
x6 −8x4 +16x2)

dx

= 1
14

x7 − 8
10

x5 + 16
6

x3
∣∣∣∣2
0
= 512

105
. ♦

It might be convenient if we partition the domain of integration D
into two disjoint regions A and B, that is, A∪B = D and A∩B =;. We
then findÏ

A∪B
f (x, y)dx dy=

Ï
A

f (x, y)dx d y+
Ï

B
f (x, y)dx dy
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provided that all integrals exist. The formula extend the corresponding
rule for univariate integrals in Table 9.12 on page 98. We can extend
this formula to overlapping subsets A and B. We then findÏ

A∪B
f (x, y)dx dy=

=
Ï

A
f (x, y)dx dy+

Ï
B

f (x, y)dx dy−
Ï

A∩B
f (x, y)dx dy .

10.4 A “Double Indefinite” Integral

The Fundamental Theorem of Calculus tells us that we can compute a
definite integral by the difference of the indefinite integral evaluated at
the boundary of the domain of integration. In some sense an equivalent
formula exists for double integrals.

Let f (x, y) be an continuous function defined on the rectangle [a,b]×
[c,d]. Suppose that F(x, y) has the property that

∂2F(x, y)
∂x∂y

= f (x, y) for all (x, y) ∈ [a,b]× [c,d].

Then

x

y

a b

c

d

∫ b

a

∫ d

c
f (x, y)d ydx = F(b,d)−F(a,d)−F(b, c)+F(a, c) .

10.5 Change of Variables

Integration by substitution (see Table 9.17 on page 100) can also be seen
as a change of variables. Let x = g(z) where g is a differentiable one-to-
one function. Set z1 = g−1(a) and z2 = g−1(b). Then∫ b

a
f (x)dx =

∫ z2

z1

f (g(z)) · g′(z)dz .

That is, instead of expressing f as a function of variable x we introduce
a new variable z and a transformation g such that x = g(z). We then
integrate f ◦ g with respect to z. However, we have to take into account
that by this change of variable the domain of integration is deformed.
Thus we need the correction factor g′(z).

The same idea of changing variables also works for multivariate func-
tions.

Change of variables in double integrals. Let f (x, y) be a functionTheorem 10.5
defined on an open bounded domain D ⊂R2. Suppose that

x = g(u,v), y= h(u,v)

defines a one-to-one C 1 transformation from an open bounded set D′

onto D such that the Jacobian determinant ∂(g,h)
∂(u,v) is bounded and either

strictly positive or strictly negative on D′. ThenÏ
D

f (x, y)dx dy=
Ï

D′
f (g(u,v),h(u,v))

∣∣∣∣∂(g,h)
∂(u,v)

∣∣∣∣ du dv .
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This theorem still holds if the set where ∂(g,h)
∂(u,v) is not bounded or vanishes

is a null set, i.e., a set of area 0.
We only give a rough sketch of the proof for this formula. Let g denote

our transformation (u,v) 7→ (g(u,v),h(u,v)). Recall thatÏ
D

f (x, y)dx dy= lim
diam(D i)→0

n∑
i=1

f (ξi,ζi) A(D i)

where the subsets D i are chosen as the images g(D′
i) of some paraxial u

v

(ui ,vi)

(ui +∆u,vi +∆v)

D′
i

rectangle D′
i with vertices

(ui,vi) , (ui +∆u,vi) , (ui,vi +∆v) , and (ui +∆u,vi +∆v)

and (ξi,ζi)= g(ui,vi) ∈ D i. HenceÏ
D

f (x, y)dx dy≈
n∑

i=1
f (ξi,ζi) A(D i)=

n∑
i=1

f (g(ui,vi)) A(g(D′
i)) .

If g(D′
i) were a parallelogram, then we could compute its area by means

of the absolute value of the determinant∣∣∣∣∣g(ui +∆u,vi)− g(ui,vi) g(ui,vi +∆v)− g(ui,vi)

h(ui +∆u,vi)−h(ui,vi) h(ui,vi +∆v)−h(ui,vi)

∣∣∣∣∣ .

If g(D′
i) is not a parallelogram but ∆u is small, then we may use

this determinant as an approximation for the area A(g(D′
i)). For small

x

y

D ivalues of ∆u we also have

g(ui +∆u,vi)− g(ui,vi)≈ ∂g(ui,vi)
∂u

∆u

and thus we find

A(g(D′
i))≈

∣∣∣∣∣∣∣
∣∣∣∣∣
∂g(ui ,vi)

∂u
∂g(ui ,vi)

∂v
∂h(ui ,vi)

∂u
∂h(ui ,vi)

∂v

∣∣∣∣∣
∣∣∣∣∣∣∣∆u∆v = ∣∣det(g′(ui,vi))

∣∣∆u∆v .

Notice that ∆u∆v = A(D′
i) and that we have used the symbol ∂(g,h)

∂(u,v) to
denote the Jacobian determinant. ThereforeÏ

D
f (x, y)dx dy≈

n∑
i=1

f (g(ui,vi))
∣∣det(g′(ui,vi))

∣∣ A(D′
i)

≈
Ï

D′
f (g(u,v),h(u,v))

∣∣∣∣∂(g,h)
∂(u,v)

∣∣∣∣ du dv .

When diam(D i) → 0 the approximation errors also converge to 0 and
we get the claimed identity. For a stringent proof of Theorem 10.5 the
interested reader is referred to literature on advanced calculus.

Let D = {(x, y) : −1 ≤ x ≤ 1, |x| ≤ y ≤ 1} and f (x, y) = x2 + y2 be defined on Example 10.6
D. Compute

Î
D f (x, y)dx dy.
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SOLUTION. We directly can compute this integral as

x

y

−1 0 1

Ï
D

f (x, y)d ydx =
∫ 1

−1

∫ 1

|x|
x2 + y2 d ydx

=
∫ 0

−1

∫ 1

−x
x2 + y2 d ydx+

∫ 1

0

∫ 1

x
x2 + y2 d ydx

=
∫ 0

−1

(
x2 y+ 1

3
y3

)∣∣∣∣1
y=−x

dx+
∫ 1

0

(
x2 y+ 1

3
y3

)∣∣∣∣1
y=x

dx

=
∫ 0

−1
x2 + 1

3
+ x3 + 1

3
x3 dx+

∫ 1

0
x2 + 1

3
− x3 − 1

3
x3 dx

=
(

1
3

x3 + 1
3

x+ 1
3

x4
)∣∣∣∣0−1

+
(

1
3

x3 + 1
3

x− 1
3

x4
)∣∣∣∣1

0

= 1
3
+ 1

3
− 1

3
+ 1

3
+ 1

3
− 1

3
= 2

3
.

We also can first change variables. Let

u

v

0 1

g(u,v)=
(
1 −1
1 1

)
·
(
u
v

)
and D′ = {(u,v) : 0≤ u ≤ 1, 0≤ v ≤ 1−u}. Then g(D′)= D and

∣∣g′(u,v)
∣∣= ∣∣∣∣1 −1

1 1

∣∣∣∣= 2

which is constant and thus bounded and strictly positive. Thus we findÏ
D

f (x, y)d ydx =
Ï

D′
f (g(u,v)) |g′(u,v)|dv du

=
∫ 1

0

∫ 1−u

0

(
(u−v)2 + (u+v)2)

2dv du

= 4
∫ 1

0

∫ 1−u

0

(
u2 +v2)

dv du

= 4
∫ 1

0

(
u2v+ 1

3
v3

)∣∣∣∣1−u

v=0
du

= 4
∫ 1

0

(
−4

3
u3 +2u2 −u+ 1

3

)
du

= 4
(
−1

3
u4 + 2

3
u3 − 1

2
u2 + 1

3
u
)∣∣∣∣1

0

= 4
(
−1

3
+ 2

3
− 1

2
+ 1

3

)
= 2

3

which gives (of course) the same result. ♦

Change of variables in multiple integrals. Let f (x) be a function de-Theorem 10.7
fined on an open bounded domain D ⊂Rn. Suppose that x = g(z) defines
a one-to-one C 1 transformation from an open bounded set D′ ⊂ Rn onto
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D such that the Jacobian determinant ∂(g1,...,gh)
∂(z1,...,zn) is bounded and either

strictly positive or strictly negative on D′. ThenÏ
D

f (x)dx=
Ï

D′
f (g(z))

∣∣∣∣∂(g1, . . . , gn)
∂(z1, . . . , zn)

∣∣∣∣dz .

We also may state this rule analogously to the rule for integration by
substitution (Table 9.17)Ï

D
f (x)dx=

Ï
D′

f (g(z))
∣∣det(g′(z))

∣∣ dz .

x

y

r
(x, y)

θ

Polar coordinates are very convenient when we have to deal with
circular functions. Thus we represent a point by its distant r from the
origin and the angle enclosed by the corresponding vector and the posi-
tive x-axis. The corresponding transformation is given by(

x
y

)
= g(r,θ)=

(
r cos(θ)
rsin(θ)

)
where (r,θ) ∈ [0,∞)× [0,2π). It is a C 1 function and its Jacobian deter-
minant is given by

∣∣g′(r,θ)
∣∣= ∣∣∣∣cos(θ) −rsin(θ)

sin(θ) r cos(θ)

∣∣∣∣= r
(
cos2(θ)+sin2(θ)

)= r

which is bounded on every bounded domain and it is strictly positive
except for the null set {(0,θ) : 0≤ θ < 2π}.

Let f (x, y) = 1− x2 − y2 be a function defined on D = {(x, y) : x2 + y2 ≤ 1}. Example 10.8
Compute

Î
D f (x, y)dx dy.

SOLUTION. A direct computation of this integral is cumbersome:Ï
D

(1− x2 − y2)dx d y=
∫ 1

0

∫ p
1−x2

−
p

1−x2
(1− x2 − y2)d ydx .

Thus we change to polar coordinates. Then D′ = {(r,θ) : 0 ≤ r ≤ 1, 0 ≤ θ <
2π} and we findÏ

D
(1− x2 − y2)dx d y=

∫ 1

0

∫ 2π

0
(1− r2)r dθdr = 2π

∫ 1

0
(r− r3)dr

= 2π
(

1
2

r2 − 1
4

r4
)∣∣∣∣1

0
= π

2
. ♦

10.6 Improper Multiple Integrals

In Section 9.5 we have extended the concept of integral to unbounded
functions or functions with unbounded domains. Using Fubini’s theorem
the definition of such improper integrals is straight forward by means of
limits.
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Compute
∫ ∞

0

∫ ∞

0
e−x2−y2

dx dy.Example 10.9

SOLUTION. We switch to polar coordinates. f (x, y) = e−x2−y2
is defined

on D = {(x, y) : x ≥ 0, y ≥ 0}. Then D′ = {(r,θ) : r ≥ 0, 0 ≤ θ < π/2} and we
find ∫ ∞

0

∫ ∞

0
e−x2−y2

dx dy=
∫ ∞

0

∫ π/2

0
e−r2

r dθdr = π

2

∫ ∞

0
e−r2

r dr

= lim
t→∞

π

2

∫ t

0
e−r2

r dr = lim
t→∞

(
−π

4
e−r2

)∣∣∣∣t

0

= lim
t→∞

(
−π

4

(
e−t2 −1

))
= π

4
. ♦
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— Exercises

10.1 Evaluate the following double integrals

(a)
∫ 2

0

∫ 1

0
(2x+3y+4)dx dy (b)

∫ a

0

∫ b

0
(x−a)(y−b)d ydx

(c)
∫ 1

0

∫ 2

0
(x− y)(x+ y)d ydx (d)

∫ 1/2

0

∫ 2π

0
y3 sin(xy2)dx dy

10.2 Compute∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dx dy .

— Problems

10.3 Prove the formula from Section 10.4:∫ b

a

∫ d

c
f (x, y)d ydx = F(b,d)−F(a,d)−F(b, c)+F(a, c) .

where HINT:
∫

f (x, y)d y= ∂F(x,y)
∂x

∂2F(x, y)
∂x∂y

= f (x, y) for all (x, y) ∈ [a,b]× [c,d].

10.4 Let Φ(x) denote the cumulative distribution function of the (uni-
variate) standard normal distribution. Let

f (x, y)=
p

6
π

exp(−2x2 −3y2)

be the probability density function of a bivariate normal distribu-
tion.

(a) Show that f (x, y) is indeed a probability density function. HINT: Show thatÎ
R2 f (x, y)dxdy= 1.(b) Compute the cumulative distribution function and express

the results by means of Φ.
HINT: F(x, y)= ∫ x

−∞
∫ y
−∞

p
6
π exp(−2s2−3t2)dt ds = ∫ x

−∞
∫ y
−∞

p
2p
π

exp(−2s2) ·
p

3p
π

exp(−3t2)dt ds.

10.5 ComputeÏ
R2

exp(−q(x, y))dx dy

where

q(x, y)= 2x2 −2xy+2y2

HINT: Observe, that q is a quadratic form with matrix A=
(

2 −1
−1 2

)
. So change

the variables with respect to eigenvectors of A.





11
Differential Equations

We know where we are now and how our system is changing.
Where will we be tomorrow?

11.1 First-Order Ordinary Differential Equations
Ordinary means that we
have “ordinary” derivatives
of a function in one vari-
able in opposition to partial
derivatives of functions in
two or more variables.

An ordinary differential equation (ODE) is an equation where the
unknown is a function in one variable and which contains derivatives of
this function. It is called of n-th order if it contains a derivative of order
n but not higher.

Three typical examples of first-order differential equations are Example 11.1

y′ = a y , y′+a y= b , y′+a y= b y2 .

With suitable chosen constants a and b, these describe exponential (or
natural) growth, growth towards a limit and logistic growth. Notice that
in this notation the independent variable is omitted. Thus we also can
write In economics one often de-

scribes variables as a func-
tion of time t. Of course our
results also hold when the
independent variable is de-
noted by x, u, or whatever.

y′(t)= a y(t) , y′(t)+a y(t)= b , y′(t)+a y(t)= b y2(t) .

to stress that y is the dependent variable (i.e., the unknown function)
and t is the independent variable. ♦

y′′(t)+2y(t)= t2 is a (linear) second-order differential equation. ♦ Example 11.2

Differential equation. A first-order differential equation is written as Definition 11.3

y′ = F(t, y)

where F is a given function of two variables and y= y(t) is the unknown
function. The solution of this equation in an interval I is any differen-
tiable function y(t) defined on I that satisfies this equation for all t ∈ I.
The graph of the solution is called solution curve or integral curve.

119
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The solution curve of the differential equation y′(t) = y(t) is y(t) = et.Example 11.4
This can easily be verified by differentiating. As for indefinite integrals
there exists a family of integral curves: y(t)= C et is also a solution curve
for every C ∈R. ♦

A solution curve y(t) has thus the property that the slope y′(t) of the
tangent at the point (t, y(t)) is just F(t, y(t)). We can therefore represent
equation y′ = F(t, y) by drawing small straight-line segments in the (t, y)-
plane. This gives a so called direction field (or slope field). The task
of finding a solution curve is thus equivalent to finding a path in the
(t, y)-plane with these line segments as tangents.-3 -2 -1 0 1 2 3
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Notice that we obtain a set of integral curves which is called the
general solution of the given ordinary differential equation. However,
if we also add an initial value, y(t0) = y0, we only find one solution
called the particular solution of the so called initial value problem,{

y′ = F(t, y),
y(t0)= y0.

In economic models it is usually not possible to find an explicit solu-
tion of the differential equations. This is in particular the case when F
is not given explicitly but only some of its properties. Nevertheless, we
may still try to answer the following questions:

1. Is there a solution curve for the given equation?

2. Is the solution curve uniquely defined?

3. What can we say about the properties of the solution curve?
(Quality theory)

Despite this fact we first want to discuss a method for finding ex-
plicit solutions. It is applied to some important families of differential
equations where we derive closed-form solutions.

There also exist methods to solve differential equations numerically
and thus can help us to gain some insight in our models.

11.2 A Simple Economic Model

Domar growth model. Let K(t) denote the capital stock at time t.Example 11.5
Then

dK
dt

= I

where I(t) is the rate of investment flow. In the Domar growth model
any change in I will produce a dual effect:

1. An increase in I(t) raises the rate of income flow Y (t):

dY
dt

= 1
s
· dI

dt
(D1)



11.2 A SIMPLE ECONOMIC MODEL 121

for some constant s (which stands for the marginal propensity to
save).

2. A change in I(t) also changes the capacity (or potential output flow)
κ(t). We assume a constant capacity-capital ratio, i.e.,

κ(t)
K(t)

= ϱ (= a constant) . (D2)

In equilibrium capacity κ(t) and income flow Y (t) coincide, i.e.,

Y = κ . (DE)

Now let us assume that our model is in equilibrium at time t = 0.
Which flow of investment causes our model to remain in equilibrium for
all times t > 0?

SOLUTION. If equation (DE) holds for every t, then this also holds for
the respective derivatives:

dY
dt

= dκ
dt

and similarly (D2) implies

dκ
dt

= ϱ
dK
dt

= ϱI .

Substituting this into (D1) gives

dI
dt

· 1
s
= dY

dt
= dκ

dt
= ϱI

or

I ′(t)= ϱ s I(t) (∗)

that is, a first-order differential equation. Rewriting this equation gives

1
I

dI
dt

= ϱ s

which must be satisfied for all times t > 0. Thus∫
1
I

dI
dt

dt =
∫
ϱ s dt .

For the l.h.s. of this equation we find by substituting I = I(t) and using
dI = dI

dt dt∫
1
I

dI
dt

dt =
∫

1
I

dI = ln I + c1 = ln I(t)+ c1 .

For the r.h.s. we obtain∫
ϱ s dt = ϱ s t+ c2 .
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Therefore we find

ln I(t)= ϱ s t+ (c2 − c1)= ϱ s t+ c

where we set c = c2 − c1. Consequently,

I(t)= eϱst · ec = C eϱst

where we set C = ec. Hence the general solution of differential equation
(∗) is given by

I(t)= C eϱst, C > 0.

We can easily verify our solution:

dI
dt

= ϱs ·C eϱst = ϱs · I(t) .

Notice that we have obtained an infinite set of solutions as C can be
chosen arbitrarily. However, in our model we also have given an initial
value for I at time t = 0, I(0) = I0. Thus we need the particular solution
of the initial value problem{

dI
dt = ρs · I,
I(0)= I0.

By substituting the initial value we arrive at
I

t
I0

I0 = I(0)= C eρs0 = C

and hence

I(t)= I0eϱst .

11.3 Separable Equations

The method for finding the solution of the Domar model can be general-
ized. Suppose that the differential equation can be represented by

y′(t)= f (t) · g(y) .

When g(y) ̸= 0 this can be rewritten as

d y
dt

= f (t) · g(y) ⇐⇒ d y
g(y)

= f (t)dt .

Integration on both sides yields∫
1

g(y)
d y=

∫
f (t)dt+ c .

Evaluating the two integrals gives a solution for the differential equation
(possibly in implicit form).

If g(a)= 0, then there also is the constant solution y(t)= a.
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Solve the differential equation y′+ t y2 = 0. Example 11.6

SOLUTION. Separating the variables gives

d y
dt

=−t y2 ⇒ −d y
y2 = t dt .

Integration yields Recall that c is just any real
number and can equally well
be written as 1

2 c.−
∫

d y
y2 =

∫
t dt+ 1

2
c ⇒ 1

y
= 1

2
t2 + 1

2
c

and thus the general solution is

y(t)= 2
t2 + c

. ♦

Solve the initial value problem y′+ t y2 = 0, y(0)= 1. Example 11.7

SOLUTION. By Example 11.6 above the general solution of this ODE is
y(t)= 2

t2+c . Hence we find

1= y(0)= 2
02 + c

⇒ c = 2

and thus the particular solution of the initial value problem is

y(t)= 2
t2 +2

. ♦

In the above example it is possible to express y as an explicit function
of t. Which conditions guarantee that this is always possible?

Let G(y) = ∫ 1
g(y) d y and F(t) = ∫

f (t)dt. Then G′(y) = 1
g(y) and F ′(t) =

f (t) and the solution of y′(t)= f (t)g(y) is given by

G(y)= F(t)+ c .

Now if g(y) ̸= 0 and continuous for all y, then g(y) cannot change sign
and G(y) is either strictly monotonically increasing or decreasing. In
either case G is invertible and thus there is a solution

y=G−1(F(t)+ c) .

11.4 First-Order Linear Differential Equations

A first-order linear differential equation is one that can be written Definition 11.8
as

y′(t)+a(t) y(t)= s(t)

where a(t) and s(t) denote continuous functions.
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When s(x)= 0 the equation is called a homogeneous linear differ-
ential equation:

y′(t)+a(t) y(t)= 0 . (11.1)

It then can be easily solved by separation of variables. We find for the
general solution

y(t)= C e−A(t) where A(t)=
∫

a(t)dt .

Solve the differential equation y′−3y= 0.Example 11.9

SOLUTION. By separation of variables we obtain

d y
dt

= 3y ⇒ 1
y

dy= 3dt ⇒ ln y= 3t+ c

Thus the general solution is given by

y(t)= C e3t . ♦
Solve the differential equation y′+3 t2 y= 0.Example 11.10

SOLUTION. By separation of variables we obtain

d y
dt

=−3 t2 y ⇒ 1
y

d y=−3t2 dt ⇒ ln y=−t3 + c

Thus the general solution is given by

y(t)= C e−t3
. ♦

Inhomogeneous linear differential equations have a non-zero
right-hand side

y′(t)+a(t) y(t)= s(t) . (11.2)

The following simple observation shows us how we can obtain general
solutions of inhomogeneous equations.

If y1 and y2 are two solutions of the inhomogeneous linear equationLemma 11.11
(11.2), then y1 − y2 is a solution of homogeneous equation (11.1).

PROOF. As y1 and y2 are two solutions of (11.2) we find for y= y1 − y2

y′(t)+a(t) y(t)= (y1(t)− y2(t))′+a(t) (y1(t)− y2(t))

= [
y′1(t)+a(t) y1(t)

]− [
y′2(t)+a(t) y2(t)

]
= s(t)− s(t)= 0

i.e., y is a solution of the homogeneous equation (11.1) as claimed.

An immediate corollary of this lemma is that the general solution y
of the inhomogeneous equation (11.2) can be written as

y= yh + yp

where yh is the general solution of the corresponding homogeneous equa-
tion (11.1) and yp is a particular solution of (11.2). Thus we need a
method to get one particular solution.
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Linear Equations with Constant Coefficients

If both a(t) and s(t) are constants we set

yp(t)= s
a

.

Then y′p(t) = 0 and the inhomogeneous equation y′p(t)+a yp(t) = s is sat-
isfied for all t.

Solve the differential equation y′−3y= 6. Example 11.12

SOLUTION. The general solution of the homogeneous equation y′−3y= 0
is given by (see Example 11.9)

yh(t)= C e3t .

For yp we use a constant solution, that is,

yp(t)= s
a
= 6

−3
=−2

and thus the general solution of the inhomogeneous equation is given by

y(t)= yh(t)+ yp(t)= C e3t −2 . ♦

Variation of the Constant

When the coefficient a(t) or s(t) is not constant, then variation of con-
stants provides a general method for solving inhomogeneous linear dif-
ferential equations.

Let yh(t) = C e−A(t) be the general solution of the corresponding ho- A(t)=
∫

a(t)dt

mogeneous equation, y′(t)+ a(t) y(t) = 0. Then it is possible to replace
constant C by some function C(t) such that

yp(t)= C(t) e−A(t)

becomes a particular solution for the inhomogeneous equation. Its deriva-
tive is then

y′p(t)= (
C′(t)−a(t)C(t)

)
e−A(t)

where we use the fact that A′(t)= a(t). Inserting this into the differential
equation y′p(t)+a(t) yp(t)= s(t) yields(

C′(t)−a(t)C(t)
)
e−A(t) +a(t)C(t) e−A(t) = s(t)

C′(t) e−A(t) = s(t)

C′(t)= s(t) eA(t) .

Hence

C(t)=
∫

s(t) eA(t) dt

and we find for the particular solution

yp(t)= e−A(t)
∫

s(t) eA(t) dt .
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Solve the inhomogeneous differential equation y′+ y
t
= t2 +4.Example 11.13

SOLUTION. The general solution yh of the corresponding homogeneous
equation y′+ y

t = 0 can be found by separating variables:Write integration constant
as ln(c).

d y
dt

+ y
t
= 0 ⇒ d y

y
=−dt

t
⇒ ln yh =− ln(t)+ ln(c)= ln

( c
t

)
and hence

yh(t)= c
t

.

For the particular solution yp we use the method of variation of the con-
stant:

yp = C(t)
t

⇒ y′p = C′(t) t−C(t)
t2

and thus

C′(t) t−C(t)
t2 + C(t)

t · t = t2 +4 ⇒ C′(t)
t

= t2 +4 ⇒ C′(t)= t3 +4t .

Integration yields

C(t)= 1
4

t4 +2t2 and yp(t)= C(t)
t

= 1
4

t3 +2t .

Consequently the general solution of the inhomogeneous differential equa-
tion is given by

y(t)= yh(t)+ yp(t)= c
t
+ t3

4
+2t . ♦

We can easily verify our solution:

y′+ y
t
=

(
− c

t2 + 3
4

t2 +2
)
+

c
t + t3

4 +2t
t

=− c
t2 + 3

4
t2 +2+ c

t2 + 1
4

t2 +2= t2 +4 .

Dynamics of Market Price. Suppose that for a particular commodity,Example 11.14
the demand and supply functions are as follows:

qd(t)=α−βp(t) (α,β> 0)
qs(t) =−γ+δp(t) (γ,δ> 0)

The rate of price change p′(t) at any moment is proportional to the excess
demand (qd − qs):

dp
dt

= j(qd(t)− qs(t)) ( j > 0)

where j represents the adjustment coefficient.
Which time path p(t) describes the price when p(0)= p0?
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SOLUTION. Obviously, the price does not change if and only if qd(t) =
qs(t), i.e., if we have equilibrium. A straight-forward computation gives
the equilibrium price

p∗ = α+γ
β+δ

If our model is not in equilibrium we find

dp
dt

= j(qd − qs)= j(α−βp− (−γ+δp))= j(α+γ)− j(β+δ)p

and thus

dp
dt

+ j(β+δ)p(t)= j(α+γ)

i.e., p is described by an inhomogeneous linear differential equation with
constant coefficients.

General solution ph of the homogeneous equation p′+ j(β+δ)p = 0:

dp
p

=− j(β+δ)dt ⇒ ln ph =− j(β+δ)t+ c

and thus

ph(t)= C e− j(β+δ)t .

Particular solution pp of the inhomogeneous equation:

pp(t)= j(α+γ)
j(β+δ)

= α+γ
β+δ = p∗ (= constant).

Therefore

p(t)= ph(t)+ pp(t)= C e− j(β+δ) t + p∗ .

We get the solution for the initial value p(0)= p0 by

p0 = p(0)= C e0 + p∗ and thus C = p0 − p∗ .

Consequently

p(t)

t

p∗

p0

p0

p(t)= p∗+ (p0 − p∗) e− j(β+δ) t ♦

Point p∗ in Example 11.14 is a called equilibrium state or stationary
state. We also can see that every solution curve (with initial value p(0)>
0) approaches this point as time t tends to ∞. Hence p∗ is called globally
asymptotically stable.
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11.5 Logistic Differential Equation

A Logistic differential equation has the formDefinition 11.15

y′(t)−k y(t) (L− y(t))= 0 where k > 0 and 0≤ y(t)≤ L.

Before computing an explicit solution of this equation let us first
try some heuristics. For “small” values of y the equation looks like
y′(t)− k L y(t) ≈ 0 and the solution is similar to that of a homogeneous
linear equation, y(t) ≈ C ek L t. For values of y close to L we find y′(t)+
k L y(t) ≈ k L2 and the solution is similar to that of an inhomogeneous
linear equation, y(t)≈ e−k L t (−C+L ek L t)= L−C e−k L t.

y(t)

t

L

C ek L t

L−C e−k L t We can solve this equation by separating variables:

d y
dt

= k y (L− y) ⇒ d y
y (L− y)

= k dt

The l.h.s. of this equation can be integrated by substitution:

z = L− y
y

= L
y
−1 ⇒ dz =− L

y2 d y

∫
dy

y (L− y)
=− 1

L

∫
y

L− y
·
(
− L

y2

)
dy=− 1

L

∫
1
z

dz

=− 1
L

ln |z|+ c =− 1
L

ln
∣∣∣∣L− y

y

∣∣∣∣+ c

=− 1
L

ln
(

L− y
y

)
+ c .

Integration of the r.h.s. gives∫
k dt = k t+ c

and thus

− 1
L

ln
(

L− y
y

)
= k t+ c .

It remains to express y as an explicit function of t:

− 1
L

ln
(

L− y
y

)
= k t+ c ⇔ L− y

y
= e−L k t−L c = C e−L k t

⇔ L = y
(
1+C e−L k t

)
and consequently

y(t)= L
1+C e−L k t .

Notice that all solutions of the logistic differential equations (with 0 ≤

y(t)

t

L

L
2

y(t) ≤ L) have an inflection point when y = L
2 . This can be easily seen as

the r.h.s. of d y
dt = k y (L− y) has a maximum at y= L

2 .
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There is a serious outbreak of a flu epidemic in a town with 8100 inhab- Example 11.16
itants. When the disease was first diagnosed, 100 people were infected.
20 days later there are already 1000 infected people. It is expected that
eventually all inhabitants will get this flu. How could we describe the
spread of the epidemic?

SOLUTION. Let q(t) denote the number of people that got the flu up to
time t. As flu is passed by personal contacts and since there are at most
L = 8100 concerned people we assume a logistic growth model. It has
general solution

q(t)= 8100
1+C e−8100kt

where parameter k and constant C remain to be determined. By means
of our initial values we find

q(0)= 100 ⇒ 8100
1+C

= 100 ⇒ C = 80

q(20)= 1000 ⇒ 8100
1+80 e−8100·20k = 1000 ⇒ k = 0.00001495

Hence the spread of the epidemic can be described by the function

q(t)= 8100
1+80 e−0,121 t . ♦

11.6 Phase Diagrams and Stability

Many differential equations in economics can be expressed in the form Definition 11.17

y′ = F(y)

i.e., the r.h.s. does not explicitly depend on the independent variable t.
Such an equation is called an autonomous differential equation.

To examine the properties of solutions of such equations, it is useful
to study the so called phase diagram. This is obtained by plotting y′

against y, i.e., by drawing the graph of F(y).

Linear differential equations with constant coefficients Example 11.18

y′ = a y+ s = F(y)

are the simplest case of autonomous differential equations.

y′

y

y′ = F(y)

y∗Now assume that y∗ is a root of F, i.e., F(y∗)= 0. If y(t)= y∗ for some
t0, then y′(t0) = 0 and the integral curve y(t) = y∗ for all t ≥ t0. Thus y∗

is called a stationary state (equilibrium state, fixed point) of the
differential equation.

If we are, however, in some state y(t0) = y0 that is not a stationary
state, then we have two possibilities:
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1. If y′(t0)= F(t0)> 0, then y(t) is strictly monotonically increasing in
a sufficiently small interval (t0 −ε, t0 +ε).

2. If y′(t0) = F(t0) < 0, then y(t) is strictly monotonically decreasing
in a sufficiently small interval (t0 −ε, t0 +ε).

What happens when we start very close to some stationary point y∗?
When we look at Example 11.18 again, then the sign of a and thus of the
derivative F ′ influences the stability of the solution curve.

In the figure on the l.h.s. below the solution curve always moves to-
wards y∗. Thus y∗ is called a locally asymptotically stable equilibriumy∗ is even a globally asymp-

totically stable equilibrium. state.
In the figure on the r.h.s. below the solution curve always moves away
from y∗. Thus y∗ is called an unstable equilibrium state.

y′

y

F ′(y)< 0

y∗

y′

y

F ′(y)> 0

y∗

y(t)

t

y∗

y0

y0

y(t)

t

y∗

stable equilibrium point unstable equilibrium point

Stable and unstable stationary states. A point y∗ is called a station-Definition 11.19
ary state or equilibrium point of the differential equation y′ = F(t, y)
if F(t, y∗)= 0 for all t.

If in addition there exists an ε > 0 such that all solution curves
with initial point y0 ∈ Bε(y∗) converge to y∗, then y∗ is called a locally
asymptotically stable equilibrium state.

If such an ε does not exist, then y∗ is called an unstable equilib-
rium state.

Notice that F ′(y) = a < 0 in the figure on the l.h.s. and F ′(y) = a > 0
in the figure on the r.h.s. In the case of a non-linear function F it is
sufficient to check the sign of F ′(y∗). Thus we have the following charac-
terization.
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Stability of equilibrium points. Theorem 11.20

(a) If F(y∗) = 0 and F ′(y∗) < 0, then y∗ is a locally asymptotically stable
equilibrium.

(b) If F(y∗)= 0 and F ′(y∗)> 0, then y∗ is an unstable equilibrium.

The logistic differential equation y′ = F(y)= k y(L− y)) is an autonomous Example 11.21
differential equation. F has two roots y∗0 = 0 and y∗1 = L. As F ′(y) = y′

y
y∗0 y∗1

L−2y we find F ′(0)= L > 0 and F(L)=−L < 0 thus y∗0 = 0 is an unstable
equilibrium of the logistic differential equation and y∗1 = L is a locally
asymptotically stable equilibrium state. ♦

In our examples of autonomous differential equations all noncon-
stant solution curves never show a local maximum or minimum. Indeed
we have the following general result.

If F is a C 1 function, then every solution of the autonomous differential Theorem 11.22
equation y′ = F(y) is either constant or strictly monotone on the interval
where it is defined.

Suppose that y = y(t) is a solution of y′ = F(y), where F is continuous. Theorem 11.23
If y(t) approaches a finite limit y∗ as t →∞, then y∗ is an equilibrium
state.

11.7 Existence and Uniqueness

So far we have learned some methods for finding explicit solutions of
first-order differential equations. We also used phase diagrams to in-
vestigate autonomous differential equations. However, until now we do
not have any results that guarantee uniqueness of our solution curves
or even their existence.

Existence and uniqueness. Consider the first-order differential equa- Theorem 11.24
tion

y′ = F(t, y) .

Assume that both F(t, y) and Fy(t, y) are continuous in an open neigh-
borhood in the ty-plane of some point (t0, y0). Then there exists exactly
one local solution of the equation passing through the point (t0, y0).

An immediate corollary of this theorem is, that different solution
curves must not intersect each other. If x(t) and y(t) are two solutions to
the same differential equation with x(t0) = y(t0) for some point t0, then
x(t)= y(t) for all t where these solutions are defined.

Let y′ = F(t, y) = s(t)−a(t) y be a linear differential equation where both Example 11.25
s(t) and a(t) are continuous. Then for every initial value y(t0)= y0 there
exists a uniquely defined solution in a sufficiently small interval [t0, t0+
ε).
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Let y′ = F(t, y) = f (t) g(y) be a separable differential equation. Then ex-Example 11.26
istence and uniqueness are ensured if f (t) is continuous and g(y) is con-
tinuously differentiable.

Notice that Theorem 11.24 does not give us any information about
the length of the interval [t0, t1] in which the solution y(t) is defined.

Existence and uniqueness. Consider the initial value problemTheorem 11.27

y′ = F(t, y) , y(t0)= y0 . (∗)

Assume that both F(t, y) and Fy(t, y) are continuous over the rectangle

R = {(t, y) : |t− t0| ≤ a, |y− y0| ≤ b}

and let

M = max
(t,y)∈R

|F(t, y)| , r =min(a,b/M) .

Then (∗) has a unique solution y(t) on (t0 − r, t0 + r) and we have |y(t)−t0 t0 + r t0 +a

y0

y0 −b

y0 +b

y0| ≤ b in this interval.

The condition in Theorems 11.24 and 11.27 that Fy(t, y) is continuous
can be replaced by a weaker one. Indeed, the existence of partial deriva-
tive Fy in an open rectangle around (t0, y0) is not required. We only need
that for fixed F(t, y) does not change “too much” when we vary argument
y. It is sufficient that F(t, y) is continuous in t and locally Lipschitz
continuous in y, i.e., for each (t, y) there exists an open rectangle R and
a constant L such that |F(t, y1)−F(t, y2)| ≤ L|y1− y2| whenever (t, y1) and
(t, y2) belong to R (Picard–Lindelöf theorem).

When we drop this weaker condition, then a solution will still exist
for the differential equation but may not be unique, see Problem 11.10.
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— Exercises

11.1 Compute the general solutions of the following ordinary differen-
tial equations as well as the particular solution of the correspond-
ing initial value problems with initial values y(1)= 1.

(a) y′−k y
t = 0 (b) t y′− (1+ y)= 0

(c) y′ = t y (d) y′+ ey = 0

(e) y′ = y2 (f) y′ =
√

t3 y

11.2 Solve the initial value problem

y′(t)+6 y(t)+ et = 0 , y(0)= 1 .

11.3 Let U(x) be a utility function with the property that the marginal
utility U ′(x) is indirectly proportional to U(x). HINT: y is indirectly propor-

tional to z if y = α 1
z for some

α ∈R.(a) Formulate an ordinary differential equation that describes
this property.

(b) Compute the general solution for this differential equation.

(c) Find a sensible particular solution.
(Which value do you suggest for U(0)?)

11.4 Suppose that for a particular commodity, the demand and supply
functions are as follows:

qd(t)=α−βp(t)+νp′(t)
qs(t) =−γ+δp(t)

where α,β,γ,δ,ν > 0 are constants. Assume that the rate of price
change p′(t) at any moment is proportional to the excess demand
(qd − qs):

dp
dt

= j(qd(t)− qs(t))

where j > 0 represents the adjustment coefficient.
Which time path p(t) describes the price when p(0)= p0?
How does the model differ from Example 11.14?

11.5 The expected number of consumers of a new commodity is 96 000.
When a marketing campaign starts there are already 4 000 peo-
ple who know the product. After two months this number has in-
creased to 12 000.

Assume that A(t) is the number of people that already know the
product at time t can be modeled by a logistic differential equation.

(a) Compute function A(t).
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(b) How many people know the product after 6 months?

(c) The marketing campaign should be stopped if two third of all
potential consumers know the product. How long runs the
campaign?

11.6 Consider the following linear first-order differential equation

y′(t)+a y(t)= s

where a and s are constants. Derive a closed form solution of this
equation.

11.7 Consider the following initial value problem

y′(t)+a y(t)= s, y(t0)= y0

where a, s, and y0 are constants. Derive a closed form solution of
this equation.

— Problems

11.8 Let y∗ be a stationary state of the autonomous differential equa-
tion

y′ = F(y)

where F is a continuously differentiable function.

Are the conditions in Theorem 11.20 necessary or sufficient or both
or neither for y∗ being an unstable or asymptotically stable equi-
librium state?

Find examples for the following cases or argue why the respective
case cannot happen.

(a) F ′(y∗)= 0 and y∗ is an unstable equilibrium.

(b) F ′(y∗)< 0 and y∗ is an unstable equilibrium.

(c) F ′(y∗) = 0 and y∗ is a locally asymptotically stable equilib-
rium.

(d) F ′(y∗) > 0 and y∗ is a locally asymptotically stable equilib-
rium.

11.9 The Solow growth model is based on the differential equation

k′ = s f (k)−λk

where k = k(t) denotes capital per worker, s > 0 denotes the con-
stant rate of saving, f is a production function, and λ> 0 denotes
the constant proportional rate of growth of the number of workers.
Assume that f (k)= kα for some α ∈ (0,1).
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(a) Sketch the phase diagram for this differential equation.

(b) Compute the stationary states and estimate whether these
are unstable or asymptotically stable.

(c) If there is a locally asymptotically stable equilibrium, is it
also globally asymptotically stable?

11.10 Consider the following initial value problem:

y′(t)= 2
p

y , y(0)= 0 .

For a > 0 let

ya(t)=
{

0 for t ≤ a,
(t−a)2 for t > a.

(a) Solve the initial value problem by separation of the variables.

(b) Show that ya(t) is differentiable. Compute its derivative.

(c) Show that ya(t) is a solution of the initial value problem.

(d) Why is the solution to this initial value problem not unique?

(e) Is the solution unique if we change the initial value to y(0) =
1?





12
Second-Order

Differential Equations

How can we model the pork cycle?

12.1 Second-Order Differential Equations

A second-order ordinary differential equation is written as Definition 12.1

y′′ = F(t, y, y′)

where F is a given function of three variables and y = y(t) is the un-
known function. Second order differential equations are inevitable for
modeling phenomenons like the pork cycle. However, analyzing second-
order differential equations or even finding explicit solutions is more
challenging than for first-order differential equations. Thus we restrict
our interest on linear equations.

12.2 Second-Order Linear Differential Equations

A second-order linear differential equation is one that can be writ- Definition 12.2
ten as

y′′(t)+a1(t) y′(t)+a2(t) y(t)= s(t) . (12.1)

Analogously to first-order differential equations we also may give initial
values and find a solution curve for this initial value problem. How-
ever, for second-order differential equations it is necessary to specify two
such values; usually a value for the function at some time t0, y(t0) = y0,
as well as its first derivative, y′(t0)= y′0.

Existence and uniqueness. Suppose that a1(t), a2(t), and s(t) are all Theorem 12.3
continuous functions on an open interval (α,β), not necessarily finite.

137
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Let y0 and y′0 be two given numbers and t0 ∈ (α,β). Then differential
equation (12.1) has exactly one solution y(t) on the interval (α,β) that
satisfies y(t0)= y0 and y′(t0)= y′0.

Homogeneous linear equations (i.e., where s(t)= 0 in (12.1)) haveThe set of all solutions forms
a 2-dimensional vector space. the nice property that any linear combination of two solutions is again a

solution of the equation. Indeed, if both u1 and u2 satisfy the homoge-
neous equation

y′′(t)+a1(t) y′(t)+a2(t) y(t)= 0 (12.2)

then we find for u = C1 u1 +C2 u2 where C1,C2 ∈R,

u′′+a1 u′+a2 u

= (C1 u1 +C2 u2)′′+a1 (C1 u1 +C2 u2)′+a2 (C1 u1 +C2 u2)

= C1
[
u′′

1 +a1 u′
1 +a2 u1

]+C2
[
u′′

2 +a1 u′
2 +a2 u2

]
= 0+0= 0 .

That is, u = C1 u1 +C2 u2 is again a solution of (12.2). A consequence
of Theorem 12.3 is that any solution u of (12.2) can be expressed as a
linear combination of these two solutions u1 and u2 provided that they
are linearly independent.

The homogeneous differential equationTheorem 12.4

y′′(t)+a1(t) y′(t)+a2(t) y(t)= 0

has general solution

y(t)= C1 u1(t)+C2 u2(t)

where u1(t) and u2(t) are two independent solutions and C1 and C2 are
arbitrary constants.

For inhomogeneous linear equations we find a result analogous
to Lemma 11.11 on p. 124. Assume that v1 and v2 are solutions of (12.1).
Then we find for their difference, v = v1 −v2,

v′′+a1 v′+a2 v = (v1 −v2)′′+a1 (v1 −v2)′+a2 (v1 −v2)

= (v′′1 +a1 v′1 +a2 v1)− (v′′2 +a1 v′2 +a2 v2)

= s− s = 0 .

That is, v = v1−v2 is a solution of the corresponding homogeneous differ-
ential equation.

The inhomogeneous differential equationTheorem 12.5

y′′(t)+a1(t) y′(t)+a2(t) y(t)= s(t)

has general solution

y(t)= C1 u1(t)+C2 u2(t)+up(t)

where C1 u1(t)+C2 u2(t) is the general solution of the corresponding ho-
mogeneous equation and up(t) is any particular solution of the inhomo-
geneous equation.
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12.3 Constant Coefficients

Homogeneous Differential Equation

Let us consider homogeneous linear differential equations

y′′(t)+a1 y′(t)+a2 y(t)= 0 (12.3)

where the coefficients a1 and a2 are constants. Based on our experiences
with first-order linear differential equations we try the ansatz

y(t)= C eλt

for some constants C and λ. Computing its first and second derivatives
and substituting into equation (12.3) yields

y′(t)=λC eλt and y′′(t)=λ2 C eλt

and thus

C eλt(λ2 +a1λ+a2)= 0 .

Consequently y(t) is a solution of (12.3) if and only if

λ2 +a1λ+a2 = 0 . (12.4)

Equation (12.4) is called the characteristic equation of the homoge-
neous differential equation (12.3). Its two solutions are given by

λ1,2 =−a1

2
±

√
a2

1

4
−a2 .

Generally, there are three different cases to consider. Notice that by
Theorem 12.4 have to find two basis functions for the vector space of all
solutions.

Case a2
1

4 − a2 > 0. We have two distinct real roots λ1 and λ2 and the
general solution is given by

y(t)= C1 eλ1 t +C2 eλ2 t , where λ1,2 =−a1

2
±

√
a2

1

4
−a2 .

We want to compute the general solution of y′′− y′−2y= 0. Example 12.6

SOLUTION. Using the ansatz y(t) = eλt we find the characteristic equa-
tion λ2 −λ−2= 0, with distinct real roots λ1 =−1 and λ2 = 2. Hence the

t

general solution is given by

y(t)= C1e−t +C2e2t . ♦
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Case a2
1

4 −a2 = 0. We have only one real (double) root λ=− a1
2 and thus

one solution is given by

y1(t)= eλt .

However we need a second solution as well. Consider

y′′(t)+a1 y′(t)+ (a2 −ε) y(t)= 0 (∗)

for some ε> 0 with characteristic roots

λ1,2 =−a1

2
±

√
a2

1

4
−a2 +ε=λ±δ(ε) .

Hence function

yε(t)= e(λ+δ(ε))t − e(λ−δ(ε))t

2δ(ε)
= eλt eδ(ε)t − e−δ(ε)t

2δ(ε)

is a solution of (∗). By the Mean Value Theorem there exists a δ̃(ϵ, t) such
that

yε(t)= eλtteδ̃(ε,t)t .

Observe that δ̃(ε, t) ∈ [−δ(ε)t,δ(ε)t
]

and that δ(ε)→ 0 as ε→ 0. Hence we
may expect that we may obtain another solution to our original differen-
tial differential equation (12.3) by setting δ= 0.

Indeed we claim that

y2(t)= t eλt

also satisfies (12.3). Differentiating gives

y′2(t)=λ t eλt + eλt = (λt+1) eλx ,

y′′2 (t)=λ2 t eλt +λ eλt +λ eλt = (λ2t+2λ) eλt .

Substituting into (12.3) yields[
(λ2t+2λ)+a1(λt+1)+a2t

]
eλt

=
[(

a2
1

4
t−a1

)
+a1

(
−a1

2
t+1

)
+a2 t

]
eλt

=
[

a2
1

4
t−a1 −

a2
1

2
t+a1 +

a2
1

4
t

]
eλt = 0 , as claimed.

For the first equation we used the fact that λ = − a1
2 and for the second

equation we used that a2
1

4 −a2 = 0 and thus a2 = a2
1

4 .
Therefore the solution in the case of one double root is given by

y(t)= (C1 +C2 t) eλt , where λ=−a1

2
.

We want to compute the general solution of y′′+4y′+4y= 0.Example 12.7

SOLUTION. Using the ansatz y(t) = eλt we find the characteristic equa-
tion λ2 +4λ+4 = 0, with one real double root λ=−2. Hence the general

t

solution is given by

y(t)= (C1 +C2t)e−2t . ♦
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Case a2
1

4 −a2 < 0. We have two distinct complex roots

λ= a+bi and λ= a−bi

where

Re(λ)= a =−a1

2
and Im(λ)= b =

√∣∣∣ a2
1

4 −a2

∣∣∣
and thus the general solution is given by

y(t)= C̃1 e(a+bi)t + C̃2 e(a−bi)t .

However, we are only interested in real solutions. By Euler’s formula
(p. 171) we find

y(t)= C̃1 e(a+bi)t + C̃2 e(a−bi)t = eat
[
C̃1 ebit + C̃2 e−bit

]
= eat [

C̃1 (cos(bt)+ isin(bt))+ C̃2(cos(bt)− isin(bt))
]

= eat [
(C̃1 + C̃2) cos(bt)+ i (C̃1 − C̃2) sin(bt)

]
= eat [C1 cos(bt)+C2 sin(bt)]

where we set C1 = (C̃1+C̃2) and C2 = i (C̃1−C̃2) for the last equation. We
therefore find for the general solution

y(t)= eat [C1 cos(bt)+C2 sin(bt)]

where a =−a1

2
and b =

√∣∣∣ a2
1

4 −a2

∣∣∣ .

These solutions of second-order linear differential equations describe an
oscillating behavior and thus can be used to model cycles in economics.

We want to compute the general solution of y′′+ y′+ y= 0. Example 12.8

SOLUTION. The characteristic equation λ2 +λ+1 = 0 has two complex
roots λ1,2 =−1

2 ±
p

3
2 i with Re(λ)= a =−1

2 and Im(λ)= b =
p

3
2 . Hence the

t
general solution is given by

y(t)= e−
1
2 t

[
C1 cos

(p
3

2 t
)
+C2 sin

(p
3

2 t
)]

. ♦

Inhomogeneous Differential Equation

Solutions of inhomogeneous linear differential equations with constant
coefficients a1, a2 and s are constants,

y′′(t)+a1 y′(t)+a2 y(t)= s , (12.5)

can be solved by means of Theorem 12.5. Its general solution is given by

y= yh + yp
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where yh is the general solution of the corresponding homogeneous equa-
tion (12.3) and yp is a particular solution of (12.5). As all coefficients are
constant we use

yp(t)=
{ s

a2
if a2 ̸= 0,

s
a1

t if a2 = 0 and a1 ̸= 0.

We want to find the solution of the initial value problemExample 12.9

y′′(t)+ y′(t)−2y(t)=−10 , y(0)= 12, y′(0)=−2 .

SOLUTION. The characteristic equation λ2 +λ−2 = 0 has two distinct
real roots λ1 = 1 and λ2 = −2. Thus the solution to the corresponding
homogeneous equation is given by

yh(t)= C1 et +C2 e−2t .

A particular solution of the inhomogeneous equation is given by

yp(t)= s
a2

= −10
−2

= 5

and hence the general solution for the inhomogeneous differential equa-
tion is

y(t)= yh(t)+ yp(t)= C1 et +C2 e−2t +5 .

Substituting the initial values yields the system of linear equations

12= y(0)= C1 +C2 +5

−2= y′(0)= C1 −2C2

with unique solution C1 = 4 and C2 = 3. Therefore the solution of the
initial value problem is given by

t y(t)= 4et +3e−2t +5 . ♦

12.4 Stability for Linear Differential Equations

Let y′(t)+a y(t) = s be a first-order linear differential equation with ini-
tial value y(0)= y0. It has solution y(t)= (y0 − y∗) e−at + y∗ where y∗ = s

a
(provided that a ̸= 0). We have seen in Section 11.6 that y∗ is an equi-
librium point of this differential equation. Moreover, it is globally
asymptotically stable if and only if a > 0, since then the solution curve
eventually approaches y∗ when t tends to ∞. Notice we also can state
this fact in the following way.

y∗ = s
a is a globally asymptotically stable state of y′(t)+a y(t) = s (a ̸= 0)Theorem 12.10

if and only if the root of equation λ+a = 0 is negative.
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For second-order linear differential equations y′′(t)+a1 y′(t)+a2 y(t)=
s we find that y∗ = s

a2
is an equilibrium point (provided that a2 ̸= 0). In

Section 12.3 above we had to distinguish between three cases depending
on the roots of the characteristic equation (12.4), λ2 +a1λ+a2 = 0.

If a2
1

4 −a2 > 0 we have solutions y(t) = C1 eλ1 t +C2 eλ2 t where λ1,2 are
two distinct real solutions of the characteristic equation. These solutions
converge to y∗ in general for t →∞ if and only if both roots are negative.

If a2
1

4 −a2 = 0 we found y(t) = (C1 +C2t) eλt where λ is the real (dou-
ble) solution root of the characteristic equation. Again these solutions
converge to y∗ in general for t →∞ if and only if λ< 0.

If a2
1

4 −a2 < 0 we have solutions y(t)= eat [C1 cos(bt)+C2 sin(bt)] where
a = − a1

2 is the real part of the complex roots of the characteristic equa-

tions and b =
√∣∣∣ a2

1
4 −a2

∣∣∣ is the imaginary part. The real part a of root λ

controls whether the oscillating solutions is damped or not.

t t t

Re(λ)< 0 Re(λ)= 0 Re(λ)> 0

We summarize our observations in the following theorem.

y∗ = s
a2

is a globally asymptotically stable state of y′′(t)+a1 y′(t)+a2 y(t)= Theorem 12.11
s (a2 ̸= 0) if and only if the real parts of all roots of the characteristic
equation λ2 +a1λ+a2 = 0 are all negative.
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— Exercises

12.1 Compute the solution of differential equation y′′ = x2 +2x−5 with
initial values y(0)= 0 and y′(0)= 3.

12.2 Compute the solution of y′′+ y′−2y = 3 with initial values y(0) =
y′(0)= 1.
Is there an asymptotically stable state for the differential equa-
tion?

12.3 Compute the solution of y′′−6y′+9y= 0 with initial values y(0)= 2
and y′(0)= 0.
Is there an asymptotically stable state for the differential equa-
tion?

12.4 Compute the solution of y′′+2y′+17y= 0 with initial values y(0)=
1 and y′(0)= 0.
Sketch (draw) the graph of your solution.
Is there an asymptotically stable state for the differential equa-
tion?

12.5 A model by T. Haavelmo leads to an equation of the type

p′′(t)= γ (a−α) p(t)+k . (α, γ, a, and k are constants)

Solve the equation.



13
Systems of

Differential Equations

Foxes and rabbits.

13.1 Simultaneous Equations of Differential
Equations

We assume that we have two unknown functions y1 and y2 where the
derivative of each simultaneously depends on both functions, i.e.,

y′1 = F1(t, y1, y2) ,

y′2 = F2(t, y1, y2) .
(13.1)

Using a vector-valued function this can also be written as

y′ =F(t,y) . (13.2)

We further assume that all components of F and all partial derivatives
w.r.t. yi are continuous. A solution y(t) of (13.2) is then a differentiable
function where its derivative y′ satisfies this equation for each of its
components. Notice that y(t) is a path in R2 (or more general in Rn).

One method for finding explicit solutions for a system (13.1) of two Of course we can exchange
the rôles of y1 and y2.differential equation is to reduce it into one second-order differential

equation using the following procedure:

1. Use y′1 = F1(t, y1, y2) and express y2 as a function of t, y1 and y′1:
y2 = H(t, y1, y′1).

2. Differentiate this equation w.r.t. t and substitute the expressions
for y2 and y′2 into the second equation y′2 = F2(t, y1, y2). We then
obtain a second-order differential equation for y1.

3. Solve this equation and determine y1(t).
Then find y2(t)= H(t, y1(t), y′1(t)).

145
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Find the general solution of the systemExample 13.1

y′1 = 4y1 + y2 +2 ,

y′2 =−2y1 + y2 +8 .

Also find the particular solution with initial values y1(0)= y2(0)= 0.

SOLUTION. Solving the first equation for y2 and differentiation yields

y2 = y′1 −4y1 −2 ,

y′2 = y′′1 −4y′1 .

Substituting these expressions in the second equation gives

y′′1 −4y′1 =−2y1 + (y′1 −4y1 −2)+8

which simplifies to

y′′1 −5y′1 +6y1 = 6 .

Using our methods from Section 12.3 gives the general solution

y1(t)= C1 e2t +C2 e3t +1 .

From y2 = y′1 −4y1 −2 we get

y2 = y′1 −4y1 −2

= (2C1 e2t +3C2 e3t)−4(C1 e2t +C2 e3t +1)−2

=−2C1 e2t −C2 e3t −6 .

Thus the general solution of this system of differential equations is given
by (

y1(t)
y2(t)

)
= C1 e2t

(
1
−2

)
+C2 e3t

(
1
−1

)
+

(
1
−6

)
.

For the particular solution of the initial value problem we have to solve
the linear equation(

0
0

)
=

(
y1(0)
y2(0)

)
= C1

(
1
−2

)
+C2

(
1
−1

)
+

(
1
−6

)
which gives C1 =−5 and C2 = 4 and therefore(

y1(t)
y2(t)

)
=−5 e2t

(
1
−2

)
+4 e3t

(
1
−1

)
+

(
1
−6

)
. ♦

Notice, however, that this method only works in special cases. As we
will see below, it is often easier to analyze a system of first-order differen-
tial equation than a single second-order differential equation. Therefore
one often uses the reverse of the above procedure to transform a second-
order differential equation y′′ = F(t, y, y′) into a system of two first-order
differential equations. Setting v = y′ we find

y′ = v ,

v′ = F(t, y,v) .
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13.2 Linear Systems with Constant Coefficients

Consider the linear system(
y′1
y′2

)
=

(
a11 a12
a21 a22

)(
y1
y2

)
+

(
s1
s2

)
or equivalently y′ =Ay+s (13.3)

where A and s are constant.

The system in Example 13.1 is a linear system: Example 13.2(
y′1
y′2

)
=

(
4 1
−2 1

)(
y1
y2

)
+

(
2
8

)
♦

Homogeneous Systems

Again we first start with homogeneous systems, i.e.,

y′ =Ay . (13.4)

Based on our experiences with single first-order linear equations and
motivated by Example 13.1 we try the ansatz(

y1(t)
y2(t)

)
=

(
v1 eλt

v2 eλt

)
= eλt

(
v1
v2

)
.

We then find

Aeλt
(
v1
v2

)
=A

(
y1
y2

)
=

(
y′1(t)
y′2(t)

)
=λeλt

(
v1
v2

)
.

Canceling the factor eλt gives the equation

A
(
v1
v2

)
=λ

(
v1
v2

)
.

That is v=
(
v1
v2

)
is an eigenvector of A corresponding to eigenvalue λ.

The case in which A has two distinct real eigenvalues λ1 and λ2 is
the simplest. Then the respective eigenvectors v1 and v2 are linearly Analogously to Theo-

rem 12.4, the set of all so-
lutions forms a vector space.

independent and we get a general solution for the homogeneous system
(13.4) as

y(t)= C1 eλ1 tv1 +C2 eλ2 tv2 .

Find the general solution of the homogeneous linear system Example 13.3(
y′1
y′2

)
=

(
4 1
−2 1

)(
y1
y2

)
.

SOLUTION. Matrix A =
(

4 1
−2 1

)
has eigenvalues λ1 = 2 and λ2 = 3 with

corresponding eigenvectors v1 =
(

1
−2

)
and v2 =

(
1
−1

)
. Hence the general

solution is given by(
y1(t)
y2(t)

)
= C1 e2t

(
1
−2

)
+C2 e3t

(
1
−1

)
. ♦
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Inhomogeneous Systems

Consider the inhomogeneous system (13.3),

y′ =Ay+s

Assume that there exists a point y∗ such that Ay∗+s= 0. Then y∗ is anSuch a y∗ exists if A is in-
vertible. equilibrium state of (13.3). Analogously to Theorem 12.5, y−y∗ is then

a solution of the homogeneous system (13.4). Thus the general solution
is given by

y(t)= yh(t)+y∗

where yh is the general solution of the corresponding homogeneous equa-
tion. If A has two distinct real eigenvalues λ1 and λ2 with respective
eigenvectors v1 and v2 we obtain the general solution by

y(t)= C1 eλ1 tv1 +C2 eλ2 tv2 +y∗ .

Find the general solution of the inhomogeneous linear systemExample 13.4 (
y′1
y′2

)
=

(
4 1
−2 1

)(
y1
y2

)
+

(
2
8

)
.

Also find the particular solution with initial values y1(0)= y2(0)= 0.

SOLUTION. The solution of the corresponding homogeneous solution is
(see Example 13.3)

yh(t)=
(
y1(t)
y2(t)

)
= C1 e2t

(
1
−2

)
+C2 e3t

(
1
−1

)
.

The particular solution y∗ is a solution of the linear equation

Ay∗+s=
(

4 1
−2 1

)(
y∗1
y∗2

)
+

(
2
8

)
= 0

which yields

y∗ =
(

1
−6

)
.

Thus the general solution is given by

y(t)= yh(t)+y∗ = C1 e2t
(

1
−2

)
+C2 e3t

(
1
−1

)
+

(
1
−6

)
.

This of course coincides with our solution in Example 13.1. (The remain-
ing computation for the particular solution of the initial value problem
is thus completely the same.) ♦
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13.3 Equilibrium Points for Linear Systems

Equilibrium point. A solution y∗ of Ay=−s induces a constant solution Definition 13.5
y(t) = y∗ for the inhomogeneous system (13.3). Hence y∗ is called an
equilibrium state of system (13.3).

Source. The general solution in Example 13.4, Example 13.6

y(t)= C1 e2t
(

1
−2

)
+C2 e3t

(
1
−1

)
+

(
1
−6

)
has the property that every solution path that starts close to the equilib-

rium point y∗ =
(

1
−6

)
moves away from this point. Thus y∗ is called an

unstable equilibrium point (or source). This property is an immedi-
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ate consequence of the fact that both eigenvalues λ1 and λ2 are positive
real numbers.

Sink. Find the general solution of the linear system Example 13.7(
y′1
y′2

)
=

(
1 1
−6 −4

)(
y1
y2

)
.

SOLUTION. Matrix A =
(

1 1
−6 −4

)
has eigenvalues λ1 = −1 and λ2 = −2

with respective eigenvectors v1 =
(

1
−2

)
and v2 =

(
1
−3

)
. Hence the general

solution is given by(
y1(t)
y2(t)

)
= C1 e−t

(
1
−2

)
+C2 e−2t

(
1
−3

)
. ♦
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In Example 13.7 every solution curve moves towards the point y∗ = 0.
Therefore y∗ is called a (globally) asymptotically stable equilibrium
state (also called a sink). Notice that in this case both eigenvalues λ1
and λ2 are negative. The tangent of the solution curve in the limit point
y∗ is given by v1, i.e., the eigenvector corresponding to the larger of the
two eigenvalues λ1 =−1>−2=λ2.

Saddle point. Find the general solution of the linear system Example 13.8(
y′1
y′2

)
=

(
0 1
1 0

)(
y1
y2

)
.

SOLUTION. Matrix A =
(
0 1
1 0

)
has eigenvalues λ1 = 1 and λ2 = −1 with

respective eigenvectors v1 =
(
1
1

)
and v2 =

(
1
−1

)
. Hence the general solu-

tion is given by(
y1(t)
y2(t)

)
= C1 et

(
1
1

)
+C2 e−t

(
1
−1

)
. ♦ -10 -5 0 5 10

-10

-5

0

5

10

y

x
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The two eigenvalues in Example 13.8 are both real but have opposite
signs. Thus a solution curve converges if and only if C1 = 0, i.e., if and

only if y(t) = C2 e−t
(

1
−1

)
. All other solution curves diverge. Such an

equilibrium point is called a saddle point of the system of differential
equations. Notice that the image of the converging curve is a subset
of the straight line spanned by the eigenvector v2 corresponding to the
negative eigenvalue. It is called a saddle path solution.

Oscillating curve. Find the general solution of the linear systemExample 13.9 (
y′1
y′2

)
=

(
0 2
−2 −2

)(
y1
y2

)
.

SOLUTION. Matrix A=
(

0 2
−2 −2

)
has complex eigenvalues λ1 =λ=−1+

p
3i and λ2 = λ = −1−p

3i with respective eigenvectors v1 =
(

2
−1+p

3i

)
and v2 =

(
2

−1−p
3i

)
. Hence the general solution is given by

(
y1(t)
y2(t)

)
= C1 e(−1+p3i)t

(
2

−1+p
3i

)
+C2 e(−1−p3i)t

(
2

−1−p
3i

)
.

A tedious straightforward computation gives the (real-valued) general
solution

y(t)= e−t

(
C1 cos(

p
3t)+ 2(C1+C2)−C1p

3
sin(

p
3t)

C2 cos(
p

3t)− 2C1+C2p
3

sin(
p

3t)

)
♦
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Example 13.9 shows an example for a system where the equilibrium
point y∗ = 0 is asymptotically stable. However, in this example we have
two complex eigenvalues. Notice that convergence is caused by the neg-
ative real parts of both eigenvalues, Re(λ)=−1.

Center. Find the general solution of the linear systemExample 13.10 (
y′1
y′2

)
=

(
0 1
−1 0

)(
y1
y2

)
.

SOLUTION. Matrix A=
(

0 1
−1 0

)
has purely imaginary eigenvalues λ1 = i

and λ2 = −i with respective eigenvectors v1 =
(
1
i

)
and v2 =

(
1
−i

)
. Hence

the general solution is given by(
y1(t)
y2(t)

)
= C̃1 eit

(
1
i

)
+ C̃2 e−it

(
1
−i

)
.
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Using Euler’s formula we find(
y1(t)
y2(t)

)
=

(
(C̃1 + C̃2)cos t+ i(C̃1 − C̃2)sin t
i(C̃1 − C̃2)cos t− (C̃1 + C̃2)sin t

)
=

(
C1 cos t+C2 sin t
C2 cos t−C1 sin t

)
= C1

(
cos t
−sin t

)
+C2

(
sin t
cos t

)
where we set C1 = (C̃1 + C̃2) and C2 = i (C̃1 − C̃2). ♦ -10 -5 0 5 10
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In Example 13.10 the real parts of both eigenvalues are 0. None of
the solution curve converges towards the equilibrium point y∗ = 0 nor
do they diverge. However, all curves are periodic with the same period
length. All solution curves are ellipses or circles. The point y∗ is called
a center.

We summarize our observations in the following theorem.

Stability of an equlibrium point. Let y∗ be an equilibrium point of Theorem 13.11

y′ =Ay+s (13.5)

where both eigenvalues of A ∈R2×2 are non-zero.

(a) y∗ is an asymptotically stable equilibrium state (or sink) of (13.5) if
and only if all eigenvalues of A have negative real parts.

(b) y∗ is an unstable equilibrium point (or source) if and only if all eigen-
values of A have positive real parts.

(c) y∗ is a saddle point of (13.5) if and only if both eigenvalues of A are
non-zero real numbers of opposite signs.

(d) y∗ is a center of (13.5) if and only if all eigenvalues of A are purely
imaginary.

Fortunately it is possible to distinguish between these cases without
computing the eigenvalues explicitly. For this purpose we need a result
from linear algebra.

The trace of a matrix A =
(
a11 a12
a21 a22

)
is the sum of its diagonal entries, Definition 13.12

i.e., tr(A)= a11 +a22 .

Let A be a 2×2 matrix with (real or complex) eigenvalues λ1 and λ2. Lemma 13.13
Then

tr(A)=λ1 +λ2

and

det(A)=λ1 ·λ2 .
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We can distinguish between these types of equilibrium points by
means of the trace and the determinant of A.

Let y∗ be an equilibrium point ofTheorem 13.14

y′ =Ay+s (13.6)

where A ∈R2×2 has non-zero determinant.

(a) y∗ is an asymptotically stable equilibrium point (or sink) if and only
if det(A)> 0 and tr(A)< 0.

(b) y∗ is an unstable equilibrium point (or source) if and only if det(A)> 0
and tr(A)> 0.

(c) y∗ is a saddle point of (13.6) if and only if det(A)< 0.

(d) y∗ is a center of (13.6) if and only if tr(A)= 0 and det(A)> 0.

13.4 Stability for Non-Linear Systems

A system of differential equations is called autonomous if F does not
depend directly on the independent variable t, i.e., if the equation be-
comes

y′ =F(y) . (13.7)

Again a point y∗ is called an equilibrium point of (13.7) if F(y∗)= 0.
It is called locally asymptotically stable if any path starting near y∗

converges to y∗ as t →∞.
To examine whether an equilibrium point y∗ is locally asymptotically

stable it is sufficient to replace F by a linear approximation, i.e., by its
Jacobian,

F(y)≈F′(y∗) · (y−y∗) .

Thus we find the following sufficient characterization.

Lyapunov’s Theorem. Let F : R2 → R2 be a C 1 function and let y∗ beTheorem 13.15
an equilibrium point of system (13.7). If both eigenvalue of the Jacobian
F′(y∗) have negative real parts (i.e., tr(F′(y∗)) < 0 and det(F′(y∗)) > 0),
then y∗ is locally asymptotically stable.

Consider the following system of differential equations.Example 13.16

y′ =F(y)=
(−4y2

1 −3y1 −2y1 y2 + y4
2

2y2
1 y2

2 − y1 − y2 + y2
2

)
Show that y∗ = (0,0) is an asymptotically stable equilibrium point.



13.4 STABILITY FOR NON-LINEAR SYSTEMS 153

SOLUTION. Obviously F(0,0) = 0 and thus y∗ is an equilibrium point.
Its Jacobian matrix is given by

F′(0,0)=
(−3 0
−1 −1

)
, tr

(
F′(0,0)

)=−4< 0 , det
(
F′(0,0)

)= 3> 0 ,

and thus y∗ = (0,0) is locally asymptotically stable. ♦

Olech’s Theorem. Let F : R2 → R2 be a C 1 function and let y∗ be an Theorem 13.17
equilibrium point of system (13.7). Assume that for all y ∈R2 both eigen-
values of the Jacobian F′(y) have negative real parts (i.e., tr(F′(y)) < 0
and det(F′(y))> 0), and

F ′
11(y)F ′

22(y) ̸= 0 for all y ∈R2 or F ′
12(y)F ′

21(y) ̸= 0 for all y ∈R2,

then y∗ is globally asymptotically stable.

Consider the following system of differential equations. Example 13.18

y′ =F(y)=
(−y3

1 − y1 − y3
2 − y2

2y1 −3y2

)
Show that y∗ = (0,0) is an globally asymptotically stable equilibrium
point.

SOLUTION. Obviously F(0,0) = 0 and thus y∗ is an equilibrium point.
Its Jacobian matrix is given by

F′(y1, y2)=
(−3y2

1 −1 −3y2
2 −1

2 −3

)
.

Thus

tr(F′(y1, y2))=−3y2
1 −4< 0,

det(F′(y1, y2))= 9y2
1 +6y2

2 +5> 0,

F ′
11(y)F ′

22(y)= 9y2
1 +3 ̸= 0

for all y ∈ R2 and therefore y∗ = (0,0) is globally asymptotically stable.
♦

Local saddle point. Let F : R2 → R2 be a C 1 function and let y∗ be an Theorem 13.19
equilibrium point of system (13.7). If both eigenvalue of the Jacobian
F′(y∗) are non-zero real numbers of opposite signs (i.e., det(F′(y∗)) < 0),
then y∗ is a local saddle point. Moreover, for any given starting point
t0 there exist exactly two solution paths y1(t) and y2(t) defined on [t0,∞)
that converge towards y∗ from opposite directions in the phase plane. As
t →∞, both paths become “tangent in the limit” to the line through y∗

with the same direction as the eigenvector corresponding to the negative
eigenvalue of F′(y∗). These curves are called saddle path solutions . saddle path solution
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Lotka-Volterra Equation. Consider the celebrated Lotka-Volterra pre-Example 13.20
dator-prey model.(

x′

y′
)
=F(x, y)=

(
x(α−βy)
−y(γ−δx)

)
where α,β,γ,δ> 0.

Here x is the population of prey (say rabbits) and y is the population of
predator (say foxes). Show that y∗ = (0,0) is a local saddle point. Com-
pute the tangent line at y∗ for the saddle path solutions.

SOLUTION. Obviously F(0,0) = 0 and thus y∗ is an equilibrium point.
Its Jacobian matrix is given by

F′(x, y)=
(
α−βy −βx
δy −γ+δx

)
, F′(0,0)=

(
α 0
0 −γ

)
.

As can be easily seen F′(0,0) has λ1 = α > 0 and λ2 = −γ and thus y∗ =Alternatively:
det(F′(0,0))=−αγ< 0. (0,0) is a local saddle point. Eigenvector v2 = (0,1) corresponds to the

negative eigenvalue λ2. Thus x = 0 is the tangent line to the saddle path
solutions. ♦

The other stationary points that we have characterized in Theorem
13.11 for linear differential equations, sources and centers, can occur as
well.

If both eigenvalues have positive real parts, then solutions that start
close to the equilibrium point y∗ move away from it and the point is a
source. However, such solutions may still be bounded.

If the eigenvalues are purely imaginary or 0, no definite statement
about the limiting behavior of the solution can be made.

The point (0,0) is not an interesting point for the Lotka-Volterra modelExample 13.21
as then there are neither rabbits nor foxes. However, there is a second
stationary point of the Lotka-Volterra equation, y∗ = (γ/δ,α/β). Its Jaco-
bian matrix is given by

F′(γ/δ,α/β)=
(

0 −βγ

δ
αδ
β

0

)
,

with eigenvalues λ1 = ipαγ and λ2 = −ipαγ. As these eigenvalues are
both purely imaginary, no conclusions can be drawn from a linear ap-
proximation of F. ♦

Stable point. An equilibrium point y∗ of the autonomous system (13.7)Definition 13.22
is called stable if for every ε> 0 there exists a δ> 0 such that ∥y0 −y∗∥ <
δ implies that every solution y(t) that satisfies y(0)= y0 is defined for all
t > 0 and satisfies∥∥y(t)−y∗∥∥< ε for all t > 0.

That means that solutions with initial point close to y∗ remain near this
point. In opposition to a locally asymptotically stable point, solutions
need not converge to y∗.
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Notice that the centers in Theorem 13.11 are stable equilibrium points.

Lyapunov function. Let V : R2 → R be a positive definite C 1 function Definition 13.23
in an open neighborhood D of y∗, that is, V (y∗) = 0 and V (x) > 0 for all
x ∈ D \ {y∗}. Let y(t) be a solution of the autonomous system (13.7). For
the derivative of V

(
y(t)

)
, i.e., of V along the solution curve, we find by

the chain rule

d
dt

V
(
y(t)

)=∇V
(
y(t)

) ·y′(t)=∇V
(
y(t)

) ·F(
y(t)

)
. (13.8)

If (13.8) is non-positive for all y ∈ D, then V (y) is called a Lyapunov
function for the autonomous system. If (13.8) is negative for all y ∈ D \
{y∗}, then V is called a strong Lyapunov function for the autonomous
system.

Lyapunov’s Theorem. Let y∗ be an equilibrium point for the autonomous Theorem 13.24
system (13.7). If there exists a Lyapunov function in an open neighbor-
hood D of y∗. Then y∗ is a stable equilibrium point. If there exists a
strong Lyapunov function for the system, then y∗ is a locally asymptoti-
cally stable equilibrium point.

Prove that y∗ = (x∗, y∗) = (γ/δ,α/β) is a stable equilibrium point of the Example 13.25
Lotka-Volterra equation.

SOLUTION. Let

H(x, y)= δ(x− x∗ ln x)+β(y− y∗ ln y) .

We claim that V (x, y)= H(x, y)−H(x∗, y∗) is a Lyapunov function. In fact
we find for its gradient

V ′(x, y)=
(
δ(1− x∗

x ), β(1− y∗
y )

)
, V ′(x∗, y∗)= (0,0)

that is, (x∗, y∗) is a stationary point of V . All eigenvalues of its Hessian

V ′′(x, y)=
(
δ x∗

x2 0
0 β

y∗

y2

)
are positive and thus V is strict convex and (x∗, y∗) is a strict global
minimum of V . Consequently, as

V (x∗, y∗)= H(x∗, y∗)−H(x∗, y∗)= 0

V is positive definite. Moreover, as x∗ = γ/δ and y∗ =α/β we find

d
dt

V (x(t), y(t))=∇V (x, y) ·
(
x′(t)
y′(t)

)
= δ(1− x∗/x) x(α−βy)+β(1− y∗/y) (−y(γ−δx))= 0 .

Thus y∗ = (x∗, y∗) is a stable equilibrium point. In fact d
dt V (x(t), y(t))= 0

even implies that V (x, y) is constant along every solution curve. One can
prove that this also implies that these solutions are closed curves. ♦
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13.5 Phase Plane Analysis

For an autonomous system of differential equations

y′ =F(y) (13.9)

the derivative of the solution curve y(t) only depends on the particular
point (y1(t), y2(t)) but not on t. Thus for each point (y1, y2) we can draw
the corresponding derivative y′ into the y1 y2-plane. Again we obtain a
direction field (also called vector field) which we can use to analyze
the properties of solution curves by visual inspection even when we do
not have an explicit solution of the system.

For this purpose we can draw the curves where y′1 = 0 and y′2 = 0.
These curves are called the nullclines of the system. Their intersections
are just the equilibrium points of the system. Moreover, these nullclines
partition the plane into regions where the directions of increase or de-
crease of each variable remain constant. The resulting diagram is called
the phase diagram of the system. It provides some useful information
about possible solution paths of our system.

Consider the autonomous system of differential equations:Example 13.26

x′ = x2 − y2

y′ = x2 + y2 −1

We find the following phase diagram. Notice that it has four equilibrium
points. On each point of a nullcline the derivative of the corresponding
variable is 0.

x

y
x′ = 0

x′ = 0

y′ = 0

y′ = 0

sink saddle point

saddle point source
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— Exercises

13.1 Find the general solutions of the following systems and draw (sketch)
the respective solution curves:

(a) x′ =−3x−2y
y′ =−2x−6y

(b) x′ = 2x+3y
y′ = 4x+13y

(c) x′ =−x+5y
y′ = 5x− y

Use both methods:

(1) reduction to a second order differential equation, and

(2) eigenvalues and eigenvectors.

13.2 Find the general solutions of the following systems and draw (sketch)
the respective solution curves. Find all equilibrium points and
check their stability.

(a) x′ =−3x−2y+1
y′ =−2x−6y−4

(b) x′ = 2x+3y+1
y′ = 4x+13y−5

(c) x′ =−x+5y+1
y′ = 5x− y−5

13.3 For which values of the constant a are the following systems glob-
ally asymptotically stable?

(a) x′ = ax− y
y′ = x+ay

(b) x′ = ax− (2a−4)y
y′ = x+2ay

13.4 Determine (if possible) the local asymptotic stability of the follow-
ing systems at the given stationary points. Are these also globally
asymptotically stable?

(a) x′ =−x+ 1
2 y2

y′ = 2x−2y
at (0,0)

(b) x′ =−x3 − y
y′ = x− y3

at (0,0)

(c) x′ = x−3y+2x2 + y2 − xy
y′ = 2x− y− ex−y

at (1,1)

13.5 Show that (0,0) is a globally asymptotically stable equilibrium point
for the system

x′ = y
y′ =−ky−w2x

(k > 0, w ̸= 0)

13.6 Prove that (0,0) is a locally asymptotically stable point of

x′ =−x3 − y
y′ = x− y3

HINT: Show that V (x, y)= x2 + y2 is a strong Lyapunov function.
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13.7 Consider the differential equation for p > 0.

p′(t)= a
(

b
p(t)

− c
)

where a,b, c are positive constants.

Find the equilibrium point and prove that it is locally asymptoti-
cally stable using Lyapunov function V (p)= (p−b/c)2.

13.8 Draw the phase diagram for the Lotka-Volterra equation (see Ex-
ample 13.20).

13.9 Consider the following generalization of the Lotka-Volterra sys-
tem:

x′ = x(α−εx−βy)
y′ = y(−γ+δx−ηy)

(α,β,γ,δ,ε,η> 0)

with δα> γε. Verify that

(x∗, y∗)=
(
βγ+αη
βδ+ηε ,

δα−γε
βδ+ηε

)
is an equilibrium point. Is it locally asymptotically stable?

13.10 Deduce Theorem 13.14 from Theorem 13.11.HINT: Use Lemma 13.13.



14
Control Theory

Drive your vehicle as fast as possible but do not leave the road.

14.1 The Control Problem

Economic growth. We want to maximize the total consumption in a Example 14.1
country over time interval [0,T]. That is, we have to solve the problem

max
0≤s(t)≤1

∫ T

0

(
1− s(t)

)
f
(
k(t)

)
dt

where f (k) denotes the production function, k(t) is the real capital stock
of the country at time t, and s(t) is the rate of investment at time t.
The integrand

(
1− s(t)

)
f
(
k(t)

)
in our problem is the flow of consumption

per unit of time. It is called the objective function of this optimization
problem.

The capital stock k(t) has to satisfy the initial value problem (differ-
ential equation)

k′(t)= s(t) f
(
k(t)

)
, k(0)= k0 .

Moreover, we may wish to leave some capital stock kT at time T, i.e.,

k(T)≥ kT .

The only quantity that can be chosen freely at any time t is the rate
of investment, s(t). It is called the control function of our problem. It is
quite natural to assume that s ∈ [0,1]. This is called the control region.

In summary we have to solve the following optimal control problem:

max
0≤s(t)≤1

∫ T

0

(
1− s(t)

)
f
(
k(t)

)
dt, s ∈ [0,1],

k′(t)= s(t) f
(
k(t)

)
, k(0)= k0, k(T)≥ kT .

159
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Oil extraction. Suppose that y(t) denotes the amount of oil in someExample 14.2
reservoir at time t. The rate of extraction is then given by its first deriva-
tive, i.e., u(t) = −y′(t). So if p(t) denotes the market price of oil and
C(t, y,u) extraction cost per unit of time, then the instantaneous rate of
profit is given by

π(t, y(t),u(t))= p(t)u(t)−C(t, y(t),u(t)) .

Hence if we denote the (constant) discount rate by r, then total dis-
counted rate of profit over the time interval [0,T] is given by∫ T

0

[
p(t)u(t)−C(t, y(t),u(t))

]
e−rt dt .

Again we want to maximize our revenue. It is natural to assume that
y(t) ≥ 0 and u(t) ≥ 0 for all t. Therefore we have to solve the following
optimal control problem:

max
u(t)≥0

∫ T

0

[
p(t)u(t)−C(t, y(t),u(t))

]
e−rt dt, u ∈ [0,∞),

y′(t)=−u(t), y(0)= y0, y(T)≥ 0 .

Here the rate of extraction u can be chosen freely (within the given con-
trol region) and is thus the control variable in this problem. It is now
our task to find an optimal extraction process that optimizes our profit.
However, we may distinguish between two case scenarios.

Case 1: The time horizon T is fixed. We plan to stop production at
time T.

Case 2: There is no fixed date T when we stop extraction. So we have
to find the optimal time stopping time T and together with an optimal
extraction process u.

14.2 The Standard Problem (T fixed)

We restrict our interest to the standard end constraint problem:

(C1) Find maximum

max
u

∫ T

0
f (t, y,u)dt, u ∈U ⊆R.

Function f is called the objective function, u is the control
function, and U is the control region.

(C2) The state variable y has to satisfy the following controlled differ-
ential equation (initial value problem)

y′ = g(t, y,u), y(0)= y0,

(C3) and one of the following terminal conditions:
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(a) y(T)= y1,

(b) y(T)≥ y1 [or: y(T)≤ y1],

(c) y(T) free.

A pair (y,u) that satisfies (C2) and (C3) is called an admissible pair.
Our task is to find an optimal pair among all admissible pairs that
maximizes (C1).

Similarly to constraint static optimization we introduce an auxiliary
function to gain necessary (and some sufficient) conditions for an optimal
pair.

Hamiltonian. The function Definition 14.3

H (t, y,u,λ)=λ0 f (t, y,u)+λ(t) g(t, y,u)

is called the Hamiltonian of our standard problem with fixed time hori-
zon T. The new argument λ is called the adjoint function or co-state
variable associated with the differential equation. λ0 is either 0 or 1.

Constant λ0 ∈ {0,1} is in almost all problems equal to 1. Hence we
assume for the remaining part of this chapter that λ0 = 1, i.e.,

H (t, y,u,λ)= f (t, y,u)+λ(t) g(t, y,u) ,

in order to keep the presentation simple.

The Maximum principle. Assume that (y∗,u∗) is an optimal pair for Theorem 14.4
the standard problem. Then there exists a continuous function λ(t) such
that for all t ∈ [0,T] we have

(i) u∗ maximizes H w.r.t. u, i.e.,

H (t, y∗,u∗,λ)≥H (t, y∗,u,λ) for all u ∈U .

(ii) λ satisfies the differential equation

λ′ =− ∂

∂y
H (t, y∗,u∗,λ) .

(iii) Corresponding to each of the terminal conditions in (C3) there is a
transversality condition on λ(T):

(a) y(T)= y1: λ(T) free,

(b) y(T)≥ y1: λ(T)≥ 0 [where λ(T)= 0 if y∗(T)> y1],

(c) y(T) free: λ(T)= 0.

Observe that the maximum principle gives a necessary condition for
an optimal pair of our standard problem. That is, each admissible pair
for which we can find such a function λ is a good candidate for an optimal
pair. The next theorem provides a sufficient condition for an optimal pair.
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Mangasarian’s theorem. Assume that (y∗,u∗) is an admissible pairTheorem 14.5
for the standard problem with corresponding adjoint function λ(t) that
satisfies conditions (i)–(iii) from Theorem 14.4. If U is convex and
H (t, y,u,λ) is concave in (y,u) for all t ∈ [0,T], then (y∗,u∗) is an op-
timal pair.

We can derive a recipe for finding optimal pairs for “nice” control
problems from Theorems 14.4 and 14.5:

1. For each triple (t, y,λ) find a (global) maximum û(t, y,λ) of H (t, y,u,λ)
w.r.t. u.

2. Solve the differential equations

y′ = g
(
t, y, û(t, y,λ)

)
and

λ′ =−H y
(
t, y, û(t, y,λ),λ

)
.

3. Find a particular solution y∗(t) which satisfies y∗(0) = y0 and the
given terminal condition.

4. Find a particular solution λ∗(t) that satisfies the corresponding
transversality condition.

5. Thus we obtain candidates (y∗,u∗) for optimal pairs using y∗(t)
and u∗(t)= û(t, y∗,λ∗).

6. If U is convex and H (t, y,u,λ∗) is concave in (y,u), then (y∗,u∗) is
an optimal pair.

It is important to note that these steps need not be computed in the
given ordering. Indeed, often a different ordering is more appropriate.

Find an optimal control u∗ forExample 14.6

max
∫ 1

0
y(t)dt, u ∈ [0,1], y′ = y+u, y(0)= 0, y(1) free.

Heuristically we can argue that the objective function y(t) should be as
large as possible and hence we should set u∗(t)= 1 for all t.

SOLUTION. The Hamiltonian for our problem is given by

H (t, y,u,λ)= f (t, y,u)+λg(t, y,u)= y+λ(y+u) .

Maximum û of H w.r.t. u is then

û =
{

1 if λ≥ 0,
0 if λ< 0

The solutions of the (inhomogeneous linear) differential equation

λ′ =−H y =−(1+λ) , λ(1)= 0
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is given by

λ∗(t)= e1−t −1 .

As λ∗(t)= e1−t −1≥ 0 for all t ≥ 0 we have û(t)= 1.
The solution of the (inhomogeneous linear) differential equation

y′ = y+ û = y+1, y(0)= 0

is given by

y∗(t)= et −1 .

Thus we obtain u∗(t) = û(t) = 1 in accordance with our heuristic ap-
proach.

At last observe that the Hamiltonian H (t, y,u,λ) = y+λ(y+ u) is
linear and thus concave in (y,u). Consequently, u∗(t) = 1 is the sought
optimal control. ♦

Find an optimal control u∗ for Example 14.7

min
∫ T

0

[
y2(t)+ cu2(t)

]
dt, u ∈R, y′ = u, y(0)= y0, y(T) free.

where c > 0 is some positive constant.

SOLUTION. We do not have a tools for solving this problem directly. So
we solve the maximization problem instead:

max
∫ T

0
−[

y2(t)+ cu2(t)
]

dt .

The Hamiltonian for this is given by

H (t, y,u,λ)= f (t, y,u)+λg(t, y,u)=−y2 − cu2 +λu .

Maximum û of H w.r.t. u is obtained from

0=Hu =−2cû+λ and thus û = λ

2c
.

Next we have to find solutions of the differential equations

y′ = û = λ

2c
,

λ′ =−H y = 2y .

Differentiating the second equation yields the second order homogeneous
linear differential equation

λ′′ = 2y′ = λ

c
and thus λ′′− 1

c
λ= 0

with general solution ± 1p
c are the roots of the

characteristic equation.
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λ∗(t)= C1ert +C2e−rt where r = 1p
c

.

Initial value and transversality condition result in the constraints

λ∗′(0)= 2y(0)= 2y0 and λ∗(T)= 0

and hence

r(C1 −C2)= 2y0,

C1erT +C2e−rT = 0,

with solution

C1 = 2y0e−rT

r(erT + e−rT )
and C2 =− 2y0erT

r(erT + e−rT )
.

Therefore we obtain the optimal control by

λ∗(t)= 2y0

r(erT + e−rT )

(
e−r(T−t) − er(T−t)

)
y∗(t)= 1

2
λ∗(t)= y0

e−r(T−t) − er(T−t)

r(erT + e−rT )

u∗(t)= û(t, y∗,λ∗)= 1
2c
λ∗(t)= y0

c
e−r(T−t) − er(T−t)

r(erT + e−rT )

It is easy to see that the Hamiltonian H (t, y,u,λ) = −y2 − cu2 +λu is
concave in (y,u) and thus u∗(t) = y0

c
e−r(T−t)−er(T−t)

r(erT+e−rT ) is the optimal control.
♦

Optimal consumption. Consider a consumer who expects to live fromExample 14.8
present time, t = 0, until time T. He or she wants to maximize his or her
“lifetime intertemporal utility function”∫ T

0
e−αtu

(
c(t)

)
dt

where u(c) is his or her utility function with “intertemporal discount fac-
tor” α > 0 and consumption expenditure c(t) at time t. We may assume
that

u′(c)> 0 and u′′(c)< 0 for all c ≥ 0.

The wealth w(t) of the consumer follows the differential equation

w′(t)= r(t)w(t)+ y(t)− c(t), w(0)= w0, and w(T)≥ 0

where r(t) is the instantaneous rate of interest at time t and y(t) is the
predicted income. This is an optimal control problem with state variable
w and control variable c. The control region obviously is c ≥ 0.
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SOLUTION. The Hamiltonian for this optimal control problem is given
by

H (t,w, c,λ)= e−αtu(c)+λ(rw+ y− c) .

If c∗ is the optimal consumption, then

H c = e−αtu′(c∗)−λ= 0 and thus λ(t)= e−αtu′(c∗) .

By the maximum principle we get the differential equation

λ′(t)=−Hw =−λ(t)r

with solution

λ(t)=λ(0)exp
(
−

∫ t

0
r(s)ds

)
.

Unfortunately, more explicit formula is not possible. So we only look
at a special case. Assume that r(t) = r is independent of time and that
r =α. Then the last formulæ reduce to

λ(t)= e−rtu′(c∗) and λ(t)=λ(0)e−rt,

respectively and hence

u′(c∗)=λ(0)= constant .

Since by our assumptions u′′(c)< 0, we conclude for the optimal control

c∗(t)= c̄ = constant .

We arrive at the differential equation

w′(t)= rw(t)+ y(t)− c̄, w(0)= w0

whose solution is

w∗(t)= ert
[
w0 +

∫ t

0
e−rs y(s)ds− c̄

r
(
1− e−rt)] .

The transversality condition (iiib) in Theorem 14.4 for w(T) ≥ 0 implies
that

λ(T)≥ 0 with λ(T)= 0 if w∗(T)> 0 .

However, λ(T) = 0 implies λ(T) = e−rT u′(c∗) = 0 and thus u′(c∗) = 0, a
contradiction to our assumption that u′(c) > 0. Thus w∗(T) = 0, that is,
it is optimal for the consumer to leave no legacy. We then find

0= w∗(T)= erT
[
w0 +

∫ T

0
e−rs y(s)ds− c̄

r

(
1− e−rT

)]
and consequently we find for the optimal level of consumption

c̄ = r
1− e−rT

[
w0 +

∫ T

0
e−rs y(s)ds

]
.

Observe that the term in the square brackets is the initial wealth of the
consumer plus the total discounted income.

At last we note that H is concave in (w, c) as u′′(c) < 0 and thus c̄
indeed is an optimal control. ♦
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14.3 The Standard Problem (T variable)

Suppose that the time horizon [0,T] is not fixed in advance. So in addi-
tion to the optimal control function we also have to find an optimal value
T∗.

The variable final time problem can be shortly formulated as

max
u,T

∫ T

0
f (t, y,u)dt, u ∈U , y′ = g(t, y,u), y(0)= y0,

(a) y(T)= y1, or (b) y(T)≥ y1, or (c) y(T) free.

Notice that T can now be chosen freely and thus the maximum is taken
over all feasible u and T.

The Maximum principle with variable time. Assume that (y∗,u∗) isTheorem 14.9
an admissible pair defined on [0,T∗] that solves the variable final time
problem from above with T free. Then all the conditions (i)–(iii) in the
maximum principle (Theorem 14.4) are satisfied on [0,T∗], and in addi-
tion,

(iv) H (T∗, y∗(T∗),u∗(T∗),λ(T∗))= 0 .

Oil extraction. We consider the special case of the optimal control prob-Example 14.10
lem from Example 14.2 where C = C(t,u) is independent of the remain-
ing amount y of oil in the reservoir and strictly convex in the rate of
extraction u, i.e., Cuu > 0. When time horizon T can be chosen freely the
optimal control problem is

max
u,T

∫ T

0

[
p(t)u(t)−C(t,u(t))

]
e−rt dt, u(t)≥ 0,

y′(t)=−u(t), y(0)= y0, y(T)≥ 0 .

What does the maximum principle imply for this problem?

SOLUTION. Suppose (y∗,u∗) solves our problem. The Hamiltonian is
given by

H (t, y,u,λ)= [
p(t)u−C(t,u)

]
e−rt +λ(−u) .

The maximum principle implies that there exists a continuous function
λ(t) such that

(1) u∗ maximizes H (t, y∗,u,λ) subject to u ≥ 0.

(2) λ′(t)=−H y = 0.

(3) λ(T∗)≥ 0 where λ(T∗)= 0 if y∗(T)> 0.

(4)
[
p(T∗)u(T∗)−C(T∗,u∗(T∗))

]
e−rT∗ =λ(T∗)u(T∗) (from (iv)).
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Properties (2) and (3) imply that λ(t)= λ̄≥ 0 is constant.
Now assume that u∗(t)> 0. Then Property (1) implies

0=Hu(t, y,u∗(t),λ)= [
p(t)−Cu(t,u∗(t))

]
e−rt − λ̄

and thus

p(t)−Cu(t,u∗(t))= λ̄ert

and in particular

p(T∗)−Cu(T∗,u∗(T∗))= λ̄erT∗
.

Since Cuu > 0 by our assumptions, H (t, y,u,λ) is concave in u and thus
this condition is also sufficient for u∗ being a maximum of H (t, y,u,λ)
w.r.t. u. Observe that the l.h.s. of this equation is just the marginal profit.
On the other hand Property (4) implies

p(T∗)− C(T∗,u∗(T∗))
u(T∗)

= λ̄erT∗

which implies

Cu(T∗,u∗(T∗))= C(T∗,u∗(T∗))
u(T∗)

.

We can conclude that one should terminate extraction at a time when
the marginal cost of extraction is equal to average cost. ♦

It is important to note that we did not prove that there exists an
optimal solution.

In fact concavity of the Hamiltonian in (y,u) is not sufficient for op-
timality if T is free!
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— Exercises

14.1 Solve the following control problem:

max
u(t)∈(−∞,∞)

∫ 2

0
[etx(t)−u(t)2]dt

x′(t)=−u(t), x(0)= 0, x(2) free

14.2 Solve the following control problem:

max
u(t)∈(−∞,∞)

∫ 1

0
[1−u(t)2]dt

x′(t)= x(t)+u(t), x(0)= 1, x(1) free

14.3 Solve the following control problem:

min
u(t)∈(−∞,∞)

∫ 1

0
[x(t)+u(t)2]dt

x′(t)=−u(t), x(0)= 0, x(1) free

14.4 Solve the following control problem:

max
u(t)∈(−∞,∞)

∫ 10

0
[1−4x(t)−2u(t)2]dt

x′(t)= u(t), x(0)= 0, x(10) free

14.5 Solve the following control problem:

max
u(t)∈(−∞,∞)

∫ T

0
[x(t)−u(t)2]dt

x′(t)= x(t)+u(t), x(0)= 0, x(T) free



A
Complex Numbers

We need an imaginary extension
when we want to understand the real world.

Imaginary numbers and complex numbers do not seem of any practical
relevance for economics. Nevertheless, they are inevitable when we want A quadratic equation has

exactly two convex roots.to understand mathematical structures.
Thus we shortly describe the basic properties of these numbers.

Imaginary and Complex Numbers

We introduce a new number i (imaginary unit) with the property Definition A.1

i2 =−1

and assume that we can add and multiply i like ordinary real numbers.

We then immediately find

(1) i ∉R,

(2)
p−1= i,

(3) i2 =−1, i3 =−i, i4 = 1, i5 = i, . . .

Numbers of the form bi, b ∈R (e.g., 5i), are called imaginary numbers. Definition A.2
Numbers of the form z = a+bi, a,b ∈R (e.g., 3+5i), are called complex
numbers. Re(z)= a is then called the real part of z, Im(z)= b is called Complex variables are often

denoted by z.the imaginary part of z.
The set of all complex number is denoted by C.

Notice that all real numbers are complex numbers with imaginary
part Im(z)= 0. Thus R⊂C.

z = 3+7i is a complex number with real part Re(3+7i)= 3, and imaginary Example A.3
part Im(3+7i)= 7. ♦

169
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Computing with Complex Numbers

We can compute with complex numbers in a similar way as with real
numbers. We have the following rules.

(a) z1 + z2 = (a1 +b1 i)+ (a2 +b2 i)= (a1 +a2)+ (b1 +b2)i

(b) z1 · z2 = (a1 +b1 i) · (a2 +b2 i)= (a1 a2 −b1b2)+ (a1b2 +a2b1)i

(c)
a1 +b1 i
a2 +b2 i

=
(

a1a2 +b1b2

a2
2 +b2

2

)
+

(
b1a2 −a1b2

a2
2 +b2

2

)
i

Notice, however, that there is no ordering of the complex numbers
that is compatible with multiplication. That is, it is not possible to define
a relation < such that u < v and c > 0 implies uc < vc. In particular there
is no such thing called a positive complex number.

(5+4i)+ (3−2i)= 8+2iExample A.4

2 · (3− i)= 6−2i

(1+ i) · (2−2i)= 2−2i+2i−2i2 = 2−2i+2i+2= 4
3+2 i
2−3 i

= 6−6
4+9

+ 4+9
4+9

i = i ♦

Complex Conjugate

Let z = a+ bi be some complex number. Then z = a− bi is called theDefinition A.5
complex conjugate of z.

If z is a complex root of x2+a1x+a2, (a1,a2 ∈R), then z is also a root
of this equation.

The roots of the quadratic equation z2 −4z+5= 0 areExample A.6

z1,2 = 2±
p

4−5= 2± i ⇒ z1 = 2+ i, z2 = 2− i = z1 ♦

The Gaussian Plane

Complex numbers z = a+ bi can be identified with points (a,b) ∈ R2 in
the real plane. The axes are then called the real axis and imaginary
axis, respectively.

Re

Im

1

i r

(a,b)

θ

The modulus or absolute value |z| of z is defined as

|z| =
√

z z =
√

a2 +b2

which is just the Euclidean distance of the point representing z to the
origin.

Complex numbers also can be represented by polar coordinates (r,θ)
where r = |z| and θ ∈ [0,2π) is the angle to the real axis and called the
argument of z, arg(z). Then

Re(z)= r cosθ and Im(z)= r sinθ



EULER’S FORMULA 171

and hence z can be represented in polar form as

z = r (cosθ+ i sinθ) .

Recall that tan(θ)= b
a and thus

arg(z)= θ = arctan(b/a) .

The representation z = a+bi is also called the rectangular form of the
complex number z.

z = 2
(
(cos

(
π
3
)+ i sin

(
π
3
))

has rectangular form z = 1+p
3 i. Example A.7

z = 2−2
p

3i has polar form z = 4
(
cos

(5
3π

)+ i sin
(5

3π
))

. ♦

Multiplication and division can be performed in polar form by the
following rules

z1 · z2 = r1 · r2
(
cos(θ1 +θ2)+ i sin(θ1 +θ2)

)
z1

z2
= r1

r2

(
cos(θ1 −θ2)+ i sin(θ1 −θ2)

)
Powers of integer order n can be computed by means of de Moivre’s De Moivre’s formula does not

hold in general for n ∉Z.formula:

zn = rn (
cos(nθ)+ i sin(nθ)

)
(n ∈Z).

This formula also can be used to derive an explicit expression for the nth
roots of a complex number z.

z1/n = [r (cosθ+ isinθ)]1/n = r1/n
[
cos

(
θ+2kπ

n

)
+ isin

(
θ+2kπ

n

)]
where k is an integer. To get the n different nth roots of z one needs to
consider all values of k = 0,1, . . . ,n−1.

Euler’s Formula

There is a very important relation, called Euler’s formula, between the
complex exponential function and trigonometric functions,

eix = cos x+ i sin x .

In particular we may express the polar form of a complex number z using
the exponential function:

z = a+bi = |z| eiθ .

Furthermore, Euler’s formula provides a tool to evaluate the exponential
function for complex arguments.

ez = ea+bi = ea [cos(b)+ i sin(b)] .
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— Exercises

A.1 Compute

(a) (2i−1)+ i (b) (2i−1) · i (c) (4−2i) · (4−2i)

(d) (3+ i)2 (e) i23 (f) (3− i) : (3+ i)

A.2 Transform into polar form and rectangular form, respectively.

(a) 2(cos π
4 + i sin π

4 ) (b) 4 e−iπ/3 (c) 5(cos π
2 + i sin π

2 )

(d) i (e) 1− i (f) 3
2 +

p
3

2 i

A.3 Solve the quadratic equations:

(a) x2 −3x+9= 0 (b) 2x2 + x+8= 0

(c) x2 +2x+17= 0 (d) 2x2 −4x+4= 0

A.4 Compute

(a) ei (b) e2−i (c) e5+πi

— Problems

A.5 Taylor’s theorem also holds for complex numbers and complex val-
ued functions. Use the MacLaurin series for exp, sin and cos and
verify Euler’s formula eix = cos x+ i sin x.

A.6 Derive Euler’s identityEuler’s identity links the five
most fundamental mathe-
matical constants into one
equation. It has been elected
to be the most beautiful theo-
rem in mathematics.

eiπ+1= 0

from Euler’s formula.



Solutions

2.1 (a) 7; (b) 2
7 ; (c) 0; (d) divergent with limn→∞ n2+1

n+1 =∞; (e) divergent; (f) 29
6 .

2.2 (a) divergent; (b) 0; (c) e2 ≈ 7,38906; (d) e−2 ≈ 0.135335; (e) 0; (f) 1;
(g) divergent with limn→∞ n

n+1 +p
n =∞; (h) 0.

2.3 (a) ex; (b) ex; (c) e1/x.

2.11 By Lemma 2.20 we find
∑∞

k=1 qn = q
∑∞

k=0 qn = q
1−q .

4.1 (a) 0, (b) 0, (c) ∞, (d) −∞, (e) 1.

4.2 The functions are continuous in
(a) D, (b) D, (c) D, (d) D, (e) D, (f) R\Z, (g) R\{2}.

4.3 (a) 6x−5sin(x); (b) 6x2 +2x; (c) 1+ ln(x); (d) −2x−2 −2x−3; (e) 3x2+6x+1
(x+1)2 ;

(f) 1; (g) 18x−6; (h) 6xcos(3x2); (i) ln(2)·2x; (j) 4x−1; (k) 6e3x+1(5x2+1)2+
40e3x+1(5x2 +1)x+ 3(x−1)(x+1)2−(x+1)3

(x−1)2 −2.

4.4 f ′(x) f ′′(x) f ′′′(x)

(a) −x e−
x2
2 (x2 −1) e−

x2
2 (3 x− x3) e−

x2
2

(b) −2
(x−1)2

4
(x−1)3

−12
(x−1)4

(c) 3 x2 −4 x+3 6 x−4 6

4.5 Derivatives:
(a) (b) (c) (d) (e) (f)

fx 1 y 2 x 2 x y2 αxα−1 yβ x(x2 + y2)−1/2

f y 1 x 2 y 2 x2 y βxα yβ−1 y(x2 + y2)−1/2

fxx 0 0 2 2 y2 α(α−1) xα−2 yβ (x2 + y2)−1/2 − x2(x2 + y2)−3/2

fxy = f yx 0 1 0 4 x y αβxα−1 yβ−1 −xy(x2 + y2)−3/2

f yy 0 0 2 2 x2 β(β−1) xα yβ−2 (x2 + y2)−1/2 − y2(x2 + y2)−3/2

Derivatives at (1,1):
(a) (b) (c) (d) (e) (f)

fx 1 1 2 2 α
p

2/2
f y 1 1 2 2 β

p
2/2

fxx 0 0 2 2 α(α−1)
p

2/4
fxy = f yx 0 1 0 4 αβ −p2/4
f yy 0 0 2 2 β(β−1)

p
2/4

4.6 (a) f ′(1,1)= (1,1), f ′′(1,1)=
(
0 0
0 0

)
;

(b) f ′(1,1)= (1,1), f ′′(1,1)=
(
0 1
1 0

)
;

(c) f ′(1,1)= (2,2), f ′′(1,1)=
(
2 0
0 2

)
;
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(d) f ′(1,1)= (2,2), f ′′(1,1)=
(
2 4
4 2

)
;

(e) f ′(1,1)= (α,β), f ′′(1,1)=
(
α(α−1) αβ

αβ β(β−1)

)
;

(f) f ′(1,1)= (
p

2/2,
p

2/2), f ′′(1,1)=
( p

2/4 −p2/4
−p2/4

p
2/4

)
.

4.7 ∂ f
∂a = 2x′ ·a.

4.8 ∇ f (0,0)= (4/
p

10,12/
p

10).

4.9 D( f ◦ g)(t)= 2t+4t3; D(g ◦ f )(x, y)=
(

2x 2y
4x3 +4xy2 4x2 y+4y3

)
.

4.10 D(f◦g)(x)=
( −1 6x5

2
−3x2

1 2x2

)
; D(g◦ f)(x)=

(
2(x1 − x3

2) 6(−x1x2
2 + x5

2)
3x2

2 −1

)
.

4.11 Dx(b)=A−1 and thus (by Cramer’s rule) ∂xi
∂b j

= (−1)i+ j M ji/|A| where Mki

denotes the the (k, i) minor of A.

4.12 d
dt F(K(t),L(t), t)= FK (K ,L, t)K ′(t)+FL(K ,L, t)L′(t)+Ft(K ,L, t).

5.1

-3 -2 -1 1 2 3 4 5

-2

-1

1

2

3
f

f

T1

T2

(a) f (x)≈ T1(x)= 1
2 + 1

4 x,

(b) f (x)≈ T2(x)= 1
2 + 1

4 x+ 1
8 x2.

radius of convergence ρ = 2.

5.2 T f ,0,3(x)= 1+ 1
2 x− 1

8 x2 + 1
16 x3.

5.3 T f ,0,30(x)= x10 − 1
6 x30.

5.4 T f ,0,4(x)≈ 0.959+0.284 x2 −0.479 x4.

5.5 f (x)=∑∞
n=0(−1)nx2n; ρ = 1.

5.6 f (x)=∑∞
n=0(− 1

2 )n 1
n! x

2n; ρ =∞.

5.7 f (x, y)= 1+ x2 + y2 +O(∥(x, y)∥3).

5.8 |Rn(1)| ≤ e
(n+1)! ; |Rn(1)| < 10−16 if n ≥ 18.

6.1 (a) Df(x)=
(
1− x2 −x1

x2 x1

)
, ∂(y1,y2)
∂(x1,x2) = x1;

(b) for all images of points (x1, x2) with x1 ̸= 0;

(c) D(f−1)(y)= (Df(x))−1 =
(
1− x2 −x1

x2 x1

)−1

= 1
x1

(
x1 x1
−x2 1− x2

)
;

(d) in order to get the inverse function we have to solve equation f(x)= y:
x1 = y1 + y2 and x2 = y2/(y1 + y2), if y1 + y2 ̸= 0.

6.2 T is the linear map given by the matrix T =
(
a b
c d

)
. Hence its Jacobian

matrix is just det(T). If det(T) = 0, then the columns of T are linearly
dependent. Since the constants are non-zero, T has rank 1 and thus the
image is a linear subspace of dimension 1, i.e., a straight line through
the origin.
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6.3 Let J =
∣∣∣∣∣
∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

∣∣∣∣∣ be the Jacobian determinant of this function. Then

the equation can be solved locally if J ̸= 0. We then have ∂F
∂u = 1

J
∂g
∂y and

∂G
∂u =− 1

J
∂g
∂x .

6.4 (a) Fy = 3y2 +1 ̸= 0, y′ =−Fx/Fy = 3x2/(3y2 +1)= 0 for x = 0;
(b) Fy = 1+ xcos(xy)= 1 ̸= 0 for x = 0, y′(0)= 0.

6.5 d y
dx =− 2x

3y2 , y= f (x) exists locally in an open rectangle around x0 = (x0, y0)
if y0 ̸= 0; x = g(y) exists locally if x0 ̸= 0.

6.6 (a) z = g(x, y) can be locally expressed since Fz = 3z2−xy and Fz(0,0,1)=
3 ̸= 0; ∂g

∂x = −Fx
Fz

= − 3x2−yz
3z2−xy = − 0

3 = 0 for (x0, y0, z0) = (0,0,1); ∂g
∂y = −Fy

Fz
=

− 3y2−xz
3z2−xy =− 0

3 = 0.
(b) z = g(x, y) can be locally expressed since Fz = exp(z)−2z and Fz(1,0,0)=
1 ̸= 0; ∂g

∂x =−Fx
Fz

=− −2x
exp(z)−2z = 2 for (x0, y0, z0)= (1,0,0); ∂g

∂y =−Fy
Fz

=− −2y
exp(z)−2z =

0 for (x0, y0, z0)= (1,0,0).

6.7 dK
dL =−βK

αL .

6.8 (a) dxi
dx j

=− ux j
uxi

=−
(
x

1
2
1 +x

1
2
2

)
x
− 1

2
j(

x
1
2
1 +x

1
2
2

)
x
− 1

2
i

=− x
1
2
i

x
1
2
j

;

(b) dxi
dx j

=− ux j
uxi

=−
θ

θ−1

(∑n
i=1 x

θ−1
θ

i

) 1
θ−1

θ−1
θ x

− 1
θ

j

θ
θ−1

(∑n
i=1 x

θ−1
θ

i

) 1
θ−1

θ−1
θ x

− 1
θ

i

=− x
1
θ
i

x
1
θ
j

.

7.1 (a) decreasing in (−∞,−4]∪[0,3], increasing in [−4,0]∪[3,∞); (b) concave
in [−2−p

148)/6,−2+p
148)/6], convex otherwise.

7.2 (a) log-concave; (b) not log-concave; (c) not log-concave; (d) log-concave on
(−1,1).

7.3 (a) convex; (b) convex.

8.1 (a) global minimum at x = 3 ( f ′′(x)≥ 0 for all x ∈R), no local maximum;
(b) local minimum at x = 1, local maximum at x =−1, no global extrema.

8.2 (a) global minimum in x = 1, no local maximum;
(b) global maximum in x = 1

4 , no local minimum;
(c) global minimum in x = 0, no local maximum.

8.3 (a) stationary point: p0 = (0,0), H f =
(−2 1

1 2

)
,

H2 =−5< 0, ⇒ p0 is a saddle point;

(b) stationary point: p0 = (e,0), H f (p0)=
(−e−3 0

0 −2

)
,

H1 =−e−3 < 0, H2 = 2 e−3 > 0, ⇒ p0 is local maximum;

(c) stationary point: p0 = (1,1), H f (p0)=
(

802 −400
−400 200

)
,

H1 = 802> 0, H2 = 400> 0, ⇒ p0 is local minimum;

(d) stationary point: p0 = (ln(3), ln(4)), H f =
(−ex1 0

0 −ex2

)
,

H1 =−ex1 < 0, H2 = ex1 · ex2 > 0, ⇒ local maximum in p0 = (ln(3), ln(4)).
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8.4 stationary points: p1 = (0,0,0), p2 = (1,0,0), p3 = (−1,0,0),

H f =
 6x1x2 3x2

1 −1 0
3x2

1 −1 0
0 0 2

,

leading principle minors: H1 = 6x1x2 = 0, H2 = −(3x2
1 −1)2 < 0 (da x1 ∈

{0,−1,1}), H3 =−2(3x2
1 −1)2 < 0,

⇒ all three stationary points are saddle points. The function is neither
convex nor concave.

8.5 (b) Lagrange function: L (x, y;λ)= x2 y+λ(3− x− y),
stationary points x1 = (2,1;4) and x2 = (0,3;0),

(c) bordered Hessian: H̄=
0 1 1

1 2 y 2 x
1 2 x 0

,

H̄(x1)=
0 1 1

1 2 4
1 4 0

, det(H̄(x1))= 6> 0, ⇒ x1 is a local maximum,

H̄(x2)=
0 1 1

1 6 0
1 0 0

, det(H̄(x2))=−6 ⇒ x2 is a local minimum.

8.6 Lagrange function: L (x1, x2, x3;λ1,λ2) = f (x1, x2, x3) = 1
3 (x1 −3)3 + x2 x3 +

λ1(4− x1 − x2)+λ2(5− x1 − x3),
stationary points: x1 = (0,4,5;5,4) and x2 = (4,0,1;1,0); det(H̄(x1, x2, x3))=
2x1 −4; x1 is a local maximum; x2 is a local minimum.

8.7 (a) x1 =α m
p1

, x2 = (1−α) m
p2

and λ= 1
m , (c) marginal change for optimum:

1
m .

8.8 Kuhn-Tucker theorem: L (x, y;λ)=−(x−2)2− y+λ(1− x− y), x = 1, y= 0,
λ= 2.

9.1 (a) integration by parts (P): 1
4 x2 (2 ln x−1)+ c;

(b) 2×P: 2 cos(x)− x2 cos(x)+2 x sin(x)+ c;

(c) by substitution (S), z = x2 +6: 2
3
(
x2 +6

) 3
2 + c;

(d) S, z = x2: 1
2 ex2 + c;

(e) S, z = 3 x2 +4: 1
6 ln(4+3x2)+ c;

(f) P or S, z = x+1: 2
5 (x+1)

5
2 − 2

3 (x+1)
3
2 + c;

(g) = ∫
3 x+ 4

x dx = 3
2 x2 +4 ln(x)+ c; S not suitable;

(h) S, z = ln(x): 1
2 (ln(x))2 + c.

9.2 (a) 39, (b) 3 e2 −3 ≈ 19.17, (c) 93, (d) − 1
6 (use radiant instead of degree),

(e) 1
2 ln(8)≈ 1.0397

9.3 (a)
∫ ∞

0 −e−3x dx = lim
t→∞

∫ t
0 −e−3x dx = lim

t→∞
1
3 e−3t − 1

3 =− 1
3 ;

(b)
∫ 1

0
2

4px3
dx = lim

t→0

∫ 1
t

2
4px3

dx = lim
t→0

8−8 t
1
4 = 8;

(c) = lim
t→∞

∫ t
0

x
x2+1 dx = lim

t→∞
1
2
∫ t2+1

2
1
z dz = lim

t→∞
1
2 (ln(t2 +1)− ln(2))=∞,

the improper integral does not exist.

9.4 We need the antiderivative C(x) of C′(x) = 30−0.05 x with C(0) = 2000:
C(x)= 2000+30 x−0,025 x2.

9.5 E(X )=
√

2
π

.
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9.6 E(X )=−
√

2
π
+

√
2
π
= 0.

9.7 F(x)=


0, for x ≤−1,
1
2 + 2x+x2

2 , for −1< x ≤ 0,
1
2 + 2x−x2

2 , for 0< x ≤ 1,
1, for x > 1.

9.8 (a) The improper integral exists if and only if α>−1;
(b) the improper integral exists if and only if α<−1;
(c) the improper integral never converges.

10.1 (a) 16; (b) a2b2

4 ; (c) −2; (d) π−2
8π .

10.2 π.

11.1 Method: Separation of variables.
(a) y= C tk, y= tk;
(b) y= C t−1, y= 2 t−1;

(c) y= C e
1
2 t2

, y= 1p
e e

t2
2 ;

(d) y=− ln(t+ c), y=− ln
(
t−1+ 1

e
)
;

(e) y=− 1
t+c , y=− 1

t−2 ;

(f) y =
(

1
5 t

5
2 + c

)2
, y =

(
1
5 t

5
2 + 4

5

)2
; (observe that y =

(
1
5 t

5
2 − 6

5

)2
also satis-

fies y(1)= 1 but does not solve the differential equation).

11.2 Solution of initial value problem: y(t)= 8
7 e−6 t − 1

7 et.

11.3 (a) U ′ = α
U , (b) U(x)=p

2αx+ c, (c) U(0)= 0, U(x)=p
2αx.

11.4 p(t)= (p0 − p̄) exp(− j β+δ1− jν t)+ p̄. p0 = p(0), p̄ = α+γ
β+δ is equilibrium price.

11.5 (a) A(t) = L
1+C exp(−L k t) , t number of months. L = 96000, using A(0) =

4000 and A(2)= 12000: C = 23 and k = 0,000006196.
A(t)= 96000

1+23 exp(−0,59479 t) . (b) A(6)= 58238, (c) t 2
3
= 7,12 months.

11.6 Case a ̸= 0: y(t)= C e−at + s
a for some C > 0;

case a = 0: y(t)= st+ c for some c ∈R.

11.7 Case a ̸= 0: y(t)= (y0 − s
a )e−a(t−t0) + s

a ;
case a = 0: y(x)= s(t− t0)+ y0.

11.10 (a) y(t)= t2; (b) y′a(t)= 0 for t ≤ a and y′a(t)= 2(t−a) for t > a; (c) 2
√

ya(t)=
2
√

(t−a)2 = 2(t−a)= y′a(t).

12.1 y(x)= 1
12 (x4 +4x3 −30x2 +36x) (by integrating two times).

12.2 General solution: y= yh + yp = C1et +C2e−2t − 3
2 ;

particular solution: y(t)= 2et + 1
2 e−2t − 3

2 .

12.3 General solution: y= (C1 +C2t)e3t, particular solution: y(t)= (2−6t)e3t.

12.4 y(t)= e−t [C1 cos4t+C2 sin4t]; limt→∞ y(t)= 0.

12.5 Case 1 (γ(a−α) > 0): p(t) = C1 exp(−t
√
γ(a−α))+C1 exp(t

√
γ(a−α))−

k
γ(a−α) ;

Case 2 (γ(a−α)= 0): p(t)= C1 +C2t+ 1
2 kt2;

Case 3 (γ(a−α) < 0): p(t) = C1 cos(t
√|γ(a−α)|)+C2 sin(t

√|γ(a−α)|)−
k

γ(a−α) .
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13.1 (a) y(t)= C1e−2t
(

2
−1

)
+C2e−7t

(
1
2

)
, (b) y(t)= C1et

(
3
−1

)
+C2e14t

(
1
4

)
,

(c) y(t)= C1e4t
(
1
1

)
+C2e−6t

(
1
−1

)
.

13.2 (a) y(t)= C1e−2t
(

2
−1

)
+C2e−7t

(
1
2

)
+

(
1
−1

)
,

y∗ =
(

1
−1

)
is asymptotically stable (sink);

(b) y(t)= C1et
(

3
−1

)
+C2e14t

(
1
4

)
+

(−2
1

)
,

y∗ =
(−2
−1

)
is unstable equilibrium point (source);

(c) y(t)= C1e4t
(
1
1

)
+C2e−6t

(
1
−1

)
+

(
1
0

)
, y∗ =

(
1
0

)
is a saddle point.

13.3 (a) for all a < 0; (b) for all a <−2. (Olech’s theorem)

13.4 (a) F′(x, y) =
(−1 y

2 −2

)
, F′(0,0) =

(−1 0
2 −2

)
, all eigenvales negative, lo-

cally asymptotically stable by Theorem 13.15; Theorem 13.17 cannot be
applied;

(b) F′(x, y) =
(−3x2 −1

1 −2y2

)
, eigenvalues of F′(0,0) =

(
0 −1
1 0

)
are purely

imaginary, none of our theorems can be applied;

(c) F′(x, y) =
(
1+4x− y −3− x+2y
2− ex−y −1+ ex−y

)
, F′(1,1) =

(
4 −2
1 0

)
, tr(F′(1,1)) = 4 >

0, not stable.

13.9 F′(x∗, y∗)=
(−εx∗ −βx∗
δy∗ −ηy∗

)
, tr(F′(x∗, y∗))=−εx∗−ηy∗ < 0 and det(F′(x∗, y∗))=

(εη+βδ)x∗ y∗ > 0. Hence (x∗, y∗) is a locally asymptotically stable point
by Theorem 13.15.

14.1 Optimal solution: x∗(t)= 1
2 (e2t−et+1); optimal control: u∗(t)= 1

2 et− 1
2 e2.

14.2 Optimal solution: x∗(t)= et; optimal control: u∗(t)= 0.

14.3 Optimal solution: x∗(t)= 1
4 t2− 1

2 t; optimal control: u∗(t)=− 1
2λ(t)=− 1

2 t+
1
2 .

14.4 Optimal solution: x∗(t)= 1
2 t2 −10t; optimal control: u∗(t)= t−10.

14.5 Optimal solution: x∗(t)= 1
4 eT+t− 1

4 eT−t− 1
2 et+ 1

2 ; optimal control: u∗(t)=
1
2 (eT−t −1).

A.1 (a) −1+3i, (b) −2− i, (c) 20, (d) 8+6i, (e) = i3 · i20 =−i, (f) 4
5 − 3

5 i.

A.2 (a)
p

2+p2 i, (b) 4(cos(−π
3 )+i sin(−π

3 ))= 2−2
p

3 i, (c) 5 i, (d) (cos π
2+i sin π

2 ),
(e)

p
2(cos π

4 − i sin π
4 ), (f)

p
3(cos π

6 + i sin π
6 ).

A.3 (a) 3
2 ± 3

p
3

2 i, (b) − 1
4 ± 3

p
7

4 i, (c) −1±4i, (d) 1± i.

A.4 (a) ei = cos1+ i sin1 ≈ 0.54+ 0.841i; (b) e2−i = e2(cos(−1)+ i sin(−1)) =
e2(cos1 − i sin1) ≈ 3.992 − 6.218i; (c) e5+πi = e5(cosπ+ i sinπ) = −e5 ≈
−148.4.
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Entries in italics indicate lemmata and theorems.

absolute value, 170
absolutely convergent, 11
accumulation point, 17, 20
adjoint function, 161
admissible pair, 161
alternating harmonic series, 11
analytic, 55
antiderivative, 93
argument, 170
asymptotically stable equilibrium

state, 149
autonomous, 152
autonomous differential equation,

129

Bolzano-Weierstrass, 23
bordered Hessian, 88
boundary, 17
boundary point, 16
bounded, 22
bounded sequence, 5

Cauchy sequence, 19
Cauchy’s covergence criterion, 19
center, 151
Chain rule, 40
Change of variables in double in-

tegrals, 112
Change of variables in multiple

integrals, 114
characteristic equation, 139
Characterization of continuity, 25
Characterization of quasi-convexity,

78
closed, 16
closure, 17
Closure and convergence, 20

co-state variable, 161
compact, 23
Comparison test, 9
comparison test, 9
complex conjugate, 170
complex numbers, 169
Composite functions, 72, 78
Computation of derivative, 39
concave, 68
Continuity and images of balls,

24
Continuity of each component, 23
continuous, 23
Continuous functions preserve com-

pactness, 26
continuously differentiable func-

tions, 36
control function, 160
control region, 160
Convergence of a monotone sequence,

5
Convergence of each component,

18
Convergence of geometric sequence,

6
Convergence of remainder, 52
convergent, 3, 8, 18
converges, 3, 18
convex, 67, 68
convex combinations, 67
convex hull, 67
Convex sum, 69
Convexity of multivariate functions,

74
Convexity of univariate functions,

74
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de Moivre’s formula, 171
definite integral, 100
derivative, 31, 38
difference quotient, 31
differentiable, 31, 38
differential coefficient, 31
differential operator, 31
direction field, 120, 156
directional derivative, 35, 36
Divergence of geometric sequence,

6
divergent, 3, 8, 18
double integral, 107

elasticity, 45
Envelope theorem, 85
equilibrium point, 130, 142, 152
equilibrium state, 129, 149
equivalent, 20
Euclidean distance, 15
Euclidean norm, 15
Euler’s formula, 171
Existence and uniqueness, 131,

132, 137
Existence of derivatives, 40
expand, 51
expectation, 105
exterior point, 16
Extreme-value theorem, 26

Finitely generated vector space,
22

First fundamental theorem of cal-
culus, 99

first-order linear differential equa-
tion, 123

first-order partial derivatives, 37
fixed point, 129
Fubini’s theorem, 110

general solution, 120
geometric sequence, 6
Geometric series, 8
globally asymptotically stable, 142
gradient, 36

half spaces, 68
Hamiltonian, 161

Harmonic series, 9
Hessian, 37
homogeneous, 46
homogeneous linear differential

equation, 124
hyperplane, 68

imaginary axis, 170
imaginary numbers, 169
imaginary part, 169
imaginary unit, 169
implicit function, 61
Implicit function theorem, 61, 62
improper integral, 101
indefinite integral, 93
infimum, 5
Inhomogeneous linear differen-

tial equations, 124
initial value, 120
initial value problem, 120, 137
integrable, 98
integral, 98
integral curve, 119
integration constant, 93
interior, 17
interior point, 15
Intermediate value theorem (Bolzano),

29
Intersection, 67
interval bisectioning, 29
inverse function, 59
Inverse function theorem, 60

Jacobian determinant, 60
Jacobian matrix, 39, 62
Jensen’s inequality, discrete ver-

sion, 71

Kuhn-Tucker conditions, 89
Kuhn-Tucker sufficient condition,

89

Lagrange function, 86
Lagrange multiplier, 86
Lagrange’s form of the remain-

der, 50
Lagrangian, 86
Landau symbols, 53
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Leibniz’s formula, 103
Level sets of convex functions, 77
limit, 3, 18, 30
Linear approximation, 38
local maximum, 84
local minimum, 84
Local saddle point, 153
local saddle point, 153
locally asymptotically stable, 152
locally asymptotically stable equi-

librium state, 130
locally Lipschitz continuous, 132
Logistic differential equation, 128
lower bound, 5
lower level set, 77
Lyapunov function, 155
Lyapunov’s Theorem, 152, 155

Maclaurin polynomial, 50
Mangasarian’s theorem, 162
maximum, 83
Mean value theorem, 34
minimum, 83
Minimum and maximum of two

convex functions, 72
modulus, 170
monotone, 5
monotonically decreasing, 73
monotonically increasing, 73
Monotonicity and derivatives, 73
multiple integral, 111

n-dimensional rectangle, 110
Necessary condition, 86
Necessary first-order conditions,

83
nullclines, 156

objective function, 160
ODE, 119
Olech’s Theorem, 153
open, 16
open ball, 15
open neighborhood, 16
optimal pair, 161
ordinary differential equation, 119

partial derivative, 35

partial sum, 8
particular, 138
particular solution, 120
phase diagram, 129, 156
Polar coordinates, 115
polar form, 171
power series, 54
preimage, 24
primitive integral, 93
Properties of closed sets, 17
Properties of open sets, 16
Properties of the gradient, 36

Quadratic form, 69
quasi-concave, 77
quasi-convex, 77

radius of convergence, 54
Ratio test, 11
ray, 46
real axis, 170
real part, 169
rectangular form, 171
relatively closed, 25
relatively open, 25
remainder, 49
restriction, 71
Riemann integrable, 97
Riemann integral, 97
Riemann sum, 97
Rolle’s theorem, 34
Rules for limits, 6, 30

saddle path solution, 150, 153
saddle point, 85, 150
second derivative, 33
Second fundamental theorem of

calculus, 99
second-order linear differential equa-

tion, 137
second-order ordinary differential

equation, 137
second-order partial derivatives,

37
sequence, 3, 17
series, 8
sink, 149
slope field, 120
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solution, 145
solution curve, 119
source, 149
Stability of an equlibrium point,

151
Stability of equilibrium points, 131
stable, 154
standard end constraint problem,

160
state variable, 160
stationary point, 83
stationary state, 129, 130
step function, 96
strict local maximum, 84
strict maximum, 83
strictly concave, 68
strictly convex, 68
strictly decreasing, 73
strictly increasing, 73
strictly quasi-concave, 80
strictly quasi-convex, 80
strong Lyapunov function, 155
subgradient, 71
Subgradient and supergradient,

71
subsequence, 22
Sufficient condition, 87
Sufficient condition for local op-

timum, 88
Sufficient conditions, 83
Sufficient conditions for local ex-

tremal points, 84
Sum of covergent sequences, 7, 19
supergradient, 71
supremum, 5

Tangents of convex functions, 70
Tangents of quasi-convex functions,

80
Taylor polynomial, 49
Taylor series, 51
Taylor’s formula for multivariate

functions, 56
Taylor’s theorem, 50
The Maximum principle, 161
The Maximum principle with vari-

able time, 166

trace, 151
transversality condition, 161
Triangle inequality, 7

unbounded, 22
unstable equilibrium point, 149
unstable equilibrium state, 130
upper bound, 5
upper level set, 77

value function, 85
variable final time problem, 166
variation of constants, 125
vector field, 156

Young’s theorem, Schwarz’ theo-
rem, 37
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