Kapitel 4

Folgen und Reihen

Folgen

Eine **Folge** ist eine Anordnung von reellen Zahlen. Die einzelnen *Zahlen* heißen **Glieder** der Folge.

Formal: Eine Folge ist eine Abbildung

$$a: \mathbb{N} \to \mathbb{R}, n \mapsto a_n$$

Folgen werden mit $\langle a_i \rangle_{i=1}^n$ oder kurz $\langle a_i \rangle$ bezeichnet.

Auch: $(a_i)_{i=1}^n$ bzw. (a_i) .

Folgen

Folgen können definiert werden

- durch Aufzählen der Glieder,
- durch Angabe eines Bildungsgesetzes oder
- durch Rekursion.
 Jedes Folgenglied wird durch seine(n) Vorgänger bestimmt.

Aufzählung:
$$\langle a_i \rangle = \langle 1, 3, 5, 7, 9, \ldots \rangle$$

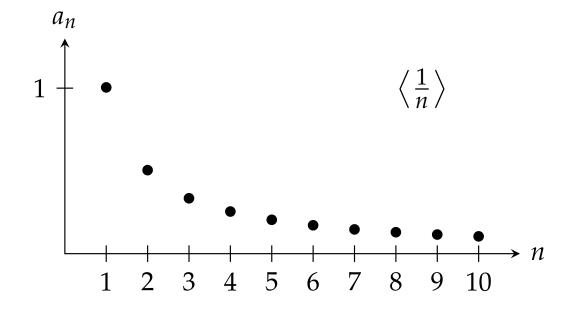
Bildungsgesetz:
$$\langle a_i \rangle = \langle 2i-1 \rangle$$

Rekursion:
$$\langle a_i \rangle$$
, $a_1 = 1$, $a_{i+1} = a_i + 2$

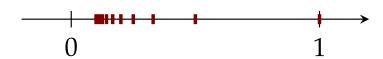
Graphische Darstellung

Eine Folge $\langle a_i \rangle$ kann graphisch dargestellt werden, indem man

(1) die einzelnen Folgenglieder in der Zahlengerade aufträgt, oder



(2) die Zahlenpaare (n, a_n) in der Zahlenebene einzeichnet.



Eigenschaften

Charakteristische Eigenschaften von Folgen $\langle a_i \rangle$:

Bezeichnung

Definition

monoton steigend $a_{i+1} \geq a_i$ für alle $i \in \mathbb{N}$ monoton fallend $a_{i+1} \leq a_i$ alternierend $a_{i+1} \cdot a_i < 0$, d.h. das Vorzeichen wechselt. beschränkt $|a_i| \leq M$, für ein $M \in \mathbb{R}$.

Die Folge $\left\langle \frac{1}{n} \right\rangle$ ist

- monoton fallend, und
- beschränkt, da für alle $n \in \mathbb{N}$ gilt, dass $|a_n| = |1/n| \le 1$ gilt. (Wir hätten auch M = 1000 wählen können.)
- Sie ist aber nicht alternierend.

Reihen

Die Summe der ersten k Elemente der $\langle a_i \rangle$

$$s_k = \sum_{i=1}^k a_i$$

heißt die k-te **Teilsumme** (oder **Partialsumme**) der Folge

Die Folge $\langle s_k \rangle$ aller Teilsummen einer Folge $\langle a_i \rangle$ heißt die **Reihe** der Folge $\langle a_i \rangle$.

Die Reihe der Folge $\langle a_i \rangle = \langle 2i-1 \rangle$ lautet

$$\langle s_k \rangle = \left\langle \sum_{i=1}^k (2i-1) \right\rangle = \langle 1, 4, 9, 16, 25, \ldots \rangle = \langle k^2 \rangle.$$

Berechne die ersten fünf Partialsummen der Folgen und stellen Sie diese graphisch dar:

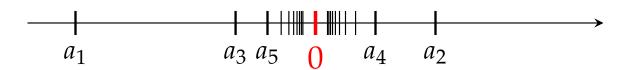
- **(a)** 2*n*
- **(b)** $\frac{1}{2+n}$
- (c) $2^{n/10}$

- (a) $\langle 2, 6, 12, 20, 30 \rangle$;
- (b) $\langle 0,333;0,583;0,783;0,95;1,093 \rangle$;
- (c) $\langle 1,072; 2,220; 3,452; 4,771; 6,185 \rangle$.

Grenzwert einer Folge

Betrachten wir die Folge von Zahlen

$$(a_n)_{n=1}^{\infty} = ((-1)^n \frac{1}{n})_{n=1}^{\infty} = (-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, \frac{1}{6}, \dots)$$



Die Folgenglieder *"streben"* mit wachsendem n gegen 0. Wir sagen, die Folge (a_n) konvergiert gegen 0.

Wir schreiben dafür

$$(a_n) \to 0$$
 oder $\lim_{n \to \infty} a_n = 0$

Grenzwert einer Folge / Definition

Definition:

Eine Zahl $a \in \mathbb{R}$ heißt **Grenzwert** (Limes) einer Folge (a_n) , wenn es für jedes noch so kleine Intervall $(a - \varepsilon, a + \varepsilon)$ ein N gibt, sodass $a_n \in (a - \varepsilon, a + \varepsilon)$ für alle $n \ge N$.

M.a.W.: alle Folgenglieder ab a_N liegen im Intervall.

Äquivalente Formulierung:

Eine Folge (a_n) konvergiert gegen den Grenzwert $a \in \mathbb{R}$, wenn für jedes $\varepsilon > 0$ ein N existiert, sodass $|a_n - a| < \varepsilon$ für alle $n \ge N$.

[Mathematiker verwenden gerne ε für eine ganz kleine positive Zahl.]

Eine Folge, die einen Grenzwert besitzt, heißt **konvergent**. Sie **konvergiert** gegen ihren Grenzwert.

Nicht jede Folge besitzt einen Grenzwert. So eine Folge heißt **divergent**.

Grenzwert / Beispiel

Im Beispiel

$$(a_n)_{n=1}^{\infty} = ((-1)^n \frac{1}{n})_{n=1}^{\infty} = (-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, \frac{1}{6}, \dots)$$

ist a=0.

Falls $\varepsilon = 0.3$ dann liegen alle Folgenglieder ab a_4 im Intervall $(a - \varepsilon, a + \varepsilon)$.

Falls $\varepsilon = \frac{1}{1000000}$ dann liegen alle Folgenglieder ab dem 1 000 001-ten Glied in diesem Intervall.

Daher

$$\lim_{n\to\infty}\frac{(-1)^n}{n}=0.$$

Grenzwert / Beispiele

Die Folge
$$(a_n)_{n=1}^{\infty} = (\frac{1}{2^n})_{n=1}^{\infty} = (\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots)$$
 konvergiert gegen 0: $\lim_{n \to \infty} a_n = 0$

Die Folge
$$(b_n)_{n=1}^{\infty} = (\frac{n-1}{n+1})_{n=1}^{\infty} = (0, \frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \frac{4}{6}, \frac{5}{7}, \ldots)$$
 ist konvergent:
$$\lim_{n \to \infty} b_n = 1$$

Die Folge $(c_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty} = (-1, 1, -1, 1, -1, 1, \dots)$ ist divergent.

Die Folge $(d_n)_{n=1}^{\infty} = (2^n)_{n=1}^{\infty} = (2,4,8,16,32,...)$ ist divergent, strebt aber gegen ∞ . Man schreibt daher (nicht ganz korrekt):

$$\lim_{n\to\infty}d_n=\infty$$

Grenzwerte wichtiger Folgen

$$\lim_{n \to \infty} n^a = \begin{cases} 0 & \text{für } a < 0 \\ 1 & \text{für } a = 0 \\ \infty & \text{für } a > 0 \end{cases}$$

$$\lim_{n \to \infty} q^n = \begin{cases} 0 & \text{für } |q| < 1 \\ 1 & \text{für } q = 1 \\ \infty & \text{für } q > 1 \\ \nexists & \text{für } q \le -1 \end{cases}$$

$$\lim_{n \to \infty} \frac{n^a}{q^n} = \begin{cases} 0 & \text{für } |q| > 1\\ \infty & \text{für } 0 < q < 1\\ \not \equiv & \text{für } -1 < q < 0 \end{cases} \quad (|q| \notin \{0, 1\})$$

Rechenregeln

Seien $(a_n)_{n=1}^{\infty}$ und $(b_n)_{n=1}^{\infty}$ konvergente Folgen mit $\lim a_n = a$ und $\lim b_n = b$; und $(c_n)_{n=1}^{\infty}$ eine beschränkte Folge.

(1)
$$\lim_{n \to \infty} (k \cdot a_n + d) = k \cdot a + d$$
(2)
$$\lim_{n \to \infty} (a_n + b_n) = a + b$$

$$(2) \quad \lim_{n \to \infty} (a_n + b_n) = a + b$$

$$(3) \quad \lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} \qquad \qquad \text{für } b \neq 0$$

(5)
$$\lim_{n \to \infty} (a_n \cdot c_n) = 0$$
 falls $a = 0$
(6)
$$\lim_{n \to \infty} a_n^k = a^k$$

$$(6) \quad \lim_{n \to \infty} a_n^k = a^k$$

Rechenregeln / Beispiele

$$\lim_{n \to \infty} \left(2 + \frac{3}{n^2} \right) = 2 + 3 \underbrace{\lim_{n \to \infty} n^{-2}}_{=0} = 2 + 3 \cdot 0 = 2$$

$$\lim_{n \to \infty} (2^{-n} \cdot n^{-1}) = \lim_{n \to \infty} \frac{n^{-1}}{2^n} = 0$$

$$\lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2 - \frac{3}{n^2}} = \frac{\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)}{\lim_{n \to \infty} \left(2 - \frac{3}{n^2}\right)} = \frac{1}{2}$$

$$\lim_{n \to \infty} \underbrace{\sin(n)}_{\text{beschränkt}} \cdot \underbrace{\frac{1}{n^2}}_{\to 0} = 0$$

Rechenregeln

Achtung

Wir müssen beim Anwenden dieser Rechenregeln darauf achten, dass wir keine Ausdrücke der Form $\frac{0}{0}$, $\frac{\infty}{\infty}$ oder $0 \cdot \infty$ erhalten.

Diese Ausdrücke sind nicht definiert!

$$\lim_{n\to\infty} \frac{n^2+1}{n^2-1} = \frac{\lim_{n\to\infty} n^2+1}{\lim_{n\to\infty} n^2-1} = \frac{\infty}{\infty} \quad \text{(nicht definiert)}$$

Trick: Kürzen durch die höchste vorkommende Potenz im Nenner.

$$\lim_{n \to \infty} \frac{n^2 + 1}{n^2 - 1} = \lim_{n \to \infty} \frac{\eta^2}{\eta^2} \cdot \frac{1 + n^{-2}}{1 - n^{-2}} = \frac{\lim_{n \to \infty} 1 + n^{-2}}{\lim_{n \to \infty} 1 - n^{-2}} = \frac{1}{1} = 1$$

Die Eulersche Zahl

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = 2,7182818284590\dots$$

Dieser Grenzwert ist in der Finanzmathematik wichtig (stetige Verzinsung).

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n/x} \right)^n$$

$$= \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^{mx} \qquad \left(m = \frac{n}{x} \right)$$

$$= \left(\lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m \right)^x = e^x$$

Berechne die folgenden Grenzwerte:

(a)
$$\lim_{n\to\infty} \left(7+\left(\frac{1}{2}\right)^n\right) =$$

(b)
$$\lim_{n\to\infty} \left(\frac{2n^3 - 6n^2 + 3n - 1}{7n^3 - 16} \right) =$$

(c)
$$\lim_{n\to\infty} (n^2 - (-1)^n n^3) =$$

(d)
$$\lim_{n\to\infty} \left(\frac{n^2+1}{n+1}\right) =$$

(e)
$$\lim_{n\to\infty} \left(\frac{n \bmod 10}{(-2)^n} \right) =$$

- (a) 7;
- (b) $\frac{2}{7}$;
- (c) unbestimmt divergent;
- (d) bestimmt divergent gegen ∞ ;
- (e) 0.

Bestimme die folgenden Grenzwerte:

(a)
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{nx} =$$

(b)
$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n =$$

(c)
$$\lim_{n\to\infty} \left(1+\frac{1}{nx}\right)^n =$$

- (a) e^x ;
- (b) e^x ; (c) $e^{1/x}$.

Arithmetische Folge

Bildungsgesetz:

$$a_n = a_1 + (n-1) \cdot d$$

Differenz aufeinander folgender Glieder ist konstant:

$$a_{n+1} - a_n = d$$

Jedes Glied ist das arithmetische Mittel seiner Nachbarglieder:

$$a_n = \frac{1}{2}(a_{n+1} + a_{n-1})$$

Arithmetische Reihe:

$$s_n = \frac{n}{2}(a_1 + a_n)$$

Geometrische Folge

Bildungsgesetz:

$$a_n = a_1 \cdot q^{n-1}$$

Quotient aufeinander folgender Glieder ist konstant:

$$\frac{a_{n+1}}{a_n} = q$$

Jedes Glied ist das *geometrische Mittel* seiner Nachbarglieder:

$$a_n = \sqrt{a_{n+1} \cdot a_{n-1}}$$

Geometrische Reihe:

$$s_n = a_1 \cdot \frac{q^n - 1}{q - 1} \qquad \text{für } q \neq 1$$

Fehlerquelle

Es ist manchmal üblich, bei Folgen und Reihen bei 0 anstatt bei 1 zu zählen zu beginnen.

Bildungsgesetze und Summenformel für die arithmetische Folge lauten dann

$$a_n = a_0 + n \cdot d$$
 bzw. $s_n = \frac{n+1}{2}(a_0 + a_n)$

und für die geometrische Folge

$$a_n = a_0 \cdot q^n$$
 bzw. $s_n = a_0 \cdot \frac{q^{n+1} - 1}{q - 1}$ (für $q \neq 1$)

 $\langle a_n \rangle$ sei eine geometrische Folge mit $a_1 = 2$ und relativer Zuwachsrate 0,1. Wie lautet das Bildungsgesetz von $\langle a_n \rangle$ und wie lautet a_7 ?

$$a_n = 2 \cdot 1, 1^{n-1};$$

 $a_7 = 3,543.$

Berechnen Sie die ersten 10 Partialsummen der arithmetischen Reihe für

- (a) $a_1 = 0$ und d = 1,
- **(b)** $a_1 = 1$ und d = 2.

(a)
$$\langle s_n \rangle = \left\langle \frac{n(n-1)}{2} \right\rangle = \langle 0, 1, 3, \dots, 45 \rangle;$$

(b)
$$\langle s_n \rangle = \langle n^2 \rangle = \langle 1, 4, 9, \dots, 100 \rangle$$
.

Berechne $\sum_{n=1}^{N} a_n$ für

(a)
$$N = 7$$
 und $a_n = 3^{n-2}$

(b)
$$N = 7$$
 und $a_n = 2(-1/4)^n$

(a)
$$s_7 = \frac{1}{3} \cdot \frac{3^7 - 1}{3 - 1} = 364,33;$$

(b)
$$s_7 = -\frac{1}{2} \cdot \frac{(-1/4)^7 - 1}{-1/4 - 1} = -0.400$$
.

Endwert (nachschüssig)

Eine Zahlung, die in gleicher Höhe in regelmäßigen Abständen erfolgt, heißt eine **Rente**.

Wird die Rente jeweils zum Ende einer Periode bezahlt, so heißt sie nachschüssig

Der **Endwert** ist die Summe aller Zahlungen auf den *Endzeitpunkt* der Rente *aufgezinst*:

$$E_n = \underbrace{R \cdot q^{n-1}}_{\text{erste Zahlung}} + \underbrace{R \cdot q^{n-2}}_{\text{zweite Zahlung}} + \cdots + \underbrace{R \cdot q^0}_{\text{letzte Zahlung}}$$

$$= \sum_{k=1}^n Rq^{k-1} = R \cdot \frac{q^n - 1}{q - 1}$$

wobei R die Rente, q der Aufzinsungsfaktor und n die Anzahl der Zahlungen ist.

Barwert (nachschüssig)

Der **Barwert** die Summe aller Rentenzahlungen auf den *Beginn* der Rente *abgezinst*.

$$B_n = \frac{E_n}{q^n} = R \cdot \frac{q^n - 1}{q^n(q - 1)}$$

wobei R die Rente, q der Aufzinsungsfaktor und n die Anzahl der Zahlungen ist.

Die **ewige Rente** wird *unendlich* oft (und lang) gezahlt. Ihr Endwert ist immer unendlich.

Berechne ihren Barwert.

(Wir nehmen hier – wie vor der Finanzkrise üblich – an, dass der Zinssatz positiv ist.)

Grenzwert: $B_{\infty} = \lim_{n \to \infty} B_n = \lim_{n \to \infty} R \cdot \frac{q^n - 1}{q^n (q - 1)} = \frac{R}{q - 1}$.

Bei der Tilgung von Darlehen muss der Barwert der Tilgungszahlungen der ursprünglichen Darlehenssumme entsprechen.

Berechne die Tilgungsraten X eines Kredits bei konstanten Rückzahlungsraten.

Dabei sei K die Kredithöhe, p der Zinssatz, und n die Laufzeit des Kredits (Anzahl der Zahlungen).

$$K = B_n = X \cdot \frac{q^n - 1}{q^n(q - 1)}$$
 impliziert $X = K \cdot q^n \frac{q - 1}{q^n - 1}$.

Berechne bei gegebener Kredithöhe K, Zinssatz p und maximaler Tilgungszahlung X die Mindestlaufzeit n des Kredits.

$$n = \frac{\ln X - \ln(X - K(q - 1))}{\ln q}$$
. Achtung: es muss immer aufgerundet werden.