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and FY . We are interested in testing the hypotheses

H0 : FX = FY

against H1 : FX > FY . (1)

• Nelson (1963, Technometrics) first proposed a
Precedence test, which can determine a location
difference based on observing only a few failures
from the two samples under life testing.

• Nelson (1993, JQT) examined the power of the
precedence test when the underlying distributions
were normal.
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• Suppose X1, X2, . . . , Xn1 is a random sample from
FX and Y1, Y2, . . . , Yn2 is a random sample from FY .

• All these sample units are placed simultaneously on
a life-testing experiment.

• The Precedence test statistic is

P(r) = No. of failures from X-sample that precede

the r-th failure from the Y -sample

=
r

∑

i=1

Mi
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Precedence Test

• We denote the order statistics from the X-sample and
the Y -sample by X1:n1 ≤ X2:n1 ≤ . . . ≤ Xn1:n1 and
Y1:n2 ≤ Y2:n2 ≤ . . . ≤ Yn2:n2 , respectively.
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Precedence Test

• We denote the order statistics from the X-sample and
the Y -sample by X1:n1 ≤ X2:n1 ≤ . . . ≤ Xn1:n1 and
Y1:n2 ≤ Y2:n2 ≤ . . . ≤ Yn2:n2 , respectively.

• Let M1 be the number of X-failures before Y1:n2 , and
Mi be the number of X-failures between Yi−1:n2 and
Yi:n2 , i = 2, 3, . . . , r.

-s

Y1:n2

s

Y2:n2

s

Y3:n2

s

Y4:n2

-s

X1:n1

s

X2:n1

s

X3:n1

s

X4:n1

s

X5:n1

s

X6:n1

s

X7:n1

s

X8:n1

m1 = 0 m2 = 3 m3 = 4 m4 = 1

Precedence Test Statistics P(4) = 3 + 4 + 1 = 8
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What is Precedence Test?

The Precedence-type test procedures

• allows a simple and robust comparison of two
distribution functions based on the order of early
failures

• will be useful
(i) when life-tests involve expensive units
(ii) to make quick and reliable decisions early on in

the life-testing experiment.
(iii) in medical studies when ethical considerations are

taking into account.
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What is Precedence Test?

• Large values of P(r) lead to the rejection of H0 and in
favor of H1 in (1).

• For a fixed level of significance α, the critical region will
be {s, s + 1, . . . , n1}, where

α = Pr(P(r) ≥ s|FX = FY ).

• For specified values of n1, n2, s and r, an expression for
α is given by

α =

n1
∑

j=s





s + r − 1

j









n1 + n2 − s − r + 1

n1 − j









n1 + n2

n2
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Maximal Precedence Test

• Masking effect is present when r ≥ 2.

• In the previous example, information given by r = 3 is
thus getting masked.

• Maximal Precedence Test is proposed in order to avoid
this problem.

• The general maximal precedence test statistic is
defined as

M(r) = max{M1,M2, . . . ,Mr}

• Large values of M(r) lead to the rejection of H0 and in
favor of H1 in (1).
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Maximal Precedence Test

-s

Y1:n2

s

Y2:n2

s

Y3:n2

s

Y4:n2

-s

X1:n1

s

X2:n1

s

X3:n1

s

X4:n1

s

X5:n1

s

X6:n1

s

X7:n1

s

X8:n1

m1 = 0 m2 = 3 m3 = 4 m4 = 1

Maximal Precedence Test Statistics

M(4) = max{0, 3, 4, 1} = 4
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Wilcoxon-type Rank-Sum Precedence

• Instead of using the sum of the frequencies, one could
use the sum of the ranks of those X-failures.

• Let W be the rank-sum of the X-failures that occurred
before the r-th Y -failure.

• In our example,

W = 2 + 3 + 4 + 6 + 8 + 9 + 11 = 50

-s

Y1:n2

1

s

Y2:n2

5

s

Y3:n2

10

s

Y4:n2

12

-s

X1:n1

2

s

X2:n1

3

s

X3:n1

4

s

X4:n1

6

s

X5:n1

7

s

X6:n1

8

s

X7:n1

9

s

X8:n1

11

m1 = 0 m2 = 3 m3 = 4 m4 = 1
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Test Statistics

• Is that good to test the hypothesis in (1) based on W

only?

• Answer: No.

• If H1 : FX > FY is true, we would expect
I More X-sample failed before the r-th Y -failure
I Small rank-sum for the X-sample
I More X-sample failed before the r-th Y -failure

INCREASES the rank-sum
I Contradiction!!
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Maximal Rank-sum Statistic

The Wilcoxon’s test statistic will be the largest when all

the remaining
(

n1 −
r

∑

i=1
mi

)

X-failures occur after the

n2-th Y -failure.

Wmax,r = W +

[(

r
∑

i=1

mi + n2 + 1

)

+

(

r
∑

i=1

mi + n2 + 2

)

+ . . . + (n1 + n2)

]

=
n1(n1 + 2n2 + 1)

2
− (n2 + 1)

r
∑

i=1

mi +

r
∑

i=1

imi.

-r

Y1:n2
1

r

Y2:n2
5

r

Y3:n2
10

r

Y4:n2
12 13 14 · · ·18

-r

X1:n1

2

r

X2:n1

3

r

X3:n1

4

r

X4:n1

6

r

X5:n1

7

r

X6:n1

8

r

X7:n1

9

r

X8:n1

11 19 20

m1 = 0 m2 = 3 m3 = 4 m4 = 1
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Minimal Rank-sum Statistic

The Wilcoxon’s test statistic will be smallest when all the

remaining
(

n1 −
r

∑

i=1
mi

)

X-failures occur between the

r-th and (r + 1)-th Y -failures.

Wmin,r = W +

[(

r
∑

i=1

mi + r + 1

)

+

(

r
∑

i=1

mi + r + 2

)

+ . . . + (n1 + r)

]

=
n1(n1 + 2r + 1)

2
− (r + 1)

r
∑

i=1

mi +

r
∑

i=1

imi.

-r

Y1:n2
1

r

Y2:n2
5

r

Y3:n2
10

r

Y4:n2
12 15 16 · · ·20

-r

X1:n1

2

r

X2:n1

3

r

X3:n1

4

r

X4:n1

6

r

X5:n1

7

r

X6:n1

8

r

X7:n1

9

r

X8:n1

11 13 14

m1 = 0 m2 = 3 m3 = 4 m4 = 1
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Expected Rank-sum Statistic
• We could similarly propose a rank-sum statistic using

the expected rank sums of failures, called the expected
rank-sum statistic

WE,r = W +
1

2

[(

r
∑

i=1

mi + r + 1

)

+ · · · + (n1 + r)

]

+
1

2

[(

r
∑

i=1

mi + n2 + 1

)

+ · · · + (n1 + n2)

]

=
n1(n1 + n2 + r + 1)

2
−

(

n2 + r

2
+ 1

) r
∑

i=1

mi +

r
∑

i=1

imi.
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Expected Rank-sum Statistic
• We could similarly propose a rank-sum statistic using

the expected rank sums of failures, called the expected
rank-sum statistic

WE,r = W +
1

2

[(

r
∑

i=1

mi + r + 1

)

+ · · · + (n1 + r)

]

+
1

2

[(

r
∑

i=1

mi + n2 + 1

)

+ · · · + (n1 + n2)

]

=
n1(n1 + n2 + r + 1)

2
−

(

n2 + r

2
+ 1

) r
∑

i=1

mi +

r
∑

i=1

imi.

• Small values of Wmin,r, Wmax,r and WE,r lead to the
rejection of H0 and in favor of H1.

• When r = n2, we have

Wmin,r = Wmax,r = WE,r = classical Wilcoxon’s rank-sum statistic
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Null Distributions

• For specified values of n1, n2, r and the level of
significance α, the critical value s (corresponding to a
level closest to α) for the maximal rank-sum
precedence test can then be found as

α = Pr(Wmax,r ≤ s | FX = FY )

=

n1
∑

mi(i=1,2,...,r)=0

Pr {M1 = m1, . . . , Mr = mr | FX = FY } Imax,s(m1, . . . , mr),

where Imax,s is the indicator function and

Pr {M1 = m1, M2 = m2, . . . , Mr = mr | FX = FY }

=







n1 + n2 −
r
∑

i=1
mi − r

n2 − r











n1 + n2

n2





.
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Weighted Precedence

and

Maximal Precedence Tests
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Motivation

We are going to introduce another logical extension of the precedence
and maximal precedence tests. The motivation is explained by the
following two cases with n1 = 10, n2 = 10, r = 5:
Case 1:

-t

Y1:10

t

Y2:10

t

Y3:10

t

Y4:10

t

Y5:10

-t

X1:10

t

X2:10

t

X3:n1

t

X4:10

t

X5:10

t

X6:10

t

X7:10

t

X8:10

m1 = m2 = m3 = 0 m4 = 3 m5 = 5

Precedence test statistic P(5) = 8, maximal precedence test statistic
M(5) = 5.
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Motivation

n1 = 10, n2 = 10, r = 5:
Case 2

-t

Y1:10

t

Y2:10

t

Y3:10

t

Y4:10

t

Y5:10

-t

X1:10

t

X2:10

t

X3:10

t

X4:10

t

X5:10

t

X6:10

t

X7:10

t

X8:10

m1 = 5 m2 = 3 m3 = m4 = m5 = 0

Precedence test statistic P(5) = 8, maximal precedence
test statistic M(5) = 5.
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Motivation

• The precedence and maximal precedence test
statistics are equal in both cases.
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Motivation

• The precedence and maximal precedence test
statistics are equal in both cases.

• The test statistics are P(5) = 8 and M(5) = 5, we will
not reject the null hypothesis that two distributions
are equal in both cases at the same level of
significance.

• However, we feel that Case 2 provides much more
evidence that the Y -sample are better than the
X-sample.

• This suggests that we should try to develop a test
procedure that distinguishes between Case 1 and
Case 2.

22



Test Statistics

• The weighted precedence and weighted maximal precedence
tests give a decreasing weight to mi as i increases is one such
attempt in this direction.
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Test Statistics

• The weighted precedence and weighted maximal precedence
tests give a decreasing weight to mi as i increases is one such
attempt in this direction.

• The weighted precedence test statistic P ∗

(r) is thus defined as

P ∗
(r) =

r
∑

i=1

(n2 − i + 1) mi,

and the weighted maximal precedence test statistic M∗

(r) as

M∗
(r) = max

1≤i≤r
{(n2 − i + 1) mi} .

It is clear that large values of P ∗

(r) or M∗

(r) would lead to the
rejection of H0 and in favor of H1.
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An Extension to Type-II Progressive

Censored Data
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Type-II Progressive Censoring

Experimental schemes of potential use in life-testing in
which, not only can the test be terminated at the time of
any failure, but in addition, one or more surviving items
may be removed from the test (i.e. censored) at the time
of each failure occurring prior to the termination of the
experiment.
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Type-II Progressive Censoring

-s¢
¢
¢¢̧
R1 = 2

withdrawn

Y1:4:10

s¢
¢
¢¢̧
R2 = 1

withdrawn

Y2:4:10

s¢
¢
¢¢̧
R3 = 1

withdrawn

Y3:4:10

s¢
¢
¢¢̧
R4 = 2

withdrawn

Y4:4:10

-s

X1:n1

s

X2:n1

s

X3:n1

s

X4:n1

s

X5:n1

s

X6:n1

s

X7:n1

s

X8:n1

m1 = 0 m2 = 3 m3 = 4 m4 = 1

Let us denote such an observed ordered Y -sample by Y1:r:n2
≤ Y2:r:n2

≤ · · · ≤ Yr:r:n2
.

Moreover, we denote by M1 the number of X-failures before Y1:r:n2
, and by Mi the

number of X-failures between Yi−1:r:n2
and Yi:r:n2

, i = 2, 3, · · · , r.
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Weighted Precedence & Maximal Precedence

Based on M1,M2, · · · ,Mr, we propose the weighted
precedence test statistic P ∗

(r), as

P ∗
(r) =

r
∑

i=1



n2 −





i−1
∑

j=1

Rj



 − i + 1



 mi,

and the weighted maximal precedence test statistic M∗
(r),

as

M∗
(r) = max

1≤i≤r









n2 −





i−1
∑

j=1

Rj



 − i + 1



 mi







.
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Maximal Rank-sum Statistic for Progressive Censoring

• Similarly, we can apply the idea of maximal Wilcoxon
rank-sum precedence statistic for the progressively
censored data.
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Maximal Rank-sum Statistic for Progressive Censoring

• Similarly, we can apply the idea of maximal Wilcoxon
rank-sum precedence statistic for the progressively
censored data.

• The Wilcoxon’s rank-sum test statistic will be the
largest when all the progressive censored Y -items in
an interval fail before the smallest of X-failures in the
corresponding interval. The maximal Wilcoxon
rank-sum precedence statistic for progressively
censored data then becomes

W ∗
max,r =

r+1
∑

i=1







mi





i−1
∑

j=1

mj +

i−1
∑

j=1

Ri + (i − 1)



 +
i(mi + 1)

2







.

where mr+1 = n1 −
r
∑

i=1
mi.
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Maximal Rank-sum Statistic for Progressive Censoring

The Wilcoxon’s test statistic will be the largest when all the censored
Y -items fail before the X-failures

W ∗
max,r =

r+1
∑

i=1







mi





i−1
∑

j=1

mj +

i−1
∑

j=1

Ri + (i − 1)



 +
i(mi + 1)

2







.

where mr+1 = n1 −
r
∑

i=1
mi.
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withdrawn

Y1:4:10
1 2 3

s¢
¢
¢̧
R2 = 1
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Maximal Rank-sum Statistic for Progressive Censoring

• We can show that the maximal Wilcoxon rank-sum
precedence test statistic is equivalent to the weighted
precedence test statistic in the case of progressive
censoring as follows:

W ∗
max,r =

r+1
∑

i=1







mi





i−1
∑

j=1

mj +

i−1
∑

j=1

Rj + (i − 1)



 +
mi(mi + 1)

2







=
n1(n1 + 2n2 + 1)

2
+

r
∑

i=1



mi

i−1
∑

j=1

Rj



 − (n2 − i + 1)

r
∑

i=1

mi

=
n1(n1 + 2n2 + 1)

2
− P ∗

(r).
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∑
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mi

=
n1(n1 + 2n2 + 1)

2
− P ∗

(r).

• Since {n1(n1 + 2n2 + 1)}/2 is just a constant, the above

relationship readily reveals that the tests based on P ∗
(r) and

W ∗
max,r are equivalent, with large values of the former

corresponding to small values of the latter.

30



Example

-s¢
¢
¢̧
R1 = 2

withdrawn

Y1:4:10

s¢
¢
¢̧
R2 = 1

withdrawn

Y2:4:10

s¢
¢
¢̧
R3 = 1

withdrawn

Y3:4:10

s¢
¢
¢̧
R4 = 2

withdrawn

Y4:4:10

-s

X1:10

s

X2:10

s

X3:10

s

X4:10

s

X5:10

s

X6:10

s

X7:10

s

X8:10

m1 = 0 m2 = 3 m3 = 4 m4 = 1

n1 = n2 = 10, r = 4 and the progressive censoring scheme (2, 1, 1, 2)

• Weighted precedence test statistic: P ∗
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44.
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(4)
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(r)

or M∗
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of H0 and in favor of H1.
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max,r = 4 + 5 + 6 + 9 + 10 + 11 + 12 + 15 + 19 + 20 = 111.
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Weighted Precedence & Maximal Precedence

With a progressive Type-II censoring on the Y -sample,
under the null hypothesis H0 : FX = FY , the joint
probability mass function of M1, M2, · · · , Mr is given by

Pr(M1 = m1, M2 = m2, · · · , Mr = mr | H0 : FX = FY )

= C

∑

k

i=1
Ri−

∑k−1

i=1
ji

∑

jk=0 (k=1,2,··· ,r−1)











r−1
∏

l=1







l
∑

i=1
Ri −

l
∑

i=1
ji

jl






Γ(ml + jl+1 + 1)











×
Γ

(

n1 + n2 − r −
r
∑

i=1
mi −

r−1
∑

i=1
ji + 1

)

Γ(n1 + n2 + 1)
,

where

C =
n1!n2(n2 − R1 − 1) · · · (n2 − R1 − R2 − · · · − Rr−1 − r + 1)

m1!m2! · · ·mr!

(

n1 −
r
∑

i=1
mi

)

!

.
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PRECEDENCE-TYPE TEST BASED ON

KAPLAN-MEIER ESTIMATOR OF CDF

33



Kaplan-Meier Estimator

• The precedence-type test proposed here is based on the

Kaplan–Meier nonparametric estimator [Kaplan and Meier

(1958)] of the CDF based on data in which observations

reported are exact failure times.
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• The precedence-type test proposed here is based on the

Kaplan–Meier nonparametric estimator [Kaplan and Meier

(1958)] of the CDF based on data in which observations

reported are exact failure times.

• With the progressive Type-II censoring experimental

scheme on the Y -sample, we observe failures at times

y1:r:n2 , · · · , yr:r:n2 with R1, · · · , Rr number of observations

censored at these times, respectively.

• The Kaplan–Meier estimator (also called the product-limit
estimator) of FY (yi:r:n2) is given by

F̂Y (yi:r:n2
) = 1 −

i
∏

j=1

(

1 − 1

n∗
j

)

, i = 1, · · · , r,

where n∗
i = n2 − i + 1 −

i−1
∑

j=0
Rj is the risk set at yi:r:n2

. 34



Kaplan-Meier Estimator

• In the case of conventional Type-II right censoring, i.e.,
R1 = · · · = Rr−1 = 0 and Rr = n2 − r, the above estimate of
the CDF at yi:n2 simply reduces to

F̂Y (yi:n2
) =

i

n2
, i = 1, · · · , r.
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Kaplan-Meier Estimator

• In the case of conventional Type-II right censoring, i.e.,
R1 = · · · = Rr−1 = 0 and Rr = n2 − r, the above estimate of
the CDF at yi:n2 simply reduces to

F̂Y (yi:n2
) =

i

n2
, i = 1, · · · , r.

• Similarly, the Kaplan–Meier estimator of the CDF for the
X-sample at xi:n1 is given by

F̂X(xi:n1
) =

i

n1
, i = 1, · · · , n1.
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Type-II Censoring on Y -sample
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Test Statistic
• Following the same notation as before and we define

M = (M1, . . . , Mr) and their observed values

m = (m1, . . . , mr)
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Test Statistics

• If the information after the termination of the
experiment at Yr:n2 is not taken into account, we
consider the statistic

Q(r)(M) =

r
∑

i=1

Qi

= max(0, M1 − 1) +

r
∑

i=2

Si
∑

j=Si−1+1

I(j > i),

where Si = Si(M) =
i

∑

k=1

Mk.

38



Test Statistics

• If the information after the termination of the
experiment at Yr:n2 is not taken into account, we
consider the statistic

Q(r)(M) =
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∑

i=1

Qi

= max(0, M1 − 1) +

r
∑

i=2

Si
∑

j=Si−1+1

I(j > i),

where Si = Si(M) =
i

∑

k=1

Mk.

• It is evident that large values of Q(r) lead to the
rejection of H0 and in favor of H1.
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Test Statistics
• However, it is important to incorporate into Q(r) the

information after the termination of the experiment at Yr:r:n2 .
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Test Statistics

• Then, the test statistic we propose is the average of
the two statistics given by

Q̄(r)(M) = max(0, M1 − 1) +

r
∑

i=2

Si
∑

j=Si−1+1

I(j > i) +
1

2

n1
∑

j=Sr+1

I(j > r + 1),
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• Then, the test statistic we propose is the average of
the two statistics given by
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∑
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Si
∑

j=Si−1+1

I(j > i) +
1

2

n1
∑

j=Sr+1

I(j > r + 1),

• Large values of Q̄(r) leading to the rejection of H0

and in favor of H1.
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Example
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m1 = m2 = m3 = 0
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m4 = 3
q4 = 0

m5 = 5
q5 = 3

With r = 5, we observe q1 = q2 = q3 = q4 = 0, q5 = 3 with
which we obtain Q(5) = 3, Q∗

(5) = 5 and the proposed test

statistic Q̄(5) = 4.
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Null Distribution

• The null distribution of the test statistic Q̄(r) can be
obtained as

Pr(Q̄(r) = q|H0 : FX = FY ) =
∑

mi(i=1,2,...,r)

Pr(M = m|FX = FY ) I(Q̄(r)(m) = q),

where I(·) denotes the indicator function.
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Null Distribution

• The null distribution of the test statistic Q̄(r) can be
obtained as

Pr(Q̄(r) = q|H0 : FX = FY ) =
∑

mi(i=1,2,...,r)

Pr(M = m|FX = FY ) I(Q̄(r)(m) = q),

where I(·) denotes the indicator function.

• The critical values s for specified values of n1, n2, r

and α can be computed from the above formula.
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Exact Power under Lehmann Alternative

• Consider the Lehmann alternative H1 : [FX ]γ = FY for some
γ > 1 which is a subclass of the alternative H1 : FX > FY when
γ > 1, and that it is appropriate when some common lifetime
distributions are used for modelling in industrial setting.
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Exact Power under Lehmann Alternative

• Consider the Lehmann alternative H1 : [FX ]γ = FY for some
γ > 1 which is a subclass of the alternative H1 : FX > FY when
γ > 1, and that it is appropriate when some common lifetime
distributions are used for modelling in industrial setting.

• The joint probability mass function of (M1, · · · , Mr) under the
Lehmann alternative is given by [Balakrishnan and Ng (2001)]

Pr(M1 = m1, · · · , Mr = mr|H1 : [FX ]γ = FY )

=
n1!n2!γr

m1!(n2 − r)!























r−1
∏

j=1

Γ

(

j
∑

i=1
mi + jγ

)

Γ

(

j+1
∑

i=1
mi + jγ + 1

)























×
n2−r
∑

k=0





n2 − r

k



 (−1)k

Γ

(

r
∑

i=1
mi + (r + k)γ

)

Γ (n1 + (r + k)γ + 1)
.
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Exact Power under Lehmann Alternative

• The power function of the proposed precedence-type test under
the Lehmann alternative is then given by

Power = Pr(Q̄(r) ≥ s|H1 : [FX ]γ = FY )

=
∑

mi(i=1,2,...,r)

Pr(M = m|H1 : [FX ]γ = FY ) I(Q̄(r)(m) ≥ s),

where s is the chosen critical value.
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Power comparison under Lehmann alternative for n1 = n2 = 10, r = 2, 3, 4

Test γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 γ = 6

r = 2

P(r) 0.0286 0.2397 0.4905 0.6730 0.7896 0.8622

M(r) 0.0325 0.2210 0.4534 0.6363 0.7606 0.8412

P ∗
(r)

0.0495 0.3568 0.6439 0.8097 0.8962 0.9413

M∗
(r)

0.0595 0.3573 0.6298 0.7944 0.8845 0.9334

Wmin,r 0.0595 0.4040 0.6983 0.8532 0.9269 0.9621

Wmax,r 0.0495 0.3568 0.6439 0.8097 0.8962 0.9413

WE,r 0.0495 0.3568 0.6439 0.8097 0.8962 0.9413

Q̄(r) 0.0511 0.3673 0.6549 0.8173 0.9008 0.9439

r = 3

P(r) 0.0349 0.2458 0.4809 0.6521 0.7646 0.8373

M(r) 0.0488 0.2418 0.4680 0.6456 0.7664 0.8449

P ∗
(r)

0.0510 0.3510 0.6314 0.7960 0.8840 0.9314

M∗
(r)

0.0379 0.2281 0.4582 0.6391 0.7623 0.8422

Wmin,r 0.0464 0.3643 0.6633 0.8295 0.9119 0.9526

Wmax,r 0.0510 0.3510 0.6314 0.7960 0.8840 0.9314

WE,r 0.0471 0.3462 0.6292 0.7951 0.8837 0.9312

Q̄(r) 0.0483 0.3590 0.6438 0.8056 0.8903 0.9352
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Exact Power under Lehmann Alternative

Power comparison under Lehmann alternative for n1 = n2 = 10, r = 2, 3, 4

Test γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 γ = 6

r = 4

P(r) 0.0349 0.2168 0.4200 0.5771 0.6883 0.7661

M(r) 0.0650 0.2541 0.4746 0.6491 0.7684 0.8460

P ∗
(r)

0.0319 0.2585 0.5159 0.6956 0.8067 0.8742

M∗
(r)

0.0433 0.2319 0.4600 0.6400 0.7627 0.8424

Wmin,r 0.0538 0.3949 0.6924 0.8488 0.9234 0.9593

Wmax,r 0.0507 0.3356 0.6005 0.7615 0.8527 0.9052

WE,r 0.0487 0.3482 0.6278 0.7922 0.8808 0.9289

Q̄(r) 0.0410 0.3224 0.5958 0.7611 0.8535 0.9061
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Progressive Type-II Censoring

on Y -sample
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Test Statistics

• Let M1 denote the number of X-failures before Y1:r:n2,
Mi the number of X-failures between Yi−1:r:n2 and
Yi:r:n2 for i = 2, · · · , r, and Qi the number of X-failures
among the Mi that are between Yi−1:r:n2 and Yi:r:n2 for
which F̂X(x) > F̂Y (yi:r:n2) for i = 1, · · · , r.
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• If the information after the termination of the
experiment at Yr:r:n2 is not taken into account, we
consider the statistic

Q(r)(M) =

r
∑

i=1

Qi

= max(0, M1 − 1) +

r
∑

i=2

Si
∑
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I[j > n1F̂Y (yi:r:n2
)],

where Si = Si(M) =
i

∑

k=1

Mk.
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Test Statistics
• Once again, by assuming that all the remaining X-units will fail before the

(r + 1)-th unobserved Y -failure, we obtain the statistic

Q∗
(r)(M) = max(0, M1 − 1) +

r+1
∑

i=2

Si
∑

j=Si−1+1

I[j > n1F̂Y (yi:r:n2
)],

where Mr+1 = n1 − Sr , S(r+1) = n1, and yr+1:r:n2
(with progressive censoring

scheme (R1, · · · , Rr−1, Rr)) is taken as the (r + 1)-th progressively Type-II
censored order statistic yr+1:r+1:n2

with progressive censoring scheme
(

R1, · · · , Rr−1, 0, n2 − r − 1 −
r−1
∑

i=1
Ri

)

.
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Test Statistics
• Once again, by assuming that all the remaining X-units will fail before the

(r + 1)-th unobserved Y -failure, we obtain the statistic

Q∗
(r)(M) = max(0, M1 − 1) +

r+1
∑

i=2

Si
∑

j=Si−1+1

I[j > n1F̂Y (yi:r:n2
)],

where Mr+1 = n1 − Sr , S(r+1) = n1, and yr+1:r:n2
(with progressive censoring

scheme (R1, · · · , Rr−1, Rr)) is taken as the (r + 1)-th progressively Type-II
censored order statistic yr+1:r+1:n2

with progressive censoring scheme
(

R1, · · · , Rr−1, 0, n2 − r − 1 −
r−1
∑

i=1
Ri

)

.

• Then, the test statistic we propose is the average of the two statistics given by

Q̄(r)(M) = max(0, M1 − 1) +

r
∑

i=2

Si
∑

j=Si−1+1

I[j > n1F̂Y (yi:r:n2
)]

+
1

2

n1
∑

j=Sr+1

I[j > n1F̂Y (yr+1:r:n2
)]
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• Then, the test statistic we propose is the average of the two statistics given by
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r
∑
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Si
∑
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+
1

2

n1
∑
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)]

• Large values of Q̄(r) leading to the rejection of H0 and in favor of H1. 49



Example

-s¢
¢
¢̧
R1 = 2

withdrawn

Y1:4:10

s¢
¢
¢̧
R2 = 1

withdrawn

Y2:4:10

s¢
¢
¢̧
R3 = 1

withdrawn

Y3:4:10

s¢
¢
¢̧
R4 = 2

withdrawn

Y4:4:10

-s

X1:10

s

X2:10

s

X3:10

s

X4:10

s

X5:10

s

X6:10

s

X7:10

s

X8:10

m1 = 0 m2 = 3 m3 = 4 m4 = 1

With n1 = n2 = 10 and r = 4, the Kaplan-Meier estimates of the CDF based on the
progressively Type-II censored Y -sample are presented in Table 2, from which we
observe q1 = 0, q2 = 1, q3 = 3, q4 = 1 with which we obtain Q(4) = 5, Q∗

(4)
= 7 and the

proposed test statistic Q̄(4) = 6.

ti n∗
i 1/n∗

i 1 − (1/n∗
i ) ŜY (ti) F̂Y (ti)

Y1:4:10 10 0.100 0.900 0.900 0.100

Y2:4:10 5 0.200 0.800 0.720 0.280

Y3:4:10 4 0.250 0.750 0.540 0.460

Y4:4:10 3 0.333 0.667 0.360 0.640

Y5:4:10 2 0.500 0.500 0.180 0.820 50



Exact Power under Lehmann Alternative

• Consider the Lehmann alternative H1 : [FX ]γ = FY for some
γ > 1.
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Exact Power under Lehmann Alternative

• Consider the Lehmann alternative H1 : [FX ]γ = FY for some
γ > 1.

• With a Type-II progressive censoring on the Y -sample,
under the Lehmann alternative, we have

Pr(M1 = m1, M2 = m2, . . . , Mr = mr | [FX ]γ = FY )

= Cγr
Ri
∑

ji(i=1,2,...,r)=0





R1

j1









R2

j2



 . . .





Rr

jr



 (−1)

(

r
∑

i=1

ji

)

×
{

r−1
∏

k=1

B

(

k
∑

i=1

mi + γ

(

k
∑

i=1

ji

)

+ kγ, mk+1 + 1

)}

×B

(

r
∑

i=1

mi + γ

(

r
∑

i=1

ji

)

+ rγ, n1 −
r

∑

i=1

mi + 1

)

.
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∑

i=1
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(

k
∑
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(

k
∑
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r
∑

i=1

mi + γ

(

r
∑

i=1
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+ rγ, n1 −
r
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i=1

mi + 1

)

.

• For n1 = n2 = 10, r = 2 and γ = 2(1)6, the power values
computed from the exact expressions are presented here.
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Exact Power under Lehmann Alternative
Power comparison under Lehmann alternative for n1 = n2 = 10, r = 2, 3

PCS Test γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 γ = 6

r = 2

(0,8) P ∗
(r)

0.0495 0.3568 0.6439 0.8097 0.8962 0.9413

M∗
(r)

0.0595 0.3573 0.6298 0.7944 0.8845 0.9334

Q̄(r) 0.0511 0.3673 0.6549 0.8173 0.9008 0.9439

(8,0) P ∗
(r)

0.0511 0.3471 0.6256 0.7931 0.8842 0.9334

M∗
(r)

0.0433 0.3147 0.5885 0.7628 0.8622 0.9180

Q̄(r) 0.0433 0.3147 0.5885 0.7628 0.8622 0.9180

(6,2) P ∗
(r)

0.0478 0.3501 0.6383 0.8073 0.8960 0.9420

M∗
(r)

0.0433 0.3147 0.5885 0.7628 0.8622 0.9180

Q̄(r) 0.0447 0.3158 0.5877 0.7594 0.8571 0.9124

(4,4) P ∗
(r)

0.0504 0.3611 0.6501 0.8157 0.9010 0.9449

M∗
(r)

0.0477 0.3229 0.5950 0.7669 0.8647 0.9196

Q̄(r) 0.0472 0.3158 0.5779 0.7451 0.8429 0.9002

(2,6) P ∗
(r)

0.0521 0.3583 0.6418 0.8069 0.8940 0.9398

M∗
(r)

0.0555 0.3437 0.6155 0.7830 0.8763 0.9277

Q̄(r) 0.0651 0.4069 0.6885 0.8391 0.9141 0.9520 52



Exact Power under Lehmann Alternative
Power comparison under Lehmann alternative for n1 = n2 = 10, r = 2, 3

PCS Test γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 γ = 6

r = 3

(0,0,7) P ∗
(r)

0.0488 0.2418 0.4680 0.6456 0.7664 0.8449

M∗
(r)

0.0510 0.3510 0.6314 0.7960 0.8840 0.9314

Q̄(r) 0.0483 0.3590 0.6438 0.8056 0.8903 0.9352

(7,0,0) P ∗
(r)

0.0429 0.3228 0.6040 0.7786 0.8752 0.9279

M∗
(r)

0.0433 0.3147 0.5885 0.7628 0.8622 0.9180

Q̄(r) 0.0543 0.3149 0.5783 0.7497 0.8498 0.9075

(5,1,1) P ∗
(r)

0.0491 0.3640 0.6577 0.8239 0.9081 0.9503

M∗
(r)

0.0529 0.3288 0.5986 0.7689 0.8658 0.9202

Q̄(r) 0.0383 0.2618 0.4994 0.6638 0.7681 0.8347

(2,3,3) P ∗
(r)

0.0496 0.3617 0.6507 0.8147 0.8990 0.9426

M∗
(r)

0.0557 0.3438 0.6155 0.7830 0.8763 0.9277

Q̄(r) 0.0417 0.3076 0.5702 0.7359 0.8326 0.8898

(0,2,5) P ∗
(r)

0.0490 0.3487 0.6294 0.7947 0.8834 0.9313

M∗
(r)

0.0370 0.2256 0.4560 0.6377 0.7613 0.8416

Q̄(r) 0.0397 0.2747 0.5175 0.6843 0.7899 0.8565 53



Monte Carlo Power Comparison

• The location-shift alternative H1 : FX(x) = FY (x + θ) for some
θ > 0, where θ is a shift in location.
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• The location-shift alternative H1 : FX(x) = FY (x + θ) for some
θ > 0, where θ is a shift in location.

• Power of all four tests were then estimated through Monte Carlo
simulations when θ = 0.5 and 1.0.
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Monte Carlo Power Comparison
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Monte Carlo Power Comparison

• The location-shift alternative H1 : FX(x) = FY (x + θ) for some
θ > 0, where θ is a shift in location.

• Power of all four tests were then estimated through Monte Carlo
simulations when θ = 0.5 and 1.0.

• The following lifetime distributions were used in this study:
1. Standard normal distribution;

2. Standard exponential distribution;
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Monte Carlo Power Comparison

• The location-shift alternative H1 : FX(x) = FY (x + θ) for some
θ > 0, where θ is a shift in location.

• Power of all four tests were then estimated through Monte Carlo
simulations when θ = 0.5 and 1.0.

• The following lifetime distributions were used in this study:
1. Standard normal distribution;

2. Standard exponential distribution;

3. Lognormal distribution with shape parameter σ and standardized by mean

eσ2/2 and standard deviation
√

eσ2 (eσ2 − 1) (σ = 0.1 and 0.5);
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Monte Carlo Power Comparison

• The location-shift alternative H1 : FX(x) = FY (x + θ) for some
θ > 0, where θ is a shift in location.

• Power of all four tests were then estimated through Monte Carlo
simulations when θ = 0.5 and 1.0.

• The following lifetime distributions were used in this study:
1. Standard normal distribution;

2. Standard exponential distribution;

3. Lognormal distribution with shape parameter σ and standardized by mean

eσ2/2 and standard deviation
√

eσ2 (eσ2 − 1) (σ = 0.1 and 0.5);

4. Gamma distribution with shape parameter a and standardized by mean a and
standard deviation

√
a;
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Monte Carlo Power Comparison

• The location-shift alternative H1 : FX(x) = FY (x + θ) for some
θ > 0, where θ is a shift in location.

• Power of all four tests were then estimated through Monte Carlo
simulations when θ = 0.5 and 1.0.

• The following lifetime distributions were used in this study:
1. Standard normal distribution;

2. Standard exponential distribution;

3. Lognormal distribution with shape parameter σ and standardized by mean

eσ2/2 and standard deviation
√

eσ2 (eσ2 − 1) (σ = 0.1 and 0.5);

4. Gamma distribution with shape parameter a and standardized by mean a and
standard deviation

√
a;

5. Standard extreme-value distribution standardized by mean -0.5772156649
(Euler’s constant) and standard deviation π/

√
6.
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Monte Carlo Power Comparison

• For different choices of sample sizes, we generated 100,000 sets
of data in order to obtain the estimated rejection rates.
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Power comparison under progressive censoring for n1 = n2 = 10 with θ = 1.0

r PCS Test l.o.s. Exp(1) N(0,1) G(10) LN(0.1) EV

3 (0,0,7) P ∗
(r)

0.051 0.887 0.574 0.832 0.798 0.577

M∗
(r)

0.038 0.920 0.395 0.735 0.734 0.401

Q̄(r) 0.048 0.888 0.565 0.840 0.807 0.534

(7,0,0) P ∗
(r)

0.048 0.974 0.482 0.880 0.891 0.389

M∗
(r)

0.043 0.977 0.423 0.862 0.878 0.322

Q̄(r) 0.054 0.901 0.512 0.804 0.794 0.521

(2,3,3) P ∗
(r)

0.050 0.906 0.585 0.849 0.832 0.567

M∗
(r)

0.056 0.977 0.493 0.868 0.879 0.442

Q̄(r) 0.042 0.785 0.534 0.750 0.716 0.533

4 (0,0,0,6) P ∗
(r)

0.051 0.801 0.602 0.774 0.732 0.656

M∗
(r)

0.043 0.920 0.402 0.735 0.734 0.422

Q̄(r) 0.041 0.803 0.559 0.778 0.738 0.559

(6,0,0,0) P ∗
(r)

0.052 0.972 0.505 0.902 0.900 0.408

M∗
(r)

0.043 0.977 0.418 0.873 0.879 0.317

Q̄(r) 0.051 0.815 0.535 0.771 0.736 0.561

(1,1,2,2) P ∗
(r)

0.052 0.929 0.607 0.875 0.848 0.579

M∗
(r)

0.056 0.977 0.491 0.878 0.881 0.446

Q̄(r) 0.054 0.732 0.604 0.735 0.688 0.640
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Power comparison under progressive censoring for n1 = n2 = 10 with θ = 1.0

r PCS Test l.o.s. Exp(1) N(0,1) G(10) LN(0.1) EV
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0.050 0.906 0.585 0.849 0.832 0.567

M∗
(r)
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Power comparison under progressive censoring for n1 = n2 = 10 with θ = 1.0

r PCS Test l.o.s. Exp(1) N(0,1) G(10) LN(0.1) EV

5 (0,0,0,0,5) P ∗
(r)

0.051 0.823 0.625 0.783 0.741 0.711

M∗
(r)

0.045 0.920 0.403 0.735 0.734 0.425

Q̄(r) 0.041 0.863 0.659 0.850 0.821 0.655

(5,0,0,0,0) P ∗
(r)

0.052 0.966 0.544 0.902 0.896 0.458

M∗
(r)

0.053 0.976 0.463 0.874 0.883 0.417

Q̄(r) 0.065 0.785 0.617 0.789 0.752 0.646

(1,1,1,1,1) P ∗
(r)

0.049 0.899 0.629 0.843 0.812 0.6385

M∗
(r)

0.070 0.976 0.536 0.885 0.888 0.5066

Q̄(r) 0.039 0.579 0.546 0.609 0.573 0.6142

6 (0,0,0,0,0,4) P ∗
(r)

0.049 0.792 0.632 0.764 0.728 0.740

M∗
(r)

0.045 0.920 0.403 0.735 0.734 0.425

Q̄(r) 0.049 0.757 0.609 0.768 0.735 0.631

(4,0,0,0,0,0) P ∗
(r)

0.052 0.959 0.575 0.897 0.894 0.513

M∗
(r)

0.049 0.978 0.445 0.872 0.881 0.399

Q̄(r) 0.057 0.639 0.592 0.655 0.626 0.671

(0,1,1,1,1,0) P ∗
(r)

0.053 0.869 0.649 0.831 0.800 0.683

M∗
(r)

0.041 0.915 0.396 0.738 0.745 0.419

Q̄(r) 0.040 0.506 0.525 0.534 0.500 0.644
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Power comparison under progressive censoring for n1 = n2 = 20 with θ = 1.0

r PCS Test l.o.s. Exp(1) N(0,1) G(10) LN(0.1) EV

3 (0,0,17) P ∗
(r)

0.050 0.999 0.738 0.991 0.354 0.596

M∗
(r)

0.044 1.000 0.611 0.988 0.273 0.489

Q̄(r) 0.042 0.999 0.713 0.991 0.332 0.552

(17,0,0) P ∗
(r)

0.051 1.000 0.591 0.994 0.998 0.395

M∗
(r)

0.053 1.000 0.560 0.993 0.998 0.340

Q̄(r) 0.043 0.991 0.511 0.914 0.915 0.503

(5,6,6) P ∗
(r)

0.051 1.000 0.740 0.994 0.994 0.613

M∗
(r)

0.052 1.000 0.619 0.987 0.993 0.519

Q̄(r) 0.046 0.994 0.704 0.971 0.964 0.601

4 (0,0,0,16) P ∗
(r)

0.050 0.998 0.778 0.989 0.361 0.683

M∗
(r)

0.054 1.000 0.643 0.988 0.293 0.559

Q̄(r) 0.044 0.998 0.763 0.989 0.356 0.634

(16,0,0,0) P ∗
(r)

0.050 1.000 0.605 0.995 0.997 0.410

M∗
(r)

0.053 1.000 0.551 0.994 0.997 0.339

Q̄(r) 0.043 0.939 0.577 0.888 0.865 0.565

(4,4,4,4) P ∗
(r)

0.046 0.999 0.770 0.993 0.991 0.670

M∗
(r)

0.051 1.000 0.628 0.987 0.992 0.516

Q̄(r) 0.053 0.990 0.776 0.976 0.966 0.691
59



Power comparison under progressive censoring for n1 = n2 = 20 with θ = 1.0

r PCS Test l.o.s. Exp(1) N(0,1) G(10) LN(0.1) EV

5 (0,0,0,0,15) P ∗
(r)

0.050 0.996 0.800 0.984 0.358 0.750

M∗
(r)

0.044 1.000 0.573 0.966 0.225 0.541

Q̄(r) 0.045 0.996 0.791 0.986 0.365 0.694

(15,0,0,0,0) P ∗
(r)

0.050 1.000 0.641 0.996 0.999 0.455

M∗
(r)

0.053 1.000 0.558 0.994 0.998 0.362

Q̄(r) 0.044 0.883 0.629 0.859 0.819 0.630

(3,3,3,3,3) P ∗
(r)

0.050 0.999 0.812 0.992 0.990 0.741

M∗
(r)

0.050 1.000 0.629 0.986 0.993 0.536

Q̄(r) 0.048 0.966 0.784 0.954 0.929 0.750

6 (0,0,0,0,0,14) P ∗
(r)

0.050 0.991 0.823 0.978 0.360 0.802

M∗
(r)

0.049 1.000 0.580 0.966 0.231 0.564

Q̄(r) 0.043 0.991 0.807 0.981 0.362 0.738

(14,0,0,0,0,0) P ∗
(r)

0.051 1.000 0.655 0.996 0.997 0.487

M∗
(r)

0.055 1.000 0.571 0.994 0.999 0.417

Q̄(r) 0.049 0.860 0.683 0.856 0.818 0.689

(2,2,3,3,2,2) P ∗
(r)

0.049 0.998 0.828 0.991 0.987 0.785

M∗
(r)

0.050 1.000 0.629 0.988 0.994 0.541

Q̄(r) 0.049 0.908 0.788 0.899 0.868 0.798
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Conclusions

• From the simulation results, the statistic Q̄(r) is in
general more powerful than the precedence, maximal
precedence, and the weighted maximal precedence
test statistics.

• Moreover, it is also more powerful than the weighted
precedence statistic in the case of symmetric or near
symmetric distributions while it is slightly less
powerful than the minimal Wilcoxon-type rank-sum
precedence statistic.
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Conclusions

• However, the minimal Wilcoxon-type rank-sum
precedence statistic handles only conventional
Type-II censoring case but not the progressively
Type-II censoring case.

• Though the proposed statistic Q̄(r) is slightly less
powerful than the minimal Wilcoxon-type rank-sum
precedence statistic, it has the advantage that it is
applicable for conventional Type-II censoring as well
as progressively Type-II censoring cases.
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