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Count data, in which there is no upper limit to the number of
counts, usually fall into two types

I rates counts per unit of time/area/distance, etc

I contingency tables counts cross-classified by categorical
variables

We will see that both of these types of count data can be modelled
using Poisson glms with a log link.
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Poisson Processes

Often counts are based on events that may be assumed to arise
from a Poisson process, where

I counts are observed over fixed time interval

I probability of the event approximately proportional to length
of time for small intervals of time

I for small intervals of time probability of > 1 event is neglibile
compared to probability of one event

I numbers of events in non-overlapping time intervals are
independent
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Examples include

I number of household burglaries in a city in a given year

I number of customers served by a saleperson in a given month

I number of train accidents in a given year

In such situations, the counts can be assumed to follow a Poisson
distribution, say

Yi ∼ Poisson(λi)
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In many cases we are making comparisons across observation units
i = 1, . . . , n with different levels of exposure to the event and
hence the measure of interest is the rate of occurrence, e.g.

I number of household burglaries per 10,000 households in city
i in a given year

I number of customers served per hour by salesperson i in a
given month

I number of train accidents per billion train-kilometers in year i
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Since the counts are Poisson distributed, we would like to use a
glm to model the expected rate, λi/ti, where ti is the exposure for
unit i.

Typically explanatory variables have a multiplicative effect rather
than an additive effect on the expected rate, therefore a suitable
model is

log(λi/ti) = β0 +
p∑
r=1

xirβr

⇒ log(λi) = log(ti) + β0 +
p∑
r=1

xirβr

i.e. Poisson glm with the canonical log link.

This is known as a log-linear model.
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Offsets

The standardizing term log(ti) is an example of an offset: a term
with a fixed coefficient of 1.

Offsets are easily specified to glm, either using the offset
argument or using the offset function in the formula, e.g.
offset(time).

If all the observations have the same exposure, the model does not
need an offset term and we can model log(λi) directly.
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Ship Damage Data

The ships data from the MASS package concern a type of damage
caused by waves to the forward section of cargo-carrying vessels.
The variables are

I incidents number of damage incidents

I service aggregate months of service

I period period of operation : 1960-74, 75-79

I year year of construction: 1960-64, 65-69, 70-74, 75-79

I type type: ’”A”’ to ’”E”’

Here it makes sense to model the expected number of incidents per
aggregate months of service.
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Let us consider a log-linear model including all the variables. We
first exclude ships with 0 months of service and convert the
period and year variables to factors:

library(MASS)
data(ships)

ships2 <- subset(ships, service > 0)
ships2$year <- as.factor(ships2$year)
ships2$period <- as.factor(ships2$period)

glm1 <- glm(formula = incidents ∼ type + year + period,
family = poisson(link = "log"), data = ships2,
offset = log(service))

We notice that the deviance is somewhat larger than the degrees
of freedom.
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Overdispersion

Lack of fit may be due to inadequate specification of the model,
but another possibility when modelling discrete data is
overdispersion.

Under the Poisson or Binomial model, we have a fixed
mean-variance relationship:

var(Yi) = V (µi)

Overdispersion occurs when

var(Yi) > V (µi)

This may occur due to correlated responses or variability between
observational units.
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We can adjust for over-dispersion by estimating a dispersion
parameter

var(Yi) = φV (µi)

This changes the assumed distribution of our response, to a
distribution for which we do not have the full likelihood.

However the score equations in the IWLS

∂l

∂βj
=

n∑
i=1

ai(yi − µi)
V (µi)

× xij
g′(µi)

= 0

only require the variance function, so we can still obtain estimates
for the parameters. Note the score equations do not depend on φ,
so we will obtain the same estimates as if φ = 1.
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This approach is known as quasi-likelihood estimation. Whilst
estimating φ does not affect the parameter estimates, it will
change inference based on the model.

The asymptotic theory for maximum likelihood also applies to
quasi-likelihood, in particular β is approximately distributed as

N(β, φ(XT ŴX)−1)

so compared to the case with φ = 1, the standard errors of the
parameters are multiplied by

√
(φ).

Since φ is estimated, Wald tests based on the Normal assumption
are t rather than Z tests.
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The deviance based on the likelihood of the exponential family
distribution with the same variance function may be used as a
quasi-deviance. Since φ is estimated rather than fixed at 1, nested
models are compared by referring

{Dbig −Dsmall}/{φ̂(pbig − psmall)}

to the F distribution with pbig − psmall, n− pbig degrees of
freedom.

The AIC is undefined for quasi-likelihood models.
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In the Ships Damage data, it is likely that there is inter-ship
variability in accident-proneness. Therefore we might expect some
over-dispersion.

We can switch to a quasi-likelihood estimation using the
corresponding quasi- family in R:

glm2 <- update(glm1, family = quasipoisson(link = "log"))

The dispersion parameter is estimated as 1.69, much larger than
the value of 1 assumed under the Poisson model.
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We can now check the significance of the predictors adjusting for
the over dispersion:

anova(glm2, test = "F")

All the variables are significant. Adding second order interactions
does not improve the model.
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Ship Damage Model

Call: glm(formula = incidents ~ type + year + period,
family = quasipoisson(link = "log"), data = ships2,
offset = log(service))

Coefficients:
(Intercept) typeB typeC typeD

-6.40590 -0.54334 -0.68740 -0.07596
typeE year65 year70 year75

0.32558 0.69714 0.81843 0.45343
period75
0.38447

Degrees of Freedom: 33 Total (i.e. Null); 25 Residual
Null Deviance: 146.3
Residual Deviance: 38.7 AIC: NA
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Intepretation of Ship Damage Model

We have the model

log(λtyp) = log(styp) + β0 + β1t + β2y + β3p

Consider ships of type C and E. We have

log(λEyp)− log(λCyp) = log(sEyp)− log(sCyp) + β1E − β1C

Since β1A = 0, we have

β1E − β1C = log
(
λEyp
sEyp

)
− log

(
λCyp
sCyp

)
= log

(
rEyp
rCyp

)
So exp(β1E − β1C) is the ratio of the rates (expected number of
damages per month in service)
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We can conclude the following

I Types B and C have the lowest risk, E the highest. The rate
for E is exp(0.33− (−0.69)) = 2.75 times that for C.

I The incident rate increased by a factor of exp(0.38) = 1.47
after 1974

I The ships built between 1960 and 1964 seem to be the safest,
with ships built between 1965 and 1974 having the highest risk

Also we have found evidence of inter-ship variability. When
estimated, the coefficient of service is 0.90 (s.e. 0.13),
confirming that damage is roughly proportional to service.
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Contingency Tables

The counts in contingency tables could arise from different
sampling schemes.

It may be that the cell counts are realizations of independent
Poisson processes, e.g. different groups of patients attending a
health clinic during a fixed period of time. Thus we have counts
nc, c = 1, . . . , C distributed as Poisson(µc).

More commonly, the cell counts may an observation of a
multinomial response, e.g a fixed sample of patients is taken and
cross-classified by cholesterol level and whether or not they had
heart disease. Thus we have a set of counts n1, . . . nC distributed
as Multinomial(p1, . . . , pc, n).
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Sampling Schemes

It can be shown that if the cell counts are realizations of
independent Poisson processes but the total count is fixed a priori,
then the cell counts are Multinomial(µ1/n, . . . , µc/n, n).

Thus under either sampling scheme, the cell counts can be
modelled using a Poisson glm. In the multinomial case we
condition on the total count by including an intercept in the model.

We will consider models for contingency tables from the viewpoint
of multinomial sampling.
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Independence Model
If the two cross-classifying variables are independent, the joint
probabilities for the cells in that table are simply determined by the
marginal probabilities:

P (X = i and Y = j) = P (X = i)P (Y = j)
or pij = pipj

In terms of log expected frequencies we have

log(µij) = log(npij) = log n+ log(pipj)
= log n+ log pi + log pj

i.e. a Poisson log-linear model. We represent this independence
model as

log(µij) = λ0 + λXi + λYj
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Diagnosis of Respiratory Tract Infections

Hueston and Stott (2000) report a study of clinicians’ diagnoses of
respiratory tract infections over a 14-month period. The aim was
to determine whether a reduction in prescription of antibiotics to
acute bronchitis patients was due to clinicians assigning an
alternative diagnosis.

Time period
Diagnosis 1-3/96 4-6/96 7-9/96 10-12/96 1-2/97

Acute bronchitis 113 58 40 108 100
Acute sinusitis 99 37 23 50 32
URI 410 228 125 366 304
Pneumonia 60 43 30 56 45

Total 682 366 218 580 481
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Exploring the Data

We can explore the pattern of the contingency table using a
mosaic plot:

diag <- rep(c("bron", "sinus", "URI", "pneu"), 5)
time <- rep(c("win96", "spr96", "sum96", "aut96", "spr97"),

rep(4, 5))
rt <- data.frame(diag = factor(diag, unique(diag)),

time = factor(time, unique(time)),
count = c(113, 99, 410, 60, 58, 37, 228,
43, 40, 23, 125, 30, 108, 50, 366, 56,
100, 32, 304, 45))

plot(xtabs(count ∼ time + diag, rt))
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The pattern is similar to what would be given by an independence
model.

We can see this by fitting this model and plotting a mosaic plot of
the fitted counts

ind <- glm(count ∼ diag + time, poisson, rt)
plot(xtabs(fitted(ind) ∼ time + diag, rt))

However the deviance shows that there is significant lack of fit (D
= 29.59, d.f. = 12). Rejecting this model is equivalent to rejecting
a null hypothesis of independence using a Pearson χ2 test.
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Residual Analysis

For small contingency tables, it can often be useful to tabulate the
residuals to check for residual patterns in the data:

round(t(xtabs(residuals(ind)∼ time + diag, rt)), 1)

Acute sinusitis diagnoses are decreasing over time and there is a
corresponding increase in acute bronchitis diagnosis.
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Other Models for Two-way Tables

If we add and interaction term to the independence model

log(µij) = λ0 + λXi + λYj + λXYij

the model is saturated - the observed data are fitted exactly.

More interesting intermediate models have been proposed for
tables with more structure, e.g. ordered categories or square
tables, but we shall not consider these here.
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Models for Three-way Tables

Mutual Independence Model

If each pair of variables are independent, then

pijk = pipjpk

which is represented by the mutual independence model

log(µijk) = λ0 + λXi + λYj + λZk

This model is rarely interesting - we are more interested in
associations between the variables.
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Joint Independence Model

If the first and second variables are dependent, but jointly
independent of the third, then

pijk = pijpk

which in terms of log expected frequencies is

log(µij) = logn+ log pij + log pk

We include all main effects to give the joint independence model

log(µijk) = λ0 + λXi + λYj + λZk + λXYij

The two-way interaction shows which two variables are dependent
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Models for Three-way Tables

Conditional Independence Model
Now suppose that the first two variables are independent given the
value of the third variable, then

pij|k = pi|kpj|k

and so
pijk = pikpjk/pk

which gives

log(µij) = logn+ log pik + log pjk − log pk

Again, we include all the main effects to give the conditional
independence model

log(µijk) = λ0 + λXi + λYj + λZk + λXZij + λY Zij
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Further Models

Including all two-way interactions results in the uniform
association model, considered later.

All the models described so far are nested within the saturated
model, which includes the three-way interaction and all lower-order
terms.

A simple approach to identify the appropriate association model is
to start with the saturated model and determine how the model
can be simplified.
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Example: Drug Use

The following 2 x 2 x 2 table cross-classifies students according to
their alcohol, cigarette and drug use

Marijuana Use
Alcohol Use Cigarette Use Yes No

Yes Yes 911 538
No 44 456

No Yes 3 43
No 2 279
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Modelling the Drugs Data

We don’t need to fit the saturated model since we know it has a
deviance of zero on zero d.f. so we start with the uniform
association model:

lab <- c("Y", "N")
drugs <- data.frame(alcohol = gl(2, 4, 8, labels = lab),

cigarette = gl(2, 2, 8, labels = lab),
marijuana = lab,
count = c(911, 538, 44, 456, 3, 43, 2, 279))

unif <- glm(count ∼ . - alcohol:cigarette:marijuana,
poisson, data = drugs)

summary(unif)
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The likelihood ratio test statistic to compare the uniform
association model to the saturated model is simply the deviance of
the uniform association model. So we can see that adding the
three-way interaction does not significantly improve the model.

It is clear that dropping any further terms from the model will
significantly increase the deviance.
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Uniform Association Model

The uniform association model is so called because the odds ratios
between two variables are the same for any level of the third
variable. E.g. for any level of marijuana use i

odds of alcohol use|cigarette use

odds of alcohol use|no cigarette use
=
µY Y i/µNY i
µY Ni/µNNi

= exp(λalc,cigY Y ) = exp(2.05) = 7.8

i.e. students who have smoked cigarettes have estimated odds of
alcohol use that are 7.8 times the estimated odds for students who
have not smoked cigarettes.
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Higher Dimensional Tables

The same ideas extend to higher dimensional tables, although
model-building and interpretation can be quite complex.

In the drug use example, students were also classified by sex and
race.

We use ftable to view the full data:

drugs2 <- read.table("drugs.txt", header = TRUE)
ftable(xtabs(count ∼ sex + marijuana + alcohol +

cigarette + race, drugs2))
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Response and Explanatory Factors

Here sex and race are explanatory factors. We treat the marginal
totals of these factors as being fixed.

The minimal model must contain the interaction of all the
explantory factors.

Interactions between the response factors – here alcohol, cigarette
and marijuana use – and the explantory factors indicate interesting
structure.
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Model Building

We consider blocks of terms to determine the order of the model:

ind <- glm(count ∼ . + race:sex, poisson, data = drugs2)
homog <- glm(count ∼ (.)^2, poisson, data = drugs2)
ord3 <- glm(count ∼ (.)^3, poisson, data = drugs2)
anova(ind, homog, ord3, test = "Chisq")

It seems we do not need to consider terms of higher order than 2.



Count Data

Modelling Contingency Tables

Models for Higher Dimensional Tables

Now we try to simplify the homogeneous association model.

We can consider the effect of single deletions using drop1:

drop1(homog)
homog <- update(homog, . ∼ . - sex:cigarette)

Dropping the race:cigarette interaction leads to the smallest
increase in deviance, so we drop this term.
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We continue dropping terms until no terms can be dropped
without significantly increasing the deviance:

drop1(homog)
homog <- update(homog, . ∼ . - race:sex)
homog <- update(homog, . ∼ . - race:cigarette)
homog <- update(homog, . ∼ . - race:marijuana)

The final model has seven two-way interactions, with a deviance of
20.54 on 20 d.f.
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Association Graph

The final model can be represented by the association graph
(shown on the board!)

Every path between cigarettes and {sex, race } involves a
variable in {alcohol, marijuana}.
Thus given the outcome on alcohol and marijuana use, cigarette
use is independent of race and gender.
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Cigarette use can thus be safely summarised in a table collapsed
over sex and race (proportion using cigarettes in each category):

Alcohol Marijuana Use
Use Yes No

Yes 95% 54%
No 60% 13%

Note here that the figure of 60% smoking in the ’marijuana but
not alcohol’ cell is based on only 5 cases and should therefore be
treated with caution.
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1. The following data are from a cross-sectional study of 400
patients with a form of skin cancer called malignant melanoma.

Site
Tumour type Head & neck Trunk Extremities Total
Hutchinson’s melanotic freckle 22 2 10 34
Superficial spreading melanoma 16 54 115 185
Nodular 19 33 73 125
Indeterminate 11 17 28 56
Total 68 106 226 400

Create a data.frame in R from these data.
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2. Use xtabs to reproduce the table shown in question 1. We
would like to know if there is an association between Site and
Tumour Type.

Use margin.table to find the row totals and save them in a
vector. Now use prop.table to represent the table counts as
percentages of the column totals and then the row totals as
percentages of the grand total. If there is no association between
Site and Tumour Type, the percentages in a given row should be
approximately equal to the overall percentage for that row. Does
this seem to be the case?

Repeat the above, this time finding percentages for the columns.
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3. An alternative way to view the data is to use a mosaic plot as
seen in the lectures. Create this plot. Do Site and Tumour Type
seems to be independent?

4. We can test for independence using the conventional
chi-squared test. Under independence, the expected frequencies for
each cell can be calcuated from the marginal totals as follows:

eij = yi.y.j/n

These are compared to the observed values through the statistic

X2 =
∑
i

∑
j

(yij − eij)2

eij

which under independence follows a χ2
(i−1)(j−1) distribution.

Perform this test in R using chisq.test. What do you find?
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5. Now fit the log-linear independence model to the data using
glm. Testing for a significant interaction term in the model is
equivalent to testing the hypothesis of independence. Is the
interaction significant here?

Confirm that the sum of the squared pearson residuals from the
independence model is equal to the chi-squared statistic found in
question 4.

Note the statistics in both tests are assumed to be approximately
χ2

6, but they are different! We should obtain similar conclusions if
the χ2 approximation is valid.
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6. Use xtabs to look at the residuals from the independence
model. You should find that there is one particularly large residual.

7. In this case we can propose a simple alternative to the
independe model, in which the count for cell with the large residual
is modelled exactly. Create a factor in R which indicates this cell.
Add this “cell effect” to the independence model. Is this model a
significant improvement? Does the model adequately describe the
data? Interpret your findings.
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8. The data set “Long.txt” contains data on the productivity of
biochemistry PhD students. The variables are as follows

I art Number of articles published by the student during last
three years of PhD

I fem Gender: 1 if female, 0 if male

I mar Maritial status: 1 if married, 0 if not

I kid5 Number of children five years old or younger

I phd Prestige rating of PhD department

I ment Number of articles published by mentor during last three
years

Read the dataset into R and attach the data frame.
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9. Since the exposure of all students is fixed at three years, we can
model the students’ article count directly, using a Poisson
log-linear model with no offset. Investigate the bivariate
relationships of log(art) with the other variables. Which
variables does the article count appear to depend on?

10. Fit a Poisson log-linear model regressing art on the linear
effect of the other variables. Notice that the deviance is much
greater than the degrees of freedom. Could this be due to a need
for second order terms?
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11. Fit a quasi-Poisson model regressing art on the linear effect of
the other variables. Do the data appear to be overdispersed?

12. Using a Poisson or quasi-Poisson model as you see fit, select
an appropriate model for art. Interpret your final model.


