Kapitel 1

Logik, Mengen und Abbildungen

Aussage

Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der **mathematischen Logik** erforderlich. Im Zentrum steht dabei die Aussage.

Eine **Aussage** ist ein Satz der entweder **wahr** (W) oder **falsch** (F) ist.

- ► "Wien liegt an der Donau" ist eine wahre Aussage.
- "Bill Clinton war Präsident der Republik Österreich" ist eine falsche Aussage.
- "19 ist eine Primzahl" ist eine wahre Aussage.
- "Dieser Satz ist falsch" ist keine Aussage.

Elementare Aussageverbindungen

Die Aussagenlogik verknüpft einfache zu komplexeren Aussagen und gibt deren Wahrheitswert an.

Dies geschieht durch die aus der Alltagssprache bekannten Wörter "und", "oder", "nicht", "wenn ... dann", und "genau dann ... wenn".

Aussageverbindung	Symbol	Name
nicht P	$\neg P$	Negation
P und Q	$P \wedge Q$	Konjunktion
P oder Q	$P \vee Q$	Disjunktion
wenn P dann Q	$P \Rightarrow Q$	Implikation
${\cal P}$ genau dann, wenn ${\cal Q}$	$P \Leftrightarrow Q$	Äquivalenz

Wahrheitswerte

Wahrheitswerte elementarer Aussageverbindungen.

P	Q	$ \neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
W	W	F	W	W	W	W
W	F	F	F	W	F	F
F	W	W	F	W	W	F
F	F	W	F	F	W	W
		'				

Aussagen P=x ist durch 2 teilbar" und Q=x ist durch 3 teilbar". Die Aussage $P \wedge Q$ ist genau dann wahr, wenn x durch 2 und 3 teilbar ist.

Negation und Disjunktion

▶ Die *Negation* (*Verneinung*) $\neg P$ ist nicht das "Gegenteil" der Aussage P.

Die Verneinung von P = "Alle Katzen sind grau" ist $\neg P =$ "Nicht alle Katze sind grau" (Und keinesfalls "Alle Katzen sind nicht grau"!)

▶ Die *Disjunktion* $P \lor Q$ ist im *nicht-ausschließenden* Sinn gemeint:

 $P \lor Q$ ist genau dann wahr, wenn P wahr ist, oder wenn Q wahr ist, oder wenn P und Q wahr sind.

Implikation

Die Wahrheitswerte der *Implikation* $P\Rightarrow Q$ erscheinen etwas mysteriös.

Beachte aber, dass $P \Rightarrow Q$ keine Aussage über den Wahrheitswert von P oder Q macht!

Welche der beiden Aussagen ist wahr?

- "Wenn Bill Clinton österreichischer Staatsbürger ist, dann kann er zum Präsidenten der Republik Österreich gewählt werden."
- "Wenn Karl österreichischer Staatsbürger ist, dann kann er zum Präsidenten der Republik Österreich gewählt werden."

Die Implikation $P \Rightarrow Q$ ist äquivalent zur Aussage $\neg P \lor Q$. Symbolisch:

$$(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$$

Ein einfacher logischer Beweis

Wir können den Wahrheitswert der Aussage $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ mittels Wahrheitstabellen herleiten:

Die Aussage $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ ist also immer wahr, unabhängig von den Wahrheitswerten für P und Q.

Wir sagen daher, dass die beiden Aussagen $P\Rightarrow Q$ und $\neg P\vee Q$ äquivalent sind.

Theoreme

Mathematics consists of propositions of the form: P implies Q, but you never ask whether P is true. (Bertrand Russell)

Ein **mathematischer Satz** (*Theorem*, *Proposition*, *Lemma*, *Korollar*) ist eine Aussage der Form $P \Rightarrow Q$.

P heißt dann eine **hinreichende** Bedingung für Q.

Eine hinreichende Bedingung P garantiert, dass die Aussage Q wahr ist. Q kann aber auch dann wahr sein, wenn P falsch ist.

Q heißt dann eine **notwendige** Bedingung für P, $Q \Leftarrow P$.

Eine *notwendige* Bedingung Q muss wahr sein, damit die Aussage P wahr sein kann. Sie garantiert nicht, dass P wahr ist.

Quantoren

Mathematische Texte verwenden öfters die Ausdrücke "für alle" bzw. "es existiert ein".

In formaler Notation werden dafür folgende Symbole verwendet:

Quantor	Symbol
für alle	\forall
es existiert ein	3
es existiert genau ein	∃!

Mengen*

Der Begriff der *Menge* ist fundamental für die moderne Mathematik. Wir begnügen uns mit einer höchst einfachen Definition.

Eine Menge ist eine Sammlung von unterscheidbaren Objekten.

Ein Objekt a einer Menge A heißt **Element** der Menge:

$$a \in A$$

Mengen werden durch *Aufzählung* oder *Beschreibung* ihrer Elemente in *geschwungenen Klammern* {...} definiert.

$$A = \{1,2,3,4,5,6\}$$

$$B = \{x \mid x \text{ ist eine natürliche Zahl und durch 2 teilbar}\}$$

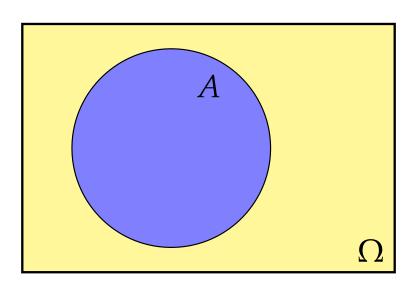
Wichtige Mengen*

Symbol	Beschreibung
Ø	leere Menge (nur in der Schule: {})
\mathbb{N}	natürliche Zahlen $\{1,2,3,\ldots\}$
\mathbb{Z}	ganze Zahlen $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
Q	rationale Zahlen, Bruchzahlen $\{\frac{k}{n} \mid k, n \in \mathbb{Z}, n \neq 0\}$
${\mathbb R}$	reelle Zahlen
[<i>a</i> , <i>b</i>]	abgeschlossenes Intervall $\{x \in \mathbb{R} \mid a \leq x \leq b\}$
(a,b)	offenes Intervall $\{x \in \mathbb{R} \mid a < x < b\}$
[a,b)	halboffenes Intervall $\{x \in \mathbb{R} \mid a \le x < b\}$
\mathbb{C}	komplexe Zahlen

Venn-Diagramme*

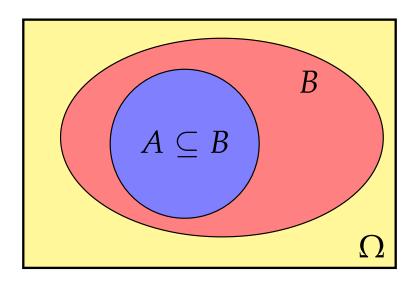
Beim Arbeiten mit Mengen nimmt man meist an, dass alle betrachteten Mengen Teilmengen einer vorgegebenen **Obermenge** Ω sind.

Mengen können durch sogenannte **Venn-Diagramme** dargestellt werden. Die Obermenge wird durch ein Rechteck, die einzelnen Mengen durch Kreise oder Ovale dargestellt.



Teilmenge*

Eine Menge A heißt **Teilmenge** von B, $A \subseteq B$, falls jedes Element von A auch Element von B ist, formal: $x \in A \Rightarrow x \in B$.



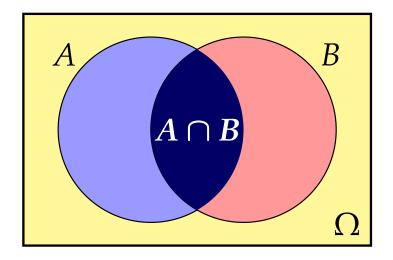
Eine Menge A heißt **echte Teilmenge** von B, $A \subset B$, falls $A \subseteq B$ und $A \neq B$.

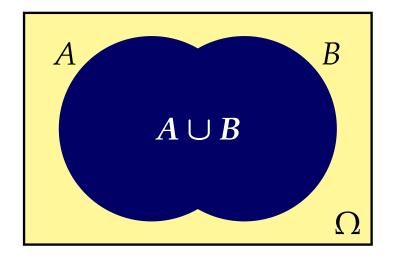
Mengenverknüpfungen*

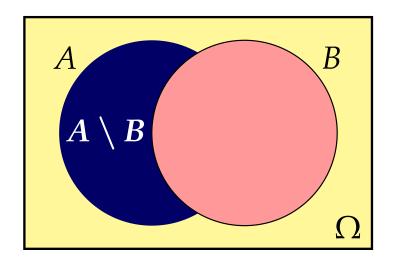
Symbol	Definition	Bezeichnung
$A \cap B$	$\{x x\in A\land x\in B\}$	Durchschnitt
$A \cup B$	$\{x x\in A\vee x\in B\}$	Vereinigung
$A \setminus B$	$\{x x\in A\land x\not\in B\}$	Mengendifferenz
\overline{A}	$\Omega \setminus A$	Komplement
$A \times B$	$\{(x,y) x\in A,y\in B\}$	Cartesisches Produkt

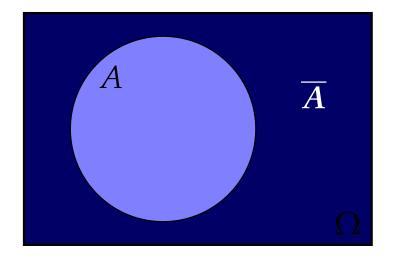
Zwei Mengen A und B heißen **disjunkt** falls $A \cap B = \emptyset$.

Mengenverknüpfungen*





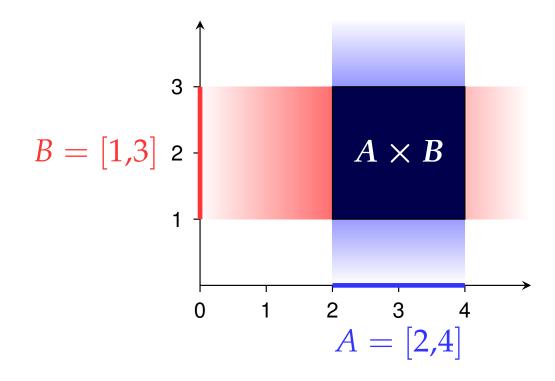




Cartesisches Produkt*

Das Cartesische Produkt aus $A = \{0,1\}$ und $B = \{2,3,4\}$ ist $A \times B = \{(0,2), (0,3), (0,4), (1,2), (1,3), (1,4)\}.$

Das Cartesische Produkt aus A = [2,4] und B = [1,3] ist $A \times B = \{(x,y) \mid x \in [2,4] \text{ und } y \in [1,3]\}.$

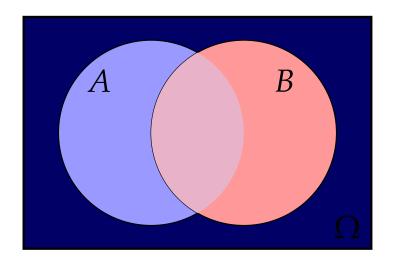


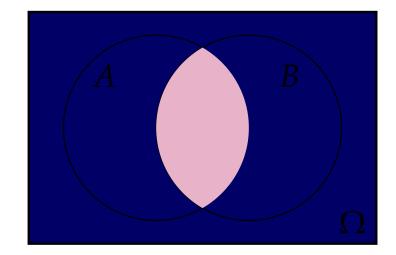
Rechenregeln für Mengenverknüpfungen*

Regel	Bezeichnung
$A \cup A = A \cap A = A$	Idempotenz
$A \cup \varnothing = A$ und $A \cap \varnothing = \varnothing$	Identität
$(A \cup B) \cup C = A \cup (B \cup C)$ und $(A \cap B) \cap C = A \cap (B \cap C)$	Assoziativität
$A \cup B = B \cup A$ und $A \cap B = B \cap A$	Kommutativität
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ und $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributivität
$\overline{A} \cup A = \Omega$ und $\overline{A} \cap A = \emptyset$	

Gesetz von De Morgan*

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$
 und $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$





Abbildung

Eine **Abbildung** f ist definiert durch

- (i) eine **Definitionsmenge** D,
- (ii) eine Wertemenge W und
- (iii) eine **Zuordnungsvorschrift**, die jedem Element von D_f genau ein Element von W_f zuordnet.

$$f: D_f \to W_f, \quad x \mapsto y = f(x)$$

- x heißt unabhängige Variable, y heißt abhängige Variable.
- ▶ y ist das **Bild** von x, x ist das **Urbild** von y.
- ightharpoonup f(x) heißt **Funktionsterm**, x heißt **Argument** der Abbildung.

Andere Bezeichnungen: Funktion, Transformation

Injektiv · surjektiv · bijektiv*

Jedes Argument besitzt immer genau ein Bild. Die Anzahl der Urbilder eines Elementes $y \in W$ kann jedoch beliebig sein. Wir können daher Funktionen nach der Anzahl der Urbilder einteilen.

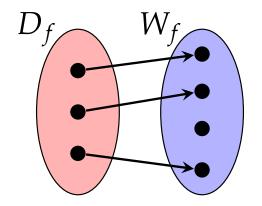
- ► Eine Abbildung *f* heißt **injektiv**, wenn jedes Element aus der Wertemenge *höchstens* ein Urbild besitzt.
- Sie heißt surjektiv, wenn jedes Element aus der Wertemenge mindestens ein Urbild besitzt.
- Sie heißt bijektiv, wenn sie sowohl injektiv als auch surjektiv ist.

Injektive Abbildungen haben die folgende wichtige Eigenschaft:

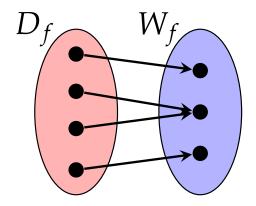
$$f(x) \neq f(y) \Leftrightarrow x \neq y$$

Injektiv · surjektiv · bijektiv*

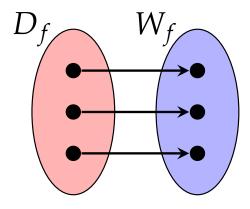
Abbildungen können durch "Pfeildiagramme" veranschaulicht werden.



injektiv (nicht surjektiv)



surjektiv (nicht injektiv)



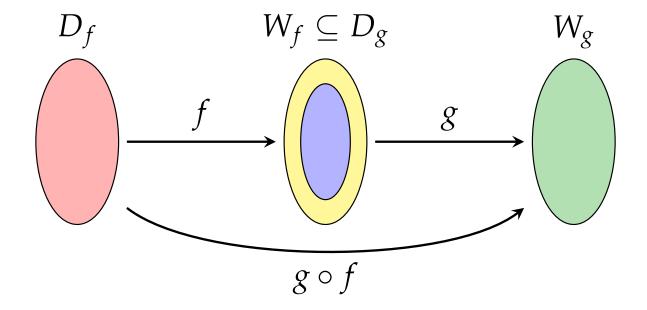
bijektiv

Zusammengesetzte Funktion*

Seien $f: D_f \to W_f$ und $g: D_g \to W_g$ Funktionen mit $W_f \subseteq D_g$. Dann heißt die Funktion

$$g \circ f \colon D_f \to W_g, \ x \mapsto (g \circ f)(x) = g(f(x))$$

zusammengesetzte Funktion ("g zusammengesetzt f").



Inverse Abbildung*

Bei einer **bijektiven** Abbildung $f \colon D_f \to W_f$ können wir jedem $y \in W_f$ sein Urbild $x \in D_f$ zuordnen.

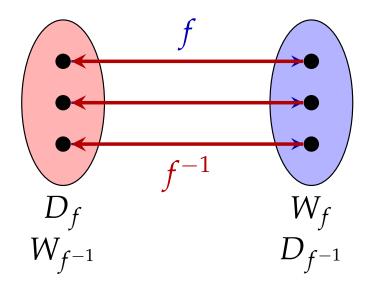
Wir erhalten dadurch wieder eine Abbildung f^{-1} mit der Definitionsmenge W_f und der Wertemenge D_f :

$$f^{-1}: W_f \to D_f, \ y \mapsto x = f^{-1}(y)$$

Diese Abbildung heißt **Umkehrfunktion** oder **inverse Abbildung**. Sie hat die Eigenschaft, dass für alle Elemente $x \in D_f$ und $y \in W_f$ gilt:

$$f^{-1}(f(x)) = f^{-1}(y) = x$$
 und $f(f^{-1}(y)) = f(x) = y$

Inverse Abbildung*



Identische Abbildung*

Die einfachste Funktion ist die **Einheitsfunktion** (oder **identische Abbildung** id, die das Argument auf sich selbst abbildet, d.h.

$$id: D \to W = D, x \mapsto x$$

Die Einheitsfunktion bei zusammengesetzten Abbildungen die Rolle der Zahl 1 bei der Multiplikation von Zahlen.

$$f \circ id = f$$
 und $id \circ f = f$

Insbesondere gilt:

$$f^{-1} \circ f = \mathrm{id} \colon D_f \to D_f$$
 und $f \circ f^{-1} = \mathrm{id} \colon W_f \to W_f$

Zusammenfassung

- Aussagenlogik
- ► Theorem
- Notwendige und hinreichende Bedingung
- Mengen
- Mengenverknüpfungen
- Abbildung
- Zusammengesetzte Funktion
- Inverse Abbildung