Precedence-Type Test Based on Kaplan-Meier Estimator of CDF

N. Balakrishnan
Department of Mathematics and Statistics
McMaster University, Hamilton, Ontario, Canada

Outline

- Review of the Precedence-type Tests

Outline

- Review of the Precedence-type Tests

1. Precedence Test

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test
3. Wilcoxon Rank-sum Precedence Test

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test
3. Wilcoxon Rank-sum Precedence Test
4. Weighted Precedence \& Maximal Precedence Tests

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test
3. Wilcoxon Rank-sum Precedence Test
4. Weighted Precedence \& Maximal Precedence Tests
5. Extension to Progressive Censoring

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test
3. Wilcoxon Rank-sum Precedence Test
4. Weighted Precedence \& Maximal Precedence Tests
5. Extension to Progressive Censoring

- Precedence Test based on Kaplan-Meier Estimator

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test
3. Wilcoxon Rank-sum Precedence Test
4. Weighted Precedence \& Maximal Precedence Tests
5. Extension to Progressive Censoring

- Precedence Test based on Kaplan-Meier Estimator

1. Type-II Censoring on Y-sample

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test
3. Wilcoxon Rank-sum Precedence Test
4. Weighted Precedence \& Maximal Precedence Tests
5. Extension to Progressive Censoring

- Precedence Test based on Kaplan-Meier Estimator

1. Type-II Censoring on Y-sample

- Test Statistic

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test
3. Wilcoxon Rank-sum Precedence Test
4. Weighted Precedence \& Maximal Precedence Tests
5. Extension to Progressive Censoring

- Precedence Test based on Kaplan-Meier Estimator

1. Type-II Censoring on Y-sample

- Test Statistic
- Exact Power Under Lehmann Alternative

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test
3. Wilcoxon Rank-sum Precedence Test
4. Weighted Precedence \& Maximal Precedence Tests
5. Extension to Progressive Censoring

- Precedence Test based on Kaplan-Meier Estimator

1. Type-II Censoring on Y-sample

- Test Statistic
- Exact Power Under Lehmann Alternative

2. Progressive Type-II Censoring on Y-sample

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test
3. Wilcoxon Rank-sum Precedence Test
4. Weighted Precedence \& Maximal Precedence Tests
5. Extension to Progressive Censoring

- Precedence Test based on Kaplan-Meier Estimator

1. Type-II Censoring on Y-sample

- Test Statistic
- Exact Power Under Lehmann Alternative

2. Progressive Type-II Censoring on Y-sample

- Test Statistic

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test
3. Wilcoxon Rank-sum Precedence Test
4. Weighted Precedence \& Maximal Precedence Tests
5. Extension to Progressive Censoring

- Precedence Test based on Kaplan-Meier Estimator

1. Type-II Censoring on Y-sample

- Test Statistic
- Exact Power Under Lehmann Alternative

2. Progressive Type-II Censoring on Y-sample

- Test Statistic
- Exact Power Under Lehmann Alternative

Outline

- Review of the Precedence-type Tests

1. Precedence Test
2. Maximal Precedence Test
3. Wilcoxon Rank-sum Precedence Test
4. Weighted Precedence \& Maximal Precedence Tests
5. Extension to Progressive Censoring

- Precedence Test based on Kaplan-Meier Estimator

1. Type-II Censoring on Y-sample

- Test Statistic
- Exact Power Under Lehmann Alternative

2. Progressive Type-II Censoring on Y-sample

- Test Statistic
- Exact Power Under Lehmann Alternative

3. Power Comparison under Location-Shift Alternative

Introduction

- Suppose there are two failure time distributions F_{X} and F_{Y}. We are interested in testing the hypotheses

$$
\begin{array}{ll}
& H_{0}: F_{X}=F_{Y} \\
\text { against } & H_{1}: F_{X}>F_{Y} . \tag{1}
\end{array}
$$

Introduction

- Suppose there are two failure time distributions F_{X} and F_{Y}. We are interested in testing the hypotheses

$$
\begin{array}{ll}
& H_{0}: F_{X}=F_{Y} \\
\text { against } & H_{1}: F_{X}>F_{Y} . \tag{1}
\end{array}
$$

- Nelson (1963, Technometrics) first proposed a Precedence test, which can determine a location difference based on observing only a few failures from the two samples under life testing.

Introduction

- Suppose there are two failure time distributions F_{X} and F_{Y}. We are interested in testing the hypotheses

$$
\begin{array}{ll}
& H_{0}: F_{X}=F_{Y} \\
\text { against } & H_{1}: F_{X}>F_{Y} . \tag{1}
\end{array}
$$

- Nelson (1963, Technometrics) first proposed a Precedence test, which can determine a location difference based on observing only a few failures from the two samples under life testing.
- Nelson (1993, JQT) examined the power of the precedence test when the underlying distributions were normal.

Precedence Test

What is Precedence Test?

- Suppose $X_{1}, X_{2}, \ldots, X_{n_{1}}$ is a random sample from F_{X} and $Y_{1}, Y_{2}, \ldots, Y_{n_{2}}$ is a random sample from F_{Y}.

What is Precedence Test?

- Suppose $X_{1}, X_{2}, \ldots, X_{n_{1}}$ is a random sample from F_{X} and $Y_{1}, Y_{2}, \ldots, Y_{n_{2}}$ is a random sample from F_{Y}.
- All these sample units are placed simultaneously on a life-testing experiment.

What is Precedence Test?

- Suppose $X_{1}, X_{2}, \ldots, X_{n_{1}}$ is a random sample from F_{X} and $Y_{1}, Y_{2}, \ldots, Y_{n_{2}}$ is a random sample from F_{Y}.
- All these sample units are placed simultaneously on a life-testing experiment.
- The Precedence test statistic is
$P_{(r)}=$ No. of failures from X-sample that precede the r-th failure from the Y-sample

$$
=\sum_{i=1}^{r} M_{i}
$$

Precedence Test

- We denote the order statistics from the X-sample and the Y-sample by $X_{1: n_{1}} \leq X_{2: n_{1}} \leq \ldots \leq X_{n_{1}: n_{1}}$ and $Y_{1: n_{2}} \leq Y_{2: n_{2}} \leq \ldots \leq Y_{n_{2}: n_{2}}$, respectively.

Precedence Test

- We denote the order statistics from the X-sample and the Y-sample by $X_{1: n_{1}} \leq X_{2: n_{1}} \leq \ldots \leq X_{n_{1}: n_{1}}$ and $Y_{1: n_{2}} \leq Y_{2: n_{2}} \leq \ldots \leq Y_{n_{2}: n_{2}}$, respectively.
- Let M_{1} be the number of X-failures before $Y_{1: n_{2}}$, and M_{i} be the number of X-failures between $Y_{i-1: n_{2}}$ and $Y_{i: n_{2}}, i=2,3, \ldots, r$.

Precedence Teșt Statitisticics. $P_{(4)}=3 .+4+1=8$

What is Precedence Test?

The Precedence-type test procedures

- allows a simple and robust comparison of two distribution functions based on the order of early failures

What is Precedence Test?

The Precedence-type test procedures

- allows a simple and robust comparison of two distribution functions based on the order of early failures
- will be useful

What is Precedence Test?

The Precedence-type test procedures

- allows a simple and robust comparison of two distribution functions based on the order of early failures
- will be useful
(i) when life-tests involve expensive units

What is Precedence Test?

The Precedence-type test procedures

- allows a simple and robust comparison of two distribution functions based on the order of early failures
- will be useful
(i) when life-tests involve expensive units
(ii) to make quick and reliable decisions early on in the life-testing experiment.

What is Precedence Test?

The Precedence-type test procedures

- allows a simple and robust comparison of two distribution functions based on the order of early failures
- will be useful
(i) when life-tests involve expensive units
(ii) to make quick and reliable decisions early on in the life-testing experiment.
(iii) in medical studies when ethical considerations are taking into account.

What is Precedence Test?

- Large values of $P_{(r)}$ lead to the rejection of H_{0} and in favor of H_{1} in (1).

What is Precedence Test?

- Large values of $P_{(r)}$ lead to the rejection of H_{0} and in favor of H_{1} in (1).
- For a fixed level of significance α, the critical region will be $\left\{s, s+1, \ldots, n_{1}\right\}$, where

$$
\alpha=\operatorname{Pr}\left(P_{(r)} \geq s \mid F_{X}=F_{Y}\right)
$$

What is Precedence Test?

- Large values of $P_{(r)}$ lead to the rejection of H_{0} and in favor of H_{1} in (1).
- For a fixed level of significance α, the critical region will be $\left\{s, s+1, \ldots, n_{1}\right\}$, where

$$
\alpha=\operatorname{Pr}\left(P_{(r)} \geq s \mid F_{X}=F_{Y}\right) .
$$

- For specified values of n_{1}, n_{2}, s and r, an expression for α is given by

$$
\alpha=\sum_{j=s}^{n_{1}} \frac{\binom{s+r-1}{j}\binom{n_{1}+n_{2}-s-r+1}{n_{1}-j}}{\binom{n_{1}+n_{2}}{n_{2}}}
$$

Maximal Precedence Test

Maximal Precedence Test

- Masking effect is present when $r \geq 2$.

Maximal Precedence Test

- Masking effect is present when $r \geq 2$.
- In the previous example, information given by $r=3$ is thus getting masked.

Maximal Precedence Test

- Masking effect is present when $r \geq 2$.
- In the previous example, information given by $r=3$ is thus getting masked.
- Maximal Precedence Test is proposed in order to avoid this problem.

Maximal Precedence Test

- Masking effect is present when $r \geq 2$.
- In the previous example, information given by $r=3$ is thus getting masked.
- Maximal Precedence Test is proposed in order to avoid this problem.
- The general maximal precedence test statistic is defined as

$$
M_{(r)}=\max \left\{M_{1}, M_{2}, \ldots, M_{r}\right\}
$$

Maximal Precedence Test

- Masking effect is present when $r \geq 2$.
- In the previous example, information given by $r=3$ is thus getting masked.
- Maximal Precedence Test is proposed in order to avoid this problem.
- The general maximal precedence test statistic is defined as

$$
M_{(r)}=\max \left\{M_{1}, M_{2}, \ldots, M_{r}\right\}
$$

- Large values of $M_{(r)}$ lead to the rejection of H_{0} and in favor of H_{1} in (1).

Maximal Precedence Test

Maximal Precedence Test Statistics

$$
M_{(4)}=\max \{0,3,4,1\}=4
$$

Wilcoxon-type Rank-sum Precedence Tests

Wilcoxon-type Rank-Sum Precedence

- Instead of using the sum of the frequencies, one could use the sum of the ranks of those X-failures.

Wilcoxon-type Rank-Sum Precedence

- Instead of using the sum of the frequencies, one could use the sum of the ranks of those X-failures.
- Let W be the rank-sum of the X-failures that occurred before the r-th Y-failure.

Wilcoxon-type Rank-Sum Precedence

- Instead of using the sum of the frequencies, one could use the sum of the ranks of those X-failures.
- Let W be the rank-sum of the X-failures that occurred before the r-th Y-failure.
- In our example,

$$
W=2+3+4+6+8+9+11=50
$$

Test Statistics

- Is that good to test the hypothesis in (1) based on W only?

Test Statistics

- Is that good to test the hypothesis in (1) based on W only?
- Answer: No.

Test Statistics

- Is that good to test the hypothesis in (1) based on W only?
- Answer: No.
- If $H_{1}: F_{X}>F_{Y}$ is true, we would expect

Test Statistics

- Is that good to test the hypothesis in (1) based on W only?
- Answer: No.
- If $H_{1}: F_{X}>F_{Y}$ is true, we would expect
\checkmark More X-sample failed before the r-th Y-failure

Test Statistics

- Is that good to test the hypothesis in (1) based on W only?
- Answer: No.
- If $H_{1}: F_{X}>F_{Y}$ is true, we would expect
- More X-sample failed before the r-th Y-failure
- Small rank-sum for the X-sample

Test Statistics

- Is that good to test the hypothesis in (1) based on W only?
- Answer: No.
- If $H_{1}: F_{X}>F_{Y}$ is true, we would expect
- More X-sample failed before the r-th Y-failure
- Small rank-sum for the X-sample
- More X-sample failed before the r-th Y-failure INCREASES the rank-sum

Test Statistics

- Is that good to test the hypothesis in (1) based on W only?
- Answer: No.
- If $H_{1}: F_{X}>F_{Y}$ is true, we would expect
- More X-sample failed before the r-th Y-failure
- Small rank-sum for the X-sample
- More X-sample failed before the r-th Y-failure INCREASES the rank-sum
- Contradiction!!

Maximal Rank-sum Statistic

The Wilcoxon's test statistic will be the largest when all the remaining $\left(n_{1}-\sum_{i=1}^{r} m_{i}\right) X$-failures occur after the n_{2}-th Y-failure.

$$
\begin{aligned}
W_{\max , r} & =W+\left[\left(\sum_{i=1}^{r} m_{i}+n_{2}+1\right)+\left(\sum_{i=1}^{r} m_{i}+n_{2}+2\right)+\ldots+\left(n_{1}+n_{2}\right)\right] \\
& =\frac{n_{1}\left(n_{1}+2 n_{2}+1\right)}{2}-\left(n_{2}+1\right) \sum_{i=1}^{r} m_{i}+\sum_{i=1}^{r} i m_{i} .
\end{aligned}
$$

Minimal Rank-sum Statistic

The Wilcoxon's test statistic will be smallest when all the remaining $\left(n_{1}-\sum_{i=1}^{r} m_{i}\right) X$-failures occur between the r-th and $(r+1)$-th Y-failures.

$$
\begin{aligned}
W_{\min , r} & =W+\left[\left(\sum_{i=1}^{r} m_{i}+r+1\right)+\left(\sum_{i=1}^{r} m_{i}+r+2\right)+\ldots+\left(n_{1}+r\right)\right] \\
& =\frac{n_{1}\left(n_{1}+2 r+1\right)}{2}-(r+1) \sum_{i=1}^{r} m_{i}+\sum_{i=1}^{r} i m_{i}
\end{aligned}
$$

Expected Rank-sum Statistic

- We could similarly propose a rank-sum statistic using the expected rank sums of failures, called the expected rank-sum statistic

$$
\begin{aligned}
W_{E, r}= & W+\frac{1}{2}\left[\left(\sum_{i=1}^{r} m_{i}+r+1\right)+\cdots+\left(n_{1}+r\right)\right] \\
& +\frac{1}{2}\left[\left(\sum_{i=1}^{r} m_{i}+n_{2}+1\right)+\cdots+\left(n_{1}+n_{2}\right)\right] \\
= & \frac{n_{1}\left(n_{1}+n_{2}+r+1\right)}{2}-\left(\frac{n_{2}+r}{2}+1\right) \sum_{i=1}^{r} m_{i}+\sum_{i=1}^{r} i m_{i}
\end{aligned}
$$

Expected Rank-sum Statistic

- We could similarly propose a rank-sum statistic using the expected rank sums of failures, called the expected rank-sum statistic

$$
\begin{aligned}
W_{E, r}= & W+\frac{1}{2}\left[\left(\sum_{i=1}^{r} m_{i}+r+1\right)+\cdots+\left(n_{1}+r\right)\right] \\
& +\frac{1}{2}\left[\left(\sum_{i=1}^{r} m_{i}+n_{2}+1\right)+\cdots+\left(n_{1}+n_{2}\right)\right] \\
= & \frac{n_{1}\left(n_{1}+n_{2}+r+1\right)}{2}-\left(\frac{n_{2}+r}{2}+1\right) \sum_{i=1}^{r} m_{i}+\sum_{i=1}^{r} i m_{i} .
\end{aligned}
$$

- Small values of $W_{\min , r}, W_{\max , r}$ and $W_{E, r}$ lead to the rejection of H_{0} and in favor of H_{1}.

Expected Rank-sum Statistic

- We could similarly propose a rank-sum statistic using the expected rank sums of failures, called the expected rank-sum statistic

$$
\begin{aligned}
W_{E, r}= & W+\frac{1}{2}\left[\left(\sum_{i=1}^{r} m_{i}+r+1\right)+\cdots+\left(n_{1}+r\right)\right] \\
& +\frac{1}{2}\left[\left(\sum_{i=1}^{r} m_{i}+n_{2}+1\right)+\cdots+\left(n_{1}+n_{2}\right)\right] \\
= & \frac{n_{1}\left(n_{1}+n_{2}+r+1\right)}{2}-\left(\frac{n_{2}+r}{2}+1\right) \sum_{i=1}^{r} m_{i}+\sum_{i=1}^{r} i m_{i} .
\end{aligned}
$$

- Small values of $W_{\min , r}, W_{\max , r}$ and $W_{E, r}$ lead to the rejection of H_{0} and in favor of H_{1}.
- When $r=n_{2}$, we have
$W_{\min , r}=W_{\max , r}=W_{E, r}=$ classical Wilcoxon's rank-sum statistic

Null Distributions

- For specified values of n_{1}, n_{2}, r and the level of significance α, the critical value s (corresponding to a level closest to α) for the maximal rank-sum precedence test can then be found as

$$
\begin{aligned}
\alpha & =\operatorname{Pr}\left(W_{\max , r} \leq s \mid F_{X}=F_{Y}\right) \\
& =\sum_{m_{i}(i=1,2, \ldots, r)=0}^{n_{1}} \operatorname{Pr}\left\{M_{1}=m_{1}, \ldots, M_{r}=m_{r} \mid F_{X}=F_{Y}\right\} I_{\max , s}\left(m_{1}, \ldots, m_{r}\right),
\end{aligned}
$$

where $I_{\max , s}$ is the indicator function and

$$
\begin{aligned}
& \operatorname{Pr}\left\{M_{1}=m_{1}, M_{2}=m_{2}, \ldots, M_{r}=m_{r} \mid F_{X}=F_{Y}\right\} \\
& \frac{\binom{n_{1}+n_{2}-\sum_{i=1}^{r} m_{i}-r}{n_{2}-r}}{\binom{n_{1}+n_{2}}{n_{2}}} .
\end{aligned}
$$

Weighted Precedence and

Maximal Precedence Tests

Motivation

We are going to introduce another logical extension of the precedence and maximal precedence tests. The motivation is explained by the following two cases with $n_{1}=10, n_{2}=10, r=5$:
Case 1:

$$
m_{1}=m_{2}=m_{3}=0 \quad m_{4}=3 \quad m_{5}=5
$$

Precedence test statistic $P_{(5)}=8$, maximal precedence test statistic $M_{(5)}=5$.

Motivation

$$
n_{1}=10, n_{2}=10, r=5:
$$

Case 2

$$
m_{1}=5 \quad m_{2}=3 \quad m_{3}=m_{4}=m_{5}=0
$$

Precedence test statistic $P_{(5)}=8$, maximal precedence test statistic $M_{(5)}=5$.

Motivation

- The precedence and maximal precedence test statistics are equal in both cases.

Motivation

- The precedence and maximal precedence test statistics are equal in both cases.
- The test statistics are $P_{(5)}=8$ and $M_{(5)}=5$, we will not reject the null hypothesis that two distributions are equal in both cases at the same level of significance.

Motivation

- The precedence and maximal precedence test statistics are equal in both cases.
- The test statistics are $P_{(5)}=8$ and $M_{(5)}=5$, we will not reject the null hypothesis that two distributions are equal in both cases at the same level of significance.
- However, we feel that Case 2 provides much more evidence that the Y-sample are better than the X-sample.

Motivation

- The precedence and maximal precedence test statistics are equal in both cases.
- The test statistics are $P_{(5)}=8$ and $M_{(5)}=5$, we will not reject the null hypothesis that two distributions are equal in both cases at the same level of significance.
- However, we feel that Case 2 provides much more evidence that the Y-sample are better than the X-sample.
- This suggests that we should try to develop a test procedure that distinguishes between Case 1 and Case 2.

Test Statistics

- The weighted precedence and weighted maximal precedence tests give a decreasing weight to m_{i} as i increases is one such attempt in this direction.

Test Statistics

- The weighted precedence and weighted maximal precedence tests give a decreasing weight to m_{i} as i increases is one such attempt in this direction.
- The weighted precedence test statistic $P_{(r)}^{*}$ is thus defined as

$$
P_{(r)}^{*}=\sum_{i=1}^{r}\left(n_{2}-i+1\right) m_{i},
$$

and the weighted maximal precedence test statistic $M_{(r)}^{*}$ as

$$
M_{(r)}^{*}=\max _{1 \leq i \leq r}\left\{\left(n_{2}-i+1\right) m_{i}\right\} .
$$

It is clear that large values of $P_{(r)}^{*}$ or $M_{(r)}^{*}$ would lead to the rejection of H_{0} and in favor of H_{1}.

An Extension to Type-II Progressive

Censored Data

Type-II Progressive Censoring

Experimental schemes of potential use in life-testing in which, not only can the test be terminated at the time of any failure, but in addition, one or more surviving items may be removed from the test (i.e. censored) at the time of each failure occurring prior to the termination of the experiment.

Type-II Progressive Censoring

Let us denote such an observed ordered Y-sample by $Y_{1: r: n_{2}} \leq Y_{2: r: n_{2}} \leq \cdots \leq Y_{r: r: n_{2}}$. Moreover, we denote by M_{1} the number of X-failures before $Y_{1: r: n_{2}}$, and by M_{i} the number of X-failures between $Y_{i-1: r: n_{2}}$ and $Y_{i: r: n_{2}}, i=2,3, \cdots, r$.

Weighted Precedence \& Maximal Precedence

Based on $M_{1}, M_{2}, \cdots, M_{r}$, we propose the weighted precedence test statistic $P_{(r)}^{*}$, as

$$
P_{(r)}^{*}=\sum_{i=1}^{r}\left[n_{2}-\left(\sum_{j=1}^{i-1} R_{j}\right)-i+1\right] m_{i},
$$

and the weighted maximal precedence test statistic $M_{(r)}^{*}$, as

$$
M_{(r)}^{*}=\max _{1 \leq i \leq r}\left\{\left[n_{2}-\left(\sum_{j=1}^{i-1} R_{j}\right)-i+1\right] m_{i}\right\} .
$$

Maximal Rank-sum Statistic for Progressive Censoring

- Similarly, we can apply the idea of maximal Wilcoxon rank-sum precedence statistic for the progressively censored data.

Maximal Rank-sum Statistic for Progressive Censoring

- Similarly, we can apply the idea of maximal Wilcoxon rank-sum precedence statistic for the progressively censored data.
- The Wilcoxon's rank-sum test statistic will be the largest when all the progressive censored Y-items in an interval fail before the smallest of X-failures in the corresponding interval. The maximal Wilcoxon rank-sum precedence statistic for progressively censored data then becomes

$$
W_{\max , r}^{*}=\sum_{i=1}^{r+1}\left\{m_{i}\left[\sum_{j=1}^{i-1} m_{j}+\sum_{j=1}^{i-1} R_{i}+(i-1)\right]+\frac{i\left(m_{i}+1\right)}{2}\right\} .
$$

where $m_{r+1}=n_{1}-\sum_{i=1}^{r} m_{i}$.

Maximal Rank-sum Statistic for Progressive Censoring

The Wilcoxon's test statistic will be the largest when all the censored Y-items fail before the X-failures

$$
W_{\max , r}^{*}=\sum_{i=1}^{r+1}\left\{m_{i}\left[\sum_{j=1}^{i-1} m_{j}+\sum_{j=1}^{i-1} R_{i}+(i-1)\right]+\frac{i\left(m_{i}+1\right)}{2}\right\}
$$

where $m_{r+1}=n_{1}-\sum_{i=1}^{r} m_{i}$.

$$
m_{1}=0 \quad m_{2}=3 \quad m_{3}=4 \quad m_{4}=1
$$

Maximal Rank-sum Statistic for Progressive Censoring

- We can show that the maximal Wilcoxon rank-sum precedence test statistic is equivalent to the weighted precedence test statistic in the case of progressive censoring as follows:

$$
\begin{aligned}
W_{\max , r}^{*} & =\sum_{i=1}^{r+1}\left\{m_{i}\left[\sum_{j=1}^{i-1} m_{j}+\sum_{j=1}^{i-1} R_{j}+(i-1)\right]+\frac{m_{i}\left(m_{i}+1\right)}{2}\right\} \\
& =\frac{n_{1}\left(n_{1}+2 n_{2}+1\right)}{2}+\sum_{i=1}^{r}\left(m_{i} \sum_{j=1}^{i-1} R_{j}\right)-\left(n_{2}-i+1\right) \sum_{i=1}^{r} m_{i} \\
& =\frac{n_{1}\left(n_{1}+2 n_{2}+1\right)}{2}-P_{(r)}^{*}
\end{aligned}
$$

Maximal Rank-sum Statistic for Progressive Censoring

- We can show that the maximal Wilcoxon rank-sum precedence test statistic is equivalent to the weighted precedence test statistic in the case of progressive censoring as follows:

$$
\begin{aligned}
W_{\max , r}^{*} & =\sum_{i=1}^{r+1}\left\{m_{i}\left[\sum_{j=1}^{i-1} m_{j}+\sum_{j=1}^{i-1} R_{j}+(i-1)\right]+\frac{m_{i}\left(m_{i}+1\right)}{2}\right\} \\
& =\frac{n_{1}\left(n_{1}+2 n_{2}+1\right)}{2}+\sum_{i=1}^{r}\left(m_{i} \sum_{j=1}^{i-1} R_{j}\right)-\left(n_{2}-i+1\right) \sum_{i=1}^{r} m_{i} \\
& =\frac{n_{1}\left(n_{1}+2 n_{2}+1\right)}{2}-P_{(r)}^{*}
\end{aligned}
$$

- Since $\left\{n_{1}\left(n_{1}+2 n_{2}+1\right)\right\} / 2$ is just a constant, the above relationship readily reveals that the tests based on $P_{(r)}^{*}$ and $W_{\max , r}^{*}$ are equivalent, with large values of the former corresponding to small values of the latter.

Example

$n_{1}=n_{2}=10, r=4$ and the progressive censoring scheme $(2,1,1,2)$

- Weighted precedence test statistic: $P_{(4)}^{*}=(10 \times 0)+(7 \times 3)+(5 \times 4)+(3 \times 1)=$ 44.

Example

$n_{1}=n_{2}=10, r=4$ and the progressive censoring scheme $(2,1,1,2)$
Weighted precedence test statistic: $P_{(4)}^{*}=(10 \times 0)+(7 \times 3)+(5 \times 4)+(3 \times 1)=$ 44.

- Weighted maximal precedence test statistic:

$$
M_{(4)}^{*}=\max \{(10 \times 0),(7 \times 3),(5 \times 4),(3 \times 1)\}=21 .
$$

Example

$n_{1}=n_{2}=10, r=4$ and the progressive censoring scheme $(2,1,1,2)$
Weighted precedence test statistic: $P_{(4)}^{*}=(10 \times 0)+(7 \times 3)+(5 \times 4)+(3 \times 1)=$ 44.

- Weighted maximal precedence test statistic:

$$
M_{(4)}^{*}=\max \{(10 \times 0),(7 \times 3),(5 \times 4),(3 \times 1)\}=21 .
$$

- It is clear that, in general, large values of $P_{(r)}^{*}$ or $M_{(r)}^{*}$ would lead to the rejection of H_{0} and in favor of H_{1}.

Example

$n_{1}=n_{2}=10, r=4$ and the progressive censoring scheme $(2,1,1,2)$
Weighted precedence test statistic: $P_{(4)}^{*}=(10 \times 0)+(7 \times 3)+(5 \times 4)+(3 \times 1)=$ 44.

Weighted maximal precedence test statistic:

$$
M_{(4)}^{*}=\max \{(10 \times 0),(7 \times 3),(5 \times 4),(3 \times 1)\}=21
$$

It is clear that, in general, large values of $P_{(r)}^{*}$ or $M_{(r)}^{*}$ would lead to the rejection of H_{0} and in favor of H_{1}.

- Maximal Wilcoxon rank-sum precedence test statistic:

$$
W_{\max , r}^{*}=4+5+6+9+10+11+12+15+19+20=111
$$

Example

$n_{1}=n_{2}=10, r=4$ and the progressive censoring scheme $(2,1,1,2)$
Weighted precedence test statistic: $P_{(4)}^{*}=(10 \times 0)+(7 \times 3)+(5 \times 4)+(3 \times 1)=$ 44.

- Weighted maximal precedence test statistic:

$$
M_{(4)}^{*}=\max \{(10 \times 0),(7 \times 3),(5 \times 4),(3 \times 1)\}=21 .
$$

- It is clear that, in general, large values of $P_{(r)}^{*}$ or $M_{(r)}^{*}$ would lead to the rejection of H_{0} and in favor of H_{1}.
- Maximal Wilcoxon rank-sum precedence test statistic:
$W_{\max , r}^{*}=4+5+6+9+10+11+12+15+19+20=111$.
- Small values of $W_{\max , r}^{*}$ would lead to the rejection of H_{0} and in favor of H_{1}.

Weighted Precedence \& Maximal Precedence

With a progressive Type-II censoring on the Y-sample, under the null hypothesis $H_{0}: F_{X}=F_{Y}$, the joint probability mass function of $M_{1}, M_{2}, \cdots, M_{r}$ is given by

$$
\begin{aligned}
\operatorname{Pr}\left(M_{1}=\right. & \left.m_{1}, M_{2}=m_{2}, \cdots, M_{r}=m_{r} \mid H_{0}: F_{X}=F_{Y}\right) \\
=C & \sum_{j_{k}=0}^{\sum_{i=1}^{k} R_{i}-\sum_{i=1}^{k-1} j_{i}}\left\{\prod_{l=1,2, \cdots, r-1)}^{r-1}\binom{\sum_{i=1}^{l} R_{i}-\sum_{i=1}^{l} j_{i}}{j_{l}} \Gamma\left(m_{l}+j_{l+1}+1\right)\right\} \\
& \times \frac{\Gamma\left(n_{1}+n_{2}-r-\sum_{i=1}^{r} m_{i}-\sum_{i=1}^{r-1} j_{i}+1\right)}{\Gamma\left(n_{1}+n_{2}+1\right)}
\end{aligned}
$$

where

$$
C=\frac{n_{1}!n_{2}\left(n_{2}-R_{1}-1\right) \cdots\left(n_{2}-R_{1}-R_{2}-\cdots-R_{r-1}-r+1\right)}{m_{1}!m_{2}!\cdots m_{r}!\left(n_{1}-\sum_{i=1}^{r} m_{i}\right)!}
$$

PRECEDENCE-TYPE TEST BASED ON KAPLAN-MEIER ESTIMATOR OF CDF

Kaplan-Meier Estimator

- The precedence-type test proposed here is based on the Kaplan-Meier nonparametric estimator [Kaplan and Meier (1958)] of the CDF based on data in which observations reported are exact failure times.

Kaplan-Meier Estimator

- The precedence-type test proposed here is based on the Kaplan-Meier nonparametric estimator [Kaplan and Meier (1958)] of the CDF based on data in which observations reported are exact failure times.
- With the progressive Type-II censoring experimental scheme on the Y-sample, we observe failures at times $y_{1: r: n_{2}}, \cdots, y_{r: r: n_{2}}$ with R_{1}, \cdots, R_{r} number of observations censored at these times, respectively.

Kaplan-Meier Estimator

- The precedence-type test proposed here is based on the Kaplan-Meier nonparametric estimator [Kaplan and Meier (1958)] of the CDF based on data in which observations reported are exact failure times.
- With the progressive Type-II censoring experimental scheme on the Y-sample, we observe failures at times $y_{1: r: n_{2}}, \cdots, y_{r: r: n_{2}}$ with R_{1}, \cdots, R_{r} number of observations censored at these times, respectively.
- The Kaplan-Meier estimator (also called the product-limit estimator) of $F_{Y}\left(y_{i: r: n_{2}}\right)$ is given by

$$
\hat{F}_{Y}\left(y_{i: r: n}\right)=1-\prod_{j=1}^{i}\left(1-\frac{1}{n_{j}^{*}}\right), \quad i=1, \cdots, r,
$$

where $n_{i}^{*}=n_{2}-i+1^{\circ}-\sum_{j=0}^{i-1}{ }^{1} R_{j}^{\circ}$ is the risk set at $y_{i: r: n_{2}}^{\circ}$.

Kaplan-Meier Estimator

- In the case of conventional Type-II right censoring, i.e., $R_{1}=\cdots=R_{r-1}=0$ and $R_{r}=n_{2}-r$, the above estimate of the CDF at $y_{i: n_{2}}$ simply reduces to

$$
\hat{F}_{Y}\left(y_{i: n_{2}}\right)=\frac{i}{n_{2}}, \quad i=1, \cdots, r .
$$

Kaplan-Meier Estimator

- In the case of conventional Type-II right censoring, i.e., $R_{1}=\cdots=R_{r-1}=0$ and $R_{r}=n_{2}-r$, the above estimate of the CDF at $y_{i: n_{2}}$ simply reduces to

$$
\hat{F}_{Y}\left(y_{i: n_{2}}\right)=\frac{i}{n_{2}}, \quad i=1, \cdots, r .
$$

- Similarly, the Kaplan-Meier estimator of the CDF for the X-sample at $x_{i: n_{1}}$ is given by

$$
\hat{F}_{X}\left(x_{i: n_{1}}\right)=\frac{i}{n_{1}}, \quad i=1, \cdots, n_{1} .
$$

Type-Il Censoring on Y-sample

Test Statistic

- Following the same notation as before and we define $\mathbf{M}=\left(M_{1}, \ldots, M_{r}\right)$ and their observed values $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$

Test Statistic

- Following the same notation as before and we define $\mathbf{M}=\left(M_{1}, \ldots, M_{r}\right)$ and their observed values $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$
- We further denote the number of X-failures among the m_{i} X-failures between $Y_{i-1: n_{2}}$ and $Y_{i: n_{2}}$ which $\hat{F}_{X}(x)>\hat{F}_{Y}\left(y_{i: m_{2}}\right)$ by $Q_{i}, i=1,2, \ldots, r$.

Test Statistic

- Following the same notation as before and we define $\mathbf{M}=\left(M_{1}, \ldots, M_{r}\right)$ and their observed values
$\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$
- We further denote the number of X-failures among the m_{i} X-failures between $Y_{i-1: n_{2}}$ and $Y_{i: n_{2}}$ which $\hat{F}_{X}(x)>\hat{F}_{Y}\left(y_{i: n_{2}}\right)$ by $Q_{i}, i=1,2, \ldots, r$.

Test Statistics

- If the information after the termination of the experiment at $Y_{r: n_{2}}$ is not taken into account, we consider the statistic

$$
\begin{aligned}
Q_{(r)}(\mathbf{M}) & =\sum_{i=1}^{r} Q_{i} \\
& =\max \left(0, M_{1}-1\right)+\sum_{i=2}^{r} \sum_{j=S_{i-1}+1}^{S_{i}} I(j>i),
\end{aligned}
$$

where $S_{i}=S_{i}(\mathbf{M})=\sum_{k=1}^{i} M_{k}$.

Test Statistics

- If the information after the termination of the experiment at $Y_{r: n_{2}}$ is not taken into account, we consider the statistic

$$
\begin{aligned}
Q_{(r)}(\mathbf{M}) & =\sum_{i=1}^{r} Q_{i} \\
& =\max \left(0, M_{1}-1\right)+\sum_{i=2}^{r} \sum_{j=S_{i-1}+1}^{S_{i}} I(j>i),
\end{aligned}
$$

where $S_{i}=S_{i}(\mathbf{M})=\sum_{k=1}^{i} M_{k}$.

- It is evident that large values of $Q_{(r)}$ lead to the rejection of H_{0} and in favor of H_{1}.

Test Statistics

- However, it is important to incorporate into $Q_{(r)}$ the information after the termination of the experiment at $Y_{r: r: n_{2}}$.

Test Statistics

- However, it is important to incorporate into $Q_{(r)}$ the information after the termination of the experiment at $Y_{r: r: n n_{2}}$.
- For example, this could be done (as in the case of the minimal Wilcoxon-type rank-sum statistic) by assuming that all the remaining X-units will fail before the $(r+1)$-th unobserved Y-failure, which would lead to the statistic

$$
Q_{(r)}^{*}(\mathbf{M})=\max \left(0, M_{1}-1\right)+\sum_{i=2}^{r+1} \sum_{j=S_{i-1}+1}^{S_{i}} I(j>i),
$$

where $S_{i}=S_{i}(\mathrm{M})=\sum_{k=1}^{i} M_{k}$.

Test Statistics

- However, it is important to incorporate into $Q_{(r)}$ the information after the termination of the experiment at $Y_{r: r: n_{2}}$.
- For example, this could be done (as in the case of the minimal Wilcoxon-type rank-sum statistic) by assuming that all the remaining X-units will fail before the ($r+1$)-th unobserved Y-failure, which would lead to the statistic

$$
Q_{(r)}^{*}(\mathbf{M})=\max \left(0, M_{1}-1\right)+\sum_{i=2}^{r+1} \sum_{j=S_{i-1}+1}^{S_{i}} I(j>i),
$$

where $S_{i}=S_{i}(\mathbf{M})=\sum_{k=1}^{i} M_{k}$.

- It is evident that large values of $Q_{(r)}^{*}$ lead to the rejection of H_{0} and in favor of H_{1}.

Test Statistics

- Then, the test statistic we propose is the average of the two statistics given by

$$
\bar{Q}_{(r)}(\mathbf{M})=\max \left(0, M_{1}-1\right)+\sum_{i=2}^{r} \sum_{j=S_{i-1}+1}^{S_{i}} I(j>i)+\frac{1}{2} \sum_{j=S_{r}+1}^{n_{1}} I(j>r+1),
$$

Test Statistics

- Then, the test statistic we propose is the average of the two statistics given by

$$
\bar{Q}_{(r)}(\mathrm{M})=\max \left(0, M_{1}-1\right)+\sum_{i=2}^{r} \sum_{j=S_{i-1}+1}^{S_{i}} I(j>i)+\frac{1}{2} \sum_{j=S_{r}+1}^{n_{1}} I(j>r+1),
$$

- Large values of $\bar{Q}_{(r)}$ leading to the rejection of H_{0} and in favor of H_{1}.

Example

With $r=5$, we observe $q_{1}=q_{2}=q_{3}=q_{4}=0, q_{5}=3$ with which we obtain $Q_{(5)}=3, Q_{(5)}^{*}=5$ and the proposed test statistic $\bar{Q}_{(5)}=4$.

Null Distribution

- The null distribution of the test statistic $\bar{Q}_{(r)}$ can be obtained as

$$
\operatorname{Pr}\left(\bar{Q}_{(r)}=q \mid H_{0}: F_{X}=F_{Y}\right)=\sum_{m_{i}(i=1,2, \ldots, r)} \operatorname{Pr}\left(\mathbf{M}=\mathbf{m} \mid F_{X}=F_{Y}\right) I\left(\bar{Q}_{(r)}(\mathbf{m})=q\right),
$$

where $I(\cdot)$ denotes the indicator function.

Null Distribution

- The null distribution of the test statistic $\bar{Q}_{(r)}$ can be obtained as

$$
\operatorname{Pr}\left(\bar{Q}_{(r)}=q \mid H_{0}: F_{X}=F_{Y}\right)=\sum_{m_{i}(i=1,2, \ldots, r)} \operatorname{Pr}\left(\mathbf{M}=\mathbf{m} \mid F_{X}=F_{Y}\right) I\left(\bar{Q}_{(r)}(\mathbf{m})=q\right),
$$

where $I(\cdot)$ denotes the indicator function.

- The critical values s for specified values of n_{1}, n_{2}, r and α can be computed from the above formula.

Exact Power under Lehmann Alternative

- Consider the Lehmann alternative $H_{1}:\left[F_{X}\right]^{\gamma}=F_{Y}$ for some $\gamma>1$ which is a subclass of the alternative $H_{1}: F_{X}>F_{Y}$ when $\gamma>1$, and that it is appropriate when some common lifetime distributions are used for modelling in industrial setting.

Exact Power under Lehmann Alternative

- Consider the Lehmann alternative $H_{1}:\left[F_{X}\right]^{\gamma}=F_{Y}$ for some $\gamma>1$ which is a subclass of the alternative $H_{1}: F_{X}>F_{Y}$ when $\gamma>1$, and that it is appropriate when some common lifetime distributions are used for modelling in industrial setting.
- The joint probability mass function of $\left(M_{1}, \cdots, M_{r}\right)$ under the Lehmann alternative is given by [Balakrishnan and Ng (2001)]

$$
\begin{aligned}
& \operatorname{Pr}\left(M_{1}=m_{1}, \cdots, M_{r}=m_{r} \mid H_{1}:\left[F_{X}\right]^{\gamma}=F_{Y}\right) \\
= & \frac{n_{1}!n_{2}!\gamma^{r}}{m_{1}!\left(n_{2}-r\right)!}\left\{\prod_{j=1}^{r-1} \frac{\Gamma\left(\sum_{i=1}^{j} m_{i}+j \gamma\right)}{\Gamma\left(\sum_{i=1}^{j+1} m_{i}+j \gamma+1\right)}\right\} \\
& \times \sum_{k=0}^{n_{2}-r}\binom{n_{2}-r}{k}(-1)^{k} \frac{\Gamma\left(\sum_{i=1}^{r} m_{i}+(r+k) \gamma\right)}{\Gamma\left(n_{1}+(r+k) \gamma+1\right)} .
\end{aligned}
$$

Exact Power under Lehmann Alternative

- The power function of the proposed precedence-type test under the Lehmann alternative is then given by

$$
\begin{aligned}
\text { Power } & =\operatorname{Pr}\left(\bar{Q}_{(r)} \geq s \mid H_{1}:\left[F_{X}\right]^{\gamma}=F_{Y}\right) \\
& =\sum_{m_{i}(i=1,2, \ldots, r)} \operatorname{Pr}\left(\mathbf{M}=\mathbf{m} \mid H_{1}:\left[F_{X}\right]^{\gamma}=F_{Y}\right) I\left(\bar{Q}_{(r)}(\mathbf{m}) \geq s\right),
\end{aligned}
$$

where s is the chosen critical value.

Power comparison under Lehmann alternative for $n_{1}=n_{2}=10, r=2,3,4$

| Test | $\gamma=1$ | $\gamma=2$ | $\gamma=3$ | $\gamma=4$ | $\gamma=5$ | $\gamma=6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r=2$ | | | | | | |
| $P_{(r)}$ | 0.0286 | 0.2397 | 0.4905 | 0.6730 | 0.7896 | 0.8622 |
| $M_{(r)}$ | 0.0325 | 0.2210 | 0.4534 | 0.6363 | 0.7606 | 0.8412 |
| $P_{(r)}^{*}$ | 0.0495 | 0.3568 | 0.6439 | 0.8097 | 0.8962 | 0.9413 |
| $M_{(r)}^{*}$ | 0.0595 | 0.3573 | 0.6298 | 0.7944 | 0.8845 | 0.9334 |
| $W_{\min , r}$ | 0.0595 | 0.4040 | 0.6983 | 0.8532 | 0.9269 | 0.9621 |
| $W_{\max , r}$ | 0.0495 | 0.3568 | 0.6439 | 0.8097 | 0.8962 | 0.9413 |
| $W_{E, r}$ | 0.0495 | 0.3568 | 0.6439 | 0.8097 | 0.8962 | 0.9413 |
| $\bar{Q}_{(r)}$ | 0.0511 | 0.3673 | 0.6549 | 0.8173 | 0.9008 | 0.9439 |
| $r=3$ | | | | | | |
| $P_{(r)}$ | 0.0349 | 0.2458 | 0.4809 | 0.6521 | 0.7646 | 0.8373 |
| $M_{(r)}$ | 0.0488 | 0.2418 | 0.4680 | 0.6456 | 0.7664 | 0.8449 |
| $P_{(r)}^{*}$ | 0.0510 | 0.3510 | 0.6314 | 0.7960 | 0.8840 | 0.9314 |
| $M_{(r)}^{*}$ | 0.0379 | 0.2281 | 0.4582 | 0.6391 | 0.7623 | 0.8422 |
| $W_{\min , r}$ | 0.0464 | 0.3643 | 0.6633 | 0.8295 | 0.9119 | 0.9526 |
| $W_{\max , r}$ | 0.0510 | 0.3510 | 0.6314 | 0.7960 | 0.8840 | 0.9314 |
| $W_{E, r}$ | 0.0471 | 0.3462 | 0.6292 | $\circ 0.7951$ | 0.8837 | $0.9312 \bullet$ |
| $\bar{Q}_{(r)}$ | 0.0483 | 0.3590 | 0.6438 | 0.8056 | 0.8903 | 0.9352 |

Exact Power under Lehmann Alternative

Power comparison under Lehmann alternative for $n_{1}=n_{2}=10, r=2,3,4$

Test	$\gamma=1$	$\gamma=2$	$\gamma=3$	$\gamma=4$	$\gamma=5$	$\gamma=6$
$r=4$						
$P_{(r)}$	0.0349	0.2168	0.4200	0.5771	0.6883	0.7661
$M_{(r)}$	0.0650	0.2541	0.4746	0.6491	0.7684	0.8460
$P_{(r)}^{*}$	0.0319	0.2585	0.5159	0.6956	0.8067	0.8742
$M_{(r)}^{*}$	0.0433	0.2319	0.4600	0.6400	0.7627	0.8424
$W_{\min , r}$	0.0538	0.3949	0.6924	0.8488	0.9234	0.9593
$W_{\max , r}$	0.0507	0.3356	0.6005	0.7615	0.8527	0.9052
$W_{E, r}$	0.0487	0.3482	0.6278	0.7922	0.8808	0.9289
$\bar{Q}_{(r)}$	0.0410	0.3224	0.5958	0.7611	0.8535	0.9061

Progressive Type-II Censoring on Y-sample

Test Statistics

- Let M_{1} denote the number of X-failures before $Y_{1: r: n_{2}}$, M_{i} the number of X-failures between $Y_{i-1: r: n_{2}}$ and $Y_{i: r: n_{2}}$ for $i=2, \cdots, r$, and Q_{i} the number of X-failures among the M_{i} that are between $Y_{i-1: r: n_{2}}$ and $Y_{i r: r n_{2}}$ for which $\hat{F}_{X}(x)>\hat{F}_{Y}\left(y_{i r: r: n_{2}}\right)$ for $i=1, \cdots, r$.

Test Statistics

- Let M_{1} denote the number of X-failures before $Y_{1: r: m_{2}}$, M_{i} the number of X-failures between $Y_{i-1: r: n_{2}}$ and $Y_{i: r: n_{2}}$ for $i=2, \cdots, r$, and Q_{i} the number of X-failures among the M_{i} that are between $Y_{i-1: r: n_{2}}$ and $Y_{i: r: n_{2}}$ for which $\hat{F}_{X}(x)>\hat{F}_{Y}\left(y_{i i r:}: n_{2}\right)$ for $i=1, \cdots, r$.
- If the information after the termination of the experiment at $Y_{r: r: n_{2}}$ is not taken into account, we consider the statistic

$$
\begin{aligned}
Q_{(r)}(\mathbf{M}) & =\sum_{i=1}^{r} Q_{i} \\
& =\max \left(0, M_{1}-1\right)+\sum_{i=2}^{r} \sum_{j=S_{i-1}+1}^{S_{i}} I\left[j>n_{1} \hat{F}_{Y}\left(y_{i: r: n_{2}}\right)\right]
\end{aligned}
$$

where $S_{i}=S_{i}(\mathbf{M})=\sum_{k=\mathrm{p}}^{i} M_{k}$:

Test Statistics

Once again, by assuming that all the remaining X-units will fail before the $(r+1)$-th unobserved Y-failure, we obtain the statistic

$$
Q_{(r)}^{*}(\mathbf{M})=\max \left(0, M_{1}-1\right)+\sum_{i=2}^{r+1} \sum_{j=S_{i-1}+1}^{S_{i}} I\left[j>n_{1} \hat{F}_{Y}\left(y_{i: r: n_{2}}\right)\right],
$$

where $M_{r+1}=n_{1}-S_{r}, S_{(r+1)}=n_{1}$, and $y_{r+1: r: n_{2}}$ (with progressive censoring scheme ($R_{1}, \cdots, R_{r-1}, R_{r}$) is taken as the ($r+1$)-th progressively Type-II censored order statistic $y_{r+1: r+1: n_{2}}$ with progressive censoring scheme $\left(R_{1}, \cdots, R_{r-1}, 0, n_{2}-r-1-\sum_{i=1}^{r-1} R_{i}\right)$.

Test Statistics

Once again, by assuming that all the remaining X-units will fail before the ($r+1$)-th unobserved Y-failure, we obtain the statistic

$$
Q_{(r)}^{*}(\mathbf{M})=\max \left(0, M_{1}-1\right)+\sum_{i=2}^{r+1} \sum_{j=S_{i-1}+1}^{S_{i}} I\left[j>n_{1} \hat{F}_{Y}\left(y_{i: r: n_{2}}\right)\right],
$$

where $M_{r+1}=n_{1}-S_{r}, S_{(r+1)}=n_{1}$, and $y_{r+1: r: n_{2}}$ (with progressive censoring scheme ($R_{1}, \cdots, R_{r-1}, R_{r}$) is taken as the ($r+1$)-th progressively Type-II censored order statistic $y_{r+1: r+1: n_{2}}$ with progressive censoring scheme $\left(R_{1}, \cdots, R_{r-1}, 0, n_{2}-r-1-\sum_{i=1}^{r-1} R_{i}\right)$.

- Then, the test statistic we propose is the average of the two statistics given by

$$
\begin{aligned}
\bar{Q}_{(r)}(\mathbf{M})= & \max \left(0, M_{1}-1\right)+\sum_{i=2}^{r} \sum_{j=S_{i-1}+1}^{S_{i}} I\left[j>n_{1} \hat{F}_{Y}\left(y_{i: r: n_{2}}\right)\right] \\
& +\frac{1}{2} \sum_{j=S_{r}+1}^{n_{1}} I\left[j>n_{1} \hat{F}_{Y}\left(y_{r+1: r: n_{2}}\right)\right]
\end{aligned}
$$

Test Statistics

Once again, by assuming that all the remaining X-units will fail before the ($r+1$)-th unobserved Y-failure, we obtain the statistic

$$
Q_{(r)}^{*}(\mathbf{M})=\max \left(0, M_{1}-1\right)+\sum_{i=2}^{r+1} \sum_{j=S_{i-1}+1}^{S_{i}} I\left[j>n_{1} \hat{F}_{Y}\left(y_{i: r: n_{2}}\right)\right],
$$

where $M_{r+1}=n_{1}-S_{r}, S_{(r+1)}=n_{1}$, and $y_{r+1: r: n_{2}}$ (with progressive censoring scheme ($R_{1}, \cdots, R_{r-1}, R_{r}$) is taken as the ($r+1$)-th progressively Type-II censored order statistic $y_{r+1: r+1: n_{2}}$ with progressive censoring scheme $\left(R_{1}, \cdots, R_{r-1}, 0, n_{2}-r-1-\sum_{i=1}^{r-1} R_{i}\right)$.

- Then, the test statistic we propose is the average of the two statistics given by

$$
\begin{aligned}
\bar{Q}_{(r)}(\mathbf{M})= & \max \left(0, M_{1}-1\right)+\sum_{i=2}^{r} \sum_{j=S_{i-1}+1}^{S_{i}} I\left[j>n_{1} \hat{F}_{Y}\left(y_{i: r: n_{2}}\right)\right] \\
& +\frac{1}{2} \sum_{j=S_{r}+1}^{n_{1}} I\left[j>n_{1} \hat{F}_{Y}\left(y_{r+1: r: n_{2}}\right)\right]
\end{aligned}
$$

- Large values of $\bar{Q}_{(r)}$ leading to the rejection of H_{0}° and in favor of \dot{H}_{1}°.

Example

With $n_{1}=n_{2}=10$ and $r=4$, the Kaplan-Meier estimates of the CDF based on the progressively Type-II censored Y-sample are presented in Table 2, from which we observe $q_{1}=0, q_{2}=1, q_{3}=3, q_{4}=1$ with which we obtain $Q_{(4)}=5, Q_{(4)}^{*}=7$ and the proposed test statistic $\bar{Q}_{(4)}=6$.

t_{i}	n_{i}^{*}	$1 / n_{i}^{*}$	$1-\left(1 / n_{i}^{*}\right)$	$\hat{S}_{Y}\left(t_{i}\right)$	$\hat{F}_{Y}\left(t_{i}\right)$
$Y_{1: 4: 10}$	10	0.100	0.900	0.900	0.100
$Y_{2: 4: 10}$	5	0.200	0.800	0.720	0.280
$Y_{3: 4: 10}$	4	0.250	0.750	0.540	0.460
$Y_{4: 4: 10}$	3	0.333	0.667	0.360	0.640
$Y_{5: 4: 10}$	2	0.500	0.500	0.180	0.820

Exact Power under Lehmann Alternative

- Consider the Lehmann alternative $H_{1}:\left[F_{X}\right]^{\gamma}=F_{Y}$ for some $\gamma>1$.

Exact Power under Lehmann Alternative

- Consider the Lehmann alternative $H_{1}:\left[F_{X}\right]^{\gamma}=F_{Y}$ for some $\gamma>1$.
- With a Type-II progressive censoring on the Y-sample, under the Lehmann alternative, we have

$$
\begin{aligned}
\operatorname{Pr}\left(M_{1}=m_{1}, M_{2}\right. & \left.=m_{2}, \ldots, M_{r}=m_{r} \mid\left[F_{X}\right]^{\gamma}=F_{Y}\right) \\
=C \gamma^{r} \sum_{j_{i}(i=1,2, \ldots, r)=0}^{R_{i}} & \binom{R_{1}}{j_{1}}\binom{R_{2}}{j_{2}} \ldots\binom{R_{r}}{j_{r}}(-1)\left(\sum_{i=1}^{r} j_{i}\right) \\
& \times\left\{\prod_{k=1}^{r-1} B\left(\sum_{i=1}^{k} m_{i}+\gamma\left(\sum_{i=1}^{k} j_{i}\right)+k \gamma, m_{k+1}+1\right)\right\} \\
& \times B\left(\sum_{i=1}^{r} m_{i}+\gamma\left(\sum_{i=1}^{r} j_{i}\right)+r \gamma, n_{1}-\sum_{i=1}^{r} m_{i}+1\right) .
\end{aligned}
$$

Exact Power under Lehmann Alternative

- Consider the Lehmann alternative $H_{1}:\left[F_{X}\right]^{\gamma}=F_{Y}$ for some $\gamma>1$.
- With a Type-II progressive censoring on the Y-sample, under the Lehmann alternative, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(M_{1}=m_{1}, M_{2}\right.\left.=m_{2}, \ldots, M_{r}=m_{r} \mid\left[F_{X}\right]^{\gamma}=F_{Y}\right) \\
&=C \gamma^{r} \sum_{j_{i}(i=1,2, \ldots, r)=0}^{R_{i}}\binom{R_{1}}{j_{1}}\binom{R_{2}}{j_{2}} \ldots\binom{R_{r}}{j_{r}}(-1)\left(\sum_{i=1}^{r} j_{i}\right) \\
& \times\left\{\prod_{k=1}^{r-1} B\left(\sum_{i=1}^{k} m_{i}+\gamma\left(\sum_{i=1}^{k} j_{i}\right)+k \gamma, m_{k+1}+1\right)\right\} \\
& \times B\left(\sum_{i=1}^{r} m_{i}+\gamma\left(\sum_{i=1}^{r} j_{i}\right)+r \gamma, n_{1}-\sum_{i=1}^{r} m_{i}+1\right) .
\end{aligned}
$$

- For $n_{1}=n_{2}=10, r=2$ and $\gamma=2(1) 6$, the power values computed from the exact expressions are presented here.

Exact Power under Lehmann Alternative

Power comparison under Lehmann alternative for $n_{1}=n_{2}=10, r=2,3$

| PCS | Test | $\gamma=1$ | $\gamma=2$ | $\gamma=3$ | $\gamma=4$ | $\gamma=5$ | $\gamma=6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r=2$ | | | | | | | |
| $(0,8)$ | $P_{(r)}^{*}$ | 0.0495 | 0.3568 | 0.6439 | 0.8097 | 0.8962 | 0.9413 |
| | $M_{(r)}^{*}$ | 0.0595 | 0.3573 | 0.6298 | 0.7944 | 0.8845 | 0.9334 |
| | $\bar{Q}_{(r)}$ | 0.0511 | 0.3673 | 0.6549 | 0.8173 | 0.9008 | 0.9439 |
| $(8,0)$ | $P_{(r)}^{*}$ | 0.0511 | 0.3471 | 0.6256 | 0.7931 | 0.8842 | 0.9334 |
| | $M_{(r)}^{*}$ | 0.0433 | 0.3147 | 0.5885 | 0.7628 | 0.8622 | 0.9180 |
| | $\bar{Q}_{(r)}^{*}$ | 0.0433 | 0.3147 | 0.5885 | 0.7628 | 0.8622 | 0.9180 |
| $(6,2)$ | $P_{(r)}^{*}$ | 0.0478 | 0.3501 | 0.6383 | 0.8073 | 0.8960 | 0.9420 |
| | $M_{(r)}^{*}$ | 0.0433 | 0.3147 | 0.5885 | 0.7628 | 0.8622 | 0.9180 |
| | $\bar{Q}_{(r)}$ | 0.0447 | 0.3158 | 0.5877 | 0.7594 | 0.8571 | 0.9124 |
| $(4,4)$ | $P_{(r)}^{*}$ | 0.0504 | 0.3611 | 0.6501 | 0.8157 | 0.9010 | 0.9449 |
| | $M_{(r)}^{*}$ | 0.0477 | 0.3229 | 0.5950 | 0.7669 | 0.8647 | 0.9196 |
| | $\bar{Q}_{(r)}$ | 0.0472 | 0.3158 | 0.5779 | 0.7451 | 0.8429 | 0.9002 |
| $(2,6)$ | $P_{(r)}^{*}$ | 0.0521 | 0.3583 | 0.6418 | 0.8069 | 0.8940 | 0.9398 |
| | $M_{(r)}^{*}$ | 0.0555 | 0.3437 | 0.6155 | 0.7830 | 0.8763 | 0.9277 |
| | $\bar{Q}_{(r)}^{*}$ | 0.0651 | 0.4069 | 0.6885 | 0.8391 | 0.9141 | 0.9520 |

Exact Power under Lehmann Alternative

Power comparison under Lehmann alternative for $n_{1}=n_{2}=10, r=2,3$

| PCS | Test | $\gamma=1$ | $\gamma=2$ | $\gamma=3$ | $\gamma=4$ | $\gamma=5$ | $\gamma=6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r=3$ | | | | | | | |
| $(0,0,7)$ | $P_{(r)}^{*}$ | 0.0488 | 0.2418 | 0.4680 | 0.6456 | 0.7664 | 0.8449 |
| | $M_{(r)}^{*}$ | 0.0510 | 0.3510 | 0.6314 | 0.7960 | 0.8840 | 0.9314 |
| | $\bar{Q}_{(r)}$ | 0.0483 | 0.3590 | 0.6438 | 0.8056 | 0.8903 | 0.9352 |
| $(7,0,0)$ | $P_{(r)}^{*}$ | 0.0429 | 0.3228 | 0.6040 | 0.7786 | 0.8752 | 0.9279 |
| | $M_{(r)}^{*}$ | 0.0433 | 0.3147 | 0.5885 | 0.7628 | 0.8622 | 0.9180 |
| | $\bar{Q}_{(r)}$ | 0.0543 | 0.3149 | 0.5783 | 0.7497 | 0.8498 | 0.9075 |
| $(5,1,1)$ | $P_{(r)}^{*}$ | 0.0491 | 0.3640 | 0.6577 | 0.8239 | 0.9081 | 0.9503 |
| | $M_{(r)}^{*}$ | 0.0529 | 0.3288 | 0.5986 | 0.7689 | 0.8658 | 0.9202 |
| | $\bar{Q}_{(r)}$ | 0.0383 | 0.2618 | 0.4994 | 0.6638 | 0.7681 | 0.8347 |
| $(2,3,3)$ | $P_{(r)}^{*}$ | 0.0496 | 0.3617 | 0.6507 | 0.8147 | 0.8990 | 0.9426 |
| | $M_{(r)}^{*}$ | 0.0557 | 0.3438 | 0.6155 | 0.7830 | 0.8763 | 0.9277 |
| | $\bar{Q}_{(r)}^{*}$ | 0.0417 | 0.3076 | 0.5702 | 0.7359 | 0.8326 | 0.8898 |
| $(0,2,5)$ | $P_{(r)}^{*}$ | 0.0490 | 0.3487 | 0.6294 | 0.7947 | 0.8834 | 0.9313 |
| | $M_{(r)}^{*}$ | 0.0370 | 0.2256 | 0.4560 | 0.6377 | 0.7613 | 0.8416 |
| | $\bar{Q}_{(r)}^{*}$ | 0.0397 | 0.2747 | 0.5175 | 0.6843 | 0.7899 | 0.8565 |

Monte Carlo Power Comparison

- The location-shift alternative $H_{1}: F_{X}(x)=F_{Y}(x+\theta)$ for some $\theta>0$, where θ is a shift in location.

Monte Carlo Power Comparison

- The location-shift alternative $H_{1}: F_{X}(x)=F_{Y}(x+\theta)$ for some $\theta>0$, where θ is a shift in location.
- Power of all four tests were then estimated through Monte Carlo simulations when $\theta=0.5$ and 1.0.

Monte Carlo Power Comparison

- The location-shift alternative $H_{1}: F_{X}(x)=F_{Y}(x+\theta)$ for some $\theta>0$, where θ is a shift in location.
- Power of all four tests were then estimated through Monte Carlo simulations when $\theta=0.5$ and 1.0.
- The following lifetime distributions were used in this study:

Monte Carlo Power Comparison

- The location-shift alternative $H_{1}: F_{X}(x)=F_{Y}(x+\theta)$ for some $\theta>0$, where θ is a shift in location.
- Power of all four tests were then estimated through Monte Carlo simulations when $\theta=0.5$ and 1.0.
- The following lifetime distributions were used in this study:

1. Standard normal distribution;

Monte Carlo Power Comparison

- The location-shift alternative $H_{1}: F_{X}(x)=F_{Y}(x+\theta)$ for some $\theta>0$, where θ is a shift in location.
- Power of all four tests were then estimated through Monte Carlo simulations when $\theta=0.5$ and 1.0.
- The following lifetime distributions were used in this study:

1. Standard normal distribution;
2. Standard exponential distribution;

Monte Carlo Power Comparison

- The location-shift alternative $H_{1}: F_{X}(x)=F_{Y}(x+\theta)$ for some $\theta>0$, where θ is a shift in location.
- Power of all four tests were then estimated through Monte Carlo simulations when $\theta=0.5$ and 1.0.
- The following lifetime distributions were used in this study:

1. Standard normal distribution;
2. Standard exponential distribution;
3. Lognormal distribution with shape parameter σ and standardized by mean

$$
e^{\sigma^{2} / 2} \text { and standard deviation } \sqrt{e^{\sigma^{2}}\left(e^{\sigma^{2}}-1\right)}(\sigma=0.1 \text { and } 0.5) ;
$$

Monte Carlo Power Comparison

- The location-shift alternative $H_{1}: F_{X}(x)=F_{Y}(x+\theta)$ for some $\theta>0$, where θ is a shift in location.
- Power of all four tests were then estimated through Monte Carlo simulations when $\theta=0.5$ and 1.0.
- The following lifetime distributions were used in this study:

1. Standard normal distribution;
2. Standard exponential distribution;
3. Lognormal distribution with shape parameter σ and standardized by mean $e^{\sigma^{2} / 2}$ and standard deviation $\sqrt{e^{\sigma^{2}}\left(e^{\sigma^{2}}-1\right)}(\sigma=0.1$ and 0.5$)$;
4. Gamma distribution with shape parameter a and standardized by mean a and standard deviation \sqrt{a};

Monte Carlo Power Comparison

- The location-shift alternative $H_{1}: F_{X}(x)=F_{Y}(x+\theta)$ for some $\theta>0$, where θ is a shift in location.
- Power of all four tests were then estimated through Monte Carlo simulations when $\theta=0.5$ and 1.0.
- The following lifetime distributions were used in this study:

1. Standard normal distribution;
2. Standard exponential distribution;
3. Lognormal distribution with shape parameter σ and standardized by mean $e^{\sigma^{2} / 2}$ and standard deviation $\sqrt{e^{\sigma^{2}}\left(e^{\sigma^{2}}-1\right)}(\sigma=0.1$ and 0.5$)$;
4. Gamma distribution with shape parameter a and standardized by mean a and standard deviation \sqrt{a};
5. Standard extreme-value distribution standardized by mean -0.5772156649 (Euler's constant) and standard deviation $\pi / \sqrt{6}$.

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.
- For the case of conventional Type-II censoring, we compare the power values of

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.
- For the case of conventional Type-II censoring, we compare the power values of
$>$ Precedence test

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.
- For the case of conventional Type-II censoring, we compare the power values of
> Precedence test
\rightarrow Maximal precedence test

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.
- For the case of conventional Type-II censoring, we compare the power values of
- Precedence test
- Maximal precedence test
$>$ Weighted precedence test

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.
- For the case of conventional Type-II censoring, we compare the power values of
> Precedence test
- Maximal precedence test
- Weighted precedence test

Weighted maximal precedence test

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.
- For the case of conventional Type-II censoring, we compare the power values of
$>$ Precedence test
$>$ Maximal precedence test
Weighted precedence test
\checkmark Weighted maximal precedence test
- Minimal Wilcoxon-type rank-sum test

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.
- For the case of conventional Type-II censoring, we compare the power values of
> Precedence test
$>$ Maximal precedence test
Weighted precedence test
\checkmark Weighted maximal precedence test
- Minimal Wilcoxon-type rank-sum test
- Precedence-type test based on KM-estimator

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.
- For the case of conventional Type-II censoring, we compare the power values of
> Precedence test
- Maximal precedence test

Weighted precedence test
\rightarrow Weighted maximal precedence test

- Minimal Wilcoxon-type rank-sum test
- Precedence-type test based on KM-estimator
- For the case of progressive Type-II censoring, we compare the power values of:

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.
- For the case of conventional Type-II censoring, we compare the power values of
> Precedence test
- Maximal precedence test

Weighted precedence test
\rightarrow Weighted maximal precedence test

- Minimal Wilcoxon-type rank-sum test
- Precedence-type test based on KM-estimator
- For the case of progressive Type-II censoring, we compare the power values of:
Weighted precedence test

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.
- For the case of conventional Type-II censoring, we compare the power values of
> Precedence test
- Maximal precedence test

Weighted precedence test
\rightarrow Weighted maximal precedence test

- Minimal Wilcoxon-type rank-sum test
- Precedence-type test based on KM-estimator
- For the case of progressive Type-II censoring, we compare the power values of:
Weighted precedence test
- Weighted maximal precedence test

Monte Carlo Power Comparison

- For different choices of sample sizes, we generated 100,000 sets of data in order to obtain the estimated rejection rates.
- For the case of conventional Type-II censoring, we compare the power values of
> Precedence test
- Maximal precedence test

Weighted precedence test
\checkmark Weighted maximal precedence test
> Minimal Wilcoxon-type rank-sum test

- Precedence-type test based on KM-estimator
- For the case of progressive Type-II censoring, we compare the power values of:
Weighted precedence test
- Weighted maximal precedence test
- Precedence-type test based on KM-estimator

Power comparison under progressive censoring for $n_{1}=n_{2}=10$ with $\theta=1.0$

Power comparison under progressive censoring for $n_{1}=n_{2}=10$ with $\theta=1.0$

Power comparison under progressive censoring for $n_{1}=n_{2}=10$ with $\theta=1.0$

Power comparison under progressive censoring for $n_{1}=n_{2}=20$ with $\theta=1.0$

r	PCS	Test	l.o.s.	Exp(1)	$\mathrm{N}(0,1)$	$\mathrm{G}(10)$	$\mathrm{LN}(0.1)$	EV
3	$(0,0,17)$	$P_{(r)}^{*}$	0.050	0.999	0.738	0.991	0.354	0.596
		$M_{(r)}^{*}$	0.044	1.000	0.611	0.988	0.273	0.489
		$\bar{Q}_{(r)}$	0.042	0.999	0.713	0.991	0.332	0.552
$(17,0,0)$	$P_{(r)}^{*}$	0.051	1.000	0.591	0.994	0.998	0.395	
		$M_{(r)}^{*}$	0.053	1.000	0.560	0.993	0.998	0.340
		$\bar{Q}_{(r)}$	0.043	0.991	0.511	0.914	0.915	0.503
	$P_{(r)}^{*}$	0.051	1.000	0.740	0.994	0.994	0.613	
		$M_{(r)}^{*}$	0.052	1.000	0.619	0.987	0.993	0.519
		$\bar{Q}_{(r)}$	0.046	0.994	0.704	0.971	0.964	0.601
	$P_{(r)}^{*}$	0.050	0.998	0.778	0.989	0.361	0.683	
		$M_{(r)}^{*}$	0.054	1.000	0.643	0.988	0.293	0.559
		$\bar{Q}_{(r)}$	0.044	0.998	0.763	0.989	0.356	0.634
$(16,0,0,0)$	$P_{(r)}^{*}$	0.050	1.000	0.605	0.995	0.997	0.410	
		$M_{(r)}^{*}$	0.053	1.000	0.551	0.994	0.997	0.339
		$\bar{Q}_{(r)}$	0.043	0.939	0.577	0.888	0.865	0.565

Power comparison under progressive censoring for $n_{1}=n_{2}=20$ with $\theta=1.0$

Conclusions

- From the simulation results, the statistic $\bar{Q}_{(r)}$ is in general more powerful than the precedence, maximal precedence, and the weighted maximal precedence test statistics.
- Moreover, it is also more powerful than the weighted precedence statistic in the case of symmetric or near symmetric distributions while it is slightly less powerful than the minimal Wilcoxon-type rank-sum precedence statistic.

Conclusions

- However, the minimal Wilcoxon-type rank-sum precedence statistic handles only conventional Type-II censoring case but not the progressively Type-II censoring case.
- Though the proposed statistic $\bar{Q}_{(r)}$ is slightly less powerful than the minimal Wilcoxon-type rank-sum precedence statistic, it has the advantage that it is applicable for conventional Type-II censoring as well as progressively Type-II censoring cases.

Precedence-Type Tests and Applications

N. Balakrishnan
H. K. Tony Ng

WILEY SERIES IN PROBABILITY AND STATISTICS

Balakrishnan, N. and Ng, H. K. T. (2006). Precedence-type Tests and Applications. Hoboken, NJ: Johñ Wiljey \& Sonss.

References

- Balakrishnan, N., 2007. Progressive Censoring Methodology: An Appraisal (with Discussion). Test (to appear).
- Balakrishnan, N., Aggarwala, R., 2000. Progressive Censoring: Theory, Methods and Applications. Birkhäuser, Boston.
- Balakrishnan, N., Frattina, R., 2000. Precedence test and maximal precedence test. In Limnios, N., Nikulin, M. (Eds.), Recent Advances in Reliability Theory: Methodology, Practice, and Inference, Birkhäuser, Boston, pp. 355-378.
- Balakrishnan, N., Ng, H. K. T., 2001. A general maximal precedence test. In Hayakawa, Y., Irony, T., Xie, M. (Eds.) System and Bayesian Reliability - Essays in Honor of Prof. Richard E. Barlow on his 70th Birthday, World Scientific Publishing Co. Pte. Ltd., Singapore, pp. 105-122.
- Balakrishnan, N., Ng, H. K. T., 2006. Precedence-Type Tests and Applications, John Wiley \& Sons, Hoboken, New Jersey.
- Balakrishnan, N., Sandhu, R. A., 1995. A simple simulational algorithm for generating progressive Type-II censored samples. The American Statistician, 49, 229-230.
- Chakraborti, S., van der Laan, P., 1996. Precedence tests and confidence bounds for complete data: An overview and some results. The Statistician, 45, 351-369.

References

- Chakraborti, S., van der Laan, P., 1997. An overview of precedence-type tests for censored data. Biometrical Journal, 39, 99-116.
- Davies, R. B., 1971. Rank tests for 'Lehmann alternative'. Journal of the American Statistical Association, 66, 879-883.
- Fligner, M. A., Wolfe, D. A., 1976. Some applications of sample analogues to the probability integral transformation and a coverage property. The American Statistician, 30, 78-85.
- Gibbons, J. D., Chakraborti, S., 2003. Nonparametric Statistical Inference, Fourth edition. Marcel Dekker, New York.
- Hollander, M., Wolfe, D. A., 1999. Nonparametric Statistical Methods, Second edition. John Wiley \& Sons, New York.
O Johnson, N. L., Kotz, S., Balakrishnan, N., 1994. Continuous Univariate Distributions, Vol. 1, Second edition. John Wiley \& Sons, New York.
- Johnson, N. L., Kotz, S., Balakrishnan, N., 1995. Continuous Univariate Distributions, Vol. 2, Second edition. John Wiley \& Sons, New York.
- Kaplan, E. L., Meier, P., 1958. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457-481.
- Katzenbeisser, W., 1985. The distribution of two-sample location exceedance test statistics under Lehmann alternatives. Statistische Hefte, 26, 131-138.

References

- Lehmann, E. L., 1953. The power of rank tests. Annals of Mathematical Statistics, 24, 23-42.
- Lehmann, E. L., 2006. Nonparametrics Statistical Methods Based on Ranks. Springer, New York.
- Nelson, L. S., 1963. Tables of a precedence life test. Technometrics, 5, 491-499.
- Nelson, L. S., 1993. Tests on early failures - The precedence life test. Journal of Quality Technology, 25, 140-143.
- Nelson, W., 1982. Applied Life Data Analysis. John Wiley \& Sons, New York.
- Ng, H. K. T., Balakrishnan, N., 2002. Wilcoxon-type rank-sum precedence tests: Large-sample approximation and evaluation. Applied Stochastic Models in Business and Industry, 18, 271-286.
- Ng, H. K. T., Balakrishnan, N., 2004. Wilcoxon-type Rank-sum Precedence Tests. Australia and New Zealand Journal of Statistics, 46, 631-648.
- Ng, H. K. T., Balakrishnan, N., 2005. Weighted Precedence and Maximal Precedence Tests and an Extension to Progressive Censoring. Journal of Statistical Planning and Inference, 135, 197-221.
- Wilcoxon, F., 1945. Individual comparisons by ranking methods, Biometrics Bulletin, 1, 80-83.

