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Binary data may occur in two forms

I ungrouped in which the variable can take one of two values,
say success/failure

I grouped in which the variable is the number of successes in a
given number of trials

The natural distribution for such data is the Binomial(n, p)
distribution, where in the first case n = 1
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If our aim is to model a binary response, we would first like to
explore the relationship between that response and potential
explanatory variables.

When the explanatory variables are categorical, a simple approach
is to calculate proportions within subgroups of the data.

When some of the explantory variables are continuous, plots can
be more helpful.
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Example: Bronchitis Data

Jones (1975) conducted a study of chronic bronchitis in Cardiff.
The variables are

I cigs the number of cigarettes smoked per day

I poll the air pollution level in the locality of residence

I bron the presence/absence of bronchitis (indicated by 1/0)
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Scatterplots for Binary Data

We can plot cigs against poll using the bronchitis values as
labels:

plot(poll ∼ cigs, xlab = "No. cigarettes/day",
ylab = "Pollution level", type = "n")

text(cigs, poll, labels = bron)
legend(20, 65, legend = c("presence", "absence"),

title = "Bronchitis",
pch = c("1", "0"))

However the pattern of bronchitis cases is not that clear. We can
get some idea of the relationships by considering cigs and poll
separately.
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Scatterplots of a binary response are not that helpful, but can be
improved by adding jitter:

plot(bron ∼ poll)
plot(jitter(bron, 0.1) ∼ poll)
plot(bron ∼ cigs)
plot(jitter(bron, 0.1) ∼ cigs)

These plots suggest that risk of bronchitis increases with both
poll and cigs, with cigs seeming to have the bigger effect.
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Boxplots

An alternative to scatterplots is to use boxplots

boxplot(poll ∼ bron,
xlab = "Bronchitis presence/absence (1/0)",
ylab = "Pollution level")

boxplot(cigs ∼ bron,
xlab = "Bronchitis presence/absence (1/0)",
ylab = "No. cigarettes/day")

which can be easier to interpret.
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Example: Budworm Data

Collett(1991) describes an experiment on the toxicity of the
pyrethoid trans - cypermethrin to the tobacco budworm. Batches
of 20 moths of each sex were exposed to varying doses of the
pyrethoid for three days and the number knocked out in each
batch was recorded:

Dose (µ g)
Sex 1 2 4 8 16 32

Male 1 4 9 13 18 20
Female 0 2 6 10 12 16

Since the doses are in powers of two, we will use log2(dose) as the
response.
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Scatterplots of Binomial Data

For grouped binary data, scatterplots are more helpful:

ldose <- rep(0:5, 2)
dead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))

plot(c(1, 32), c(0, 1), type = "n", xlab = "dose",
ylab = "prob", log = "x")

text(2^ldose, dead/20, labels = sex)
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Models for Binary Data

In Part I we saw that Binomial data may be modelled by a glm,
with the canonical logit link. This model is known as the logistic
regression model and is the most popular for binary data.

There are two other links commonly used in practice:

I probit link g(µi) = Φ−1(µi) where Φ denotes the cumulative
distribution function of N(0, 1)

I complementary log-log link g(µi) = log(− log(1− µi))
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Link Function

Comparison of Links

The three links map the linear predictor η to the probability scale
as follows:

mu.logit <- function(eta) 1/(1 + exp(-eta))
mu.probit <- function(eta) pnorm(eta, 0, pi/sqrt(3))
mu.cloglog <- function(eta) 1 - exp(-exp(eta))

plot(mu.logit, (-4): 4, xlim = c(-4, 4), ylim = c(0,1),
xlab = expression(eta),
ylab = expression(mu == g^-1 * (eta)))

curve(mu.probit, (-4):4, add = TRUE, lty = 2)
curve(mu.cloglog, (-4):4, add = TRUE, lty = 3)
legend(-4, 1, c("logit", "probit", "complementary log-log"),

lty = 1:3)



Binary Data

Models for Binary Data

Link Function

Choice of Link

The logit and probit functions are symmetric and - once their
variances are equated - are very similar. Therefore it is usually
difficult to choose between them on the grounds of fit.

The logit is usually preferred over the probit because of its simple
interpretation as the logarithm of the odds of success (pi/(1− pi)).

The complementary log-log is asymmetric and may therefore be
useful when the logit and probit links are inappropriate.

We will concentrate on using the logit link.
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Scatterplot Scales

When fitting a logistic model, it can also be helpful to plot the
data on the logit scale.

To avoid dividing by zero, we calculate the empirical logits

log
(

(yi + 0.5)/ni
1− (yi + 0.5)/ni

)
= log

(
yi + 0.5

ni + 0.5− yi

)
E.g. for the budworm data

emp.logits <- log((dead + 0.5)/(20.5 - dead))
plot(c(1, 32), range(emp.logits), type = "n", xlab = "dose",

ylab = "emp.logit", log = "x")
text(2^ldose, emp.logits, labels = sex)



Binary Data

Model Selection

Analysis of Deviance

Modelling the Budworm Data

A linear logistic model appears to be appropriate. A reasonable
approach might be to consider the following linear predictors:

I single line for both sexes (∼ ldose)

I parallel lines for each sex (∼ ldose + sex)

I separate lines for each sex (∼ ldose + sex + ldose:sex)

How can we determine which model is best?



Binary Data

Model Selection

Analysis of Deviance

Nested models

The candidate models for the budworm data are an example of
nested models where each model is a special case of the models
that have a greater number of terms.

We can compare nested models by testing the hypothesis that
some of the parameters of a larger model are equal to zero.
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For example suppose we have the model

logit(pi) = β0 + β1x1 + ...+ βpxp

we can test

H0 : βq+1 = . . . = βp = 0,
versus H1 : βj 6= 0, for some j ∈ {q + 1, p}

using the likelihood ratio statistic

LR = 2(lbig − lsmall)

where lm is the maximised log-likelihood under model m, i.e.
l(β̂m).

Under the null hypothesis, LR is approximately χ2
d where d = p− q.
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Binomial Responses and glm

Now we would like to fit our candidate models. Binomial responses
can be specified to glm in three ways:

I a numeric vector giving the proportion of successes yi/ni, in
which case a vector of the prior weights ni must be passed to
the weights argument

I a numeric 0/1 vector (0 = failure); a logical vector (FALSE =
failure), or a factor (first level = failure)

I a two-column matrix with the number of successes and the
number of failures

Better starting values are generated when the third format is used.
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Single Line Model

We can fit the single line logistic model as follows

y <- cbind(dead, 20 - dead)
sing <- glm(y ∼ ldose, family = binomial)
summary(sing)

The logit link is the default for the binomial family so doesn’t need
to be specified.

As expected, the coefficient of ldose is highly significant.
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Parallel Lines Model

Now we fit the parallel lines model:

parr <- glm(y ∼ ldose + sex, family = binomial)

The Wald tests suggest both ldose and dose are needed in the
model.

In general, the likelihood ratio tests are a better way of comparing
models. We can use anova to perform this test:

anova(sing, parr, test = "Chisq")
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Separate Lines Model

Finally we consider the separate lines model:

sep <- glm(y ∼ sex*ldose, family = binomial)

Using anova will test sequential addition of terms in this model:

anova(sep, test = "Chisq")

Allowing separate slopes does not significantly reduce the deviance.
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Goodness-of-fit

Notice that the deviance

D = 2φ(lsat − lmod)

is φ times the likelihood ratio statistic comparing the fitted model
to the saturated model.

Therefore the deviance can be used as goodness-of-fit statistic,
tested against χ2

n−p.

A good-fitting model will have

D

φ ≈ d.f.

For the budworm data, the parallel lines model has a deviance of
6.76 on 9 degrees of freedom, indicating that the model fits well.
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Interpretation of Logistic Models

Consider the logistic model

log
(

pi
1− pi

)
= β0 + β1x1i

If we increase x1 by one unit

log
(

pi
1− pi

)
= β0 + β1(x1i + 1)

= β0 + β1x1i + β1

⇒
(

pi
1− pi

)
= exp(β0 + β1x1i) exp(β1)

the odds are multiplied by exp(β1).
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Interpretation of Budworm Model

For the budworm data, the parallel lines model is

log
(

pi
1− pi

)
= −3.47 + 1.06ldosei + 1.10(sexi == ”M”)

Therefore

I the odds of death for a male moth are exp(1.10) = 3.01 times
that for a female moth, given a fixed dose of the pyrethroid.

I the odds of death increase by a factor of exp(1.06) = 2.90 for
every log µg of pyrethroid, for male or female moths.
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Wald Confidence Intervals

Confidence intervals for the parameters can be based on the
asymptotic normal distribution for β̂j .

For example a 95% confidence interval would be given by

β̂j ± 1.96× s.e.(β̂j)

Such confidence intervals can be obtained as follows:

confint.lm(parr)
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Profiling the Deviance

The Wald confidence intervals used standard errors based on the
second-order Taylor expansion of the log-likelihood at β̂.

An alternative approach is to the profile the log-likelihood, or
equivalently the deviance, around each β̂j and base confidence
intervals on this.

We set βj to β̃j 6= β̂j and re-fit the model to maximise the
likelihood/minimise the deviance under this constraint. Repeating
this for a range of values around β̂j gives a deviance profile for that
parameter.
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Likelihood Ratio Test

To test the hypothesis

H0 : βj = β̃j ,

versus H1 : βj = β̂j

We can use the likelihood ratio statistic

2(l(β̂j)− l(β̃j))

which is asymptotically distributed χ2
1. Thus

τ = sign(β̃j − β̂j)
√

(2(l(β̂j)− l(β̃j)))

= sign(β̃j − β̂j)
√

((D(β̃j)−D(β̂j))/φ)

is asymptotically N(0, 1) and is analogous to the Wald statistic.
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Profile Plots

If the log-likelihood were quadratic about β̂j , then a plot of τ vs.
β̃j would be a straight line.

We can obtain such a plot as follows

plot(profile(parr, "ldose"))

The approximation is not unreasonable, but there is slight
curvature.
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Profile Confidence Intervals

Rather than use the quadratic approximation, we can directly
estimate the values of βj for which τ = ±1.96 to obtain a 95%
confindence interval for βj .

This is the method used by confint.glm:

confint(parr)

Notice the confidence intervals are asymmetric.
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Prediction

The predict method for GLMs has a type argument, which may
be specified as

I "link" for predictions of η

I "reponse" for predictions of µ

If no new data is passed to predict, these options return
object$linear.predictor and object$fitted.values
respectively.
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We can use predict to plot our fitted model on the logit scale:

plot(c(1, 32), range(emp.logits), type = "n", xlab = "dose",
ylab = "emp.logit", log = "x")

text(2^ldose, emp.logits, labels = sex)
lines(2^ldose[sex == "M"],

predict(parr, type = "link")[sex == "M"], col = 3)
lines(2^ldose[sex == "M"],

predict(parr, type = "link")[sex == "F"], col = 2)
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Or on the probability scale - generating new data over smaller
intervals to obtain a smoother curve

plot(c(1, 32), c(0, 1), type = "n", xlab = "dose",
ylab = "prob", log = "x")

text(2^ldose, dead/20, labels = sex)
ld <- seq(0, 5, 0.1)
newdat <- data.frame(ldose = c(ld, ld),

sex = gl(2, length(ld),
labels = c("F", "M")))

lines(2^ld, predict(parr, type = "response",
newdat = subset(newdat, sex == "M")),

col = 3)
lines(2^ld, predict(parr, type = "response",

newdat = subset(newdat, sex == "F")),
col = 2)
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Residual Analysis

The deviance residuals can be used to check the model as with
Normal models.

The standardized residuals for binomial data should have an
approximate normal distribution, provided the numbers for each
covariate pattern is not too small.

par(mfrow = c(2, 2))
plot(parr, 1:4)
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Modelling Bronchitis Data

We saw that bron was related to both cigs and poll.

A logistic regression with linear effects of both variables is a good
place to start

model1 <- glm(bron ∼ cigs + poll, family = binomial)

How can we evaluate this model?
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Deviance for Binary Data

We have seen that the deviance may be viewed as a likelihood
ratio statistic with approximate distribution χ2

n−p.

However the χ2 distribution of the likelihood ratio statistic is based
on the limit as n→∞ with the number of parameters in the
nested models both fixed. This does not apply to the deviance.

The χ2
n−p distribution is still reasonable where the information

content of each observation is large e.g. binomial models with large
ni, Poisson models with larger µi, gamma models with small φ.
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For binary data, the χ2 approximation does not apply.

In fact for the logistic regression model it can be shown that

D = −2
n∑
i=1

{p̂i log[p̂i/(1− p̂i)] + log(1− p̂i)}

which depends only on yi through p̂i therefore can tell us nothing
about agreement between yi and p̂i.

Instead we shall analyse the residuals and consider alternative
models.
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Residual Plots for Binary Data

For binary data, or binomial data where ni is small for most
covariate patterns, there are few distinct values of the residuals
and the plots may be uninformative:

plot(model1)

Therefore we consider “large” residuals
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Checking Outliers

We check residuals >2:

r <- residuals(model1)
r[abs(r) > 2]
Data[abs(r) > 2, ]
sum(bron[cigs == 0])

The model appears to fit poorly for non-smokers
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More Complex Models

Further investigation shows that

I modelling non-smokers separately, i.e.

model2 <- glm(bron ∼ smoker + smoker:(cigs + poll),
family = binomial)

does not improve the model

I adding second and third order terms does improve the model,
but results in very complex model

We suspect that we are missing an important aspect of the data.



Binary Data

Model Evaluation

Residual Analysis

Grouping the Data

A useful technique in evaluating models fit to binary data is to
group the data and treat as binomial instead.

We select category boundaries to give roughly equal numbers in
each category:

cutCigs <- cut(cigs, c(-1, 0, 1, 3, 5, 8, 50))
cutPoll <- cut(poll, c(-1, 55, 57.5, 60, 62.5, 65, 100))
xtabs(∼ cutCigs)
xtabs(∼ cutPoll)
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Then we compute the proportions from the original data:

total <- xtabs( ∼ cutCigs + cutPoll)
presence <- xtabs(bron ∼ cutCigs + cutPoll)
absence <- c(total) - c(presence)
binData <- as.data.frame.table(presence,

responseName = "presence")
binData <- cbind(binData, absence)
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Modelling Binomial Data

We go back to a model with first order terms:

model4 <- glm(cbind(presence, absence) ∼ cutCigs + cutPoll,
family = binomial, data = binData)

summary(model4)

The deviance can now be used as a measure of goodness-of-fit,
showing that the model fits well.
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Checking for Linearity

Using anova, we see that cutPoll is close to significance

anova(model4, test = "Chisq")

We should look more closely before dropping this variable.

The linear trend in the fitted effects for cutPoll suggests this
factor could be treated as a continuous variable.
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model5 <- glm(cbind(presence, absence) ∼ cutCigs + c(cutPoll),
family = binomial, data = binData)

anova(model5, test = "Chisq")

The difference in deviance is not significant and now both terms
are significant in the model.

Looking at the fitted effects for cutCigs suggests we can simplify
further.
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Checking for Nonlinearity

levels(binData$cutCigs) <- c("0", "(0,3]", "(0,3]", "(3,8]",
"(3,8]", "8+")

model6 <- update(model5)

The difference in deviance is minimal.

The large negative effect for cutCigs = (0,3] corresponds to
p̂ ≈ 0. This occurs because there were no cases of
bronchitis observed for smokers of < 3
cigarettes/day.

There were cases of bronchitis amongst non-smokers
however, explaining why models based on the
continuous variable cigs required higher order terms.
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Back to Binary Data

Now we can apply what we have found to the original data.

We create a cigs factor and use this instead of a continuous
variable:

cigs <- cut(cigs, c(-1, 0, 3, 8, 50))
model7 <- glm(bron ∼ cigs + poll, family = binomial)
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There are now only three residuals with absolute value greater than
two, all corresponding to non-smokers with bronchitis.

r <- residuals(model1)
r[abs(r) > 2]
anova(model1, model7, test = "Chisq")

The model is a significant improvement on model 1, whilst being
simple to interpret.
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Bronchitis Model

Call: glm(formula = bron ~ cigs + poll, family = binomial)

Coefficients:
(Intercept) cigs(0,3] cigs(3,8] cigs(8,50]

-9.3667 -17.3944 1.5416 2.4657
poll

0.1241

Degrees of Freedom: 211 Total (i.e. Null); 207 Residual
Null Deviance: 221.8
Residual Deviance: 143.7 AIC: 153.7
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Interpretation of the Model

I An increase in Poll of one unit multiplies the odds on
bronchitis by exp(0.1241) = 1.132.

I Smokers of 3-8 and more than 8 cigarettes per day have their
odds on bronchitis multiplied by exp(1.54) = 4.67 and
exp(2.47) = 11.77 respectively, compared with non-smokers.

I There were no observed cases amongst smokers of < 3
cigarettes a day.
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Exercises

In our first exercise we consider data related to the NASA Space
Shuttle Challenger Disaster.

1. The Challenger had two booster rockets, each with three joints
sealed by O-rings. A damaged O-ring can allow a gas leak, which
may lead to disaster. The forecast for the time that the Challenger
was due to launch was 31 ◦F, whilst the coldest previous launch
temperature was 53 ◦F. The day before launch, the engineers met
to decide whether the flight should go ahead. They considered a
plot of damaged O-rings against temperature using data from
previous flights.

Read in the data shuttle.txt using read.table and reproduce
this plot, i.e. plot damage vs. tempF for observations where
damage == 1 (consider the limits of the y-axis carefully!).
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It was decided to go ahead with the flight. Does this decision seem
reasonable given the plotted data?

Now plot damage vs. tempF for all O-rings. Does the decision
seem reasonable in the light of this plot?

2. To help interpret the plot, add a piecewise linear model to the
plot:

I use cut to convert tempF to a factor with one level for each
5-degree interval of temperature, i.e. 50-55, 55-60, . . . 80-85

I use tapply to compute the mean of damage for each level of
the new factor

I create a vector of the left endpoints (50, 55, . . .) and a vector
of the right endpoints (55, 60, . . .) of the temperature intervals

I use segments to add the mean line in each interval to the plot
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3. The piecewise linear model gives an idea of the trend but a
logistic model will quantify the effect of temperature on the
expected odds of damage. Use glm to fit this logistic model and
summarise the results. Is there a significant relationship between
tempF and damage?

Since the data are binary, we cannot use the deviance to check
goodness-of-fit. Look instead at the data corresponding to the
large residuals. What do you notice?

4. Use predict to add a fitted line to data plot. Compare this to
the pattern in the residuals.
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5. Since there are six O-rings altogether, we have repeated
observations at each temperature. Therefore we can also analyse
the data as binomial observations:

I create a factor grouping each set of six observations

I use tapply to sum damage over the levels of the new factor

I compute the number of “failures” (undamaged O-rings) in
each launch

I use tapply with min to obtain the temperature at each
launch

Fit a binomial logistic model equivalent to that in question 3 and
compare the results. What is the same? What is different?
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6. Plot the observed proportions damaged and use predict to add
the fitted line from the binomial model. Compare this to your
observations in question 5.

7. Interpret the coefficient of tempF in the binomial model. Use
predict to predict the probability of damage at 31 ◦F. Assuming
the six O-rings fail independently, how many failures does the
model predict will fail at this temperature? Would you have
recommended that the flight should go ahead?
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8. Use read.table to read the file "car income.txt", which
records for 33 families

I purchase – whether or not the family purchased a car in the
past 12 months

I income – annual family income ($1000)

I age – age of family car

Use plot to explore the bivariate relationships of purchase with
the other variables.

9. Fit a logistic model regressing purchase on income and age.
Are both variables significant?
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10. Repeat the analysis in question 9 treating age as a factor. The
effect for cars that are 6 years old has a large standard error, why
is this?

Look at the fitted effects for age. Can age be replaced by a factor
with fewer levels?


