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1
Introduction

1.1 Learning Outcomes

The learning outcomes of the two parts of this course in Mathematics are
threefold:

• Mathematical reasoning

• Fundamental concepts in mathematical economics

• Extend mathematical toolbox

Topics

• Linear Algebra:

– Vector spaces, basis and dimension

– Matrix algebra and linear transformations

– Norm and metric

– Orthogonality and projections

– Determinants

– Eigenvalues

• Topology

– Neighborhood and convergence

– Open sets and continuous functions

– Compact sets

• Calculus

– Limits and continuity

– Derivative, gradient and Jacobian matrix

– Mean value theorem and Taylor series

1



TOPICS 2

– Inverse and implicit functions

– Static optimization

– Constrained optimization

• Integration

– Antiderivative

– Riemann integral

– Fundamental Theorem of Calculus

– Leibniz’s rule

– Multiple integral and Fubini’s Theorem

• Dynamic analysis

– Ordinary differential equations (ODE)

– Initial value problem

– linear and logistic differential equation

– Autonomous differential equation

– Phase diagram and stability of solutions

– Systems of differential equations

– Stability of stationary points

– Saddle path solutions

• Dynamic analysis

– Control theory

– Hamilton function

– Transversality condition

– Saddle path solutions
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1.2 A Science and Language of Patterns

Mathematics consists of propositions of the form: P implies
Q, but you never ask whether P is true. (Bertrand Russell)

The mathematical universe is built-up by a series of definitions, the-
orems and proofs.

Axiom
A statement that is assumed to be true.

Axioms define basic concepts like sets, natural numbers or real
numbers: A family of elements with rules to manipulate these.

...

...
Definition

Introduce a new notion. (Use known terms.)
Theorem

A statement that describes properties of the new object:
If . . . then . . .

Proof
Use true statements (other theorems!) to show that this statement is

true.
...
...

New Definition
Based on observed interesting properties.

Theorem
A statement that describes properties of the new object.

Proof
Use true statements (including former theorems) to show that the

statement is true.
...

????

Here is a very simple example:

Even number. An even number is a natural number n that is divisible Definition 1.1
by 2.

If n is an even number, then n2 is even. Theorem 1.2

PROOF. If n is divisible by 2, then n can be expressed as n = 2k for some
k ∈N. Hence n2 = (2k)2 = 4k2 = 2(2k2) which also is divisible by 2. Thus
n2 is an even number as claimed.
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The if . . . then . . . structure of mathematical statements is not always
obvious. Theorem 1.2 may also be expressed as: The square of an even
number is even.

When reading the definition of even number we find the terms divisi-
ble and natural numbers. These terms must already be well-defined: We
say that a natural number n is divisible by a natural number k if there
exists a natural number m such that n = k ·m.

What are natural numbers? These are defined as a set of objects that
satisfies a given set of rules, i.e., by axioms1.

Of course the development in mathematics is not straightforward as
indicate in the above diagram. It is rather a tree with some additional
links between the branches.

1.3 Mathematical Economics

The quote from Bertrand Russell may seem disappointing. However, this
exactly is what we are doing in Mathematical Economics.

An economic model is a simple picture of the real world. In such a
model we list all our assumptions and then deduce patterns in our model
from these “axioms”. E.g., we may try to derive propositions like: “When
we increase parameter X in model Y then variable Z declines.” It is not
the task of mathematics to validate the assumptions of the model, i.e.,
whether the model describes the real world sufficiently well.

Verification or falsification of the model is the task of economists.

1.4 About This Manuscript

This manuscript is by no means a complete treatment of the material.
Rather it is intended as a road map for our course. The reader is in-
vited to consult additional literature if she wants to learn more about
particular topics.

As this course is intended as an extension of the course Foundations
of Economics – Mathematical Methods the reader is encouraged to look
at the given handouts for examples and pictures. It is also assumed that
the reader has successfully mastered all the exercises of that course.
Moreover, we will not repeat all definitions given there.

1.5 Solving Problems

In this course we will have to solve homework problems. For this task
the reader may use any theorem that have already been proved up to this
point. Missing definitions could be found in the handouts for the course
Foundations of Economics – Mathematical Methods. However, one must
not use any results or theorems from these handouts.

1The natural numbers can be defined by the so called Peano axioms.
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Roughly spoken there are two kinds of problems:

• Prove theorems and lemmata that are stated in the main text. For
this task you may use any result that is presented up to this par-
ticular proposition that you have to show.

• Problems where additional statements have to be proven. Then
all results up to the current chapter may be applied, unless stated
otherwise.

Some of the problems are hard. Here is Polya’s four step plan for
tackling these issues.

(i) Understand the problem.

(ii) Devise a plan.

(iii) Execute the problem.

(iv) Look back.

1.6 Symbols and Abstract Notions

Mathematical illiterates often complain that mathematics deals with ab-
stract notions and symbols. However, this is indeed the foundation of the
great power of mathematics.

Here is an example2. Suppose we want to solve the quadratic equa-
tion

x2 +10x = 39 .

Muh. ammad ibn Mūsā al-Khwārizmı̄ (c. 780–850) presented an algorithm
for solving this equation in his text entitled Al-kitāb al-muh

¯
tas. ar fı̄ h. isāb

al-jabr wa-l-muqābala (The Condensed Book on the Calculation of al-
Jabr and al Muqabala). In his text he distinguishes between three kinds
of quantities: the square [of the unknown], the root of the square [the un-
known itself], and the absolute numbers [the constants in the equation].
Thus he stated our problem as

“What must be the square which, when increased by ten of
its own roots, amounts to thirty-nine?”

and presented the following recipe:

“The solution is this: you halve the number of roots, which in
the present instance yields five. This you multiply by itself;
the product is twenty-five. Add this to thirty-nine; the sum
is sixty-four. Now take the root of this which is eight, and
subtract from it half the number of the roots, which is five;
the remainder is three. This is the root of the square which
you sought for.”

2See Sect. 7.2.1 in Victor J. Katz (1993), A History of Mathematics, HarperCollins
College Publishers.
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Using modern mathematical (abstract!) notation we can express this al-
gorithm in a more condensed form as follows:

The solution of the quadratic equation x2 + bx = c with b, c > 0 is
obtained by the procedure

1. Halve b.
2. Square the result.
3. Add c.
4. Take the square root of the result.
5. Subtract b/2.

It is easy to see that the result can abstractly be written as

x =
√(

b
2

)2
+ c− b

2
.

Obviously this problem is just a special case of the general form of a
quadratic equation

ax2 +bx+ c = 0, a,b, c ∈R

with solution

x1,2 = −b±
p

b2 −4ac
2a

.

Al-Khwārizmı̄ provided a purely geometrically proof for his algorithm.
Consequently, the constants b and c as well as the unknown x must be
positive quantities. Notice that for him x2 = bx+ c was a different type
of equation. Thus he had to distinguish between six different types of
quadratic equations for which he provided algorithms for finding their
solutions (and a couple of types that do not have positive solutions at
all). For each of these cases he presented geometric proofs. And Al-
Khwārizmı̄ did not use letters nor other symbols for the unknown and
the constants.

— Summary

• Mathematics investigates and describes structures and patterns.

• Abstraction is the reason for the great power of mathematics.

• Computations and procedures are part of the mathematical tool-
box.

• Students of this course have mastered all the exercises from the
course Foundations of Economics – Mathematical Methods.

• Ideally students read the corresponding chapters of this manuscript
in advance before each lesson!



2
Logic

We want to look at the foundation of mathematical reasoning.

2.1 Statements

We use a naïve definition.

A statement is a sentence that is either true (T) or false (F) – but not Definition 2.1
both.

Example 2.2

• “Vienna is the capital of Austria.” is a true statement.

• “Bill Clinton was president of Austria.” is a false statement.

• “19 is a prime number” is a true statement.

• “This statement is false” is not a statement.

• “x is an odd number.” is not a statement. ♦

2.2 Connectives

Statements can be connected to more complex statements by means of
words like “and”, “or”, “not”, “if . . . then . . . ”, or “if and only if”. Table 2.3
lists the most important ones.

2.3 Truth Tables

Truth tables are extremely useful when learning logic. Mathematicians
do not use them in day-to-day work but they provide clarity for the be-
ginner. Table 2.4 lists truth values for important connectives.

Notice that the negation of “All cats are gray” is not “All cats are not
gray” but “Not all cats are gray”, that is, “There is at least one cat that
is not gray”.

7



2.4 IF . . . THEN . . . 8

Let P and Q be two statements.

Connective Symbol Name

not P ¬P negation
P and Q P ∧Q conjunction
P or Q P ∨Q disjunction
if P then Q P ⇒Q implication
Q if and only if P P ⇔Q equivalence

Table 2.3

Connectives for
statements

Let P and Q be two statements.

P Q ¬P P ∧Q P ∨Q P ⇒Q P ⇔Q

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Table 2.4

Truth table for
important connectives

2.4 If . . . then . . .

In an implication P ⇒Q there are two parts:

• Statement P is called the hypothesis or assumption, and

• Statement Q is called the conclusion.

The truth values of an implication seems a bit mysterious. Notice
that P ⇒Q says nothing about the truth of P or Q.

Which of the following statements are true? Example 2.5

• “If Barack Obama is Austrian citizen, then he may be elected for
Austrian president.”

• “If Ben is Austrian citizen, then he may be elected for Austrian
president.” ♦

2.5 Quantifier

The phrase “for all” is the universal quantifier. Definition 2.6
It is denoted by ∀.

The phrase “there exists” is the existential quantifier. Definition 2.7
It is denoted by ∃.
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— Problems

2.1 Construct the truth table of the following statements:

(a) ¬¬P (b) ¬(P ∧Q) (c) ¬(P ∨Q)

(d) ¬P ∧P (e) ¬P ∨P (f) ¬P ∨¬Q

2.2 Verify that the statement HINT: Compute the truth
table for this statement.

(P ⇒Q)⇔ (¬P ∨Q)

is always true.

2.3 Contrapositive. Verify that the statement

(P ⇒Q)⇔ (¬Q ⇒¬P)

is always true. Explain this statement and give an example.

2.4 Express P ∨Q, P ⇒ Q, and P ⇔ Q as compositions of P and Q by
means of ¬ and ∧. Prove your statement by truth tables.

2.5 Another connective is exclusive-or P ⊕Q. This statement is true
if and only if exactly one of the statements P or Q is true.

(a) Establish the truth table for P ⊕Q.

(b) Express this statement by means of “not”, “and”, and “or”.
Verify your proposition by means of truth tables.

2.6 A tautology is a statement that is always true. A contradiction
is a statement that is always false.

Which of the statements in the above problems is a tautology or a
contradiction?

2.7 Assume that the statement P ⇒ Q is true. Which of the following
statements are true (or false). Give examples.

(a) Q ⇒ P (b) ¬Q ⇒ P

(c) ¬Q ⇒¬P (d) ¬P ⇒¬Q



3
Definitions, Theorems and

Proofs

We have to read mathematical texts and need to know what that terms
mean.

3.1 Meanings

A mathematical text is build around a skeleton of the form “definition
– theorem – proof”. Besides that one also finds examples, remarks, or
illustrations. Here is a very short description of these terms.

• Definition : an explanation of the mathematical meaning of a definition
word.

• Theorem : a very important true statement. theorem

• Proposition : a less important but nonetheless interesting true proposition
statement.

• Lemma : a true statement used in proving other statements (aux- lemma
iliary proposition; pl. lemmata).

• Corollary : a true statement that is a simple deduction from a corollary
theorem.

• Proof : the explanation of why a statement is true. proof

• Conjecture : a statement believed to be true, but for which we conjecture
have no proof.

• Axiom : a basic assumption about a mathematical situation. axiom

10



3.2 READING 11

3.2 Reading

When reading definitions:

• Observe precisely the given condition.

• Find examples.

• Find standard examples (which you should memorize).

• Find trivial examples.

• Find extreme examples.

• Find non-examples, i.e., an example that do not satisfy the condi-
tion of the definition.

When reading theorems:

• Find assumptions and conditions.

• Draw a picture.

• Apply trivial or extreme examples.

• What happens to non-examples?

3.3 Theorems

Mathematical propositions are statements of the form “if A then B”. It is
always possible to rephrase a theorem in this way. E.g., the statement
“
p

2 is an irrational number” can be rewritten as “If x = p
2 then x is a

irrational number”.
When talking about mathematical theorems the following two terms

are extremely important.

A necessary condition is one which must hold for a conclusion to be Definition 3.1
true. It does not guarantee that the result is true.

A sufficient condition is one which guarantees the conclusion is true. Definition 3.2
The conclusion may even be true if the condition is not satisfied.

So if we have the statement “if A then B”, i.e., A ⇒ B, then

• A is a sufficient condition for B, and

• B is a necessary condition for A (sometimes also written as B ⇐ A).

3.4 Proofs

Finding proofs is an art and a skill that needs to be trained. The mathe-
matician’s toolbox provide the following main techniques.
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Direct Proof

The statement is derived by a straightforward computation.

If n ∈N is an odd number, then n2 is odd. Proposition 3.3

PROOF. If n is odd, then it is not divisible by 2 and thus n can be ex-
pressed as n = 2k+1 for some k ∈N. Hence

n2 = (2k+1)2 = 4k2 +4k+1

which is not divisible by 2, either. Thus n2 is an odd number as claimed.

Contrapositive Method

The contrapositive of the statement P ⇒Q is

¬Q ⇒¬P .

We have already seen in Problem 2.3 that (P ⇒ Q) ⇔ (¬Q ⇒¬P). Thus
in order to prove statement P ⇒Q we also may prove its contrapositive.

If n2 is an even number, then n is even. Proposition 3.4

PROOF. This statement is equivalent to the statement:

“If n is not even (i.e., odd), then n2 is not even (i.e., odd).”

However, this statements holds by Proposition 3.3 and thus our proposi-
tion follows.

Obviously we also could have used a direct proof to derive Proposi-
tion 3.4. However, our approach has an additional advantage: Since we
already have shown that Proposition 3.3 holds, we can use it for our proof
and avoid unnecessary computations.

Indirect Proof

This technique is similar to the contrapositive method. Yet we assume
that both P and ¬Q are true and show that a contradiction results. Thus
it is called proof by contradiction (or reductio ad absurdum). It is
based on the equivalence (P ⇒ Q) ⇔¬(P ∧¬Q). The advantage of this
method is that we get the statement ¬Q for free even when Q is difficult
to show.

The square root of 2 is irrational, i.e., it cannot be written in form m/n Proposition 3.5
where m and n are integers.

PROOF IDEA. We assume that
p

2 = m/n where m and n are integers
without a common divisor. We then show that both, m and n, are even
which is absurd.
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PROOF. Suppose the contrary that
p

2 = m/n where m and n are inte-
gers. Without loss of generality we can assume that this quotient is in its
simplest form. (Otherwise cancel common divisors of m and n.) Then we
find

m
n

=
p

2 ⇔ m2

n2 = 2 ⇔ m2 = 2n2

Consequently m2 is even and thus m is even by Proposition 3.4. So
m = 2k for some integer k. We then find

(2k)2 = 2n2 ⇔ 2k2 = n2

which implies that n is even and there exists an integer j such that
n = 2 j. However, we have assumed that m/n was in its simplest form;
but we find

p
2= m

n
= 2k

2 j
= k

j

a contradiction. Thus we conclude that
p

2 cannot be written as a quo-
tient of integers.

The phrase “without loss of generality” (often abbreviated as “w.l.o.g.”
is used in cases when a general situation can be easily reduced to some
special case which simplifies our arguments. In this example we just
have to cancel out common divisors.

Proof by Induction

Induction is a very powerful technique. It is applied when we have an
infinite number of statements A(n) indexed by natural numbers. It is
based on the following theorem.

Principle of mathematical induction. Let A(n) be an infinite collec- Theorem 3.6
tion of statements with n ∈N. Suppose that

(i) A(1) is true, and

(ii) A(k)⇒ A(k+1) for all k ∈N.

Then A(n) is true for all n ∈N.

PROOF. Suppose that the statement does not hold for all n. Let j be
the smallest natural number such that A( j) is false. By assumption
(i) we have j > 1 and thus j −1 ≥ 1. Note that A( j −1) is true as j is
the smallest possible. Hence assumption (ii) implies that A( j) is true, a
contradiction.

When we apply the induction principle the following terms are use-
ful.
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• Checking condition (i) is called the base step.

• Checking condition (ii) is called the induction step.

• Assuming that A(k) is true for some k is called the induction
hypothesis.

Let q ∈R, q ̸∈ {0,1}, and n ∈N Then Proposition 3.7

n−1∑
j=0

q j = 1− qn

1− q

PROOF. For a fixed q ∈ R this statement is indexed by natural numbers.
So we prove the statement by induction.

Base step: Obviously the statement is true for n = 1.
Induction step: We assume by the induction hypothesis that the

statement is true for n = k, i.e.,

k−1∑
j=0

q j = 1− qk

1− q
.

We have to show that the statement also holds for n = k+1. We find

k∑
j=0

q j =
k−1∑
j=0

q j + qk = 1− qk

1− q
+ qk = 1− qk

1− q
+ (1− q)qk

1− q
= 1− qk+1

1− q

Thus by the Principle of Mathematical Induction the statement is true
for all n ∈N.

Proof by Cases

It is often useful to break a given problem into cases and tackle each of
these individually.

Triangle inequality. Let a and b be real numbers. Then Proposition 3.8

|a+b| ≤ |a|+ |b|

PROOF. We break the problem into four cases where a and b are positive
and negative, respectively.

Case 1: a ≥ 0 and b ≥ 0. Then a+ b ≥ 0 and we find |a+ b| = a+ b =
|a|+ |b|.

Case 2: a < 0 and b < 0. Now we have a+b < 0 and |a+b| = −(a+b)=
(−a)+ (−b)= |a|+ |b|.

Case 3: Suppose one of a and b is positive and the other negative.
W.l.o.g. we assume a < 0 and b ≥ 0. (Otherwise reverse the rôles of a and
b.) Notice that x ≤ |x| for all x. We have the following to subcases:
Subcase (a): a+b > 0 and we find |a+b| = a+b ≤ |a|+ |b|.
Subcase (b): a+b < 0 and we find |a+b| = −(a+b)= (−a)+ (−b)≤ |−a|+
|−b| = |a|+ |b|.

This completes the proof.
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Counterexample

A counterexample is an example where a given statement does not
hold. It is sufficient to find one counterexample to disprove a conjecture.
Of course it is not sufficient to give just one example to prove a conjec-
ture.

Reading Proofs

Proofs are often hard to read. When reading or verifying a proof keep
the following in mind:

• Break into pieces.

• Draw pictures.

• Find places where the assumptions are used.

• Try extreme examples.

• Apply to a non-example: Where does the proof fail?

Mathematicians seem to like the word trivial which means self-
evident or being the simplest possible case. Make sure that the argument
really is evident for you1.

3.5 Why Should We Deal With Proofs?

The great advantage of mathematics is that one can assess the truth of
a statement by studying its proof. Truth is not determined by a higher
authority who says “because I say so”. (On the other hand, it is you that
has to check the proofs given by your lecturer. Copying a wrong proof
from the blackboard is your fault. In mathematics the incantation “But
it has been written down by the lecturer” does not work.)

Proofs help us to gain confidence in the truth of our statements.
Another reason is expressed by Ludwig Wittgenstein: Beweise reini-

gen die Begriffe. We learn something about the mathematical objects.

3.6 Finding Proofs

The only way to determine the truth or falsity of a mathematical state-
ment is with a mathematical proof. Unfortunately, finding proofs is not
always easy.
M. Sipser2. has the following tips for producing a proof:

1Nasty people say that trivial means: “I am confident that the proof for the state-
ment is easy but I am too lazy to write it down.”

2See Sect. 0.3 in Michael Sipser (2006), Introduction to the Theory of Computation,
2nd international edition, Course Technology.
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• Find examples. Pick a few examples and observe the statement in
action. Draw pictures. Look at extreme examples and non-exam-
ples. See what happens when you try to find counterexamples.

• Be patient. Finding proofs takes times. If you do not see how to do
it right away, do not worry. Researchers sometimes work for weeks
or even years to find a single proof.

• Come back to it. Look over the statement you want to prove, think
about it a bit, leave it, and then return a few minutes or hours
later. Let the unconscious, intuitive part of your mind have a
chance to work.

• Try special cases. If you are stuck trying to prove your statement,
try something easier. Attempt to prove a special case first. For
example, if you cannot prove your statement for every n ≥ 1, first
try to prove it for k = 1 and k = 2.

• Be neat. When you are building your intuition for the statement
you are trying to prove, use simple, clear pictures and/or text. Slop-
piness gets in the way of insight.

• Be concise. Brevity helps you express high-level ideas without get-
ting lost in details. Good mathematical notation is useful for ex-
pressing ideas concisely.

3.7 When You Write Down Your Own Proof

When you believe that you have found a proof, you must write it up
properly. View a proof as a kind of debate. It is you who has to convince
your readers that your statement is indeed true. A well-written proof is
a sequence of statements, wherein each one follows by simple reasoning
from previous statements in the sequence. All your reasons you may
use must be axioms, definitions, or theorems that your reader already
accepts to be true.

Keep in mind that a proof is not just a collection of computations.
These are means for the purpose of demonstration and thus require ex-
planation.

When you make use of a theorem you may explicitly refer to it. This
is in particular required if you use a previous result in a sequence of lem-
mata in order to help your reader to understanding your arguments. It
is also necessary if your result is based on propositions beyond the fun-
damental theorems in the area of research. In Mathematics, however, it
is usual to refer to the proposition, paper or book, rather than to quote
the text of that proposition verbatim.

Since a proof is a kind of debate you should use complete sentences
in consideration of grammar, syntax and usage of punctuation marks.
For the sake of readability sentences should not start with a symbol and
mathematical expressions may be separated by commata.
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— Summary

• Mathematical papers have the structure “Definition – Theorem –
Proof”.

• A theorem consists of an assumption or hypothesis and a conclu-
sion.

• We distinguish between necessary and sufficient conditions.

• Examples illustrate a notion or a statement. A good example shows
a typical property; extreme examples and non-examples demon-
strate special aspects of a result. An example does not replace a
proof.

• Proofs verify theorems. They only use definitions and statements
that have already be shown true.

• There are some techniques for proving a theorem which may (or
may not) work: direct proof, indirect proof, proof by contradiction,
proof by induction, proof cases.

• Wrong conjectures may be disproved by counterexamples.

• When reading definitions, theorems or proofs: find examples, draw
pictures, find assumptions and conclusions.
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— Problems

3.1 Consider the following student’s proof of the proposition: Let x, y ∈
R. Then xy≤ x2

2 + y2

2 .

PROOF (STUDENT VERSION):

(x− y)2 ≥ 0

x2 −2xy+ y2 ≥ 0

x2 + y2 ≥ 2xy

x2

2
+ y2

2
≥ xy

What is the problem with this version of the proof. Rewrite the
proof.

3.2 Consider the following statement:

Suppose that a, b, c and d are real numbers. If ab = cd
and a = c, then b = d.

Proof: We have

ab = cd
⇔ ab = ad, as a = c,
⇔ b = d, by cancellation.

Unfortunately, this statement is false. Where is the mistake? Find
a counterexample. Fix the proposition, i.e., change the statement
such that it becomes true.

3.3 Prove that the square root of 3 is irrational, i.e., it cannot be writ- HINT: Use the same idea
as in the proof of Proposi-
tion 3.5.

ten in form m/n where m and n are integers.

3.4 Suppose one uses the same idea as in the proof of Proposition 3.5 to
show that the square root of 4 is irrational. Where does the proof
fail?

3.5 Prove by induction that

n∑
j=1

j = 1
2

n(n+1) .

3.6 The binomial coefficient is defined as(
n
k

)
= n!

k! (n−k)!

It also can be computed by
(n
0
)= (n

n
)= 1 and the following recursion:(

n+1
k+1

)
=

(
n
k

)
+

(
n

k+1

)
for k = 0, . . . ,n−1
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This recursion can be illustrated by Pascal’s triangle:(0
0
)(1

0
) (1

1
)(2

0
) (2

1
) (2

2
)(3

0
) (3

1
) (3

2
) (3

3
)(4

0
) (4

1
) (4

2
) (4

3
) (4

4
)(5

0
) (5

1
) (5

2
) (5

3
) (5

4
) (5

5
)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Prove this recursion by a direct proof.

3.7 Prove the binomial theorem by induction: HINT: Use the recursion
from Problem 3.6.

(x+ y)n =
n∑

k=0

(
n
k

)
xk yn−k

3.8 Consider the following “proposition”:

All elements of a finite set {a1, . . . ,an} of real numbers
are equal.

It is obviously false as we would have the corollary:

All students at WU Wien have the same height.

So the following cannot be a correct proof of the false proposition.

NOT-A-PROOF: We use the induction principle.

Base step n = 1: The statement is trivially true for set with exactly
one element.

Induction step: Assume the statement holds for any set of cardi-
nality n. We show that it then also holds for a set {a1, . . . ,an+1}
of cardinality n+1. By the induction hypothesis all elements in
{a1, . . . ,an} and {a2, . . . ,an+1}, resp., are equal. In particular all
elements in the first subset are equal to a1 and all elements in
the second subset are equal to an+1. Now let a j be an element
in both subsets. Then we find a1 = a j = an+1 and consequently
all elements in {a1, . . . ,an+1} are equal. Thus the result follows by
induction.

3.9 Proof by induction:
Let ai ∈R for i = 1, . . . ,n. Then∣∣∣∣∣ n∑

i=1
ai

∣∣∣∣∣≤ n∑
i=1

|ai| .

3.10 Consider the following statement:
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Let a,b ∈R such that a = b. Then the following holds:

a = b
∣∣ ·a

⇔ a2 = ab
∣∣ + (a2 −2ab)

⇔ a2 + (a2 −2ab)= ab+ (a2 −2ab)
∣∣ simplify

⇔ 2(a2 −ab)= a2 −ab
∣∣ : (a2 −ab)

⇔ 2= 1

Obviously, this computation is false. Where is the mistake?

3.11 Odd Pie Fights. An odd number of people are standing in the
plane, there mutual distances distinct. At a signal each person
will throw a banana cream pie at his or her nearest neighbor3.

Prove that at least one person does not get hit with a pie.
Hint: You have to do induction on odd numbers only. Also observe
that there are always two persons with shortest distance among
all possible distances between pairs of people.

Does the statement still hold if there are an even number of peo-
ple? (Prove or disprove)

Does the statement still hold if there are an odd number of people
but where the distances need not be distinct? (Prove or disprove)

3Think of an old Laurel and Hardy movie.



4
Matrix Algebra

We want to cope with rows and columns.

4.1 Matrix and Vector

An m×n matrix (pl. matrices) is a rectangular array of mathematical Definition 4.1
expressions (e.g., numbers) that consists of m rows and n columns. We
write

A= (ai j)m×n =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 .

We use bold upper case letters to denote matrices and corresponding
lower case letters for their entries. For example, the entries of matrix A
are denote by ai j. In addition, we also use the symbol [A]i j to denote the
entry of A in row i and column j.

A column vector (or vector for short) is a matrix that consists of a single Definition 4.2
column, i.e., an n×1 matrix. We write

x=


x1
x2
...

xn

 .

A row vector is a matrix that consists of a single row. We write Definition 4.3

x′ = (x1, x2, . . . , xm) .

We use bold lower case letters to denote vectors. Symbol ek denotes
a column vector that has zeros everywhere except for a one in the kth
position.

21
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The set of all (column) vectors of length n with entries in R is denoted
by Rn. The set of all m×n matrices with entries in R is denoted by Rm×n.

It is convenient to write A = (a1, . . . ,an) to denote a matrix with col-

umn vectors a1, . . . ,an. We write A =

a′
1
...

a′
m

 to denote a matrix with row

vectors a′
1, . . . ,a′

m.

An n×n matrix is called a square matrix. Definition 4.4

An m× n matrix where all entries are 0 is called a zero matrix. It is Definition 4.5
denoted by 0nm.

An n×n square matrix with ones on the main diagonal and zeros else- Definition 4.6
where is called identity matrix. It is denoted by In.

We simply write 0 and I, respectively, if the size of 0nm and In can be
determined by the context.

The Kronecker delta δi j is defined as Definition 4.7

δi j =
{

1, if i = j,
0, if i ̸= j.

It is a convenient symbol that indicates that an expression vanishes1

if two numbers are distinct. For example, the identity matrix can be
defined as

[I]i j = δi j .

A diagonal matrix is a square matrix in which all entries outside the Definition 4.8
main diagonal are all zero. The diagonal entries themselves may or may
not be zero. Thus, the n×n matrix D is diagonal if di j = 0 whenever i ̸= j.
We denote a diagonal matrix with entries x1, . . . , xn by diag(x1, . . . , xn).

An upper triangular matrix is a square matrix in which all entries Definition 4.9
below the main diagonal are all zero. Thus, the n× n matrix U is an
upper triangular matrix if ui j = 0 whenever i > j.

Notice that identity matrices and square zero matrices are examples
for both diagonal matrices and upper triangular matrices.

1That is, the expression is 0.
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4.2 Matrix Algebra

Two matrices A and B are equal, A = B, if they have the same number Definition 4.10
of rows and columns and

ai j = bi j .

Let A and B be two m× n matrices. Then the sum A+B is the m× n Definition 4.11
matrix with elements

[A+B]i j = [A]i j + [B]i j = ai j +bi j .

That is, matrix addition is performed element-wise.

Let A be an m×n matrix and α ∈R. Then we define αA by Definition 4.12

[αA]i j =α[A]i j =αai j .

That is, scalar multiplication is performed element-wise.

Let A be an m× n matrix and B an n× k matrix. Then the matrix Definition 4.13
product A ·B is the m×k matrix with elements defined as

[A ·B]i j =
n∑

s=1
aisbs j .

That is, matrix multiplication is performed by multiplying ×
rows by columns.

Rules for matrix addition and multiplication. Theorem 4.14
Let A, B, C, and D, matrices of appropriate size. Then

(1) A+B=B+A

(2) (A+B)+C=A+ (B+C)

(3) A+0=A

(4) (A ·B) ·C=A · (B ·C)

(5) Im ·A=A ·In =A

(6) (αA) ·B=A · (αB)=α(A ·B)

(7) C · (A+B)=C ·A+C ·B
(8) (A+B) ·D=A ·D+B ·D

PROOF. See Problem 4.7.

Notice: In general matrix multiplication is not commutative! "
AB ̸=BA
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4.3 Transpose of a Matrix

The transpose of an m×n matrix A is the n×m matrix A′ (also denote Definition 4.15
by At, AT, or A⊤) defined as

[A′]i j = [A] ji = a ji .

We trivially find for m×n matrices A and B, Lemma 4.16

(A+B)′ =A′+B′ .

Let A be an m×n matrix and B an n×k matrix. Then Theorem 4.17

(1) A′′ =A,

(2) (AB)′ =B′A′.

PROOF. See Problem 4.15.

A square matrix A is called symmetric if A′ =A. Definition 4.18

4.4 Inverse Matrix

A square matrix A is called invertible if there exists a matrix A−1 such Definition 4.19
that

AA−1 =A−1A= I .

Matrix A−1 is then called the inverse matrix of A.
A is called singular if such a matrix does not exist.

Let A be an invertible matrix. Then its inverse A−1 is uniquely defined. Theorem 4.20

PROOF. See Problem 4.18.

Let A and B be two invertible matrices of the same size. Then AB is Theorem 4.21
invertible and

(AB)−1 =B−1A−1 .

PROOF. See Problem 4.19.

Let A be an invertible matrix. Then the following holds: Theorem 4.22

(1) (A−1)−1 =A

(2) (A′)−1 = (A−1)′

PROOF. See Problem 4.20.
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4.5 Block Matrix

Suppose we are given some vector x= (x1, . . . , xn)′. It may happen that we
naturally can distinguish between two types of variables (e.g., endoge-
nous and exogenous variables) which we can group into two respective
vectors x1 = (x1, . . . , xn1)′ and x2 = (xn1+1, . . . , xn1+n2)′ where n1 + n2 = n.
We then can write

x=
(
x1
x2

)
.

Assume further that we are also given some m×n Matrix A and that the
components of vector y=Ax can also be partitioned into two groups

y=
(
y1
y2

)
where y1 = (y1, . . . , xm1)′ and y2 = (ym1+1, . . . , ym1+m2)′. We then can parti-
tion A into four matrices

A=
(
A11 A12
A21 A22

)
where Ai j is a submatrix of dimension mi ×n j. Hence we immediately
find (

y1
y2

)
=

(
A11 A12
A21 A22

)
·
(
x1
x2

)
=

(
A11x1 +A12x2
A21x1 +A22x2

)
.

Matrix
(
A11 A12
A21 A22

)
is called a partitioned matrix or block matrix. Definition 4.23

Matrix A=
 1 2 3 4 5

6 7 8 9 10
11 12 13 14 15

 can be partitioned in numerous ways, Example 4.24

e.g.,

A=
(
A11 A12
A21 A22

)
=

 1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

 . ♦

Of course a matrix can be partitioned into more than 2×2 submatrices.
Sometimes there is no natural reason for such a block structure but it
might be convenient for further computations.

We can perform operations on block matrices in an obvious way, that
is, we treat the submatrices as of they where ordinary matrix elements.
For example, we find for block matrices with appropriate submatrices,

α

(
A11 A12
A21 A22

)
=

(
αA11 αA12
αA21 αA22

)
,
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(
A11 A12
A21 A22

)
+

(
B11 B12
B21 B22

)
=

(
A11 +B11 A12 +B12
A21 +B21 A22 +B22

)
,

and (
A11 A12
A21 A22

)
·
(
C11 C12
C21 C22

)
=

(
A11C11 +A12C21 A11C12 +A12C22
A21C11 +A22C21 A21C12 +A22C22

)
.

We also can use the block structure to compute the inverse of a parti-
tioned matrix. Assume that a matrix is partitioned as (n1+n2)×(n1+n2)

matrix A =
(
A11 A12
A21 A22

)
. Here we only want to look at the special case

where A21 = 0, i.e.,

A=
(
A11 A12
0 A22

)
.

We then have to find a block matrix B=
(
B11 B12
B21 B22

)
such that

AB=
(
A11B11 +A12B21 A11B12 +A12B22

A22B21 A22B22

)
=

(
In1 0
0 In2

)
= In1+n2 .

Thus if A−1
22 exists the second row implies that B21 = 0n2n1 and B22 =A−1

22 .
Furthermore, A11B11 +A12B21 = I implies B11 = A−1

11 . At last, A11B12 +
A12B22 = 0 implies B12 =−A−1

11 A12A−1
22 . Hence we find(

A11 A12
0 A22

)−1

=
(
A−1

11 −A−1
11 A12A−1

22

0 A−1
22

)
.

— Summary

• A matrix is a rectangular array of mathematical expressions.

• Matrices can be added and multiplied by a scalar componentwise.

• Matrices can be multiplied by multiplying rows by columns.

• Matrix addition and multiplication satisfy all rules that we expect
for such operations except that matrix multiplication is not com-
mutative.

• The zero matrix 0 is the neutral element of matrix addition, i.e., 0
plays the same role as 0 for addition of real numbers.

• The identity zero matrix I is the neutral element of matrix multi-
plication, i.e., I plays the same role as 1 for multiplication of real
numbers.

• There is no such thing as division of matrices. Instead one can use
the inverse matrix, which is the matrix analog to the reciprocal of
a number.

• A matrix can be partitioned. Thus one obtains a block matrix.
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— Exercises

4.1 Let

A=
(
1 −6 5
2 1 −3

)
, B=

(
1 4 3
8 0 2

)
and C=

(
1 −1
1 2

)
.

Compute

(a) A+B (b) A ·B (c) 3A′ (d) A ·B′

(e) B′ ·A (f) C+A (g) C·A+C·B (h) C2

4.2 Demonstrate by means of the two matrices A =
(
1 −1
1 2

)
and B =(

3 2
−1 0

)
, that matrix multiplication is not commutative in general,

i.e., we may find A ·B ̸=B ·A.

4.3 Let x=
 1
−2
4

 , y=
−3
−1
0

.

Compute x′x, xx′, x′y, y′x, xy′ and yx′.

4.4 Let A be a 3×2 matrix, C be a 4×3 matrix, and B a matrix, such
that the multiplication A ·B ·C is possible. How many rows and
columns must B have? How many rows and columns does the
product A ·B ·C have?

4.5 Compute X. Assume that all matrices are square matrices and all
required inverse matrices exist.

(a) AX+BX=CX+I (b) (A−B)X=−BX+C

(c) AXA−1 =B (d) XAX−1 =C (XB)−1

4.6 Use partitioning and compute the inverses of the following matri-
ces:

(a) A=


1 0 0 1
0 1 0 2
0 0 1 3
0 0 0 4

 (b) B=


1 0 5 6
0 2 0 7
0 0 3 0
0 0 0 4


— Problems

4.7 Prove Theorem 4.14.
Which conditions on the size of the respective matrices must be
satisfied such that the corresponding computations are defined?
HINT: Show that corresponding entries of the matrices on either side of the equa-
tions coincide. Use the formulæ from Definitions 4.11, 4.12 and 4.13.
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4.8 Show that the product of two diagonal matrices is again a diagonal
matrix.

4.9 Show that the product of two upper triangular matrices is again
an upper triangular matrix.

4.10 Show that the product of a diagonal matrix and an upper triangu-
lar matrices is an upper triangular matrix.

4.11 Let A= (a1, . . . ,an) be an m×n matrix.

(a) What is the result of Aek?
(b) What is the result of AD where D is an n×n diagonal matrix?

Prove your claims!

4.12
Let A=

a′
1
...

a′
m

 be an m×n matrix.

(a) What is the result of e′
kA.

(b) What is the result of DA where D is an m×m diagonal ma-
trix?

Prove your claims!

4.13 Let A be an m×n matrix and B be an n×n matrix where bkl = 1
for fixed 1≤ k, l ≤ n and bi j = 0 for i ̸= k or j ̸= l. What is the result
of AB? Prove your claims!

4.14 Let A be an m×n matrix and B be an m×m matrix where bkl = 1
for fixed 1≤ k, l ≤ m and bi j = 0 for i ̸= k or j ̸= l. What is the result
of BA? Prove your claims!

4.15 Prove Theorem 4.17.
HINT: (2) Compute the matrices on either side of the equation and compare their
entries.

4.16 Let A be an m×n matrix. Show that both AA′ and A′A are sym- HINT: Use Theorem 4.17.

metric.

4.17 Let x1, . . . ,xn ∈ Rn. Show that matrix G with entries g i j = x′
ix j is

symmetric.

4.18 Prove Theorem 4.20.
HINT: Assume that there exist two inverse matrices B and C. Show that they
are equal.

4.19 Prove Theorem 4.21.
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4.20 Prove Theorem 4.22.
HINT: Use Definition 4.19 and apply Theorems 4.21 and 4.17. Notice that I−1 = I
and I′ = I. (Why is this true?)

4.21 Compute the inverse of A=
(
A11 0
A21 A22

)
.

(Explain all intermediate steps.)

4.22 A stochastic vector (or probability vector) p ∈ Rn is a vector
with non-negative entries that sum up to one. That is,

(i) pi ≥ 0 for all i = 1, . . . ,n, and

(ii)
∑n

i=1 pi = 1.

A square matrix M ∈ Rn×n is called a (left) stochastic matrix if
all its columns are stochastic vectors.

(a) Give a formal definition of a stochastic matrix (without a ref-
erence to the term stochastic vector).

(b) Show: Let p ∈ Rn be a stochastic vector and S ∈ Rn×n be a
stochastic matrix. Then Sp is again a stochastic vector.

(c) Show: Let S,T ∈ Rn×n be stochastic matrices. Then ST is
again a stochastic matrix.

(d) Show: If Ap is a stochastic vector for every stochastic vector
p, then A is a stochastic matrix.
(You may find Problem 4.11 useful.)



5
Vector Space

We want to master the concept of linearity.

5.1 Linear Space

In Chapter 4 we have introduced addition and scalar multiplication of Definition 5.1
vectors. Both are performed element-wise. We again obtain a vector of
the same length. We thus say that the set of all real vectors of length n,

Rn =


x1

...
xn

 : xi ∈R, i = 1, . . . ,n


is closed under vector addition and scalar multiplication.

In mathematics we find many structures which possess this nice
property.

Let P = {∑k
i=0 aixi : k ∈N, ai ∈R

}
be the set of all polynomials. Then we Example 5.2

define a scalar multiplication and an addition on P by

• (αp)(x)=αp(x) for p ∈P and α ∈R,

• (p1 + p2)(x)= p1(x)+ p2(x) for p1, p2 ∈P .

Obviously, the result is again a polynomial and thus an element of P ,
i.e., the set P is closed under scalar multiplication and addition. ♦

Vector Space. A vector space is any nonempty set of objects that is Definition 5.3
closed under scalar multiplication and addition.

Of course in mathematics the meanings of the words scalar multipli-
cation and addition needs a clear and precise definition. So we also give
a formal definition:

30
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A (real) vector space is an object (V ,+, ·) that consists of a nonempty Definition 5.4
set V together with two functions + : V × V → V , (u,v) 7→ u+v, called
addition, and · : R×V → V , (α,v) 7→α·v, called scalar multiplication, with
the following properties:

(i) v+u=u+v, for all u,v ∈ V . (Commutativity)

(ii) v+ (u+w)= (v+u)+w, for all u,v,w ∈ V . (Associativity)

(iii) There exists an element 0 ∈ V such that 0+v = v+ 0 = v, for all
v ∈ V . (Identity element of addition)

(iv) For every v ∈ V , there exists an u ∈ V such that v+u = u+v = 0.
(Inverse element of addition)

(v) α(v+u)=αv+αu, for all v,u ∈ V and all α ∈R. (Distributivity)

(vi) (α+β)v=αv+βv, for all v ∈ V and all α,β ∈R. (Distributivity)

(vii) α(βv)= (αβ)v=β(αv), for all v ∈ V and all α,β ∈R.

(viii) 1v= v, for all v ∈ V , where 1 ∈R.
(Identity element of scalar multiplication)

We write vector space V for short, if there is no risk of confusion about
addition and scalar multiplication.

It is easy to check that Rn and the set P of polynomials in Example 5.2 Example 5.5
form vector spaces.

Let C 0([0,1]) and C 1([0,1]) be the set of all continuous and contin-
uously differentiable functions with domain [0,1], respectively. Then
C 0([0,1]) and C 1([0,1]) equipped with pointwise addition and scalar mul-
tiplication as in Example 5.2 form vector spaces.

The set L 1([0,1]) of all integrable functions on [0,1] equipped with
pointwise addition and scalar multiplication as in Example 5.2 forms a
vector space.

A non-example is the first hyperoctant in Rn, i.e., the set

H = {x ∈Rn : xi ≥ 0} .

It is not a vector space as for every x ∈ H \{0} we find −x ̸∈ H. ♦

Subspace. A nonempty subset S of some vector space V is called a Definition 5.6
subspace of V if for every u,v ∈S and α,β ∈R we find αu+βv ∈S .

Let A ∈Rm×n be an m×n matrix. Then the set Example 5.7

L = {
x ∈Rn : Ax= 0

}
of all solutions of the homogeneous linear equation Ax= 0 is a subspace
of Rn.

In order to verify this claim we take two vectors x,y ∈ L and two
scalars α,β ∈R and show that z=αx+βy ∈L . Thus we use the property
that Ax = 0 and Ay = 0 (as all vectors in L have this property) to show



5.2 BASIS AND DIMENSION 32

that Az = 0 which implies that z ∈ L (as L contains all such vectors).
Indeed

Az=A(αx+βy)=αAx+βAy=α0+β0= 0 .

This completes the proof. ♦

The fundamental property of vector spaces is that we can take some
vectors and create a set of new vectors by means of so called linear com-
binations.

Linear combination. Let V be a real vector space. Let {v1, . . . ,vk} ⊂ V Definition 5.8
be a finite set of vectors and α1, . . . ,αk ∈ R. Then

∑k
i=1αivi is called a

linear combination of the vectors v1, . . . ,vk.

Is is easy to check that the set of all linear combinations of some fixed
vectors forms a subspace of the given vector space.

Given a vector space V and a nonempty subset S = {v1, . . . ,vk}⊂ V . Then Theorem 5.9
the set of all linear combinations of the elements of S is a subspace of V .

PROOF IDEA. Let L = {∑k
i=1αivi : αi ∈R

}
be the set of all these linear

combinations. We take two vectors x,y ∈L and two scalars γ,δ ∈ R and
verify that the linear combination z = γx+δy is also an element of L .
For this purpose we use the property that every x ∈ L is some linear
combination of the vectors in S (since otherwise x ̸∈L ). We then use the
linear combinations for x and y to construct a linear combination for z
which implies that z ∈L .

PROOF. Let L = {∑k
i=1αivi : αi ∈R

}
be the set of all linear combinations

of the vectors in S. Let x,y ∈L and γ,δ ∈R. Then there exist αi ∈R and
βi ∈R such that x=∑k

i=1αivi and y=∑k
i=1βivi and thus

z= γx+δy= γ
k∑

i=1
αivi +δ

k∑
i=1

βivi =
k∑

i=1
(γαi +δβi)vi

is a linear combination of the elements of S. Thus z ∈ L . Since this
holds for any x,y ∈L and γ,δ ∈R, L is a subspace of V , as claimed.

Linear span. Let V be a vector space and S = {v1, . . . ,vk} ⊂ V be a Definition 5.10
nonempty finite subset. Then the subspace

span(S)=
{

k∑
i=1

αivi : αi ∈R
}

is referred as the subspace spanned by S and called linear span of S.
For convenience we set span(;)= {0}.



5.2 BASIS AND DIMENSION 33

5.2 Basis and Dimension

Let V be a vector space. A subset S ⊂V is called a generating set of V Definition 5.11
if span(S)= V .

A vector space V is said to be finitely generated, if there exists a finite Definition 5.12
subset S of V that spans V .

In the following we will restrict our interest to finitely generated real
vector spaces. We will show that the notions of a basis and of linear
independence are fundamental to vector spaces.

Basis. A set S is called a basis of some vector space V if it is a minimal Definition 5.13
generating set of V . Minimal means that every proper subset of S does
not span V .
The basis of the trivial vector space {0} is the empty set ;.

If V is finitely generated, then it has a basis. Theorem 5.14

PROOF. Since V is finitely generated, it is spanned by some finite set S.
If S is minimal, we are done. Otherwise, remove an appropriate element
and obtain a new smaller set S′ that spans V . Repeat this step until the
remaining set is minimal.

Linear dependence. Let S = {v1, . . . ,vk} be a subset of some vector Definition 5.15
space V . We say that S is linearly independent or the elements of
S are linearly independent if for any αi ∈ R, i = 1, . . . ,k,

∑k
i=1αivi = 0

implies α1 = . . . = αk = 0. The set S is called linearly dependent, if it
is not linearly independent. That is, there exist αi ∈ R not all zero such
that

∑k
i=1αivi = 0.

Every nonempty subset of a linearly independent set is linearly indepen- Theorem 5.16
dent.

PROOF. Let V be a vector space and S = {v1, . . . ,vk} ⊂ V be a linearly
independent set. Suppose S′ ⊂ S is linearly dependent. Without loss of
generality we assume that S′ = {v1, . . . ,vm}, m < k (otherwise rename the
elements of S). Then there exist α1, . . . ,αm not all 0 such that

∑m
i=1αivi =

0. Set αm+1 = . . .=αk = 0. Then we also have
∑k

i=1αivi = 0, where not all
αi are zero, a contradiction to the linear independence of S.

Every set that contains a linearly dependent set is linearly dependent. Theorem 5.17

PROOF. See Problem 5.8.

The following theorems gives us a characterization of linearly depen-
dent sets.
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Let S = {v1, . . . ,vk} be a subset of some vector space V . Then S is linearly Theorem 5.18
dependent if and only if there exists some v j ∈ S such that v j =∑k

i=1αivi
for some α1, . . . ,αk ∈R with α j = 0.

PROOF. Assume that v j =∑k
i=1αivi for some v j ∈ S such that α1, . . . ,αk ∈

R with α j = 0. Then 0 = (
∑k

i=1αivi)−v j = ∑k
i=1α

′
ivi, where α′

j = α j −1 =
−1 and α′

i =αi for i ̸= j. Thus we have a solution of
∑k

i=1α
′
ivi = 0 where

at least α′
j ̸= 0. But this implies that S is linearly dependent.

Now suppose that S is linearly dependent. Then we find βi ∈R not all
zero such that

∑k
i=1βivi = 0. Without loss of generality β j ̸= 0 for some

j ∈ {1, . . . ,k}. Then we find v j =−β1
β j

v1−·· ·−β j−1
β j

v j−1−β j+1
β j

v j+1−·· ·−βk
β j

vk =∑k
i=1αivi with α j = 0 and αi =−βi

β j
, as proposed.

Theorem 5.18 can also be stated as follows: S = {v1, . . . ,vk} is a lin-
early dependent subset of V if and only if there exists a v ∈ S such that
v ∈ span(S \{v}).

Let S = {v1, . . . ,vk} be a linearly independent subset of some vector space Theorem 5.19
V . Let u ∈ V . If u ̸∈ span(S), then S∪ {u} is linearly independent.

PROOF. See Problem 5.9.

The next two theorems provide us equivalent characterizations of a
basis by means of linear independent subsets.

Let B be a subset of some vector space V . Then the following are equiv- Theorem 5.20
alent:

(1) B is a basis of V .

(2) B is linearly independent generating set of V .

PROOF IDEA. We use an indirect proof. If we assume that B is a basis
but not linearly independent then we can find a proper subset of B that is
still a generating set, a contradiction to our assumption that B is a basis
and thus minimal. For the converse suppose that B is not minimal. Then
we can find a vector in B that can be expressed as a linear combination of
the remaining one which implies that it cannot be linearly independent.

PROOF. (1)⇒(2): By Definition 5.13, B is a generating set. Suppose that
B = {v1, . . . ,vk} is linearly dependent. By Theorem 5.18 there exists some
v ∈ B such that v ∈ span(B′) where B′ = B\{v}. Without loss of generality
assume that v = vk. Then there exist αi ∈ R such that vk = ∑k−1

i=1 αivi.
Now let u ∈ V . Since B is a basis there exist some βi ∈ R, such that
u = ∑k

i=1βivi = ∑k−1
i=1 βivi +βk

∑k−1
i=1 αivi = ∑k−1

i=1 (βi +βkαi)vi. Hence u ∈
span(B′). Since u was arbitrary, we find that B′ is a generating set of V .
But since B′ is a proper subset of B, B cannot be minimal, a contradiction
to the minimality of a basis.
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(2)⇒(1): Let B be a linearly independent generating set of V . Sup-
pose that B is not minimal. Then there exists a proper subset B′ ⊂ B such
that span(B′)= V . But then we find for every x ∈ B \ B′ that x ∈ span(B′)
and thus B cannot be linearly independent by Theorem 5.18, a contra-
diction. Hence B must be minimal as claimed.

Let B be a subset of some vector space V . Then the following are equiv- Theorem 5.21
alent:

(1) B is a basis of V .

(3) B is maximal linearly independent set of V . Maximal means that
every proper superset of B (i.e., a set that contains B as a proper
subset) is linearly dependent.

PROOF IDEA. We use the equivalent property (2) from Theorem 5.20. We
first assume that B is a basis but not maximal. Then a larger linearly
independent subset exists which implies that B cannot be a generating
set. For the converse statement assume that B is linearly independent
but not a generating set. However, this implies that B is not maximal,
again a contradiction.

PROOF. (1)⇒(3): Assume that B is a basis, i.e., B is a linearly indepen-
dent generating set of V by Theorem 5.20. Now suppose that there exists
an x ∈ V such that B∪ {x} is linearly independent. But then x ̸∈ span(B)
and B were not a generating set, a contradiction. Hence B is a maximal
linearly independent subset.

(3)⇒(1): For the contrary assume that B is a maximal linearly inde-
pendent subset of V . If B were not a generating set, then there exists an
x ∈ V \span(B) and consequently B∪ {x} is linearly independent by The-
orem 5.19, a contradiction to our assumption that B is maximal. Hence
B is a generating set and thus a basis of V by Theorem 5.20.

Steinitz exchange theorem (Austauschsatz). Let B1 and B2 be two Theorem 5.22
bases of some vector space V . If there is an x ∈ B1 \ B2 then there exists
a y ∈ B2 \ B1 such that (B1 ∪ {y})\{x} is a basis of V .

This theorem tells us that we can replace vectors in B1 by some vectors
in B2.

PROOF. Let B1 = {v1, . . . ,vk} and assume without loss of generality that
x = v1. (Otherwise rename the elements of B1.) As B1 is a basis it is
linearly independent by Theorem 5.20. By Theorem 5.16, B1\{v1} is also
linearly independent and thus it cannot be a basis of V by Theorem 5.21.
Hence it cannot be a generating set by Theorem 5.20. This implies that
there exists a y ∈ B2 with y ̸∈ span(B1 \ {v1}), since otherwise we had
span(B2)⊆ span(B1 \{v1}) ̸= V , a contradiction as B2 is a basis of V .
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Now there exist αi ∈ R not all equal to zero such that y = ∑k
i=1αivi.

In particular α1 ̸= 0, since otherwise y ∈ span(B1 \ {v1}), a contradiction
to the choice of y. We then find

v1 = 1
α1

y−
k∑

i=2

αi

α1
vi .

Similarly for every z ∈ V there exist β j ∈R such that z=∑k
j=1β jv j. Con-

sequently,

z=
k∑

j=1
β jv j =β1v1 +

k∑
j=2

β jv j =β1

(
1
α1

y−
k∑

i=2

αi

α1
vi

)
+

k∑
j=2

β jv j

= β1

α1
y+

k∑
j=2

(
β j − β1

α1
α j

)
v j

that is, (B1 ∪ {y}) \ {x} = {y,v2, . . . ,vk} is a generating set of V . By our
choice of y and Theorem 5.19 this set is linearly independent. Thus it is
a basis by Theorem 5.20. This completes the proof.

Any two bases B1 and B2 of some finitely generated vector space V have Theorem 5.23
the same size.

PROOF. We first show that |B1| ≤ |B2|. Suppose that B1\B2 is nonempty.
Then by Theorem 5.22 we can construct a new basis B′

1 by replacing a
vector in B1 \ B2 by some vector in B2 \ B1. Obviously the new basis B′

1
has the same number of elements as |B1|, i.e., |B′

1| = |B1|, and |B′
1 \B2| =

|B1\B2|−1. If B′
1\B2 ̸= ;, then we repeat this procedure until we obtain

a basis B∗
1 with B∗

1 \ B2 = ; which implies B∗
1 ⊆ B2. Since V is finitely

generated, B1 only has a finite number of elements which guarantees
that we eventually obtain such a basis B∗

1 . Hence we have |B1| = |B∗
1 | ≤

|B2|. By reversing the roles of B1 and B2 we also find |B2| ≤ |B1| and
hence |B1| = |B2|, as proposed.

Dimension. Let V be a finitely generated vector space. Let n be the Definition 5.24
number of elements in a basis. Then n is called the dimension of V

and we write dim(V ) = n. Moreover, V is called an n-dimensional vector
space.

We want to emphasis here that in opposition to the dimension the
basis of a vector space is not unique! Indeed there are infinitely many "
bases.

Any linearly independent subset S of some finitely generated vector Theorem 5.25
space V can be extended into a basis B of V with S ⊆ B.

PROOF. See Problem 5.10.

Let B = {v1, . . . ,vn} be some basis of vector space V . Assume that x = Theorem 5.26∑n
i=1αivi where αi ∈ R and α1 ̸= 0. Then B′ = {x,v2, . . . ,vn} is a basis of

V .

PROOF. See Problem 5.12.
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5.3 Coordinate Vector

Let V be an n-dimensional vector space with basis B = {v1,v2, . . . ,vn}.
Then we can express a given vector x ∈ V as a linear combination of the
basis vectors, i.e.,

x=
n∑

i=1
αivi

where the αi ∈R.

Let V be a vector space with some basis B = {v1, . . . ,vn}. Let x ∈ V Theorem 5.27
and αi ∈ R such that x = ∑n

i=1αivi. Then the coefficients α1, . . . ,αn are
uniquely defined.

PROOF. See Problem 5.13.

This theorem allows us to define the coefficient vector of x.

Let V be a vector space with some basis B = {v1, . . . ,vn}. For some vector Definition 5.28
x ∈ V we call the uniquely defined numbers αi ∈R with x=∑n

i=1αivi the
coefficients of x with respect to basis B. The vector c(x) = (α1, . . . ,αn)′

is then called the coefficient vector of x. We then have

x=
n∑

i=1
ci(x)vi .

Notice that c(x) ∈Rn.

Canonical basis. It is easy to verify that B = {e1, . . . ,en} forms a basis Example 5.29
of the vector space Rn. It is called the canonical basis of Rn and we
immediately find that for each x= (x1, . . . , xn)′ ∈Rn,

x=
n∑

i=1
xiei . ♦

The set P2 = {a0 +a1x+a2x2 : ai ∈ R} of polynomials of degree less than Example 5.30
or equal to 2 equipped with the addition and scalar multiplication of
Example 5.2 is a vector space with basis B = {v0,v1,v2} = {1, x, x2}. Then
any polynomial p ∈P2 has the form

p(x)=
2∑

i=0
aixi =

2∑
i=0

aivi

that is, c(p)= (a0,a1,a2)′. ♦

The last example demonstrates an important consequence of Theo-
rem 5.27: there is a one-to-one correspondence between a vector x ∈ V

and its coefficient vector c(x) ∈ Rn. The map V → Rn, x 7→ c(x) preserves
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the linear structure of the vector space, that is, for vectors x,y ∈ V and
α,β ∈R we find (see Problem 5.14)

c(αx+βy)=αc(x)+βc(y) .

In other words, the coefficient vector of a linear combination of two vec-
tors is the corresponding linear combination of the coefficient vectors of
the two vectors.

In this sense Rn is the prototype of any n-dimensional vector space
V . We say that V and Rn are isomorphic, V ∼=Rn, that is, they have the
same structure.

Now let B1 = {v1, . . . ,vn} and B2 = {w1, . . . ,wn} be two bases of vector
space V . Let c1(x) and c2(x) be the respective coefficient vectors of x ∈ V .
Then we have

w j =
n∑

i=1
c1i(w j)vi , j = 1, . . . ,n

and

n∑
i=1

c1i(x)vi = x=
n∑

j=1
c2 j(x)w j =

n∑
j=1

c2 j(x)
n∑

i=1
c1i(w j)vi

=
n∑

i=1

(
n∑

j=1
c2 j(x)c1i(w j)

)
vi .

Consequently, we find

c1i(x)=
n∑

j=1
c1i(w j)c2 j(x) .

Thus let U12 contain the coefficient vectors of the basis vectors of B2 with
respect to basis B1 as its columns, i.e.,

[U12]i j = c1i(w j) .

Then we find

c1(x)=U12c2(x) .

Matrix U12 is called the transformation matrix that transforms the Definition 5.31
coefficient vector c2 with respect to basis B2 into the coefficient vector c1
with respect to basis B1.

Notice that matrix U12 must be invertible as for every x there exist
unique coordinate vectors c1(x) and c2(x). Moreover, the inverse of U12
then is the transformation matrix of the reverse transformation, i.e.,

U−1
12 =U21 .
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— Summary

• A vector space is a set of elements that can be added and multiplied
by a scalar (number).

• A vector space is closed under forming linear combinations, i.e.,

x1, . . . ,xk ∈ V and α1, . . . ,αk ∈R implies
k∑

i=1
αixi ∈ V .

• A set of vectors is called linear independent if it is not possible
to express one of these as a linear combination of the remaining
vectors.

• A basis is a minimal generating set, or equivalently, a maximal set
of linear independent vectors.

• The basis of a given vector space is not unique. However, all bases
of a given vector space have the same size which is called the di-
mension of the vector space.

• For a given basis every vector has a uniquely defined coordinate
vector.

• The transformation matrix allows to transform a coordinate vector
w.r.t. one basis into the coordinate vector w.r.t. another one.

• Every vector space of dimension n “looks like” the Rn.
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— Exercises

5.1 Let P2 = {a0 +a1x+a2x2 : ai ∈R} be the vector space of all polyno-
mials of degree less than or equal to 2 equipped with point-wise ad-
dition and scalar multiplication. Then B = {1, x, x2} is a basis of P2
(see Example 5.30). The first three so called Laguerre polynomi-
als are ℓ0(x)= 1, ℓ1(x)= 1− x, and ℓ2(x)= 1

2
(
x2 −4x+2

)
. They also

form a basis Bℓ = {ℓ0(x),ℓ1(x),ℓ2(x)} of P2. What is the transfor-
mation matrix Uℓ that transforms the coefficient vector of a poly-
nomial p with respect to basis B into its coefficient vector with
respect to basis Bℓ?
HINT: Observe that the Laguerre polynomials ℓ0, ℓ1, and ℓ2 are given as linear
combinations of monomials, i.e., of the elements in basis B = {1, x, x2}. Hence the
columns of the inverse transformation matrix U−1

ℓ
can be easily be seen from the

above representation.

— Problems

5.2 Let S be some vector space. Show that 0 ∈S .

5.3 Give arguments why the following sets are or are not vector spaces:

(a) The empty set, ;.

(b) The set {0}⊂Rn.

(c) The set of all m×n matrices, Rm×n, for fixed values of m and
n.

(d) The set of all square matrices.

(e) The set of all n×n diagonal matrices, for some fixed values of
n.

(f) The set of all polynomials in one variable x.

(g) The set of all polynomials of degree less than or equal to some
fixed value n.

(h) The set of all polynomials of degree equal to some fixed value
n.

(i) The set of points x in Rn that satisfy the equation Ax = b for
some fixed matrix A ∈Rm×n and some fixed vector b ∈Rm.

(j) The set {y=Ax : x ∈Rn}, for some fixed matrix A ∈Rm×n.

(k) The set {y=b0 +αb1 : α ∈R}, for fixed vectors b0,b1 ∈Rn.

(l) The set of all functions on [0,1] that are both continuously
differentiable and integrable.

(m) The set of all functions on [0,1] that are not continuous.

(n) The set of all random variables X on some given probability
space (Ω,F ,P).
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Which of these vector spaces are finitely generated?
Find generating sets for these. If possible give a basis.

5.4 Let A ∈Rm×n, b ∈Rm, and x0 ∈Rn such that Ax0 =b. Show that

L0 = {x−x0 : Ax=b}= {x : Ax=b}−x0

is a subspace of Rn.

5.5 Prove the following proposition: Let S1 and S2 be two subspaces
of vector space V . Then S1 ∩S2 is a subspace of V .

5.6 Prove or disprove the following statement:

Let S1 and S2 be two subspaces of vector space V . Then their
union S1 ∪S2 is a subspace of V .

5.7 Let U1 and U2 be two subspaces of a vector space V . Then the
sum of U1 and U2 is the set sum of subspaces

U1 +U2 = {u1 +u2 : u1 ∈U1,u2 ∈U2} .

Show that U1 +U2 is a subspace of V .

5.8 Prove Theorem 5.17.

5.9 Prove Theorem 5.19.

5.10 Prove Theorem 5.25.
HINT: Start with S and add linearly independent vectors (Why is this possible?)
until we obtain a maximal linearly independent set. This is then a basis that
contains S. (Why?)

5.11 Let U1 and U2 be two subspaces of a vector space V . Show that

dim(U1)+dim(U2)= dim(U1 +U2)+dim(U1 ∩U2) .

HINT: Start with a basis for U1 ∩U2 and use Theorems 5.14 and 5.25.

5.12 Prove Theorem 5.26.
HINT: Express v1 as linear combination of elements in B′ and show that B′ is a
generating set by replacing v1 by this expression. It remains to show that the set
is a minimal generating set. (Why is any strict subset not a generating set?)

5.13 Prove Theorem 5.27.
HINT: Assume that there are two sets of numbers αi ∈ R and βi ∈ R such that
x=∑n

i=1αivi =
∑n

i=1βivi . Show that αi =βi by means of the fact that x−x= 0.

5.14 Let V be an n-dimensional vector space. Show that for two vectors
x,y ∈ V and α,β ∈R,

c(αx+βy)=αc(x)+βc(y) .

5.15 Show that a coefficient vector c(x)= 0 if and only if x= 0.
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Linear Transformations

We want to preserve linear structures.

6.1 Linear Maps

In Section 5.3 we have seen that the transformation that maps a vector
x ∈ V to its coefficient vector c(x) ∈Rdim(V ) preserves the linear structure
of vector space V .

Let V and W be two vector spaces. A transformation φ : V →W is called Definition 6.1
a linear map if for all x,y ∈ V and all α,β ∈R the following holds:

(i) φ(x+y)=φ(x)+φ(y)

(ii) φ(αx)=αφ(x)

Equivalently, φ : V →W is a linear map if

φ(αx+βy)=αφ(x)+βφ(y)

for all x,y ∈ V and all α,β ∈R.

Every m×n matrix A defines a linear map. Example 6.2

φA : Rn →Rm, x 7→φA(x)=Ax .

This immediately follow from the rules for matrix algebra:

φA(αx+βy)=A(αx+βy)=αAx+βAy=αφA(x)+βφA(y) . ♦

Let P = {∑k
i=0 aixi : k ∈N, ai ∈R

}
be the vector space of all polynomials Example 6.3

(see Example 5.2). Then the map d
dx : P → P , p 7→ d

dx p is linear. It is
called the differential operator1. ♦

1A transformation that maps a function to another function is usually called an
operator.

42



6.1 LINEAR MAPS 43

Let C 0([0,1]) and C 1([0,1]) be the vector spaces of all continuous and Example 6.4
continuously differentiable functions with domain [0,1], respectively (see
Example 5.5). Then the differential operator

d
dx

: C 1([0,1])→C 0([0,1]), f 7→ f ′ = d
dx

f

is a linear map. ♦

Let L be the vector space of all random variables X on some given prob- Example 6.5
ability space that have an expectation E(X ). Then the map

E : L →R, X 7→ E(X )

is a linear map. ♦

Linear maps can be described by their range and their preimage of 0.

Kernel and image. Let φ : V →W be a linear map. Definition 6.6

(i) The kernel (or nullspace) of φ is the preimage of 0, i.e.,

ker(φ)= {x ∈ V : φ(x)= 0} .

(ii) The image (or range) of φ is the set

Im(φ)=φ(V )= {y ∈W : ∃x ∈ V , s.t. φ(x)= y} .

Let φ : V →W be a linear map. Then ker(φ)⊆ V and Im(φ)⊆W are vector Theorem 6.7
spaces.

PROOF. First observe that ker(φ) ̸= ; as 0 ∈ ker(φ): φ(0) = φ(0x) =
0φ(x) = 0 for an arbitrary x ∈ V . Now by Definition 5.6 we have to show
that an arbitrary linear combination of two elements of the subset is also
an element of the set.

Let x,y ∈ ker(φ) and α,β ∈ R. Then by definition of ker(φ), φ(x) =
φ(y)= 0 and thus φ(αx+βy)=αφ(x)+βφ(y)= 0. Consequently αx+βy ∈
ker(φ) and thus ker(φ) is a subspace of V .

For the second statement assume that x,y ∈ Im(φ). Then there exist
two vectors u,v ∈ V such that x = φ(u) and y = φ(v). Hence for any
α,β ∈R, αx+βy=αφ(u)+βφ(v)=φ(αu+βv) ∈ Im(φ).

Let φ : V → W be a linear map and let B = {v1, . . . ,vn} be a basis of V . Theorem 6.8
Then Im(φ) is spanned by the vectors φ(v1), . . . ,φ(vn).

PROOF. For every x ∈ V we have x =∑n
i=1 ci(x)vi, where c(x) is the coef-

ficient vector of x with respect to B. Then by the linearity of φ we find
φ(x)=φ(∑n

i=1 ci(x)vi
)=∑n

i=1 ci(x)φ(vi). Thus φ(x) can be represented as
a linear combination of the vectors φ(v1), . . . ,φ(vn).
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We will see below that the dimensions of these vector spaces deter-
mine whether a linear map is invertible. First we show that there is a
strong relation between their dimensions.

Dimension theorem for linear maps. Let φ : V →W be a linear map. Theorem 6.9
Then

dim(ker(φ))+dim(Im(φ))= dim(V ) .

PROOF. Let {v1, . . . ,vk} form a basis of ker(φ) ⊆ V . Then it can be ex-
tended into a basis {v1, . . . ,vk,w1, . . . ,wn} of V , where k+n = dimV . For
any x ∈ V there exist unique coefficients αi and β j such that
x=∑k

i=1αivi +∑n
j=1β jw j. By the linearity of φ we then have

φ(x)=
k∑

i=1
αiφ(vi)+

n∑
j=1

β jφ(w j)=
n∑

j=1
β jφ(w j)

i.e., {φ(w1), . . . ,φ(wn)} spans Im(φ). It remains to show that this set is
linearly independent. In fact, if

∑n
j=1β jφ(w j) = 0 then φ(

∑n
j=1β jw j) =

0 and hence
∑n

j=1β jw j ∈ ker(φ). Thus there exist coefficients γi such
that

∑n
j=1β jw j =∑k

i=1γivi, or equivalently,
∑n

j=1β jw j +∑k
i=1(−γi)vi = 0.

However, as {v1, . . . ,vk,w1, . . . ,wn} forms a basis of V all coefficients β j
and γi must be zero and consequently the vectors {φ(w1), . . . ,φ(wn)} are
linearly independent and form a basis for Im(φ). Thus the statement
follows.

Let φ : V → W be a linear map and let B = {v1, . . . ,vn} be a basis of V . Lemma 6.10
Then the vectors φ(v1), . . . ,φ(vn) are linearly independent if and only if
ker(φ)= {0}.

PROOF. By Theorem 6.8, φ(v1), . . . ,φ(vn) spans Im(φ), that is, for every
x ∈ V we have φ(x) = ∑n

i=1 ci(x)φ(vi) where c(x) denotes the coefficient
vector of x with respect to B. Thus if φ(v1), . . . ,φ(vn) are linearly inde-
pendent, then φ(x)=∑n

i=1 ci(x)φ(vi)= 0 implies c(x)= 0 and hence x= 0.
That is, ker(φ)= {0}.

Conversely, if ker(φ) = {0}, then φ(x) = ∑n
i=1 ci(x)φ(vi) = 0 implies

x = 0 and hence c(x) = 0. But then vectors φ(v1), . . . ,φ(vn) are linearly
independent, as claimed.

We have dim(V )= dim(Im(φ)) if and only if ker(φ)= {0}. Corollary 6.11

Recall that a function φ : V →W is invertible, if there exists a func-
tion φ−1 : W → V such that

(
φ−1 ◦φ)

(x)= x for all x ∈ V and
(
φ◦φ−1)

(y)=
y for all y ∈W . Such a function exists if φ is one-to-one and onto.

A linear map φ is onto if Im(φ) = W . It is one-to-one if for each
y ∈W there exists at most one x ∈ V such that y=φ(x), i.e., if φ(x)=φ(y)
implies x= y.
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A linear map φ : V →W is one-to-one if and only if ker(φ)= {0}. Lemma 6.12

PROOF. See Problem 6.3.

A linear map φ : V →W is invertible if and only if dim(V ) = dim(W ) and Theorem 6.13
ker(φ)= {0}.

PROOF. By Lemma 6.12, φ is one-to-one if and only if ker(φ) = {0}. It is
onto if and only if dim(Im(φ)) = dim(W ). As dim(Im(φ)) = dim(V ) if and
only if ker(φ)= {0} by Corollary 6.11, the result follows.

Let φ : V →W be a linear map with dimV = dimW . Theorem 6.14

(1) If there exists a function ψ : W → V such that (ψ ◦φ)(x) = x for all
x ∈ V , then (φ◦ψ)(y)= y for all y ∈W .

(2) If there exists a function χ : W → V such that (φ ◦χ)(y) = y for all
y ∈W , then (χ◦φ)(x)= x for all x ∈ V .

PROOF. It remains to show that φ is invertible in both cases.
(1) Ifψ exists, then φmust be one-to-one. Thus ker(φ)= {0} by Lemma 6.12
and consequently φ is invertible by Theorem 6.13.
(2) We can use (1) to conclude that χ−1 =φ. Hence φ−1 = χ and the state-
ment follows.

An immediate consequence of this Theorem is the existence of ψ or
χ implies the existence of the other one. Consequently, this also implies
that φ is invertible and φ−1 =ψ= χ.

6.2 Matrices and Linear Maps

In Section 5.3 we have seen that the Rn can be interpreted as the vector
space of dimension n. Example 6.2 shows us that any m× n matrix A
defines a linear map between Rn and Rm. The following theorem tells
us that there is also an one-to-one correspondence between matrices and
linear maps. Thus matrices are the representations of linear maps.

Let φ : Rn → Rm be a linear map. Then there exists an m×n matrix Aφ Theorem 6.15
such that φ(x)=Aφx.

PROOF. Let ai =φ(ei) denote the images of the elements of the canonical
basis {e1, . . . ,en}. Let Aφ = (a1, . . . ,an) be the matrix with column vectors
ai. Notice that Aφei = ai. Now we find for every x = (x1, . . . , xn)′ ∈ Rn,
x=∑n

i=1 xiei and therefore

φ (x)=φ
(

n∑
i=1

xiei

)
=

n∑
i=1

xiφ(ei)=
n∑

i=1
xiai

=
n∑

i=1
xiAei =Aφ

n∑
i=1

xiei =Aφx

as claimed.
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Now assume that we have two linear maps φ : Rn →Rm and ψ : Rm →
Rk with corresponding matrices A and B, resp. The map composition
ψ◦φ is then given by (ψ◦φ)(x) =ψ(φ(x)) = B(Ax) = (BA)x. Thus matrix
multiplication corresponds to map composition.

If the linear map φ : Rn →Rn, x 7→ Ax, is invertible, then matrix A is
also invertible and A−1 describes the inverse map φ−1.

By Theorem 6.15 a linear map φ and its corresponding matrix A are
closely related. Thus all definitions and theorems about linear maps may
be applied to matrices. For example, the kernel of matrix A is the set

ker(A)= {x : Ax= 0} .

The following result is an immediate consequence of our considera-
tions and Theorem 6.14.

Let A be some square matrix. Theorem 6.16

(a) If there exists a square matrix B such that AB= I, then A is invert-
ible and A−1 =B.

(b) If there exists a square matrix C such that CA= I, then A is invert-
ible and A−1 =C.

The following result is very convenient.

Let A and B be two square matrices with AB= I. Then both A and B are Corollary 6.17
invertible and A−1 =B and B−1 =A.

6.3 Rank of a Matrix

Theorem 6.8 tells us that the columns of a matrix A span the image of
a linear map φ induced by A. Consequently, by Theorem 5.21 we get a
basis of Im(φ) by a maximal linearly independent subset of these column
vectors. The dimension of the image is then the size of this subset. This
motivates the following notion.

The rank of a matrix A is the maximal number of linearly independent Definition 6.18
columns of A.

By the above considerations we immediately have the following lem-
mata.

For any matrix A, Lemma 6.19

rank(A)= dim(Im(A)) .

Let A be an m×n matrix. If T is an invertible m×m matrix and U an Lemma 6.20
invertible n×n matrix, then rank(TA)= rank(AU)= rank(A).
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The nullity of matrix A is the dimension of the kernel (nullspace) of A. Definition 6.21

Rank-nullity theorem. Let A be an m×n matrix. Then Theorem 6.22

rank(A)+nullity(A)= n.

PROOF. By Lemma 6.19 and Theorem 6.9 we find rank(A)+nullity(A)=
dim(Im(A))+dim(ker(A))= n.

Let A be an m×n matrix and B be an n×k matrix. Then Theorem 6.23

rank(AB)≤min {rank(A),rank(B)} .

PROOF. Let φ and ψ be the maps represented by A and B, respec-
tively. Recall that AB corresponds to map composition φ◦ψ. Obviously,
Im(φ◦ψ)⊆ Imφ. Hence rank(AB)= dimIm(φ◦ψ)≤ dimIm(φ)= rank(A).
Similarly, Im(φ ◦ψ) is spanned by φ(S) where S is any basis of Im(ψ).
Hence rank(AB) = dimIm(φ◦ψ) ≤ dimIm(ψ) = rank(B). Thus the result
follows.

Our notion of rank in Definition 6.18 is sometimes also referred to as
column rank of matrix A. One may also define the row rank of A as the
maximal number of linearly independent rows of A. However, column
rank and row rank always coincide.

For any matrix A, Theorem 6.24

rank(A)= rank(A′).

For the proof of this theorem we first need the following result.

Let A be a m×n matrix. Then rank(A′A)= rank(A). Lemma 6.25

PROOF. We show that ker(A′A) = ker(A). Obviously, x ∈ ker(A) im-
plies A′Ax = A′0 = 0 and thus ker(A) ⊆ ker(A′A). Now assume that
x ∈ ker(A′A). Then A′Ax = 0 and we find 0 = x′A′Ax = (Ax)′(Ax) which
implies that Ax = 0 so that x ∈ ker(A). Hence ker(A′A) ⊆ ker(A) and,
consequently, ker(A′A)= ker(A). Now notice that A′A is an n×n matrix.
Theorem 6.22 then implies

rank(A′A)−rank(A)= (
n−nullity(A′A)

)− (n−nullity(A))
= nullity(A)−nullity(A′A)= 0

and thus rank(A′A)= rank(A), as claimed.

PROOF OF THEOREM 6.24. By Theorem 6.23 and Lemma 6.25 we find

rank(A′)≥ rank(A′A)= rank(A) .

As this statement remains true if we replace A by its transpose A′ we
have rank(A)≥ rank(A′) and thus the statement follows.
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Let A be an m×n matrix. Then Corollary 6.26

rank(A)≤min{m,n}.

Finally, we give a necessary and sufficient condition for invertibility
of a square matrix.

An n×n matrix A is called regular if it has full rank, i.e., if rank(A)= n. Definition 6.27

A square matrix A is invertible if and only if it is regular. Theorem 6.28

PROOF. By Theorem 6.13 a matrix is invertible if and only if nullity(A)=
0 (i.e., ker(A) = {0}). Then rank(A) = n−nullity(A) = n by Theorem 6.22.

6.4 Similar Matrices

In Section 5.3 we have seen that every vector x ∈ V in some vector space
V of dimension dimV = n can be uniformly represented by a coordinate
vector c(x) ∈ Rn. However, for this purpose we first have to choose an
arbitrary but fixed basis for V . In this sense every finitely generated
vector space is “equivalent” (i.e., isomorphic) to the Rn.

However, we also have seen that there is no such thing as the basis of
a vector space and that coordinate vector c(x) changes when we change
the underlying basis of V . Of course vector x then remains the same.

In Section 6.2 above we have seen that matrices are the representa-
tions of linear maps between Rm and Rn. Thus if φ : V → W is a linear
map, then there is a matrix A that represents the linear map between
the coordinate vectors of vectors in V and those in W . Obviously matrix
A depends on the chosen bases for V and W .

Suppose now that dimV = dimW = Rn. Let A be an n× n square
matrix that represents a linear map φ : Rn → Rn with respect to some
basis B1. Let x be a coefficient vector corresponding to basis B2 and let U
denote the transformation matrix that transforms x into the coefficient
vector corresponding to basis B1. Then we find:

basis B1: Ux A−→ AUx

U↑ ↓U−1

basis B2: x C−→ U−1AUx

hence Cx=U−1AUx

That is, if A represents a linear map corresponding to basis B1, then
C=U−1AU represents the same linear map corresponding to basis B2.

Two n× n matrices A and C are called similar if C = U−1AU for some Definition 6.29
invertible n×n matrix U.
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— Summary

• A Linear map φ preserve the linear structure, i.e.,

φ(αx+βy)=αφ(x)+βφ(y) .

• Kernel and image of a linear map φ : V →W are subspaces of V and
W , resp.

• Im(φ) is spanned by the images of a basis of V .

• A linear map φ : V → W is invertible if and only if dimV = dimW

and ker(φ)= {0}.

• Linear maps are represented by matrices. The corresponding ma-
trix depends on the chosen bases of the vector spaces.

• Matrices are called similar if they describe the same linear map
but w.r.t. different bases.

• The rank of a matrix is the dimension of the image of the corre-
sponding linear map.

• Matrix multiplication corresponds to map composition. The in-
verse of a matrix corresponds to the corresponding inverse linear
map.

• A matrix is invertible if and only if it is a square matrix and regu-
lar, i.e., has full rank.
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— Exercises

6.1 Let P2 = {a0 +a1x+a2x2 : ai ∈R} be the vector space of all polyno-
mials of degree less than or equal to 2 equipped with point-wise
addition and scalar multiplication. Then B = {1, x, x2} is a basis of
P2 (see Example 5.30). Let φ = d

dx : P2 → P2 be the differential
operator on P2 (see Example 6.3).

(a) What is the kernel of φ? Give a basis for ker(φ).

(b) What is the image of φ? Give a basis for Im(φ).

(c) For the given basis B represent map φ by a matrix D.

(d) The first three so called Laguerre polynomials are ℓ0(x) = 1,
ℓ1(x)= 1− x, and ℓ2(x)= 1

2
(
x2 −4x+2

)
.

Then Bℓ = {ℓ0(x),ℓ1(x),ℓ2(x)} also forms a basis of P2. What
is the transformation matrix Uℓ that transforms the coeffi-
cient vector of a polynomial p with respect to basis B into its
coefficient vector with respect to basis Bℓ?

(e) For basis Bℓ represent map φ by a matrix Dℓ.

HINT: Observe that the Laguerre polynomials ℓ0, ℓ1, and ℓ2 are given as linear
combinations of monomials, i.e., of the elements in basis B = {1, x, x2}. Hence the
columns of the inverse transformation matrix U−1

ℓ
can be easily be seen from the

above representation.

— Problems

6.2 Let φ : V →W be a linear map and let B = {v1, . . . ,vn} be a basis of
V . Give a necessary and sufficient condition for

{
φ(v1), . . . ,φ(vn)

}
being a basis of Im(φ).

6.3 Prove Lemma 6.12.
HINT: We have to prove two statements:
(1) φ is one-to-one ⇒ ker(φ)= {0}.
(2) ker(φ)= {0} ⇒ φ is one-to-one.
For (2) use the fact that if φ(x1) = φ(x2), then x1 −x2 must be an element of the
kernel. (Why?)

6.4 Let φ : Rn →Rm, x 7→ y=Ax be a linear map, where A= (a1, . . . ,an).
Show that the column vectors of matrix A span Im(φ), i.e.,

span(a1, . . . ,an)= Im(φ) .

6.5 Prove Corollary 6.26.

6.6 Disprove the following statement:
For any m × n matrix A and any n × k matrix B it holds that
rank(AB)=min {rank(A),rank(B)}.

6.7 Show that two similar matrices have the same rank.
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6.8 The converse of the statement in Problem 6.7 does not hold, that
is, two n×n matrices with the same rank need not be similar. Give
a counterexample.



7
Linear Equations

We want to compute dimensions and bases of kernel and image.

7.1 Linear Equations

A system of m linear equations in n unknowns is given by the following Definition 7.1
set of equations:

a11 x1 + a12 x2 + ·· · + a1n xn = b1
a21 x1 + a22 x2 + ·· · + a2n xn = b2

...
...

. . .
...

...
am1 x1 + am2 x2 + ·· · + amn xn = bm

By means of matrix algebra it can be written in much more compact form
as (see Problem 7.2)

Ax=b .

The matrix

A=


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


is called the coefficient matrix and the vectors

x=

x1
...

xn

 and b=

 b1
...

bm


contain the unknowns xi and the constants b j on the right hand side.

A linear equation Ax= 0 is called homogeneous. Definition 7.2
A linear equation Ax=b with b ̸= 0 is called inhomogeneous.

52
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Observe that the set of solutions of the homogeneous linear equation
Ax= 0 is just the kernel of the coefficient matrix, ker(A), and thus forms
a vector space. The set of solutions of an inhomogeneous linear equation
Ax=b can be derived from ker(A) as well.

Let x0 and y0 be two solutions of the inhomogeneous equation Ax = b. Lemma 7.3
Then x0 −y0 is a solution of the homogeneous equation Ax= 0.

Let x0 be a particular solution of the inhomogeneous equation Ax = b, Theorem 7.4
then the set of all solutions of Ax=b is given by

S = x0 +ker(A)= {x= x0 +z : z ∈ ker(A)} .

PROOF. See Problem 7.3.

Set S is an example of an affine subspace of Rn.

Let x0 ∈Rn be a vector and S ⊆Rn be a subspace. Then the set x0+S = Definition 7.5
{x= x0 +z : z ∈S } is called an affine subspace of Rn

7.2 Gauß Elimination

A linear equation Ax=b can be solved by transforming it into a simpler
form called row echelon form.

A matrix A is said to be in row echelon form if the following holds: Definition 7.6

(i) All nonzero rows (rows with at least one nonzero element) are above
any rows of all zeroes, and

(ii) The leading coefficient (i.e., the first nonzero number from the left,
also called the pivot) of a nonzero row is always strictly to the right
of the leading coefficient of the row above it.

It is sometimes convenient to work with an even simpler form.

A matrix A is said to be in row reduced echelon form if the following Definition 7.7
holds:

(i) All nonzero rows (rows with at least one nonzero element) are above
any rows of all zeroes, and

(ii) The leading coefficient of a nonzero row is always strictly to the
right of the leading coefficient of the row above it. It is 1 and is
the only nonzero entry in its column. Such columns are then called
pivotal.

Any coefficient matrix A can be transformed into a matrix R that is
in row (reduced) echelon form by means of elementary row operations
(see Problem 7.6):
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(E1) Switch two rows.

(E2) Multiply some row with α ̸= 0.

(E3) Add some multiple of a row to another row.

These row operations can be performed by means of elementary ma-
trices, i.e., matrices that differs from the identity matrix by one single
elementary row operation. These matrices are always invertible, see
Problem 7.4.

The procedure works due to the following lemma which tells use how
we obtain equivalent linear equations that have the same solutions.

Let A be an m×n coefficient matrix and b the vector of constants. If T Lemma 7.8
is an invertible m×m matrix, then the linear equations

Ax=b and TAx=Tb

are equivalent. That is, they have the same solutions.

PROOF. See Problem 7.5.

Gauß elimination now iteratively applies elementary row operations
until a row (reduced) echelon form is obtained. Mathematically spoken:
In each step of the iteration we multiply a corresponding elementary
matrix Tk from the left to the equation Tk−1 · · ·T1Ax = Tk−1 · · ·T1b. For
practical reasons one usually uses the augmented coefficient matrix.

For every matrix A there exists a sequence of elementary row operations Theorem 7.9
T1, . . .Tk such that R=Tk · · ·T1A is in row (reduced) echelon form.

PROOF. See Problem 7.6.

For practical reasons one augments the coefficient matrix A of a lin-
ear equation by the constant vector b. Thus the row operations can be
performed on A and b simultaneously.

Let Ax = b be a linear equation with coefficient matrix A = (a1, . . .an). Definition 7.10
Then matrix Ab = (A,b) = (a1, . . .an,b) is called the augmented coeffi-
cient matrix of the linear equation.

When the coefficient matrix is in row echelon form, then the solution
x of the linear equation Ax = b can be easily obtained by means of an
iterative process called back substitution. When it is in row reduced
echelon form it is even simpler: We get a particular solution x0 by setting
all variables that belong to non-pivotal columns to 0. Then we solve
the resulting linear equations for the variables that corresponds to the
pivotal columns. This is easy as each row reduces to

δixi = bi where δi ∈ {0,1}.
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Obviously, these equations can be solved if and only if δi = 1 or bi = 0.
We then need a basis of ker(A) which we easily get from a row re-

duced echelon form of the homogeneous equation Ax = 0. Notice, that
ker(A)= {0} if there are no non-pivotal columns.

7.3 Image, Kernel and Rank of a Matrix

Once the row reduced echelon form R is given for a matrix A we also can
easily compute bases for its image and kernel.

Let R be a row reduced echelon form of some matrix A. Then rank(A) is Theorem 7.11
equal to the number nonzero rows of R.

PROOF. By Lemma 6.20 and Theorem 7.9, rank(R) = rank(A). It is easy
to see that non-pivotal columns can be represented as linear combina-
tions of pivotal columns. Hence the pivotal columns span Im(R). More-
over, the pivotal columns are linearly independent since no two of them
have a common non-zero entry. The result then follows from the fact
that the number of pivotal columns equal the number of nonzero ele-
ments.

Let R be a row reduced echelon form of some matrix A. Then the columns Theorem 7.12
of A that correspond to pivotal columns of R form a basis of Im(A).

PROOF. The columns of A span Im(A). Let Ap consists of all columns of
A that correspond to pivotal columns of R. If we apply the same elemen-
tary row operations on Ap as for A we obtain a row reduced echelon form
Rp where all columns are pivotal. Hence the columns of Ap are linearly
independent and rank(Ap) = rank(A). Thus the columns of Ap form a
basis of Im(A), as claimed.

At last we verify other observation about the existence of the solution
of an inhomogeneous equation.

Let Ax = b be an inhomogeneous linear equation. Then there exists a Theorem 7.13
solution x0 if and only if rank(A)= rank(Ab).

PROOF. Recall that Ab denotes the augmented coefficient matrix. If
there exists a solution x0, then b=Ax0 ∈ Im(A) and thus

rank(Ab)= dimspan(a1, . . . ,an,b)= dimspan(a1, . . . ,an)= rank(A) .

On the other hand, if no such solution exists, then b ̸∈ span(a1, . . . ,ak)
and thus span(a1, . . . ,an)⊂ span(a1, . . . ,an,b). Consequently,

rank(Ab)= dimspan(a1, . . . ,an,b)> dimspan(a1, . . . ,an)= rank(A)

and thus rank(Ab) ̸= rank(A).
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— Summary

• A linear equation is one that can be written as Ax=b.

• The set of all solutions of a homogeneous linear equation forms a
vector space.
The set of all solutions of an inhomogeneous linear equation forms
an affine space.

• Linear equations can be solved by transforming the augmented co-
efficient matrix into row (reduced) echelon form.

• This transformation is performed by (invertible) elementary row
operations.

• Bases of image and kernel of a matrix A as well as its rank can
be computed by transforming the matrix into row reduced echelon
form.
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— Exercises

7.1 Compute image, kernel and rank of

A=
1 2 3

4 5 6
7 8 9

 .

— Problems

7.2 Verify that a system of linear equations can indeed written in ma-
trix form. Moreover show that each equation Ax = b represents a
system of linear equations.

7.3 Prove Lemma 7.3 and Theorem 7.4.

7.4
Let A=

a′
1
...

a′
m

 be an m×n matrix.

(1) Define matrix Ti↔ j that switches rows a′
i and a′

j.

(2) Define matrix Ti(α) that multiplies row a′
i by α.

(3) Define matrix Ti← j(α) that adds row a′
j multiplied by α to

row a′
i.

For each of these matrices argue why these are invertible and state
their respective inverse matrices.
HINT: Use the results from Exercise 4.14 to construct these matrices.

7.5 Prove Lemma 7.8.

7.6 Prove Theorem 7.9.
Use a so called constructive proof. In this case this means to pro-
vide an algorithm that transforms every input matrix A into row
reduce echelon form by means of elementary row operations. De-
scribe such an algorithm (in words or pseudo-code).



8
Euclidean Space

We need a ruler and a protractor.

8.1 Inner Product, Norm, and Metric

Inner product. Let x,y ∈Rn. Then Definition 8.1

x′y=
n∑

i=1
xi yi

is called the inner product (dot product, scalar product) of x and y.

Fundamental properties of inner products. Let x,y,z ∈Rn and α,β ∈ Theorem 8.2
R. Then the following holds:

(1) x′y= y′x (Symmetry)

(2) x′x≥ 0 where equality holds if and only if x= 0
(Positive-definiteness)

(3) (αx+βy)′z=αx′z+βy′z (Linearity)

PROOF. Properities (i) and (ii) immediately follows from Definition 8.1.
Property (iii) also follows from the rules for matrix algebra, see Theo-
rem 4.14.

In our notation the inner product of two vectors x and y is just the
usual matrix multiplication of the row vector x′ with the column vector
y. However, the formal transposition of the first vector x is often omitted
in the notation of the inner product. Thus one simply writes x ·y. Hence
the name dot product. This is reflected in many computer algebra sys-
tems like Maxima where the symbol for matrix multiplication is used to
multiply two (column) vectors.
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Inner product space. The notion of an inner product can be general- Definition 8.3
ized. Let V be some vector space. Then any function

〈·, ·〉 : V ×V →R

that satisfies the properties

(i) 〈x,y〉 = 〈y,x〉,
(ii) 〈x,x〉 ≥ 0 where equality holds if and only if x= 0,

(iii) 〈αx+βy,z〉 =α〈x,z〉+β〈y,z〉,
is called an inner product. A vector space that is equipped with such an
inner product is called an inner product space. In pure mathematics
the symbol 〈x,y〉 is often used to denote the (abstract) inner product of
two vectors x,y ∈ V .

Let L be the vector space of all random variables X on some given prob- Example 8.4
ability space with finite variance V(X ). Then map

〈·, ·〉 : L ×L →R, (X ,Y ) 7→ 〈X ,Y 〉 = E(XY )

is an inner product in L . ♦

Euclidean norm. Let x ∈Rn. Then Definition 8.5

∥x∥2 =
p

x′x=
√

n∑
i=1

x2
i

is called the Euclidean norm (or norm for short1) of x.

Cauchy-Schwarz inequality. Let x,y ∈Rn. Then Theorem 8.6

|x′y| ≤ ∥x∥2 · ∥y∥2 .

Equality holds if and only if x and y are linearly dependent.

PROOF. The inequality trivially holds if x = 0 or y = 0. Assume that
y ̸= 0. Then we find for any λ ∈R,

0≤ (x−λy)′(x−λy)= x′x−λx′y−λy′x+λ2y′y= x′x−2λx′y+λ2y′y.

Using the special value λ= x′y
y′y we obtain

0≤ x′x−2
x′y
y′y

x′y+ (x′y)2

(y′y)2 y′y= x′x− (x′y)2

y′y
.

Hence

(x′y)2 ≤ (x′x) (y′y)= ∥x∥2
2 ∥y∥2

2 .

1We use symbol ∥x∥ for short (i.e., omit subscript 2) if there is no risk of confusion.
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or equivalently

|x′y| ≤ ∥x∥2 ∥y∥
as claimed.

Now if equality holds, then x−λy = 0 for our choice of λ and thus x
and y are linearly dependent. On the other hand if x and y are linearly
dependent then w.l.o.g. there exists an α ∈ R such that x = αy. Then we
find for our choice λ= x′y

y′y = α
y′y
y′y = α and consequently equality holds in

every step. This completes our proof

Minkowski inequality. Let x,y ∈Rn. Then Theorem 8.7

∥x+y∥2 ≤ ∥x∥2 +∥y∥2 .

PROOF. See Problem 8.2.

Fundamental properties of norms. Let x,y ∈Rn and α ∈R. Then Theorem 8.8

(1) ∥x∥2 ≥ 0 where equality holds if and only if x= 0
(Positive-definiteness)

(2) ∥αx∥2 = |α| ∥x∥2 (Positive scalability)

(3) ∥x+y∥2 ≤ ∥x∥2 +∥y∥2 (Triangle inequality or subadditivity)

PROOF. See Problem 8.4.

Normed vector space. The notion of a norm can be generalized. Let Definition 8.9
V be some vector space. Then any function

∥·∥ : V →R

that satisfies properties

(i) ∥x∥ ≥ 0 where equality holds if and only if x= 0

(ii) ∥αx∥ = |α| ∥x∥
(iii) ∥x+y∥ ≤ ∥x∥+∥y∥
is called a norm. A vector space that is equipped with such a norm is
called a normed vector space.

Other examples of norms of vectors x ∈Rn are the so called 1-norm Example 8.10

∥x∥1 =
n∑

i=1
|xi| ,

the p-norm

∥x∥p =
(

n∑
i=1

|xi|p
) 1

p

, for 1≤ p <∞,

and the supremum norm

∥x∥∞ = max
i=1,...,n

|xi| . ♦
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Observe that the Euclidean norm of a vector x in Definition 8.5 is a
special case of the p-norm with p = 2 (and thus denoted by ∥x∥2). As this
is the “usual” norm we just write ∥x∥ (i.e., omit subscript 2) if there is no
risk of confusion.

Let L be the vector space of all random variables X on some given prob- Example 8.11
ability space with finite variance V(X ). Then map

∥·∥2 : L → [0,∞), X 7→ ∥X∥2 =
√
E(X2)=

√
〈X , X 〉

is a norm in L . ♦

A vector x ∈Rn is called normalized if ∥x∥ = 1. Definition 8.12

In Definition 8.5 we used the inner product (Definition 8.1) to define
the Euclidean norm. In fact we only needed the properties of the inner
product to derive the properties of the Euclidean norm in Theorem 8.8
and the Cauchy-Schwarz inequality (Theorem 8.6). That is, every inner
product induces a norm. However, there are also other norms that are
not induced by inner products, e.g., the p-norms ∥x∥p for p ̸= 2.

Euclidean metric. Let x,y ∈ Rn, then d2(x,y) = ∥x−y∥2 defines the Definition 8.13
Euclidean distance between x and y.

Fundamental properties of metrics. Let x,y,z ∈Rn. Then Theorem 8.14

(1) d2(x,y)= d2(y,x) (Symmetry)

(2) d2(x,y)≥ 0 where equality holds if and only if x= y
(Positive-definiteness)

(3) d2(x,z)≤ d2(x,y)+d2(y,z) (Triangle inequality)

PROOF. See Problem 8.8.

Metric space. The notion of a metric can be generalized. Let V be some Definition 8.15
vector space. Then any function

d(·, ·) : V ×V →R

that satisfies properties

(i) d(x,y)= d(y,x)

(ii) d(x,y)≥ 0 where equality holds if and only if x= y

(iii) d(x,z)≤ d(x,y)+d(y,z)

is called a metric. A vector space that is equipped with a metric is called
a metric vector space.
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Definition 8.13 (and the proof of Theorem 8.14) shows us that any
norm induces a metric. However, there also exist metrics that are not
induced by some norm.

Let L be the vector space of all random variables X on some given prob- Example 8.16
ability space with finite variance V(X ). Then the following maps are
metrics in L :

d2 : L ×L → [0,∞), (X ,Y ) 7→ ∥X −Y ∥ =
√
E((X −Y )2)

dE : L ×L → [0,∞), (X ,Y ) 7→ dE(X ,Y )= E(|X −Y |)
dF : L ×L → [0,∞), (X ,Y ) 7→ dF (X ,Y )=max

∣∣FX (z)−FY (z)
∣∣

where FX denotes the cumulative distribution function of X . ♦

8.2 Orthogonality

Assume we have a straight line through origin O = (0,0). Recall from
classical geometry that we can draw a perpendicular by a ruler-and-
compass construction:

y−y

x

O

x+y x−y

We want to have an algebraic definition of the notion of perpendicularity.
So let x and y be the vectors from O to the intersection points and the
centers of the two circle, resp. By construction these are perpendicular
by construction. Observe that the red triangle is isosceles, i.e., ∥x+y∥ =
∥x−y∥ . The difference between the two sides of this triangle can be
computed by means of an inner product (see Problem 8.10) as

∥x+y∥2
2 −∥x−y∥2

2 = 4x′y .

Two vectors x,y ∈ Rn are called orthogonal (perpendicular, normal) Definition 8.17
to each other if x′y= 0.

Pythagorean theorem. Let x,y ∈Rn be two vectors that are orthogonal Theorem 8.18
to each other. Then

∥x+y∥2
2 = ∥x∥2

2 +∥y∥2
2 .
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PROOF. See Problem 8.11.

Let v1, . . . ,vk be non-zero vectors. If these vectors are pairwise orthogo- Lemma 8.19
nal to each other, then they are linearly independent.

PROOF. Suppose v1, . . . ,vk are linearly dependent. Then w.l.o.g. there
exist α2, . . . ,αk such that v1 = ∑k

i=2αivi. Then v′
1v1 = v′

1
(∑k

i=2αivi
) =∑k

i=2αiv′
1vi = 0, i.e., v1 = 0 by Theorem 8.2, a contradiction to our as-

sumption that all vectors are non-zero.

Orthonormal system. A set {v1, . . . ,vn}⊂Rn is called an orthonormal Definition 8.20
system if the following holds:

(i) the vectors are mutually orthogonal,

(ii) the vectors are normalized.

That is, v′
iv j = δi j.

Orthonormal basis. A basis {v1, . . . ,vn}⊂Rn is called an orthonormal Definition 8.21
basis if it forms an orthonormal system.

Let B = {v1, . . . ,vn} be an orthonormal basis of Rn. Then the coefficient Theorem 8.22
vector c(x) of some vector x ∈Rn with respect to B is given by

c j(x)= v′
jx .

PROOF. See Problem 8.12.

Orthogonal matrix. A square matrix U is called an orthogonal ma- Definition 8.23
trix if its columns form an orthonormal system.

Let U be an n×n matrix. Then the following are equivalent: Theorem 8.24

(1) U is an orthogonal matrix.

(2) U′ is an orthogonal matrix.

(3) U′U= I, i.e., U−1 =U′.

(4) The linear map defined by U is an isometry, i.e., ∥Ux∥2 = ∥x∥2 for
all x ∈Rn.

PROOF. Let U= (u1, . . . ,un).

(1)⇒(3) [U′U]i j =u′
iu j = δi j = [I]i j, i.e., U′U= I. By Theorem 6.16, U′U=

UU′ = I and thus U−1 =U′.

(3)⇒(4) ∥Ux∥2
2 = (Ux)′(Ux)= x′U′Ux= x′x= ∥x∥2

2.

(4)⇒(1) Let x,y ∈Rn. Then by (4), ∥U(x−y)∥2 = ∥x−y∥2, or equivalently

x′U′Ux−x′U′Uy−y′U′Ux+y′U′Uy= x′x−x′y−y′x+y′y.
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If we again apply (4) we can cancel out some terms on both side of this
equation and obtain

−x′U′Uy−y′U′Ux=−x′y−y′x.

Notice that x′y = y′x by Theorem 8.2. Similarly, x′U′Uy = (
x′U′Uy

)′ =
y′U′Ux, where the first equality holds as these are 1×1 matrices. The
second equality follows from the properties of matrix multiplication (The-
orem 4.17). Thus

x′U′Uy= x′y= x′Iy for all x,y ∈Rn.

Recall that e′
iU

′ = u′
i and Ue j = u j. Thus if we set x = ei and y = e j we

obtain

u′
iu j = e′

iU
′Ue j = e′

ie j = δi j

that is, the columns of U for an orthonormal system.

(2)⇒(3) Can be shown analogously to (1)⇒(3).

(3)⇒(2) Let v′
1, . . . ,v′

n denote the rows of U. Then

v′
iv j = [UU′]i j = [I]i j = δi j

i.e., the rows of U form an orthonormal system.

This completes the proof.

— Summary

• An inner product is a bilinear symmetric positive definite function
V ×V → R. It can be seen as a measure for the angle between two
vectors.

• Two vectors x and y are orthogonal (perpendicular, normal) to each
other, if their inner product is 0.

• A norm is a positive definite, positive scalable function V → [0,∞)
that satisfies the triangle inequality ∥x+y∥ ≤ ∥x∥+∥y∥. It can be
seen as the length of a vector.

• Every inner product induces a norm: ∥x∥2 =
p

x′x.

Then the Cauchy-Schwarz inequality |x′y| ≤ ∥x∥2 ·∥y∥2 holds for all
x,y ∈ V .

If in addition x,y ∈ V are orthogonal, then the Pythagorean theo-
rem ∥x+y∥2

2 = ∥x∥2
2 +∥y∥2

2 holds.

• A metric is a bilinear symmetric positive definite function V ×V →
[0,∞) that satisfies the triangle inequality. It measures the dis-
tance between two vectors.
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• Every norm induces a metric.

• A metric that is induced by an inner product is called an Euclidean
metric.

• Set of vectors that are mutually orthogonal and have norm 1 is
called an orthonormal system.

• An orthogonal matrix is whose columns form an orthonormal sys-
tem. Orthogonal maps preserve angles and norms.
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— Problems

8.1 Let A be a symmetric positive definite matrix, i.e., the correspond-
ing quadratic form is positive: qA(x)= x′Ax> 0 for all x ̸= 0.
Show that 〈x,y〉A = x′Ay is an inner product.

8.2 (a) The Minkowski inequality is also called triangle inequal-
ity. Draw a picture that illustrates this inequality.

(b) Prove Theorem 8.7.

(c) When does equality holds in the Minkowski inequality?

HINT: Compute ∥x+y∥2
2 and apply the Cauchy-Schwarz inequality.

8.3 Show that for any x,y ∈Rn∣∣∣∥x∥−∥y∥
∣∣∣≤ ∥x−y∥ .

HINT: Use the simple observation that x= (x−y)+y and y= (y−x)+x and apply
the Minkowski inequality.

8.4 Prove Theorem 8.8. Draw a picture that illustrates property (iii).
HINT: Use Theorems 8.2 and 8.7.

8.5 Let x ∈ Rn be a non-zero vector. Show that
x
∥x∥ is a normalized

vector. Is the condition x ̸= 0 necessary? Why? Why not?

8.6 Which of the following functions R2 → [0,∞) are norms in R2. Prove
your claims.

(a) h : R2 → [0,∞), (x, y) 7→ h(x, y)= |x|
(b) g : R2 → [0,∞), (x, y) 7→ g(x, y)= 2|x|+3|y|
(c) k : R2 → [0,∞), (x, y) 7→ k(x, y)= (p|x|+√|y|)2

8.7 (a) Show that ∥x∥1 and ∥x∥∞ satisfy the properties of a norm.

(b) Draw the unit balls in R2, i.e., the sets {x ∈R2 : ∥x∥ ≤ 1}, with
respect to the norms ∥x∥1, ∥x∥2, and ∥x∥∞.

(c) Use a computer algebra system of your choice (e.g., Maxima)
and draw unit balls with respect to the p-norm for various
values of p. What do you observe?

8.8 Prove Theorem 8.14. Draw a picture that illustrates property (iii).
HINT: Use Theorem 8.8 and the simple equality x−z= (x−y)+ (y−z).

8.9 Show that

d(x,y)=
{

1, if x ̸= y,
0, if x= y,

is a metric.
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8.10 Show that ∥x+y∥2
2 −∥x−y∥2

2 = 4x′y.

HINT: Use ∥x∥2
2 = x′x.

8.11 Prove Theorem 8.18.
HINT: Use ∥x∥2

2 = x′x.

8.12 Prove Theorem 8.22.
HINT: Represent x by means of c(x) and compute x′v j .



9
Projections

To them, I said, the truth would be literally nothing but the shadows of
the images.

Suppose we are given a subspace U ⊂Rn and a vector y ∈Rn. We want to
find a vector u ∈U such that the “error” r= y−u is as small as possible.
This procedure is of great importance when we want to reduce the num-
ber of dimensions in our model without loosing too much information.

9.1 Orthogonal Projection

We first look at the simplest case U = span(x) where x ∈Rn is some fixed
normalized vector, i.e., ∥x∥ = 1. Then every u ∈ U can be written as λx
for some λ ∈R.

Let y,x ∈Rn be fixed with ∥x∥ = 1. Let r ∈Rn and λ ∈R such that Lemma 9.1

y=λx+r .

Then for λ=λ∗ and r= r∗ the following statements are equivalent:

(1) ∥r∗∥ is minimal among all values for λ and r.

(2) x′r∗ = 0.

(3) λ∗ = x′y.

PROOF. (2) ⇔ (3): Observe that by construction r= y−λx. Then we find:
x′r= 0 ⇔ x′(y−λx)= 0 ⇔ x′y−λx′x= 0 ⇔ x′y−λ= 0 ⇔ λ= x′y which
implies the equivalence.
(2) ⇒ (1): Assume that x′r∗ = 0 and λ∗ such that r∗ = y−λ∗x. Set r(ε)=
y−(λ∗+ε)x= (y−λ∗x)−εx= r∗−εx for ε ∈R. As r∗ and x are orthogonal
by our assumption, the Pythagorean theorem implies ∥r(ε)∥2 = ∥r∗∥2 +
ε2 ∥x∥2 = ∥r∗∥2 +ε2. Thus ∥r(ε)∥ ≥ ∥r∗∥ where equality holds if and only
if ε= 0. Thus r∗ minimizes ∥r∥.

68
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(1) ⇒ (2): Assume that r∗ minimizes ∥r∥ and λ∗ such that r∗ = y−λ∗x.
Set r(ε) = y− (λ∗+ ε)x = r∗− εx for ε ∈ R. Our assumption implies that
∥r∗∥2 ≤ ∥r∗−εx∥2 = ∥r∗∥2 − 2εx′r+ ε2 ∥x∥2 for all ε ∈ R. Thus 2εx′r ≤
ε2 ∥x∥2 = ε2. Since ε may have positive and negative sign we find − ε

2 ≤
x′r≤ ε

2 for all ε≥ 0 and hence x′r= 0, as claimed.

Orthogonal projection. Let x,y ∈Rn be two vectors with ∥x∥ = 1. Then Definition 9.2

px(y)= (x′y)x

is called the orthogonal projection of y onto the linear span of x.

x

y

px(y)

Orthogonal decomposition. Let x ∈ Rn with ∥x∥ = 1. Then every Theorem 9.3
y ∈Rn can be uniquely decomposed as

y=u+v

where u ∈ span(x) and v is orthogonal to x (and hence orthogonal to u),
that is u′v = 0. Such a representation is called an orthogonal decom-
position of y. Moreover, u is given by

u=px(y) .

PROOF. Let u = λx ∈ span(x) with λ = x′y and v = y−u. Obviously,
u+v = y. By Lemma 9.1, u′v = 0 and u = px(y). Moreover, no other
value of λ has this property.

Now let x,y ∈ Rn with ∥x∥ = ∥y∥ = 1 and let λ = x′y. Then |λ| =
∥px(y)∥ and λ is positive if x and px(y) have the same orientation and
negative if x and px(y) have opposite orientation. Thus by a geometric
argument, λ is just the cosine of the angle between these vectors, i.e.,
cos∢(x,y) = x′y. If x and y are arbitrary non-zero vectors these have to
be normalized. We then find

cos∢(x,y)= x′y
∥x∥ ∥y∥ .

x
∥x∥

y
∥y∥

cos∢(x,y)
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Projection matrix. Let x ∈Rn be fixed with ∥x∥ = 1. Then y 7→px(y) is a Theorem 9.4
linear map and px(y)=Pxy where Px = xx′.

PROOF. Let y1,y2 ∈Rn and α1,α2 ∈R. Then

px(α1y1 +α2y2)= (
x′(α1y1 +α2y2)

)
x= (

α1x′y1 +α2x′y2
)
x

=α1(x′y1)x+α2(x′y2)x=α1px(y1)+α2px(y2)

and thus px is a linear map and there exists a matrix Px such that
px(y)=Pxy by Theorem 6.15.
Notice that αx = xα for α ∈ R = R1. Thus Pxy = (x′y)x = x(x′y) = (xx′)y
for all y ∈Rn and the result follows.

If we project some vector y ∈ span(x) onto span(x) then y remains un-
changed, i.e., Px(y) = y. Thus the projection matrix Px has the property
that P2

xz=Px (Pxz)=Pxz for every z ∈Rn (see Problem 9.5).

A square matrix A is called idempotent if A2 =A. Definition 9.5

9.2 Gram-Schmidt Orthonormalization

Theorem 8.22 shows that we can easily compute the coefficient vector
c(x) of a vector x by means of projections when the given basis {v1, . . . ,vn}
forms an orthonormal system:

x=
n∑

i=1
ci(x)vi =

n∑
i=1

(v′
ix)vi =

n∑
i=1

pvi (x) .

Hence orthonormal bases are quite convenient. Theorem 9.3 allows us
to transform any two linearly independent vectors x,y ∈ Rn into two or-
thogonal vectors u,v ∈ Rn which then can be normalized. This idea can
be generalized to any number of linear independent vectors by means of
a recursion, called Gram-Schmidt process.

Gram-Schmidt orthonormalization. Let {u1, . . . ,un} be a basis of some Theorem 9.6
subspace U . Define vk recursively for k = 1, . . . ,n by

w1 =u1, v1 = w1

∥w1∥
w2 =u2 −pv1(u2), v2 = w2

∥w2∥
w3 =u3 −pv1(u3)−pv2(u3), v3 = w3

∥w3∥
...

...

wn =un −
n−1∑
j=1

pv j (un), vn = wn

∥wn∥

where pv j is the orthogonal projection from Definition 9.2, that is, pv j (uk)=
(v′

juk)v j. Then set {v1, . . . ,vn} forms an orthonormal basis of U .
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PROOF. We proceed by induction on k and show that {v1, . . . ,vk} form an
orthonormal basis for span(u1, . . . ,uk) for all k = 1, . . . ,n.
For k = 1 the statement is obvious as span(v1) = span(u1) and ∥v1∥ = 1.
Now suppose the result holds for k ≥ 1. By the induction hypothesis,
{v1, . . . ,vk} forms an orthonormal basis for span(u1, . . . ,uk). In particular
we have v′

jvi = δ ji. Let

wk+1 =uk+1 −
k∑

j=1
pv j (uk+1)=uk+1 −

k∑
j=1

(v′
juk+1)v j .

First we show that wk+1 and vi are orthogonal for all i = 1, . . . ,k. By
construction we have

w′
k+1vi =

(
uk+1 −

k∑
j=1

(v′
juk+1)v j

)′
vi

=u′
k+1vi −

k∑
j=1

(v′
juk+1)v′

jvi

=u′
k+1vi −

k∑
j=1

(v′
juk+1)δ ji

=u′
k+1vi −v′

iuk+1

= 0.

Now wk+1 cannot be 0 since otherwise uk+1 −
∑k

j=1 pv j (uk+1) = 0 and
consequently uk+1 ∈ span(v1, . . . ,vk) = span(u1, . . . ,uk), a contradiction
to our assumption that {u1, . . . ,uk,uk+1} is a subset of a basis of U .
Thus we may take vk+1 = wk+1

∥wk+1∥
. Then by Lemma 8.19 the vectors

{v1, . . . ,vk+1} are linearly independent and consequently form a basis for
span(u1, . . . ,uk+1) by Theorem 5.22. Thus the result holds for k+1, and
by the principle of induction, for all k = 1, . . . ,n and in particular for
k = n.

9.3 Orthogonal Complement

We want to generalize Theorem 9.3 and Lemma 9.1. Thus we need the
concepts of the direct sum of two vector spaces and of the orthogonal
complement.

Direct sum. Let U ,V ⊆Rn be two subspaces with U ∩V = {0}. Then Definition 9.7

U ⊕V = {u+v : u ∈U , v ∈ V }

is called the direct sum of U and V .

Let U ,V ⊆ Rn be two subspaces with U ∩ V = {0} and dim(U ) = k ≥ 1 Lemma 9.8
and dim(V ) = l ≥ 1. Let {u1, . . . ,uk} and {v1, . . . ,vl} be bases of U and V ,
respectively. Then {u1, . . . ,uk}∪ {v1, . . . ,vl} is a basis of U ⊕V .
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PROOF. Obviously {u1, . . . ,uk}∪ {v1, . . . ,vl} is a generating set of U ⊕V .
We have to show that this set is linearly independent. Suppose it is lin-
early dependent. Then we find α1, . . . ,αk ∈R not all zero and β1, . . . ,βl ∈R
not all zero such that

∑k
i=1αiui +∑l

i=1βivi = 0. Then u = ∑k
i=1αiui ̸= 0

and v = −∑l
i=1βivi ̸= 0 where u ∈ U and v ∈ V and u−v = 0. But then

u= v, a contradiction to the assumption that U ∩V = {0}.

Decomposition of a vector. Let U ,V ⊆Rn be two subspaces with U ∩ Lemma 9.9
V = {0} and U ⊕V = Rn. Then every x ∈ Rn can be uniquely decomposed
into

x=u+v

where u ∈U and v ∈ V .

PROOF. See Problem 9.7.

Orthogonal complement. Let U be a subspace of Rn. Then the or- Definition 9.10
thogonal complement of U in Rn is the set of vectors v that are or-
thogonal to all vectors in Rn, that is,

U⊥ = {v ∈Rn : u′v= 0 for all u ∈U } .

Let U be a subspace of Rn. Then the orthogonal complement U⊥ is also Lemma 9.11
a subspace of Rn. Furthermore, U ∩U⊥ = {0}.

PROOF. See Problem 9.8.

Let U be a subspace of Rn. Then Lemma 9.12

Rn =U ⊕U⊥ .

PROOF. Suppose there exists a non-zero x ∈ Rn \ (U ⊕U⊥). Then {x}∪
B ∪B⊥ is linearly independent by Theorem 5.19 where B and B⊥ are
bases of U and U⊥, resp. By means of Gram-Schmidt orthonormaliza-
tion (Thm. 9.6) we can construct a non-zero y ̸∈ span(B∪B⊥) = U ⊕U⊥

which is perpendicular to each element in B. Hence y ∈U⊥ ⊆U ⊕U⊥, a
contradiction.

Orthogonal decomposition. Let U be a subspace of Rn. Then every Theorem 9.13
y ∈Rn can be uniquely decomposed into

y=u+u⊥

where u ∈U and u⊥ ∈U⊥. u is called the orthogonal projection of y
into U . We denote this projection by pU (y).

PROOF. By Lemmata 9.11 and 9.12 we have U ∩U⊥ = {0} and Rn =
U ⊕U⊥. Thus every y ∈ Rn can be uniquely decomposed into y = u+u⊥

by Lemma 9.9.
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It remains to derive a formula for computing this orthogonal projec-
tion. Thus we derive a generalization of and Lemma 9.1.

Projection into subspace. Let U be a subspace of Rn with generating Theorem 9.14
set {u1, . . . ,uk} and U = (u1, . . . ,uk). For a fixed vector y ∈ Rn let r ∈ Rn

and λ ∈Rk such that

y=Uλ+r .

Then for λ=λ∗ and r= r∗ the following statements are equivalent:

(1) ∥r∗∥ is minimal among all possible values for λ and r.

(2) U′r∗ = 0, that is, r∗ ∈U⊥.

(3) U′Uλ∗ =U′y.

Notice that u∗ =Uλ∗ ∈U .

PROOF. Equivalence of (2) and (3) follows by a straightforward compu-
tation (see Problem 9.9).
Now for ε ∈ Rk define r(ε) = r∗−Uε. Recall that Uε ∈ U . If (2) holds,
i.e., r∗ ∈ U⊥, then the Pythagorean Theorem implies ∥r(ε)∥2 = ∥r∗∥2 +
∥Uε∥2 ≥ ∥r∗∥2 for all ε and (1) follows.
Conversely, if (1) holds then ∥r∗∥2 ≤ ∥r∗−Uε∥2 = (r∗−Uε)′ (r∗−Uε) =
∥r∗∥2−2ε′U′r∗+∥Uε∥2 and we find 0≤ ∥Uε∥2−2(Uε)′r∗ = (Uε)′ (Uε−2r∗)
for all ε. Now by Theorem 9.13, there exist v ∈U and w ∈U⊥ such that
r∗ = v+w. Furthermore, there exists an ε such that Uε= v. We then find
0 ≤ (Uε)′ (Uε−2r∗) = v′ (v−2(v+w)) = −v′v−2v′w = −∥v∥2 and hence
v= 0. That is, r∗ =w ∈U⊥ and (2) follows.

Equation (3) in Theorem 9.14 can be transformed when {u1, . . . ,uk}
are linearly independent, i.e., when it forms a basis of U . Then the n×k
matrix U= (u1, . . . ,uk) has rank k and the k×k matrix U′U also has rank
k by Lemma 6.25 and is thus invertible.

Let U be a subspace of Rn with basis {u1, . . . ,uk} and U = (u1, . . . ,uk). Theorem 9.15
Then the orthogonal projection y ∈Rn onto U is given by

pU (y)=U(U′U)−1U′y .

If in addition {u1, . . . ,uk} forms an orthonormal system we find

pU (y)=UU′y .

PROOF. See Problem 9.11.
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9.4 Approximate Solutions of Linear Equations

Let A be an n×k matrix and b ∈Rn. Suppose there is no x ∈Rk such that

Ax=b

that is, the linear equation Ax = b does not have a solution. Neverthe-
less, we may want to find an approximate solution x0 ∈Rk that minimizes
the error r=b−Ax among all x ∈Rk.

By Theorem 9.14 this task can be solved by means of orthogonal pro-
jections pA(b) onto the linear span A of the column vectors of A, i.e., we
have to find x0 such that

A′Ax0 =A′b . (9.1)

Notice that by Theorem 9.13 there always exists an r such that b =
pA(b)+ r with r ∈ A ⊥ and hence an x0 exists such that pA(b) = Ax0.
Thus Equation (9.1) always has a solution by Theorem 9.14.

9.5 Applications in Statistics

Let x = (x1, . . . , xn)′ be a given set of data and let j = (1, . . . ,1)′ denote a
vector of length n of ones. Notice that ∥j∥2 = n. Then we can express the
arithmetic mean x̄ of the xi as

x̄ = 1
n

n∑
i=1

xi = 1
n

j′x

and we find

p j(x)=
(

1p
n

j′x
)(

1p
n

j
)
=

(
1
n

j′x
)
j= x̄j .

That is, the arithmetic mean x̄ is 1p
n times the length of the orthogonal

projection of x onto the constant vector. For the length of its orthogonal
complement p j(x)⊥ we then obtain

∥x− x̄j∥2 = (x− x̄j)′(x− x̄j)= ∥x∥2 − x̄j′x− x̄x′j+ x̄2j′j= ∥x∥2 −nx̄2

where the last equality follows from the fact that j′x = x′j = x̄n and j′j =
n. On the other hand recall that ∥x− x̄j∥2 =∑n

i=1(xi − x̄)2 = nσ2
x where σ2

x
denotes the variance of data xi. Consequently the standard deviation of
the data is 1p

n times the length of the orthogonal complement of x with
respect to the constant vector.

Now assume that we are also given data y= (y1, . . . , yn)′. Again y− ȳj
is the complement of the orthogonal projection of y onto the constant
vector. Then the inner product of these two orthogonal complements is

(x− x̄j)′(y− ȳj)=
n∑

i=1
(xi − x̄)(yi − ȳ)= nσxy
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where σxy denotes the covariance between x and y.

Now suppose that we are given a set of data (yi, xi1, . . . , xik), i =
1, . . . ,n. We assume a linear regression model, i.e.,

yi =β0 +
k∑

s=1
βsxis +ϵi.

These n equations can be stacked together using matrix notation as

y=Xβ+ϵ
where

y=

y1
...

yn

 , X=


1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
...

. . .
...

1 xn1 xn2 . . . xnk

 , β=

β0
...
βk

 , ϵ=

ϵ1
...
ϵn

 .

X is then called the design matrix of the linear regression model, β
are the model parameters and ϵ are random errors (“noise”) called
residuals.

The parameters β can be estimated by means of the least square
principle where the sum of squared errors,

n∑
i=1

ϵ2
i = ∥ϵ∥2 = ∥∥y−Xβ

∥∥2

is minimized. Therefore by Theorem 9.14 the estimated parameter β̂
satisfies the normal equation

X′Xβ̂=X′y (9.2)

and hence

β̂= (X′X)−1X′y.

— Summary

• For every subspace U ⊂ Rn we find Rn = U ⊕U⊥, where U⊥ de-
notes the orthogonal complement of U .

• Every y ∈ Rn can be decomposed as y = u+u⊥ where u ∈ U and
u⊥ ∈U⊥. u is called the orthogonal projection of y into U .

• If {u1, . . . ,uk} is a basis of U and U= (u1, . . . ,uk), then Uu⊥ = 0 and
u=Uλ where λ ∈Rk satisfies U′Uλ=U′y.

• If y=u+v with u ∈U then v has minimal length for fixed y if and
only if v ∈U⊥.

• If the linear equation Ax = b does not have a solution, then the
solution of A′Ax=A′b minimizes the error ∥b−Ax∥.
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— Exercises

9.1 Apply Gram-Schmidt orthonormalization to the following vectors.

(a) u1 = (1,0,0)′, u2 = (1,2,0)′, and u3 = (1,2,3)′.

(b) u1 = (1,2,3)′, u2 = (1,2,0)′, and u3 = (1,0,0)′.

9.2 Let y= (2,−3,4)′. Compute projection pU (y) onto subspace U with
the following generating sets. Also give the projection matrix PU .

(a) U = {(0,2,0)′}.

(b) U = {(1,2,−3)′}.

(c) U = {(1,0,3)′, (−3,2,1)′}.

9.3 Let A =
1 2

1 3
1 4

. Solve linear equation Ax = b for the follwing val-

ues of b exactly as well as by means the method from Sect. 9.4 that
provides a point x0 which minimizes the “error” Ax−b.

(a) b= (−1,2,0)′

(b) b= (−1,2,5)′

— Problems

9.4 Let r = y−λx where x,y ∈ Rn and x ̸= 0. Which values of λ ∈ R
minimize ∥r∥?
HINT: Use the normalized vector x0 = x/∥x∥ and apply Lemma 9.1.

9.5 Let Px = xx′ for some x ∈Rn with ∥x∥ = 1.

(a) What is the number of rows and columns of Px?
(b) What is the rank of Px?
(c) Show that Px is symmetric.
(d) Show that Px is idempotent.
(e) Describe the rows and columns of Px.

9.6 Prove or disprove: Let U ,V ⊆Rn be two subspaces with U ∩V = {0}
and U ⊕V =Rn. Let u ∈U and v ∈ V . Then u′v= 0.

9.7 Prove Lemma 9.9.

9.8 Prove Lemma 9.11.

9.9 Assume that y=Uλ+r.
Show: U′r= 0 if and only if U′Uλ=U′y.
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9.10 Let U be a subspace of Rn with generating set {u1, . . . ,uk} and U=
(u1, . . . ,uk). Show:

(a) u ∈U if and only if there exists an λ ∈Rk such that u=Uλ.
(b) v ∈U⊥ if and only if U′v= 0.
(c) The projection y 7→pU (y) is a linear map onto U .
(d) If rank(U) = k, then the Projection matrix is given by PU =

U(U′U)−1U′.

In addition:

(e) Could we simplify PU in the following way?
PU =U(U′U)−1U′ =UU−1 ·U′−1U′ = I ·I= I.

(f) Let PU be the matrix for projection y 7→ pU (y). Compute the
projection matrix PU⊥ for the projection onto U⊥.

9.11 Prove Theorem 9.15.

9.12 Let p be a projection into some subspace U ⊆ Rn. Let x1, . . . ,xk ∈
Rn.
Show: If p(x1), . . . ,p(xk) are linearly independent, then the vectors
x1, . . . ,xk are linearly independent.
Show that the converse is false.

9.13 (a) Give necessary and sufficient conditions such that the “nor-
mal equation” (9.2) has a uniquely determined solution.

(b) What happens when this condition is violated? (There is no
solution at all? The solution exists but is not uniquely deter-
mined? How can we find solutions in the latter case? What is
the statistical interpretation in all these cases?) Demonstrate
your considerations by (simple) examples.

(c) Show that for each solution of Equation (9.2) the arithmetic
mean of the error is zero, that is, ϵ̄ = 0. Give a statistical
interpretation of this result.

(d) Let xi = (xi1, . . . , xin)′ be the i-th column of X. Show that for
each solution of Equation (9.2) x′

iε = 0. Give a statistical in-
terpretation of this result.



10
Determinant

What is the volume of a skewed box?

10.1 Linear Independence and Volume

We want to “measure” whether two vectors in R2 are linearly indepen-
dent or not. Thus we may look at the parallelogram that is created by
these two vectors. We may find the following cases:

The two vectors are linearly dependent if and only if the corresponding
parallelogram has area 0. The same holds for three vectors in R3 which
form a parallelepiped and generally for n vectors in Rn.

Idea: Use the n-dimensional volume to check whether n vectors in
Rn are linearly independent.

Thus we need to compute this volume. Therefore we first look at
the properties of the area of a parallelogram and the volume of a par-
allelepiped, respectively, and use these properties to define a “volume
function”.

(1) If we multiply one of the vectors by a number α ∈ R, then we obtain
a parallelepiped (parallelogram) with the α-fold volume.

(2) If we add a multiple of one vector to one of the other vectors, then
the volume remains unchanged.

(3) If two vectors are equal, then the volume is 0.

(4) The volume of the unit-cube has volume 1.

78
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10.2 Determinant

Motivated by the above considerations we define the determinant as a
normed alternating multilinear form.

Determinant. The determinant is a function det: Rn×n → R that as- Definition 10.1
signs a real number to an n× n matrix A = (a1, . . . ,an) with following
properties:

(D1) The determinant is multilinear, i.e., it is linear in each column:

det(a1, . . . ,ai−1,αai +βbi,ai+1, . . . ,an)

=αdet(a1, . . . ,ai−1,ai,ai+1, . . . ,an)

+βdet(a1, . . . ,ai−1,bi,ai+1, . . . ,an) .

(D2) The determinant is alternating, i.e.,

det(a1, . . . ,ai−1,ai,ai+1, . . . ,ak−1,bk,ak+1, . . . ,an)

=−det(a1, . . . ,ai−1,bk,ai+1, . . . ,ak−1,ai,ak+1, . . . ,an) .

(D3) The determinant is normalized, i.e.,

det(I)= 1 .

We denote the determinant of A by det(A) or |A|. Do not mix up with the abso-
lute value of a number.

This definition sounds like a “wish list”. We define the function by its
properties. However, such an approach is quite common in mathematics.
But of course we have to answer the following questions:

• Does such a function exist?

• Is this function uniquely defined?

• How can we evaluate the determinant of a particular matrix A?

We proceed by deriving an explicit formula for the determinant that an-
swers these questions. We begin with a few more properties of the deter-
minant (provided that such a function exists). Their proofs are straight-
forward and left as an exercise (see Problems 10.10, 10.11, and 10.12).

The determinant is zero if two columns are equal, i.e., Lemma 10.2

det(. . . ,a, . . . ,a, . . .)= 0 .

The determinant is zero, det(A) = 0, if the columns of A are linearly Lemma 10.3
dependent.

The determinant remains unchanged if we add a multiple of one column Lemma 10.4
the one of the other columns:

det(. . . ,ai +αak, . . . ,ak, . . .)= det(. . . ,ai, . . . ,ak, . . .) .
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Now let {v1, . . . ,vn} be a basis of Rn. Then we can represent each
column of n×n matrix A= (a1, . . . ,an) as

a j =
n∑

i=1
ci jvi , for j = 1, . . . ,n,

where ci j ∈R. We then find

det(a1,a2, . . . ,an)= det

(
n∑

i1=1
ci11vi1 ,

n∑
i2=1

ci22vi2 , . . . ,
n∑

in=1
cinnvin

)

=
n∑

i1=1
ci11 det

(
vi1 ,

n∑
i2=1

ci22vi2 , . . . ,
n∑

in=1
cinnvin

)

=
n∑

i1=1

n∑
i2=1

ci11ci22 det

(
vi1 ,vi2 , . . . ,

n∑
in=1

cinnvin

)
...

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

in=1
ci11ci22 . . . cinn det

(
vi1 , . . . ,vin

)
There are nn terms in this sum. However, Lemma 10.2 implies that
det

(
vi1 ,vi2 , . . . ,vin

) = 0 when at least two columns coincide. Thus only
those determinants remain which contain all basis vectors {v1, . . . ,vn} (in
different orders), i.e., those tuples (i i, i2, . . . , in) which are a permutation
of the numbers (1,2, . . . ,n).

We can define a permutation σ as a bijection from the set {1,2, . . . ,n}
onto itself. We denote the set of these permutations by Sn. It has the
following properties which we state without a formal proof.

• The compound of two permutations σ,τ ∈Sn is again a permuta-
tion, στ ∈Sn.

• There is a neutral (or identity) permutation that does not change
the ordering of (1,2, . . . ,n).

• Each permutation σ ∈Sn has a unique inverse permutation σ−1 ∈
Sn.

We then say that Sn forms a group.
Using this concept we can remove the vanishing terms from the

above expression for the determinant. As only determinants remain
where the columns are permutations of the columns of A we can write

det(a1, . . . ,an)=
∑

σ∈Sn

det
(
vσ(1), . . . ,vσ(n)

) n∏
i=1

cσ(i),i .

The simplest permutation is a transposition that just flips two ele-
ments.

• Every permutation can be composed of a sequence of transposi-
tions, i.e., for every σ ∈S there exist τ1, . . . ,τk ∈S such that σ =
τk · · ·τ1.
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Notice that a transposition of the columns of a determinant changes its
sign by property (D2). An immediate consequence is that the determi-
nants det

(
vσ(1),vσ(2), . . . ,vσ(n)

)
only differ in their signs. Moreover, the

sign is given by the number of transitions into which a permutation σ is
decomposed. So we have

det
(
vσ(1), . . . ,vσ(n)

)= sgn(σ)det(v1, . . . ,vn)

where sgn(σ) = +1 if the number of transpositions into which σ can be
decomposed is even, and where sgn(σ) = −1 if the number of transpo-
sitions is odd. We remark (without proof) that sgn(σ) is well-defined
although this sequence of transpositions is not unique.

We summarize our considerations in the following proposition.

Let {v1, . . . ,vn} be a basis of Rn and A = (a1, . . . ,an) an n×n matrix. Let Lemma 10.5
ci j ∈R such that a j =∑n

i=1 ci jvi for j = 1, . . . ,n. Then

det(a1, . . . ,an)= det(v1, . . . ,vn)
∑

σ∈Sn

sgn(σ)
n∏

i=1
cσ(i),i .

This lemma allows us that we can compute det(A) provided that the
determinant of a regular matrix is known. This equation in particular
holds if we use the canonical basis {e1, . . . ,en}. We then have ci j = ai j
and

det(v1, . . . ,vn)= det(e1, . . . ,en)= det(I)= 1

where the last equality is just property (D3).

Leibniz formula for determinant. The determinant of a n×n matrix A Theorem 10.6
is given by

det(A)= det(a1, . . . ,an)=
∑

σ∈Sn

sgn(σ)
n∏

i=1
aσ(i),i . (10.1)

Existence and uniqueness. The determinant as given in Definition 10.1 Corollary 10.7
exists and is uniquely defined.

Leibniz formula (10.1) is often used as definition of the determinant.
Of course we then have to derive properties (D1)–(D3) from (10.1), see
Problem 10.13.

10.3 Properties of the Determinant

Transpose. The determinant remains unchanged if a matrix is trans- Theorem 10.8
posed, i.e.,

det(A′)= det(A) .
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PROOF. Recall that [A′]i j = [A] ji and that each σ ∈ Sn has a unique
inverse permutation σ−1 ∈ Sn. Moreover, sgn(σ−1) = sgn(σ). Then by
Theorem 10.6,

det(A′)= ∑
σ∈Sn

sgn(σ)
n∏

i=1
ai,σ(i) =

∑
σ∈Sn

sgn(σ)
n∏

i=1
aσ−1(i),i

= ∑
σ∈Sn

sgn(σ−1)
n∏

i=1
aσ−1(i),i =

∑
σ∈Sn

sgn(σ)
n∏

i=1
aσ(i),i = det(A)

where the forth equality holds as {σ−1 : σ ∈Sn}=Sn.

Product. The determinant of the product of two matrices equals the Theorem 10.9
product of their determinants, i.e.,

det(A ·B)= det(A) ·det(B) .

PROOF. Let A and B be two n×n matrices. If A does not have full rank,
then rank(A) < n and Lemma 10.3 implies det(A) = 0 and thus det(A) ·
det(B) = 0. On the other hand by Theorem 6.23 rank(AB) ≤ rank(A) < n
and hence det(AB)= 0.
If A has full rank, then the columns of A form a basis of Rn and we find
for the columns of AB, [AB] j = ∑n

i=1 bi jai. Consequently, Lemma 10.5
and Theorem 10.6 immediately imply

det(AB)= det(a1, . . . ,an)
∑

σ∈Sn

sgn(σ)
n∏

i=1
bσ(i),i = det(A) ·det(B)

as claimed.

Singular matrix. Let A be an n× n matrix. Then the following are Theorem 10.10
equivalent:

(1) det(A)= 0.

(2) The columns of A are linearly dependent.

(3) A does not have full rank.

(4) A is singular.

PROOF. The equivalence of (2), (3) and (4) has already been shown in
Section 6.3. Implication (2) ⇒ (1) is stated in Lemma 10.3. For implica-
tion (1) ⇒ (4) see Problem 10.14. This finishes the proof.

An n×n matrix A is invertible if and only if det(A) ̸= 0. Corollary 10.11

We can use the determinant to estimate the rank of a matrix.
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Rank of a matrix. The rank of an m×n matrix A is r if and only if there Theorem 10.12
is an r× r subdeterminant∣∣∣∣∣∣∣

ai1 j1 . . . ai1 jr
...

. . .
...

air j1 . . . air jr

∣∣∣∣∣∣∣ ̸= 0

but all (r+1)× (r+1) subdeterminants vanish.

PROOF. By Gauß elimination we can find an invertible r× r submatrix
but not an invertible (r+1)× (r+1) submatrix.

Inverse matrix. The determinant of the inverse of a regular matrix is Theorem 10.13
the reciprocal value of the determinant of the matrix, i.e.,

det(A−1)= 1
det(A)

.

PROOF. See Problem 10.15.

Finally we return to the volume of a parallelepiped which we used
as motivation for the definition of the determinant. Since we have no
formal definition of the volume yet, we state the last theorem without
proof.

Volume. Let a1, . . . ,an ∈ Rn. Then the volume of the n-dimensional Theorem 10.14
parallelepiped created by these vectors is given by the absolute value of
the determinant,

Vol(a1, . . . ,an)= ∣∣det(a1, . . . ,an)
∣∣ .

10.4 Evaluation of the Determinant

Leibniz formula (10.1) provides an explicit expression for evaluating the
determinant of a matrix. For small matrices one may expand sum and
products and finds an easy to use scheme, known as Sarrus’ rule (see
Problems 10.17 and 10.18):∣∣∣∣a11 a12

a21 a22

∣∣∣∣= a11a22 −a21a12 .

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 +a12a23a31 +a13a21a32

−a31a22a13 −a32a23a11 −a33a21a12 .
(10.2)

For larger matrices Leibniz formula (10.1) expands to much longer
expressions. For an n×n matrix we find a sum of n! products of n factors.
However, for triangular matrices this formula reduces to the product of
the diagonal entries, see Problem 10.19.
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Triangular matrix. Let A be an n×n (upper or lower) triangular matrix. Theorem 10.15
Then

det(A)=
n∏

i=1
aii .

In Section 7.2 we have seen that we can transform a matrix A into
a row echelon form R by a series of elementary row operations (Theo-
rem 7.9), R = Tk · · ·T1A. Notice that for a square matrix we then obtain
an upper triangular matrix. By Theorems 10.9 and 10.15 we find

det(A)= (
det(Tk) · · ·det(T1)

)−1
n∏

i=1
r ii .

As det(Ti) is easy to evaluate we obtain a fast algorithm for computing
det(A), see Problems 10.20 and 10.21.

Another approach is to replace (10.1) by a recursion formula, known
as Laplace expansion.

Minor. Let A be an n× n matrix. Let Mi j denote the (n− 1)× (n− 1) Definition 10.16
matrix that we obtain by deleting the i-th row and the j-th column from
A. Then Mi j = det(Mi j) is called the (i, j) minor of A.

Laplace expansion. Let A be an n×n matrix and Mik its (i,k) minor. Theorem 10.17
Then

det(A)=
n∑

i=1
aik · (−1)i+kMik =

n∑
k=1

aik · (−1)i+kMik .

The first expression is expansion along the k-th column. The second
expression is expansion along the i-th row.

Cofactor. The term Cik = (−1)i+kMik is called the cofactor of aik. Definition 10.18

With this notation Laplace expansion can also be written as

det(A)=
n∑

i=1
aikCik =

n∑
k=1

aikCik .

PROOF. As det(A′)= det(A) we only need to prove first statement. Notice
that ak =

∑n
i=1 aikei. Therefore,

det(A)= det(a1, . . . ,ak, . . . ,an)

= det

(
a1, . . . ,

n∑
i=1

aikei, . . . ,an

)
=

n∑
i=1

aik det(a1, . . . ,ei, . . . ,an) .

It remains to show that det(a1, . . . ,ei, . . . ,an) = Cik. Observe that we can

transform matrix (a1, . . . ,ei, . . . ,an) into B=
(
1 ∗
0 Mik

)
by a series of j−1
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transpositions of rows and k−1 transpositions of columns and thus we
find by property (D2), Theorem 10.8 and Leibniz formula

det(a1, . . . ,ei, . . . ,an)= (−1) j+k−2
∣∣∣∣1 ∗
0 Mik

∣∣∣∣= (−1) j+k−2 ∣∣B∣∣
= (−1) j+k ∑

σ∈Sn

sgn(σ)
n∏

i=1
bσ(i),i

Observe that b11 = 1 and bσ(1),i = 0 for all permutations where σ(1) = 1
and i ̸= 0. Hence

(−1) j+k ∑
σ∈Sn

sgn(σ)
n∏

i=1
bσ(i),i = (−1) j+kb11

∑
σ∈Sn−1

sgn(σ)
n−1∏
i=1

bσ(i)+1,i+1

= (−1) j+k ∣∣Mik
∣∣= Cik

This finishes the proof.

10.5 Cramer’s Rule

Adjugate matrix. The matrix of cofactors for an n×n matrix A is the Definition 10.19
matrix C whose entry in the i-th row and k-th column is the cofactor Cik.
The adjugate matrix of A is the transpose of the matrix of cofactors of
A,

adj(A)=C′ .

Let A be an n×n matrix. Then Theorem 10.20

adj(A) ·A= det(A) I .

PROOF. A straightforward computation and Laplace expansion (Theo-
rem 10.17) yields

[adj(A) ·A]i j =
n∑

k=1
C′

ik ·ak j =
n∑

k=1
ak j ·Cki

= det(a1, . . . ,ai−1,a j,ai+1, . . . ,an)

=
{

det(A), if j = i,
0, if j ̸= i,

as claimed.

Inverse matrix. Let A be a regular n×n matrix. Then Corollary 10.21

A−1 = 1
det(A)

adj(A) .

This formula is quite convenient as it provides an explicit expres-
sion for the inverse of a matrix. However, for numerical computations it
is too expensive. Gauss-Jordan procedure, for example, is much faster.
Nevertheless, it provides a nice rule for very small matrices.
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The inverse of a regular 2×2 matrix A is given by Corollary 10.22(
a11 a12
a21 a22

)−1

= 1
|A| ·

(
a22 −a12
−a21 a11

)
.

We can use Corollary 10.21 to solve the linear equation

A ·x=b

when A is an invertible matrix. We then find

x=A−1 ·b= 1
|A| adj(A) ·b .

Therefore we find for the i-th component of the solution x,

xi = 1
|A|

n∑
k=1

C′
ik ·bk =

1
|A|

n∑
k=1

bk ·Cki

= 1
|A| det(a1, . . . ,ai−1,b,ai+1, . . . ,an) .

So we get the following explicit expression for the solution of a linear
equation.

Cramer’s rule. Let A be an invertible matrix and x a solution of the Theorem 10.23
linear equation A·x=b. Let Ai denote the matrix where the i-th column
of A is replaced by b. Then

xi = det(Ai)
det(A)

.

— Summary

• The determinant is a normed alternating multilinear form.

• The determinant is 0 if and only if it is singular.

• The determinant of the product of two matrices is the product of
the determinants of the matrices.

• The Leibniz formula gives an explicit expression for the determi-
nant.

• The Laplace expansion is a recursive formula for evaluating the
determinant.

• The determinant can efficiently computed by a method similar to
Gauß elimination.

• Cramer’s rule allows to compute the inverse of matrices and the
solutions of special linear equations.
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— Exercises

10.1 Compute the following determinants by means of Sarrus’ rule or
by transforming into an upper triangular matrix:

(a)
(
1 2
2 1

)
(b)

(−2 3
1 3

)
(c)

(
4 −3
0 2

)

(d)

3 1 1
0 1 0
3 2 1

 (e)

2 1 −4
2 1 4
3 4 −4

 (f)

0 −2 1
2 2 1
4 −3 3



(g)


1 2 3 −2
0 4 5 0
0 0 6 3
0 0 0 2

 (h)


2 0 0 1
0 1 0 2
0 0 7 0
1 2 0 1

 (i)


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


10.2 Compute the determinants from Exercise 10.1 by means of Laplace

expansion.

10.3

(a) Estimate the ranks of the matrices from Exercise 10.1.

(b) Which of these matrices are regular?

(c) Which of these matrices are invertible?

(d) Are the column vectors of these matrices linear independent?

10.4 Let

A=
3 1 0

0 1 0
1 0 1

 , B=
3 2×1 0

0 2×1 0
1 2×0 1

 and C=
3 5×3+1 0

0 5×0+1 0
1 5×1+0 1


Compute by means of the properties of determinants:

(a) det(A) (b) det(5A) (c) det(B) (d) det(A′)

(e) det(C) (f) det(A−1) (g) det(A ·C) (h) det(I)

10.5 Let A be a 3×4 matrix. Estimate
∣∣A′ ·A∣∣ and

∣∣A ·A′∣∣.
10.6 Compute area of the parallelogram and volume of the parallelepiped,

respectively, which are created by the following vectors:

(a)
(−2

3

)
,
(
1
3

)
(b)

(−2
1

)
,
(
3
3

)

(c)

 2
1
−4

 ,

2
1
4

 ,

 3
4
−4

 (d)

2
2
3

 ,

1
1
4

 ,

−4
4
−4





PROBLEMS 88

10.7 Compute the matrix of cofactors, the adjugate matrix and the in-
verse of the following matrices:

(a)
(
1 2
2 1

)
(b)

(−2 3
1 3

)
(c)

(
4 −3
0 2

)

(d)

3 1 1
0 1 0
0 2 1

 (e)

2 1 −4
2 1 4
3 4 −4

 (f)

0 −2 1
2 2 1
4 −3 3


10.8 Compute the inverse of the following matrices:

(a)
(
a b
c d

)
(b)

(
x1 y1
x2 y2

)
(c)

(
α β

α2 β2

)

10.9 Solve the linear equation

A ·x=b

by means of Cramer’s rule for b = (1,2)′ and b = (1,2,3), respec-
tively, and the following matrices:

(a)
(
1 2
2 1

)
(b)

(−2 3
1 3

)
(c)

(
4 −3
0 2

)

(d)

3 1 1
0 1 0
0 2 1

 (e)

2 1 −4
2 1 4
3 4 −4

 (f)

0 −2 1
2 2 1
4 −3 3



— Problems

10.10 Prove Lemma 10.2 using properties (D1)–(D3).

10.11 Prove Lemma 10.3 using properties (D1)–(D3).

10.12 Prove Lemma 10.4 using properties (D1)–(D3).

10.13 Derive properties (D1) and (D3) from Expression (10.1) in Theo-
rem 10.6.

10.14 Show that an n×n matrix A is singular if det(A)= 0.
Does Lemma 10.3 already imply this result?
HINT: Try an indirect proof and use equation I= det(AA−1).

10.15 Prove Theorem 10.13.

10.16 Show that the determinants of similar square matrices are equal.
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10.17 Derive formula∣∣∣∣a11 a12
a21 a22

∣∣∣∣= a11a22 −a21a12

directly from properties (D1)–(D3) and Lemma 10.4.
HINT: Use a method similar to Gauß elimination.

10.18 Derive Sarrus’ rule (10.2) from Leibniz formula (10.1).

10.19 Let A be an n×n upper triangular matrix. Show that

det(A)=
n∏

i=1
aii .

HINT: Use Leibniz formula (10.1) and show that there is only one permutation σ

with σ(i)≤ i for all i.

10.20 Compute the determinants of the elementary row operations from
Problem 7.4.

10.21 Modify the algorithm from Problem 7.6 such that it computes the
determinant of a square matrix.



11
Eigenspace

We want to estimate the sign of a matrix and compute its square root.

11.1 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors. Let A be an n×n matrix. Then a non- Definition 11.1
zero vector x is called an eigenvector corresponding to eigenvalue λ

if

Ax=λx , x ̸= 0 . (11.1)

Observe that a scalar λ is an eigenvalue if and only if (A−λI)x = 0 has
a non-trivial solution, i.e., if (A−λI) is not invertible or, equivalently, if
and only if

det(A−λI)= 0 .

The Leibniz formula for determinants (or, equivalently, Laplace expan-
sion) implies that this determinant is a polynomial of degree n in λ.

Characteristic polynomial. The polynomial Definition 11.2

pA(t)= det(A− tI)

is called the characteristic polynomial of A. For this reason the eigen-
values of A are also called its characteristic roots and the correspond-
ing eigenvectors the characteristic vectors of A.

Notice that by the Fundamental Theorem of Algebra a polynomial of
degree n has exactly n roots (in the sense we can factorize the polynomial
into a product of n linear terms), i.e., we can write

pA(t)= (−1)n(t−λ1) · · · (t−λn)= (−1)n
n∏

i=1
(t−λi) .

90
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However, some of these roots λi may be complex numbers.
If an eigenvalue λi appears m times (m ≥ 2) as a linear factor, i.e., if

it is a multiple root of the characteristic polynomial pA(t), then we say
that λi has algebraic multiplicity m.

Spectrum. The list of all eigenvalues of a square matrix A is called the Definition 11.3
spectrum of A. It is denoted by σ(A).

Obviously, the eigenvectors corresponding to eigenvalue λ are the
solutions of the homogeneous linear equation (A−λI)x = 0. Therefore,
the set of all eigenvectors with the same eigenvalue λ together with the
zero vector is the subspace ker(A−λI).

Eigenspace. Let λ be an eigenvalue of the n×n matrix A. The subspace Definition 11.4

Eλ = ker(A−λI)

is called the eigenspace of A corresponding to eigenvalue λ.

Computer programs for computing eigenvectors thus always com-
pute bases of the corresponding eigenspaces. Since bases of a subspace
are not unique, see Section 5.2, their results may differ.

Diagonal matrix. For every n× n diagonal matrix D and every i = Example 11.5
1, . . . ,n we find

Dei = diiei .

That is, each of its diagonal entries dii is an eigenvalue affording eigen-
vectors ei. Its spectrum is just the set of its diagonal entries. ♦

11.2 Properties of Eigenvalues

Transpose. A and A′ have the same spectrum. Theorem 11.6

PROOF. See Problem 11.14.

Matrix power. If x is an eigenvector of A corresponding to eigenvalue Theorem 11.7
λ, then x is also an eigenvector of Ak corresponding to eigenvalue λk for
every k ∈N.

PROOF. See Problem 11.15.

Inverse matrix. If x is an eigenvector of the regular matrix A corre- Theorem 11.8
sponding to eigenvalue λ, then x is also an eigenvector of A−1 corre-
sponding to eigenvalue λ−1.

PROOF. See Problem 11.16.
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Eigenvalues and determinant. Let A be an n×n matrix with eigen- Theorem 11.9
values λ1, . . . ,λn (counting multiplicity). Then

det(A)=
n∏

i=1
λi .

PROOF. A straightforward computation shows that
∏n

i=1λi is the con-
stant term of the characteristic polynomial pA(t)= (−1)n ∏n

i=1(t−λi). On
the other hand, we show that the constant term of pA(t) = det(A− tI)
equals det(A). Observe that by multilinearity of the determinant we
have

det(. . . ,ai − tei, . . .)= det(. . . ,ai, . . .)− tdet(. . . ,ei, . . .) .

As this holds for every columns we find

det(A− tI)= ∑
(δ1,...,δn)∈{0,1}n

(−t)
∑n

i=1δi det
(
(1−δ1)a1 +δ1e1, . . . ,

. . . , (1−δn)an +δnen
)

.

Obviously, the only term that does not depend on t is where δ1 = . . . =
δn = 0, i.e., det(A). This completes the proof.

There is also a similar remarkable result on the sum of the eigenval-
ues.

The trace of an n×n matrix A is the sum of its diagonal elements, i.e., Definition 11.10

tr(A)=
n∑

i=1
aii .

Eigenvalues and trace. Let A be an n× n matrix with eigenvalues Theorem 11.11
λ1, . . . ,λn (counting multiplicity). Then

tr(A)=
n∑

i=1
λi .

PROOF. See Problem 11.17.

11.3 Diagonalization and Spectral Theorem

In Section 6.4 we have called two matrices A and B similar if there exists
a transformation matrix U such that B=U−1AU.

Similar matrices. The spectra of two similar matrices A and B coincide. Theorem 11.12

PROOF. See Problem 11.18.
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Now one may ask whether we can find a basis such that the corre-
sponding matrix is as simple as possible. Motivated by Example 11.5 we
even may try to find a basis such that A becomes a diagonal matrix. We
find that this is indeed the case for symmetric matrices.

Spectral theorem for symmetric matrices. Let A be a symmetric n× Theorem 11.13
n matrix. Then all eigenvalues are real and there exists an orthonormal
basis {u1, . . . ,un} of Rn consisting of eigenvectors of A.

Furthermore, let D be the n×n diagonal matrix with the eigenvalues
of A as its entries and let U = (u1, . . . ,un) be the orthogonal matrix of
eigenvectors. Then matrices A and D are similar with transformation
matrix U, i.e.,

U′AU=D=


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 . (11.2)

We call this process the diagonalization of A.

A proof of the first part of Theorem 11.13 is out of the scope of this
manuscript. Thus we only show the following partial result (Lemma 11.14).
For the second part recall that for an orthogonal matrix U we have
U−1 =U′ by Theorem 8.24. Moreover, observe that

U′AUei =U′Aui =U′λiui =λiU′ui =λiei =Dei

for all i = 1, . . . ,n.

Let A be a symmetric n×n matrix. If ui and u j are eigenvectors to dis- Lemma 11.14
tinct eigenvalues λi and λ j, respectively, then ui and u j are orthogonal,
i.e., u′

iu j = 0.

PROOF. By the symmetry of A and eigenvalue equation (11.1) we find

λiu′
iu j = (Aui)′u j = (u′

iA
′)u j =u′

i(Au j)=u′
i(λ ju j)=λ ju′

iu j .

Consequently, if λi ̸=λ j then u′
iu j = 0, as claimed

Theorem 11.13 immediately implies Theorem 11.9 for the special
case where A is symmetric, see Problem 11.19.

11.4 Quadratic Forms

Up to this section we only have dealt with linear functions. Now we want
to look to more advanced functions, in particular at quadratic functions.
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Quadratic form. Let A be a symmetric n×n matrix. Then the function Definition 11.15

qA : Rn →R, x 7→ qA(x)= x′Ax

is called a quadratic form.

Observe that we have

qA(x)=
n∑

i=1

n∑
j=1

ai j xix j .

In the second part of this course we need to characterize stationary
points of arbitrary differentiable multivariate functions. We then will
see that the sign of such quadratic forms will play a prominent rôle in
our investigations. Hence we introduce the concept of the definiteness of
a quadratic form.

Definiteness. A quadratic form qA is called Definition 11.16

• positive definite, if qA(x)> 0 for all x ̸= 0;

• positive semidefinite, if qA(x)≥ 0 for all x;

• negative definite, if qA(x)< 0 for all x ̸= 0;

• negative semidefinite, if qA(x)≤ 0 for all x;

• indefinite in all other cases.

In abuse of language we call A positive (negative) (semi) definite if the
corresponding quadratic form has this property.

Notice that we can reduce the definition of negative definite to that of
positive definite, see Problem 11.21. Thus the treatment of the negative
definite case could be omitted at all.

The quadratic form qA is negative definite if and only if q−A is positive Lemma 11.17
definite.

By Theorem 11.13 a symmetric matrix A is similar to a diagonal
matrix D and we find U′AU = D. Thus if c is the coefficient vector of a
vector x with respect to the orthonormal basis of eigenvectors of A, then
we find

x=
n∑

i=1
ciui =Uc

and thus

qA(x)= x′Ax= (Uc)′A(Uc)= c′U′AUc= c′Dc

that is,

qA(x)=
n∑

i=1
λi c2

i .

Obviously, the definiteness of qA solely depends on the signs of the eigen-
values of A.
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Definiteness and eigenvalues. Let A be symmetric matrix with eigen- Theorem 11.18
values λ1, . . . ,λn. Then the quadratic form qA is

• positive definite if and only if all λi > 0;

• positive semidefinite if and only if all λi ≥ 0;

• negative definite if and only if all λi < 0;

• negative semidefinite if and only if all λi ≤ 0;

• indefinite if and only if there are positive and negative eigenvalues.

Computing eigenvalues requires to find all roots of a polynomial.
While this is quite simple for a quadratic term, it becomes cumbersome
for cubic and quartic equations and there is no explicit solution for poly-
nomials of degree 5 or higher. Then only numeric methods are available.
Fortunately, there exists an alternative method for determine the defi-
niteness of a matrix, called Sylvester’s criterion, that requires the com-
putation of so called minors.

Leading principle minor. Let A be an n× n matrix. For k = 1, . . . ,n, Definition 11.19
the k-th leading principle submatrix is the k×k submatrix formed from
the first k rows and first k columns of A. The k-th leading principle
minor is the determinant of this submatrix, i.e.,

Hk =

∣∣∣∣∣∣∣∣∣∣
a1,1 a1,2 . . . a1,k
a2,1 a2,2 . . . a2,k

...
...

. . .
...

ak,1 ak,2 . . . ak,k

∣∣∣∣∣∣∣∣∣∣
Sylvester’s criterion. A symmetric n×n matrix A is positive definite if Theorem 11.20
and only if all its leading principle minors are positive.

It is easy to prove that positive leading principle minors are a neces-
sary condition for the positive definiteness of A, see Problem 11.22. For
the sufficiency of this condition we first show an auxiliary result1.

Let A be a symmetric n× n matrix. If x′Ax > 0 for all nonzero vectors Lemma 11.21
x in a k-dimensional subspace V of Rn, then A has at least k positive
eigenvalues (counting multiplicity).

PROOF. Suppose that m < k eigenvalues are positive but the rest are not.
Let um+1, . . . ,un be the eigenvectors corresponding to the non-positive
eigenvalues λm+1, . . . ,λn ≤ 0 and let Let U = span(um+1, . . . ,un). Since
V +U ⊆Rn the formula from Problem 5.11 implies that

dim(V ∩U )= dim(V )+dim(U )−dim(V +U )

≥ k+ (n−m)−n = k−m > 0 .
1We essentially follow a proof by G. T. Gilbert (1991), Positive definite matrices

and Sylvester’s criterion, The American Mathematical Monthly 98(1): 44–46, DOI:
10.2307/2324036.
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Hence V and U have non-trivial intersection and there exists a non-zero
vector v ∈ V that can be written as

v=
n∑

i=m+1
ciui

and we have

v′Av=
n∑

i=m+1
λi c2

i ≤ 0

a contradiction. Thus m ≥ k, as desired.

PROOF OF THEOREM 11.20. We complete the proof of sufficiency by in-
duction. For n = 1, the result is trivial. Assume the sufficiency of positive
leading principle minors of (n−1)×(n−1) matrices. So if A is a symmetric
n×n matrix, its (n−1)st leading principle submatrix is positive definite.
Then for any non-zero vector v with vn = 0 we find v′Av > 0. As the
subspace of all such vectors has dimension n−1 Lemma 11.21 implies
that A has at least n−1 positive eigenvalues (counting multiplicities).
Since det(A) > 0 we conclude by Theorem 11.9 that all n eigenvalues of
A are positive and hence A is positive definite by Theorem 11.18. This
completes the proof.

By means of Sylvester’s criterion we immediately get the following
characterizations, see Problem 11.23.

Definiteness and leading principle minors. A symmetric n×n ma- Theorem 11.22
trix A is

• positive definite if and only if all Hk > 0 for 1≤ k ≤ n;

• negative definite if and only if all (−1)kHk > 0 for 1≤ k ≤ n; and

• indefinite if det(A) ̸= 0 but A is neither positive nor negative defi-
nite.

Unfortunately, for a characterization of positive and negative semidef-
inite matrices the sign of leading principle minors is not sufficient, see
Problem 11.25. We then have to look at the sign of a lot more determi-
nants.

Principle minor. Let A be an n×n matrix. For k = 1, . . . ,n, a k-th prin- Definition 11.23
ciple minor is the determinant of the k× k submatrix formed from the
same set of rows and columns of A, i.e., for 1 ≤ i1 < i2 < ·· · < ik ≤ n we
obtain the minor

Mi1,...,ik =

∣∣∣∣∣∣∣∣∣∣
ai1,i1 ai1,i2 . . . ai1,ik

ai2,i1 ai2,i2 . . . ai2,ik
...

...
. . .

...
aik,i1 aik,i2 . . . aik,ik

∣∣∣∣∣∣∣∣∣∣
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Notice that there are
(n

k
)

many k-th principle minors which gives a total
of 2n −1. The following criterion we state without a formal proof.

Semidefiniteness and principle minors. A symmetric n×n matrix A Theorem 11.24
is

• positive semidefinite if and only if all principle minors are non-
negative, i.e., Mi1,...,ik ≥ 0 for all 1 ≤ k ≤ n and all 1 ≤ i1 < i2 < ·· · <
ik ≤ n.

• negative semidefinite if and only if (−1)kMi1,...,ik ≥ 0 for all 1≤ k ≤ n
and all 1≤ i1 < i2 < ·· · < ik ≤ n.

• indefinite in all other cases.

11.5 Spectral Decomposition and Functions of
Matrices

We may state the Spectral Theorem 11.13 in a different way. Observe
that Equation (11.2) implies

A=UDU′ .

Observe that [U′x]i = u′
ix and thus U′x =∑n

i=1(u′
ix)ei. Then a straight-

forward computation yields

Ax=UDU′x=UD
n∑

i=1
(u′

ix)ei =
n∑

i=1
(u′

ix)UDei =
n∑

i=1
(u′

ix)Uλiei

=
n∑

i=1
λi(u′

ix)Uei =
n∑

i=1
λi(u′

ix)ui =
n∑

i=1
λipi(x)

where pi is just the orthogonal projection onto span(ui), see Defini-
tion 9.2. By Theorem 9.4 there exists a projection matrix Pi = uiu′

i,
such that pi(x) = Pix. Therefore we arrive at the following spectral
decomposition,

A=
n∑

i=1
λiPi . (11.3)

A simple computation gives that Ak = UDkU′, see Problem 11.20, or
using Equation (11.3)

Ak =
n∑

i=1
λk

i Pi .

Thus by means of the spectral decomposition we can compute integer
powers of a matrix. Similarly, we find

A−1 =UD−1U′ =
n∑

i=1
λ−1

i Pi .

Can we compute other functions of a symmetric matrix as well as, e.g.,
its square root?
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Square root. A matrix B is called the square root of a symmetric Definition 11.25
matrix A if B2 =A.

Let B = ∑n
i=1

√
λiPi then B2 = ∑n

i=1

(√
λi

)2
Pi = ∑n

i=1λiPi = A, pro-
vided that all eigenvalues of A are positive.

This motivates to define any function of a matrix in the following
way: Let f : R→R some function. Then

f (A)=
n∑

i=1
f (λi)Pi =U


f (λ1) 0 . . . 0

0 f (λ2) . . . 0
...

...
. . .

...
0 0 . . . f (λn)

U′ .

— Summary

• An eigenvalue and its corresponding eigenvector of an n×n matrix
A satisfy the equation Ax=λx.

• The polynomial det(A−λI) = 0 is called the characteristic polyno-
mial of A and has degree n.

• The set of all eigenvectors corresponding to an eigenvalue λ forms
a subspace and is called eigenspace.

• The product and sum of all eigenvalue equals the determinant and
trace, resp., of the matrix.

• Similar matrices have the same spectrum.

• Every symmetric matrix is similar to diagonal matrix with its eigen-
values as entries. The transformation matrix is an orthogonal ma-
trix that contains the corresponding eigenvectors.

• The definiteness of a quadratic form can be determined by means
of the eigenvalues of the underlying symmetric matrix.

• Alternatively, it can be computed by means of principle minors.

• Spectral decompositions allows to compute functions of symmetric
matrices.
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— Exercises

11.1 Compute eigenvalues and eigenvectors of the following matrices:

(a) A=
(
3 2
2 6

)
(b) B=

(
2 3
4 13

)
(c) C=

(−1 5
5 −1

)

11.2 Compute eigenvalues and eigenvectors of the following matrices:

(a) A=
 1 −1 0
−1 1 0
0 0 2

 (b) B=
 4 0 1
−2 1 0
−2 0 1



(c) C=
 1 2 2

1 2 −1
−1 1 4

 (d) D=
−3 0 0

0 −5 0
0 0 −9



(e) E=
3 1 1

0 1 0
3 2 1

 (f) F=
11 4 14

4 −1 10
14 10 8


11.3 Compute eigenvalues and eigenvectors of the following matrices:

(a) A=
1 0 0

0 1 0
0 0 1

 (b) B=
1 1 1

0 1 1
0 0 1


11.4 Estimate the definiteness of the matrices from Exercises 11.1a,

11.1c, 11.2a, 11.2d, 11.2f and 11.3a.

What can you say about the definiteness of the other matrices from
Exercises 11.1, 11.2 and 11.3?

11.5 Let A =
3 2 1

2 −2 0
1 0 −1

. Give the quadratic form that is generated

by A.

11.6 Let q(x)= 5x2
1 +6x1x2−2x1x3+ x2

2 −4x2x3+ x2
3 be a quadratic form.

Give its corresponding matrix A.

11.7 Compute the eigenspace of matrix

A=
 1 −1 0
−1 1 0
0 0 2

 .

11.8 Demonstrate the following properties of eigenvalues (by means of
examples):

(1) Square matrices A and A′ have the same spectrum.
(Do they have the same eigenvectors as well?)



PROBLEMS 100

(2) Let A and B be two n×n matrices. Then A ·B and B ·A have
the same eigenvalues.
(Do they have the same eigenvectors as well?)

(3) If x is an eigenvector of A corresponding to eigenvalue λ, then
x is also an eigenvector of Ak corresponding to eigenvalue λk.

(4) If x is an eigenvector of regular A corresponding to eigen-
value λ, then x is also an eigenvector of A−1 corresponding to
eigenvalue λ−1.

(5) The determinant of an n×n matrix A is equal to the product
of all its eigenvalues: det(A)=∏n

i=1λi.
(6) The trace of an n×n matrix A (i.e., the sum of its diagonal en-

tries) is equal to the sum of all its eigenvalues: tr(A)=∑n
i=1λi.

11.9 Compute all leading principle minors of the symmetric matrices
from Exercises 11.1, 11.2 and 11.3 and determine their definite-
ness.

11.10 Compute all principle minors of the symmetric matrices from Ex-
ercises 11.1, 11.2 and 11.3 and determine their definiteness.

11.11 Compute a symmetric 2×2 matrix A with eigenvalues λ1 = 1 and
λ2 = 3 and corresponding eigenvectors v1 = (1,1)′ and v2 = (−1,1)′.
HINT: Use the Spectral Theorem. Recall that one needs an orthonormal basis.

11.12 Let A be the matrix in Problem 11.11. Compute
p

A.

11.13 Let A=
(−1 3

3 −1

)
. Compute eA.

— Problems

11.14 Prove Theorem 11.6.
HINT: Compare the characteristic polynomials of A and A′.

11.15 Prove Theorem 11.7 by induction on power k.
HINT: Use Definition 11.1.

11.16 Prove Theorem 11.8.
HINT: Use Definition 11.1.

11.17 Prove Theorem 11.11.
HINT: Use a direct computation similar to the proof of Theorem 11.9 on p. 92.

11.18 Prove Theorem 11.12.

Show that the converse is false, i.e., if two matrices have the same
spectrum then they need not be similar.
HINT: Compare the characteristic polynomials of A and B. See Problem 6.8 for
the converse statement.
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11.19 Derive Theorem 11.9 for symmetric matrices immediately from
Theorem 11.13.

11.20 Let A and B be similar n×n matrices with transformation matrix
U such that A=U−1BU. Show that Ak =U−1BkU for every k ∈N.
HINT: Use induction.

11.21 Show that qA is negative definite if and only if q−A is positive def-
inite.

11.22 Let A be a symmetric n×n matrix. Show that the positivity of all
leading principle minors is a necessary condition for the positive
definiteness of A.
HINT: Compute y′Aky where Ak be the k-th leading principle submatrix of A
and y ∈ Rk. Notice that y can be extended to a vector z ∈ Rn where zi = yi if
1≤ i ≤ k and zi = 0 for k+1≤ i ≤ n.

11.23 Prove Theorem 11.22.
HINT: Use Sylvester’s criterion and Lemmata 11.17 and 11.21.

11.24 Derive a criterion for the positive or negative (semi) definiteness of
a symmetric 2×2 matrix in terms of its determinant and trace.

11.25 Suppose that all leading principle minors of some matrix A are
non-negative. Show that A need not be positive semidefinite.
HINT: Construct a 2× 2 matrix where all leading principle minors are 0 and
where the two eigenvalues are 0 and −1, respectively.

11.26 Let v1, . . . ,vk ∈ Rn and V = (v1, . . . ,vk). Then the Gram matrix of
these vectors is defined as

G=V′V .

Prove the following statements:

(a) [G]i j = v′
iv j.

(b) G is symmetric.
(c) G is positive semidefinite for all X.
(d) G is regular if and only if the vectors x1, . . . ,xk are linearly

independent.

HINT: Use Definition 11.16 for statement (c). Use Lemma 6.25 for statement (d).

11.27 Let v1, . . . ,vk ∈ Rn be linearly independent vectors. Let P be the
projection matrix for an orthogonal projection onto span(v1, . . . ,vk).

(a) Compute all eigenvalues of P.
(b) Give bases for each of the eigenspace corresponding to non-

zero eigenvalues.

HINT: Recall that P is idempotent, i.e., P2 =P.
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11.28 Let U be an orthogonal matrix. Show that all eigenvalues λ of U
have absolute value 1, i.e., |λ| = 1.
HINT: Use Theorem 8.24.

11.29 Let U be an orthogonal 3×3 matrix. Show that there exists a vector
x such that either Ux= x or Ux=−x.
HINT: Use the result from Problem 11.28.



Solutions

4.1 (a) A+B=
(

2 −2 8
10 1 −1

)
; (b) not possible since the number of columns of

A does not coincide with the number of rows of B; (c) 3A′ =
 3 6
−18 3
15 −9

;

(d) A ·B′ =
(−8 18
−3 10

)
; (e) B′ ·A=

17 2 −19
4 −24 20
7 −16 9

; (f) not possible; (g) C ·

A+C ·B=C · (A+B)=
(−8 −3 9
22 0 6

)
; (h) C2 =C ·C=

(
0 −3
3 3

)
.

4.2 A ·B=
(
4 2
1 2

)
̸=B ·A=

(
5 1
−1 1

)
.

4.3 x′x= 21, xx′ =
 1 −2 4
−2 4 −8
4 −8 16

, x′y=−1, y′x=−1,

xy′ =
 −3 −1 0

6 2 0
−12 −4 0

, yx′ =
−3 6 −12
−1 2 −4
0 0 0

.

4.4 B must be a 2×4 matrix. A ·B ·C is then a 3×3 matrix.

4.5 (a) X = (A+B−C)−1; (b) X = A−1 C; (c) X = A−1 BA; (d) X = CB−1 A−1 =
C (AB)−1.

4.6 (a) A−1 =


1 0 0 − 1

4
0 1 0 − 2

4
0 0 1 − 3

4
0 0 0 1

4

; (b) B−1 =


1 0 − 5

3 − 3
2

0 1
2 0 − 7

8
0 0 1

3 0
0 0 0 1

4

.

5.1 U−1
ℓ

=
1 1 1

0 −1 −2
0 0 1

2

, Uℓ =
1 1 2

0 −1 −4
0 0 2

.

6.1 (a) ker(φ)= span({1}); (b) Im(φ)= span({1, x}); (c) D=
0 1 0

0 0 2
0 0 0

;

(d) U−1
ℓ

=
1 1 1

0 −1 −2
0 0 1

2

, Uℓ =
1 1 2

0 −1 −4
0 0 2

;

(e) Dℓ =UℓDU−1
ℓ

=
0 −1 −1

0 0 −1
0 0 0

.

103
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7.1 Row reduced echelon form R=
1 0 −1

0 1 2
0 0 0

. Im(A)= span
{
(1,4,7)′, (2,5,8)′

}
,

ker(A)= span
{
(1,−2,1)′

}
, rank(A)= 2.

9.1 (a) v1 = (1,0,0)′, v2 = (0,1,0)′, v3 = (0,0,1)′;
(b) v1 = 1p

14
(1,2,3)′, v2 = 1p

70
(3,6,−5)′, v3 =

p
5

2 (2,−1,0)′.

9.2 (a) (0,−3,0)′, P=
0 0 0

0 1 0
0 0 0

; (b) − 8
7 (1,2,−3)′, P= 1

14

 1 2 −3
2 4 −6
−3 −6 9

;

(c) 1
140 (436,−160,508)′, P= 1

70

 52 −30 6
−30 20 10

6 10 68

.

9.3 (a) (−7/6,1/2); (b) (−7,3).

10.1 (a) −3; (b) −9; (c) 8; (d) 0; (e) −40; (f) −10; (g) 48; (h) −49; (i) 0.

10.2 See Exercise 10.1.

10.3 All matrices except those in Exercise 10.1(d) and (i) are regular and thus
invertible and have linear independent column vectors.

Ranks of the matrices: (a)–(d) rank 2; (e)–(f) rank 3; (g)–(h) rank 4;
(i) rank 1.

10.4 (a) det(A) = 3; (b) det(5A) = 53 det(A) = 375; (c) det(B) = 2 det(A) = 6;
(d) det(A′) = det(A) = 3; (e) det(C) = det(A) = 3; (f) det(A−1) = 1

det(A) = 1
3 ;

(g) det(A ·C)= det(A) ·det(C)= 3 ·3= 9; (h) det(I)= 1.

10.5
∣∣A′ ·A∣∣= 0;

∣∣A ·A′∣∣ depends on matrix A.

10.6 (a) 9; (b) 9; (c) 40; (e) 40.

10.7 A−1 = 1
|A|A

∗′.

(a) A∗ =
(

1 −2
−2 1

)
, A∗′ =

(
1 −2
−2 1

)
, |A| = −3;

(b) A∗ =
(

3 −1
−3 −2

)
, A∗′ =

(
3 −3
−1 −2

)
, |A| = −9;

(c) A∗ =
(
2 0
3 4

)
, A∗′ =

(
2 3
0 4

)
, |A| = 8;

(d) A∗ =
 1 0 0

1 3 −6
−1 0 3

, A∗′ =
1 1 −1

0 3 0
0 −6 3

, |A| = 3;

(e) A∗′ =
−20 −12 8

20 4 −16
5 −5 0

, |A| = −40;

(f) A∗′ =
 9 3 −4
−2 −4 2
−14 −8 4

, |A| = −10.

10.8 (a) A−1 = 1
ad−bc

(
d −b
−c a

)
; (b) A−1 = 1

x1 y2−x2 y1

(
y2 −y1
−x2 x1

)
;

(c) A−1 = 1
αβ2−α2β

(
β2 −β
−α2 α

)
.

10.9 (a) x = (1,0)′; (b) x = (1/3,5/9)′; (c) x = (1,1)′; (d) x = (0,2,−1)′; (e) x =
(1/2,1/2,1/8)′; (f) x= (−3/10,2/5,9/5)′.
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11.1 (a) λ1 = 7, v1 =
(
1
2

)
; λ2 = 2, v2 =

(−2
1

)
; (b) λ1 = 14, v1 =

(
1
4

)
; λ2 = 1, v2 =(−3

1

)
; (c) λ1 =−6, v1 =

(
1
−1

)
; λ2 = 4, v2 =

(
1
1

)
.

11.2 (a) λ1 = 0, x1 =
1

1
0

; λ2 = 2, x2 =
0

0
1

; λ3 = 2, x3 =
−1

1
0

.

(b) λ1 = 1, x1 =
0

1
0

; λ2 = 2, x2 =
−1

2
2

; λ3 = 3, x3 =
−1

1
1

.

(c) λ1 = 1, x1 =
 2
−1
1

; λ2 = 3, x2 =
1

0
1

; λ3 = 3, x3 =
1

1
0

.

(d) λ1 =−3, x1 =
1

0
0

; λ2 =−5, x2 =
0

1
0

; λ3 =−9, x3 =
0

0
1

.

(e) λ1 = 0, x1 =
 1

0
−3

; λ2 = 1, x2 =
 2
−3
−1

; λ3 = 4, x3 =
1

0
1

.

(f) λ1 = 0, x1 =
−2

2
1

; λ2 = 27, x2 =
2

1
2

; λ3 =−9, x3 =
−1
−2
2

.

11.3 (a) λ1 = λ2 = λ3 = 1, x1 =
1

0
0

, x2 =
0

1
0

, x3 =
0

0
1

; (b) λ1 = λ2 = λ3 = 1,

x1 =
1

0
0

.

11.4 11.1a: positive definite, 11.1c: indefinite, 11.2a: positive semidefinite,
11.2d: negative definite, 11.2f: indefinite, 11.3a: positive definite.
The other matrices are not symmetric. So our criteria cannot be applied.

11.5 qA(x)= 3x2
1 +4x1x2 +2x1x3 −2x2

2 − x2
3.

11.6 A=
 5 3 −1

3 1 −2
−1 −2 1

.

11.7 Eigenspace corresponding to eigenvalue λ1 = 0: span


1

1
0

;

Eigenspace corresponding to eigenvalues λ2 =λ3 = 2: span


0

0
1

 ,

−1
1
0

.

11.8 Give examples.

11.9 11.1a: H1 = 3, H2 = 14, positive definite; 11.1c: H1 =−1, H2 =−24, indef-
inite; 11.2a: H1 = 1, H2 = 0, H3 = 0, cannot be applied; 11.2d: H1 = −3,
H2 = 15, H3 =−135, negative definite; 11.2f: H1 = 11, H2 =−27, H3 = 0,
cannot be applied; 11.3a: H1 = 1, H2 = 1, H3 = 1, positive definite.
All other matrices are not symmetric.
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11.10 11.1a: M1 = 3, M2 = 6, M1,2 = 14, positive definite; 11.1c: M1 =−1, M2 =
−1, M1,2 = −24, indefinite; 11.2a: M1 = 1, M2 = 1, M3 = 2, M1,2 = 0,
M1,3 = 2, M2,3 = 2, M1,2,3 = 0, positive semidefinite. 11.2d: M1 =−3, M2 =
−5, M3 = −9, M1,2 = 15, M1,3 = 27, M2,3 = 45, M1,2,3 = −135, negative
definite. 11.2f: M1 = 11, M2 = −1, M3 = 8, M1,2 = −27, M1,3 = −108,
M2,3 =−108, M1,2,3 = 0, indefinite.

11.11

A=
(

2 −1
−1 2

)
.

11.12

p
A=

(
1+p3

2
1−p3

2
1−p3

2
1+p3

2

)
.

11.13 Matrix A has eigenvalues λ1 = 2 and λ2 =−4 with corresponding eigen-
vectors v1 = (1,1)′ and v2 = (−1,1)′. Then

eA =
(

e2+e−4

2
e2−e−4

2
e2−e−4

2
e2+e−4

2

)
.
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Entries in italics indicate lemmata and theorems.

adjugate matrix, 85
affine subspace, 53
algebraic multiplicity, 91
assumption, 8
augmented coefficient matrix, 54
axiom, 10

back substitution, 54
base step, 14
basis, 33
block matrix, 25

canonical basis, 37
Cauchy-Schwarz inequality, 59
characteristic polynomial, 90
characteristic roots, 90
characteristic vectors, 90
closed, 30
coefficient matrix, 52
coefficient vector, 37
coefficients, 37
cofactor, 84
column vector, 21
conclusion, 8
conjecture, 10
conjunction, 8
contradiction, 9
contrapositive, 12
corollary, 10
counterexample, 15
Cramer’s rule, 86

Decomposition of a vector, 72
Definiteness and eigenvalues, 95
Definiteness and leading princi-

ple minors, 96
definition, 10

design matrix, 75
determinant, 79
diagonal matrix, 22
diagonalization, 93
differential operator, 42
dimension, 36
Dimension theorem for linear maps,

44
direct sum, 71
disjunction, 8
dot product, 58

eigenspace, 91
eigenvalue, 90
Eigenvalues and determinant, 92
Eigenvalues and trace, 92
eigenvector, 90
elementary row operations, 53
equivalence, 8
Euclidean distance, 61
Euclidean norm, 59
even number, 3
exclusive-or, 9
Existence and uniqueness, 81
existential quantifier, 8

finitely generated, 33
full rank, 48
Fundamental properties of inner

products, 58
Fundamental properties of met-

rics, 61
Fundamental properties of norms,

60

generating set, 33
Gram matrix, 101

107



INDEX 108

Gram-Schmidt orthonormalization,
70

Gram-Schmidt process, 70
group, 80

homogeneous, 52
hypothesis, 8

idempotent, 70
identity matrix, 22
image, 43
implication, 8
indefinite, 94
induction hypothesis, 14
induction step, 14
inhomogeneous, 52
inner product, 58, 59
inner product space, 59
Inverse matrix, 83, 85, 91
inverse matrix, 24
invertible, 24, 44
isometry, 63
isomorphic, 38

kernel, 43
Kronecker delta, 22

Laplace expansion, 84
Laplace expansion, 84
leading principle minor, 95
least square principle, 75
Leibniz formula for determinant,

81
lemma, 10
linear combination, 32
linear map, 42
linear span, 32
linearly dependent, 33
linearly independent, 33

matrix, 21
matrix addition, 23
matrix multiplication, 23
Matrix power, 91
matrix product, 23
metric, 61
metric vector space, 61
Minkowski inequality, 60

minor, 84
model parameters, 75

necessary, 11
negation, 8
negative definite, 94
negative semidefinite, 94
norm, 60
normal, 62
normalized, 61
normed vector space, 60
nullity, 47
nullspace, 43

one-to-one, 44
onto, 44
operator, 42
orthogonal, 62
orthogonal complement, 72
Orthogonal decomposition, 69, 72
orthogonal decomposition, 69
orthogonal matrix, 63
orthogonal projection, 69, 72
orthonormal basis, 63
orthonormal system, 63

partitioned matrix, 25
permutation, 80
perpendicular, 62
pivot, 53
pivotal, 53
positive definite, 94
positive semidefinite, 94
principle minor, 96
Principle of mathematical induc-

tion, 13
probability vector, 29
Product, 82
Projection into subspace, 73
Projection matrix, 70
proof, 10
proof by contradiction, 12
proposition, 10
Pythagorean theorem, 62

quadratic form, 94

range, 43
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rank, 46
Rank of a matrix, 83
Rank-nullity theorem, 47
reductio ad absurdum, 12
regular, 48
residuals, 75
row echelon form, 53
row rank, 47
row reduced echelon form, 53
row vector, 21
Rules for matrix addition and mul-

tiplication, 23

Sarrus’ rule, 83
scalar multiplication, 23
scalar product, 58
Semidefiniteness and principle mi-

nors, 97
similar, 48
Similar matrices, 92
singular, 24
Singular matrix, 82
spectral decomposition, 97
Spectral theorem for symmetric

matrices, 93
spectrum, 91
square matrix, 22
square root, 98
statement, 7
Steinitz exchange theorem (Aus-

tauschsatz), 35
stochastic matrix, 29
stochastic vector, 29
subspace, 31
sufficient, 11
sum, 23
sum of subspaces, 41
Sylvester’s criterion, 95
symmetric, 24

tautology, 9
theorem, 10
trace, 92
transformation matrix, 38
Transpose, 81, 91
transpose, 24
transposition, 80

Triangle inequality, 14
triangle inequality, 66
Triangular matrix, 84
trivial, 15

universal quantifier, 8
upper triangular matrix, 22

vector, 21
vector space, 30, 31
Volume, 83

zero matrix, 22
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