# Permanents, Order Statistics, Outliers and Robustness 

## Prof. N. Balakrishnan

Dept. of Mathematics \& Statistics
McMaster University
Hamilton, Canada
bala@mcmaster.ca

## Based on the Recent Article

## Based on the Recent Article

"Permanents, Order Statistics, Outliers, and Robustness",
Revista Matemática Complutense,

$$
\text { 20, } 7 \text { - } 107 \text { (2007). }
$$

## Roadmap

1. Order Statistics
2. Single-Outlier Model
3. Permanents
4. INID Model
5. Multiple-Outlier Model
6. Exponential Case
7. Robustness Issue
8. Other Cases
9. Bibliography

## Order Statistics

$\square$ Let $X_{1}, \cdots, X_{n}$ be $n$ independent identically distributed (IID) random variables from a popln. with cumulative distribution function (cdf) $F(x)$ and an absolutely continuous probability density function (pdf) $f(x)$.

## Order Statistics

$\square$ Let $X_{1}, \cdots, X_{n}$ be $n$ independent identically distributed (IID) random variables from a popln. with cumulative distribution function (cdf) $F(x)$ and an absolutely continuous probability density function (pdf) $f(x)$.

■ If we arrange these $X_{i}$ 's in increasing order of magnitude, we obtain the so-called order statistics, denoted by

$$
X_{1: n} \leq X_{2: n} \leq \cdots \leq X_{n: n},
$$

which are clearly dependent.

## Order Statistics (cont.)

■ Using multinomial argument, we readily have for

$$
r=1, \cdots, n
$$

$$
\begin{aligned}
\operatorname{Pr} & \left(x<X_{r: n} \leq x+\delta x\right) \\
= & \frac{n!}{(r-1)!(n-r)!}\{F(x)\}^{r-1}\{F(x+\delta x)-F(x)\} \\
& \times\{1-F(x+\delta x)\}^{n-r}+O\left((\delta x)^{2}\right) .
\end{aligned}
$$

## Order Statistics (cont.)

■ Using multinomial argument, we readily have for

$$
r=1, \cdots, n
$$

$$
\begin{aligned}
\operatorname{Pr} & \left(x<X_{r: n} \leq x+\delta x\right) \\
= & \frac{n!}{(r-1)!(n-r)!}\{F(x)\}^{r-1}\{F(x+\delta x)-F(x)\} \\
& \times\{1-F(x+\delta x)\}^{n-r}+O\left((\delta x)^{2}\right) .
\end{aligned}
$$

■ From this, we obtain the pdf of $X_{r: n}$ as (for $x \in \boldsymbol{R}$ )

$$
f_{r: n}(x)=\frac{n!}{(r-1)!(n-r)!}\{F(x)\}^{r-1}\{1-F(x)\}^{n-r} f(x) .
$$

## Order Statistics (cont.)

$\square$ Similarly, we obtain the joint pdf of $\left(X_{r: n}, X_{s: n}\right)$ as (for $1 \leq r<s \leq n$ and $x<y$ )

$$
\begin{aligned}
f_{r, s: n}(x, y)= & \frac{n!}{(r-1)!(s-r-1)!(n-s)!}\{F(x)\}^{r-1} f(x) \\
& \times\{F(y)-F(x)\}^{s-r-1}\{1-F(y)\}^{n-s} f(y) .
\end{aligned}
$$

## Order Statistics (cont.)

■ Similarly, we obtain the joint pdf of $\left(X_{r: n}, X_{s: n}\right)$ as (for $1 \leq r<s \leq n$ and $x<y$ )

$$
\begin{aligned}
f_{r, s: n}(x, y)= & \frac{n!}{(r-1)!(s-r-1)!(n-s)!}\{F(x)\}^{r-1} f(x) \\
& \times\{F(y)-F(x)\}^{s-r-1}\{1-F(y)\}^{n-s} f(y) .
\end{aligned}
$$

■ From the pdf and joint pdf, we can derive, for example, means, variances and covariances of order statistics, and also study their dependence structure.

## Order Statistics (cont.)

■ Similarly, we obtain the joint pdf of $\left(X_{r: n}, X_{s: n}\right)$ as (for $1 \leq r<s \leq n$ and $x<y$ )

$$
\begin{aligned}
f_{r, s: n}(x, y)= & \frac{n!}{(r-1)!(s-r-1)!(n-s)!}\{F(x)\}^{r-1} f(x) \\
& \times\{F(y)-F(x)\}^{s-r-1}\{1-F(y)\}^{n-s} f(y) .
\end{aligned}
$$

$■$ From the pdf and joint pdf, we can derive, for example, means, variances and covariances of order statistics, and also study their dependence structure.
$■$ The area of order statistics has a long and rich history, and a very vast literature.

## Order Statistics (cont.)

■ Some key references are the books by

## Order Statistics (cont.)

■ Some key references are the books by
■ H.A. David (1970, 1981)
■ B. Arnold \& N. Balakrishnan (1989)
$■$ N. Balakrishnan \& A.C. Cohen (1991)
■ B. Arnold, N. Balakrishnan \& H.N. Nagaraja (1992)
■ N. Balakrishnan \& C.R. Rao (1998 a,b)
■ H.A. David \& H.N. Nagaraja (2003)

## Order Statistics (cont.)

■ Some key references are the books by
■ H.A. David (1970, 1981)
■ B. Arnold \& N. Balakrishnan (1989)
$■$ N. Balakrishnan \& A.C. Cohen (1991)

- B. Arnold, N. Balakrishnan \& H.N. Nagaraja (1992)
- N. Balakrishnan \& C.R. Rao (1998 a,b)
- H.A. David \& H.N. Nagaraja (2003)

■ Among the many known results, the triangle rule is

$$
\begin{aligned}
& \text { (for } 1 \leq r \leq n-1) \\
& r f_{r+1: n}(x)+(n-r) f_{r: n}(x)=n f_{r: n-1}(x) \quad \forall x \in \boldsymbol{R} .
\end{aligned}
$$

## Order Statistics (cont.)

Similarly, the rectangle rule is $(2 \leq r<s \leq n, x<y)$

$$
\begin{aligned}
& (r-1) f_{r, s: n}(x, y)+(s-r) f_{r-1, s: n}(x, y) \\
& \quad+(n-s+1) f_{r-1, s-1: n}(x, y)=n f_{r-1, s-1: n-1}(x, y)
\end{aligned}
$$

## Order Statistics (cont.)

■ Similarly, the rectangle rule is $(2 \leq r<s \leq n, x<y)$

$$
\begin{aligned}
& (r-1) f_{r, s: n}(x, y)+(s-r) f_{r-1, s: n}(x, y) \\
& \quad+(n-s+1) f_{r-1, s-1: n}(x, y)=n f_{r-1, s-1: n-1}(x, y)
\end{aligned}
$$

- Among many more interesting results is the following.


## Order Statistics (cont.)

■ Similarly, the rectangle rule is $(2 \leq r<s \leq n, x<y)$

$$
\begin{aligned}
& (r-1) f_{r, s: n}(x, y)+(s-r) f_{r-1, s: n}(x, y) \\
& \quad+(n-s+1) f_{r-1, s-1: n}(x, y)=n f_{r-1, s-1: n-1}(x, y)
\end{aligned}
$$

- Among many more interesting results is the following.
- Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample from a symmetric (about 0) population with pdf $f(x)$, $\operatorname{cdf} F(x)$. Let $Y_{1}, Y_{2}, \cdots, Y_{n}$ be a random sample from the corresponding folded distribution with pdf and cdf

$$
g(x)=2 f(x) \quad \text { and } \quad G(x)=2 F(x)-1 \text { for } x>0 .
$$

## Order Statistics (cont.)

Let $X_{r: n}$ and $Y_{r: n}$ be the corresponding order statistics, and $\left(\mu_{r: n}^{(k)}, \mu_{r, s: n}\right)$ and $\left(\nu_{r: n}^{(k)}, \nu_{r, s: n}\right)$ denote their single and product moments, respectively. We then have:

## Order Statistics (cont.)

Let $X_{r: n}$ and $Y_{r: n}$ be the corresponding order statistics, and $\left(\mu_{r: n}^{(k)}, \mu_{r, s: n}\right)$ and $\left(\nu_{r: n}^{(k)}, \nu_{r, s: n}\right)$ denote their single and product moments, respectively. We then have:

$$
\mu_{r: n}^{(k)}=\frac{1}{2^{n}}\left\{\sum_{i=0}^{r-1}\binom{n}{i} \nu_{r-i: n-i}^{(k)}+(-1)^{k} \sum_{i=r}^{n}\binom{n}{i} \nu_{i-r+1: i}^{(k)}\right\} ;
$$

## Order Statistics (cont.)

Let $X_{r: n}$ and $Y_{r: n}$ be the corresponding order statistics, and $\left(\mu_{r: n}^{(k)}, \mu_{r, s: n}\right)$ and $\left(\nu_{r: n}^{(k)}, \nu_{r, s: n}\right)$ denote their single and product moments, respectively. We then have:

$$
\begin{aligned}
\mu_{r: n}^{(k)}= & \frac{1}{2^{n}}\left\{\begin{array}{c}
\left.\sum_{i=0}^{r-1}\binom{n}{i} \nu_{r-i: n-i}^{(k)}+(-1)^{k} \sum_{i=r}^{n}\binom{n}{i} \nu_{i-r+1: i}^{(k)}\right\} ; \\
\mu_{r, s: n}= \\
\frac{1}{2^{n}}\left\{\sum_{i=0}^{r-1}\binom{n}{i} \nu_{r-i, s-i: n-i}+\sum_{i=s}^{n}\binom{n}{i} \nu_{i-s+1, i-r+1: i}\right. \\
\\
\left.-\sum_{i=r}^{s-1}\binom{n}{i} \nu_{i-r+1: i} \nu_{s-i: n-i}\right\} .
\end{array}\right.
\end{aligned}
$$

## Order Statistics (cont.)

- Prominent and most significant applications of order statistics include:


## Order Statistics (cont.)

■ Prominent and most significant applications of order statistics include:

- Parametric Inference
- Nonparametric Inference
- Robust Inference


## Order Statistics (cont.)

■ Prominent and most significant applications of order statistics include:

- Parametric Inference

■ Nonparametric Inference

- Robust Inference

■ For example, in the area of Robust Inference, order statistics are explicitly present in

## Order Statistics (cont.)

■ Prominent and most significant applications of order statistics include:

- Parametric Inference

■ Nonparametric Inference

- Robust Inference

■ For example, in the area of Robust Inference, order statistics are explicitly present in

- Trimmed Means
- Winsorized Means
- Linearly Weighted Means, etc.


## Single-Outlier Model

■ It is natural to examine the sensitivity of these robust estimators when outliers are present in the sample.

## Single-Outlier Model

- It is natural to examine the sensitivity of these robust estimators when outliers are present in the sample.
$\square$ An outlier is an observation that is distinctly different from bulk of the data.


## Single-Outlier Model

- It is natural to examine the sensitivity of these robust estimators when outliers are present in the sample.
$\square$ An outlier is an observation that is distinctly different from bulk of the data.
- A Single-Outlier Model (S-O Model) simply stipulates that the sample contains IID observations $X_{1}, \cdots, X_{n-1}$ from a pdf $f(x)$ and one independent observation $Y$ from another pdf $g(x)$.


## Single-Outlier Model

- It is natural to examine the sensitivity of these robust estimators when outliers are present in the sample.
$\square$ An outlier is an observation that is distinctly different from bulk of the data.
- A Single-Outlier Model (S-O Model) simply stipulates that the sample contains IID observations $X_{1}, \cdots, X_{n-1}$ from a pdf $f(x)$ and one independent observation $Y$ from another pdf $g(x)$.

■ While $f(\cdot)$ and $g(\cdot)$ can be any two densities, it is common to assume that $g(x)$ corresponds to a scale and/or location shift of $f(x)$.

## S-O Model (cont.)

■ Let $Z_{1: n} \leq Z_{2: n} \leq \cdots \leq Z_{n: n}$ be the order statistics obtained by arranging $\left(X_{1}, \cdots, X_{n-1}, Y\right)$ in increasing order of magnitude.

## S-O Model (cont.)

■ Let $Z_{1: n} \leq Z_{2: n} \leq \cdots \leq Z_{n: n}$ be the order statistics obtained by arranging $\left(X_{1}, \cdots, X_{n-1}, Y\right)$ in increasing order of magnitude.
$\square$ As in the case of order statistics, using multinomial arguments and realizing that the outlier can be in any one of three intervals

## S-O Model (cont.)

$\square$ Let $Z_{1: n} \leq Z_{2: n} \leq \cdots \leq Z_{n: n}$ be the order statistics obtained by arranging $\left(X_{1}, \cdots, X_{n-1}, Y\right)$ in increasing order of magnitude.
$\square$ As in the case of order statistics, using multinomial arguments and realizing that the outlier can be in any one of three intervals

$$
(-\infty, x], \quad(x, x+\delta x] \quad \text { and } \quad(x+\delta x, \infty)
$$

## S-O Model (cont.)

$■$ Let $Z_{1: n} \leq Z_{2: n} \leq \cdots \leq Z_{n: n}$ be the order statistics obtained by arranging $\left(X_{1}, \cdots, X_{n-1}, Y\right)$ in increasing order of magnitude.
$\square$ As in the case of order statistics, using multinomial arguments and realizing that the outlier can be in any one of three intervals

$$
(-\infty, x], \quad(x, x+\delta x] \quad \text { and } \quad(x+\delta x, \infty)
$$

we obtain for $r=1,2, \cdots, n$,

## S-O Model (cont.)

$$
\begin{aligned}
& \operatorname{Pr}\left(x<Z_{r: n} \leq x+\delta x\right) \\
&= \frac{(n-1)!}{(r-2)!(n-r)!}\{F(x)\}^{r-2} G(x) \\
& \quad \times\{F(x+\delta x)-F(x)\}\{1-F(x+\delta x)\}^{n-r} \\
&+ \frac{(n-1)!}{(r-1)!(n-r)!}\{F(x)\}^{r-1} \\
& \quad \times\{G(x+\delta x)-G(x)\}\{1-F(x+\delta x)\}^{n-r} \\
&+ \frac{(n-1)!}{(r-1)!(n-r-1)!}\{F(x)\}^{r-1}\{F(x+\delta x)-F(x)\} \\
& \quad \times\{1-F(x+\delta x)\}^{n-r-1}\{1-G(x+\delta x)\} \\
&+O\left((\delta x)^{2}\right),
\end{aligned}
$$

## S-O Model (cont.)

$$
\begin{aligned}
& \operatorname{Pr}\left(x<Z_{r: n} \leq x+\delta x\right) \\
&= \frac{(n-1)!}{(r-2)!(n-r)!}\{F(x)\}^{r-2} G(x) \\
& \quad \times\{F(x+\delta x)-F(x)\}\{1-F(x+\delta x)\}^{n-r} \\
&+ \frac{(n-1)!}{(r-1)!(n-r)!}\{F(x)\}^{r-1} \\
& \quad \times\{G(x+\delta x)-G(x)\}\{1-F(x+\delta x)\}^{n-r} \\
&+ \frac{(n-1)!}{(r-1)!(n-r-1)!}\{F(x)\}^{r-1}\{F(x+\delta x)-F(x)\} \\
& \quad \times\{1-F(x+\delta x)\}^{n-r-1}\{1-G(x+\delta x)\} \\
&+O\left((\delta x)^{2}\right),
\end{aligned}
$$

from which we obtain the pdf of $Z_{r: n}$ as

## S-O Model (cont.)

$$
\begin{aligned}
f_{r: n}(x)= & \frac{(n-1)!}{(r-2)!(n-r)!}\{F(x)\}^{r-2} G(x) \\
& +\frac{(n-1)!}{(r-1)!(n-r)!}\{1-F(x)\}^{n-r} \\
& +\frac{(n-1)!}{(r-1)!(n-r-1)!}\{F(x)\}^{r-1} g(x)\{1-F(x)\}^{n-r} \\
& \quad \times\{1-F(x)\}^{n-r-1}\{1-G(x)\},
\end{aligned}
$$

## S-O Model (cont.)

$$
\begin{aligned}
f_{r: n}(x)= & \frac{(n-1)!}{(r-2)!(n-r)!}\{F(x)\}^{r-2} G(x) \\
& +\frac{(n-1)!}{(r-1)!(n-r)!}\{1-F(x)\}^{n-r} \\
& +\frac{(n-1)!}{(r-1)!(n-r-1)!}\{F(x)\}^{r-1} g(x)\{1-F(x)\}^{n-r} f(x) \\
& \quad \times\{1-F(x)\}^{n-r-1}\{1-G(x)\},
\end{aligned}
$$

where first and last terms vanish when $r=1$ and $n$.

## S-O Model (cont.)

$$
\begin{aligned}
f_{r: n}(x)= & \frac{(n-1)!}{(r-2)!(n-r)!}\{F(x)\}^{r-2} G(x) \\
& \quad \times f(x)\{1-F(x)\}^{n-r} \\
& +\frac{(n-1)!}{(r-1)!(n-r)!}\{F(x)\}^{r-1} g(x)\{1-F(x)\}^{n-r} \\
& +\frac{(n-1)!}{(r-1)!(n-r-1)!}\{F(x)\}^{r-1} f(x) \\
& \quad \times\{1-F(x)\}^{n-r-1}\{1-G(x)\},
\end{aligned}
$$

where first and last terms vanish when $r=1$ and $n$.
$■$ Similarly, the joint density of $\left(Z_{r: n}, Z_{s: n}\right)$ will have five terms depending on which of the five intervals the outlier $Y$ falls in.

## S-O Model (cont.)

■ Naturally, the densities will get even more complicated when the number of outliers increases.

## S-O Model (cont.)

■ Naturally, the densities will get even more complicated when the number of outliers increases.

■ For example, if there are two outliers in the sample,

## S-O Model (cont.)

■ Naturally, the densities will get even more complicated when the number of outliers increases.

- For example, if there are two outliers in the sample,
- marginal density will have 5 terms
- joint density will have 13 terms.


## S-O Model (cont.)

■ Naturally, the densities will get even more complicated when the number of outliers increases.

- For example, if there are two outliers in the sample,
- marginal density will have 5 terms
- joint density will have 13 terms.
$\square$ For this reason, majority of the work in outlier literature deal with only Single-Outlier Model; see


## S-O Model (cont.)

■ Naturally, the densities will get even more complicated when the number of outliers increases.

- For example, if there are two outliers in the sample,
- marginal density will have 5 terms
- joint density will have 13 terms.
$\square$ For this reason, majority of the work in outlier literature deal with only Single-Outlier Model; see
V. Barnett and T. Lewis (1993). Outliers in Statistical Data, 3rd edition, John Wiley \& Sons.


## S-O Model (cont.)

■ Naturally, the densities will get even more complicated when the number of outliers increases.

- For example, if there are two outliers in the sample,
- marginal density will have 5 terms
- joint density will have 13 terms.

■ For this reason, majority of the work in outlier literature deal with only Single-Outlier Model; see
V. Barnett and T. Lewis (1993). Outliers in Statistical Data, 3rd edition, John Wiley \& Sons.
■ We, therefore, need a different approach to handle multiple outliers.

## Permanents

■ Suppose $\boldsymbol{A}=\left(\left(a_{i, j}\right)\right)$ is a square matrix of order $n$. Then, the permanent of the matrix $\boldsymbol{A}$ is defined to be

$$
\operatorname{Per}[\boldsymbol{A}]=\sum_{P} \prod_{i=1}^{n} a_{i, P(i)},
$$

where $\sum_{P}$ denotes the sum over all $n$ ! permutations $(P(1), P(2), \ldots, P(n))$ of $(1,2, \ldots, n)$.

## Permanents

- Suppose $\boldsymbol{A}=\left(\left(a_{i, j}\right)\right)$ is a square matrix of order $n$. Then, the permanent of the matrix $\boldsymbol{A}$ is defined to be

$$
\operatorname{Per}[\boldsymbol{A}]=\sum_{P} \prod_{i=1}^{n} a_{i, P(i)},
$$

where $\sum_{P}$ denotes the sum over all $n$ ! permutations $(P(1), P(2), \ldots, P(n))$ of $(1,2, \ldots, n)$.
$\square$ The above definition is similar to that of a determinant, except that it does not have the alternating sign.

## Permanents

■ Suppose $\boldsymbol{A}=\left(\left(a_{i, j}\right)\right)$ is a square matrix of order $n$. Then, the permanent of the matrix $\boldsymbol{A}$ is defined to be

$$
\operatorname{Per}[\boldsymbol{A}]=\sum_{P} \prod_{i=1}^{n} a_{i, P(i)},
$$

where $\sum_{P}$ denotes the sum over all $n$ ! permutations $(P(1), P(2), \ldots, P(n))$ of $(1,2, \ldots, n)$.
$\square$ The above definition is similar to that of a determinant, except that it does not have the alternating sign.
$\square$ So, it is not surprising to see the following basic properties of permanents.

## Permanents (cont.)

- $\operatorname{Per}[\boldsymbol{A}]$ is unchanged if the rows or columns of $\boldsymbol{A}$ are permuted.


## Permanents (cont.)

- $\operatorname{Per}[\boldsymbol{A}]$ is unchanged if the rows or columns of $\boldsymbol{A}$ are permuted.
- If $\boldsymbol{A}(i, j)$ denotes the sub-matrix of order $n-1$ obtained from $\boldsymbol{A}$ by deleting the $\mathrm{i}^{\text {th }}$ row and the $\mathrm{j}^{\text {th }}$ column, then

$$
\operatorname{Per}[\boldsymbol{A}]=\sum_{i=1}^{n} a_{i, j} \operatorname{Per}[\boldsymbol{A}(i, j)]=\sum_{j=1}^{n} a_{i, j} \operatorname{Per}[\boldsymbol{A}(i, j)] ;
$$

i.e., permanent is expandable by any row (column).

## Permanents (cont.)

- $\operatorname{Per}[\boldsymbol{A}]$ is unchanged if the rows or columns of $\boldsymbol{A}$ are permuted.
- If $\boldsymbol{A}(i, j)$ denotes the sub-matrix of order $n-1$ obtained from $\boldsymbol{A}$ by deleting the $\mathrm{i}^{\text {th }}$ row and the $j^{\text {th }}$ column, then

$$
\operatorname{Per}[\boldsymbol{A}]=\sum_{i=1}^{n} a_{i, j} \operatorname{Per}[\boldsymbol{A}(i, j)]=\sum_{j=1}^{n} a_{i, j} \operatorname{Per}[\boldsymbol{A}(i, j)] ;
$$

i.e., permanent is expandable by any row (column).

- Due to the absence of the alternating sign, a permanent in which two or more rows (or columns) are repeated need not be zero (unlike a determinant).


## Permanents (cont.)

- If $\boldsymbol{A}^{*}$ denotes the matrix obtained from $\boldsymbol{A}$ simply by replacing the $i^{\text {th }}$ row by $c a_{i, j}(j=1, \ldots, n)$, then

$$
\operatorname{Per}\left[\boldsymbol{A}^{*}\right]=c \operatorname{Per}[\boldsymbol{A}] .
$$

## Permanents (cont.)

- If $\boldsymbol{A}^{*}$ denotes the matrix obtained from $\boldsymbol{A}$ simply by replacing the $i^{\text {th }}$ row by $c a_{i, j}(j=1, \ldots, n)$, then

$$
\operatorname{Per}\left[\boldsymbol{A}^{*}\right]=c \operatorname{Per}[\boldsymbol{A}] .
$$

- If $\boldsymbol{A}^{* *}$ denotes the matrix obtained from $\boldsymbol{A}$ by replacing the $\mathrm{i}^{\text {th }}$ row by $a_{i, j}+b_{i, j}(j=1, \ldots, n)$ and $\boldsymbol{A}^{*}$ the matrix obtained from $\boldsymbol{A}$ by replacing the $\mathrm{i}^{\text {th }}$ row by $b_{i, j}(j=1, \ldots, n)$, then

$$
\operatorname{Per}\left[\boldsymbol{A}^{* *}\right]=\operatorname{Per}[\boldsymbol{A}]+\operatorname{Per}\left[\boldsymbol{A}^{*}\right] .
$$

## Permanents (cont.)

■ Let

$$
\left.\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)\right\} i_{1}
$$

denote a matrix in which first row is repeated $i_{1}$ times, second row is repeated $i_{2}$ times, and so on.

## Permanents (cont.)

■ Let

$$
\left.\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)\right\} i_{1}
$$

denote a matrix in which first row is repeated $i_{1}$ times, second row is repeated $i_{2}$ times, and so on.
$\square$ We will now use the idea of permanents to study order statistics from $n$ independent non-identically distributed (INID) variables $X_{i} \sim\left(F_{i}(x), f_{i}(x)\right), i=1, \cdots, n$.

## INID Model

■ Using multinomial-type arguments, it can be shown in this case that the pdf of $X_{r: n}(1 \leq r \leq n)$ is

## INID Model

■ Using multinomial-type arguments, it can be shown in this case that the pdf of $X_{r: n}(1 \leq r \leq n)$ is

$$
\begin{aligned}
f_{r: n}(x)= & \frac{1}{(r-1)!(n-r)!} \sum_{P} \prod_{\ell=1}^{r-1} F_{P(\ell)}(x) f_{P(r)}(x) \\
& \times \prod_{\ell=r+1}^{n}\left\{1-F_{P(\ell)}(x)\right\},
\end{aligned}
$$

where $(P(1), \cdots, P(r-1)), P(r),(P(r+1), \cdots, P(n))$ are mutually exclusive subsets of permutation $(P(1), \cdots, P(n))$ of $(1, \cdots, n)$.

## INID Model (cont.)

■ Similarly, joint density of $\left(X_{r: n}, X_{s: n}\right), 1 \leq r<s \leq n$, is

## INID Model (cont.)

$\square$ Similarly, joint density of $\left(X_{r: n}, X_{s: n}\right), 1 \leq r<s \leq n$, is

$$
\begin{aligned}
f_{r, s: n}(x, y)= & \frac{1}{(r-1)!(s-r-1)!(n-s)!} \sum_{P} \prod_{\ell=1}^{r-1} F_{P(\ell)}(x) \\
& \times f_{P(r)}(x) \prod_{\ell=r+1}^{s-1}\left\{F_{P(\ell)}(y)-F_{P(\ell)}(x)\right\} \\
& \times f_{P(s)}(y) \prod_{\ell=s+1}^{n}\left\{1-F_{P(\ell)}(y)\right\}, x<y,
\end{aligned}
$$

where $(P(1), \cdots, P(r-1)), P(r),(P(r+1), \cdots, P(s-1))$, $P(s),(P(s+1), \cdots, P(n))$ are mutually exclusive subsets of permutation $(P(1), \cdots, P(n))$ of $(1, \cdots, n)$.

## INID Model (cont.)

■ Thus, in terms of permanents, the pdf of $X_{r: n}$ can be expressed as

## INID Model (cont.)

■ Thus, in terms of permanents, the pdf of $X_{r: n}$ can be expressed as

$$
\begin{aligned}
& f_{r: n}(x)= \frac{1}{(r-1)!(n-r)!} \\
&\left.\times \operatorname{Per}\left[\begin{array}{ccc}
F_{1}(x) & \cdots & F_{n}(x) \\
f_{1}(x) & \cdots & f_{n}(x) \\
1-F_{1}(x) & \cdots & 1-F_{n}(x)
\end{array}\right]\right\} r-1 \\
&\} 1 \\
&\} n-r
\end{aligned}
$$

for $r=1, \cdots, n$ and $x \in \boldsymbol{R}$.

## INID Model (cont.)

$■$ Similarly, the joint pdf of $\left(X_{r: n}, X_{s: n}\right)$ can be expressed, in terms of permanents, as

## INID Model (cont.)

■ Similarly, the joint pdf of ( $X_{r: n}, X_{s: n}$ ) can be expressed, in terms of permanents, as

$$
\begin{aligned}
f_{r, s: n}(x, y)= & \frac{1}{(r-1)!(s-r-1)!(n-s)!} \\
& \left.\times \operatorname{Per}\left[\begin{array}{ccc}
F_{1}(x) & \cdots & F_{n}(x) \\
f_{1}(x) & \cdots & f_{n}(x) \\
F_{1}(y)-F_{1}(x) & \cdots & F_{n}(y)-F_{n}(x) \\
f_{1}(y) & \cdots & f_{n}(y) \\
1-F_{1}(y) & \cdots & 1-F_{n}(y)
\end{array}\right]\right\} n-s
\end{aligned}
$$

$$
\text { for } 1 \leq r<s \leq n \text { and } x<y \text {. }
$$

## INID Model (cont.)

■ Triangle Rule: For $1 \leq r \leq n-1$ and $x \in \boldsymbol{R}$,

$$
r f_{r+1: n}(x)+(n-r) f_{r: n}(x)=\sum_{i=1}^{n} f_{r: n-1}^{[i]}(x),
$$

where $f_{r: n-1}^{[i]}(x)$ is the pdf of $r^{\text {th }}$ order statistic among $X_{1}, \cdots, X_{n}$ with $X_{i}$ removed.

## INID Model (cont.)

■ Triangle Rule: For $1 \leq r \leq n-1$ and $x \in \boldsymbol{R}$,

$$
r f_{r+1: n}(x)+(n-r) f_{r: n}(x)=\sum_{i=1}^{n} f_{r: n-1}^{[i]}(x),
$$

where $f_{r: n-1}^{[i]}(x)$ is the pdf of $r^{\text {th }}$ order statistic among $X_{1}, \cdots, X_{n}$ with $X_{i}$ removed.

Proof: For $1 \leq r \leq n-1$, we have

$$
\begin{aligned}
r f_{r+1: n}(x)= & \frac{1}{(r-1)!(n-r-1)!} \\
& \left.\times \operatorname{Per}\left[\begin{array}{ccc}
F_{1}(x) & \cdots & F_{n}(x) \\
f_{1}(x) & \cdots & f_{n}(x) \\
1-F_{1}(x) & \cdots & 1-F_{n}(x)
\end{array}\right]\right\} r \begin{array}{l}
\} \\
\} 1 \\
n-r-1
\end{array}
\end{aligned}
$$

## INID Model (cont.)

Expanding the permanent by first row, we get

## INID Model (cont.)

Expanding the permanent by first row, we get

$$
r f_{r+1: n}(x)=\sum_{i=1}^{n} F_{i}(x) f_{r: n-1}^{[i]}(x)
$$

## INID Model (cont.)

Expanding the permanent by first row, we get

$$
r f_{r+1: n}(x)=\sum_{i=1}^{n} F_{i}(x) f_{r: n-1}^{[i]}(x) .
$$

Similarly, by considering the permanent expression of $(n-r) f_{r: n}(x)$ and expanding by last row, we get

## INID Model (cont.)

Expanding the permanent by first row, we get

$$
r f_{r+1: n}(x)=\sum_{i=1}^{n} F_{i}(x) f_{r: n-1}^{[i]}(x) .
$$

Similarly, by considering the permanent expression of $(n-r) f_{r: n}(x)$ and expanding by last row, we get

$$
(n-r) f_{r: n}(x)=\sum_{i=1}^{n}\left\{1-F_{i}(x)\right\} f_{r: n-1}^{[i]}(x) .
$$

## INID Model (cont.)

Expanding the permanent by first row, we get

$$
r f_{r+1: n}(x)=\sum_{i=1}^{n} F_{i}(x) f_{r: n-1}^{[i]}(x)
$$

Similarly, by considering the permanent expression of $(n-r) f_{r: n}(x)$ and expanding by last row, we get

$$
(n-r) f_{r: n}(x)=\sum_{i=1}^{n}\left\{1-F_{i}(x)\right\} f_{r: n-1}^{[i]}(x) .
$$

Adding the above two expressions, we get the result.

## INID Model (cont.)

Proceeding similarly, we can establish the following result.

## INID Model (cont.)

Proceeding similarly, we can establish the following result.

■ Rectangle Rule: For $2 \leq r<s \leq n$ and $x<y$,

$$
\begin{aligned}
& (r-1) f_{r, s: n}(x, y)+(s-r) f_{r-1, s: n}(x, y) \\
& \quad+(n-s+1) f_{r-1, s-1: n}(x, y)=\sum_{i=1}^{n} f_{r-1, s-1: n-1}^{[i]}(x, y),
\end{aligned}
$$

where $f_{r-1, s-1: n-1}^{[i]}(x, y)$ is the joint density of $\left(r^{\text {th }}, s^{\text {th }}\right)$ order statistics among $X_{1}, \cdots, X_{n}$ with $X_{i}$ removed.

## INID Model (cont.)

■ Relations between two sets of OS: Let us consider $X_{i} \sim\left(F_{i}(x), f_{i}(x)\right), i=1, \cdots, n$, as independent random variables, and $X_{1: n} \leq \cdots \leq X_{n: n}$ as the corresponding order statistics.

## INID Model (cont.)

■ Relations between two sets of OS: Let us consider $X_{i} \sim\left(F_{i}(x), f_{i}(x)\right), i=1, \cdots, n$, as independent random variables, and $X_{1: n} \leq \cdots \leq X_{n: n}$ as the corresponding order statistics.

Let $f_{i}(x)$ be all symmetric about 0 .

## INID Model (cont.)

- Relations between two sets of OS: Let us consider $X_{i} \sim\left(F_{i}(x), f_{i}(x)\right), i=1, \cdots, n$, as independent random variables, and $X_{1: n} \leq \cdots \leq X_{n: n}$ as the corresponding order statistics.

Let $f_{i}(x)$ be all symmetric about 0 .
Let $Y_{i} \sim\left(G_{i}(x), g_{i}(x)\right), i=1, \cdots, n$, be the
corresponding folded (about 0 ) variables with

$$
g_{i}(x)=2 f_{i}(x) \text { and } G_{i}(x)=2 F_{i}(x)-1 \text { for } x>0,
$$

and $Y_{1: n} \leq \cdots \leq Y_{n: n}$ be the corresponding order statistics.

## INID Model (cont.)

Let $\left(\mu_{r: n}^{(k)}, \mu_{r, s: n}\right)$ and $\left(\nu_{r: n}^{(k)}, \nu_{r, s: n}\right)$ denote the moments of $\mathrm{OS}\left(X_{1: n} \leq \cdots \leq X_{n: n}\right)$ and $\left(Y_{1: n} \leq \cdots \leq Y_{n: n}\right)$.

## INID Model (cont.)

Let $\left(\mu_{r: n}^{(k)}, \mu_{r, s: n}\right)$ and $\left(\nu_{r: n}^{(k)}, \nu_{r, s: n}\right)$ denote the moments of $\mathrm{OS}\left(X_{1: n} \leq \cdots \leq X_{n: n}\right)$ and $\left(Y_{1: n} \leq \cdots \leq Y_{n: n}\right)$.
$\square$ Then, for $r=1, \cdots, n$ and $k \geq 0$,

## INID Model (cont.)

Let $\left(\mu_{r: n}^{(k)}, \mu_{r, s: n}\right)$ and $\left(\nu_{r: n}^{(k)}, \nu_{r, s: n}\right)$ denote the moments of $\mathrm{OS}\left(X_{1: n} \leq \cdots \leq X_{n: n}\right)$ and $\left(Y_{1: n} \leq \cdots \leq Y_{n: n}\right)$.
$■$ Then, for $r=1, \cdots, n$ and $k \geq 0$,

$$
\begin{aligned}
& \mu_{r: n}^{(k)}=\frac{1}{2^{n}}\left\{\sum_{\ell=0}^{r-1} \sum_{1 \leq i_{1}<\cdots<i_{\ell} \leq n} \nu_{r-\ell: n-\ell}^{(k)\left[i_{1}, \cdots, i_{\ell}\right]}\right. \\
&\left.+(-1)^{k} \sum_{\ell=r}^{n} \sum_{1 \leq i_{1}<\cdots<i_{n-\ell} \leq n} \nu_{\ell-r+1: \ell}^{(k)\left[i_{1}, \cdots, i_{n-\ell}\right]}\right\},
\end{aligned}
$$

where $\nu_{r: n-\ell}^{(k)\left[i_{1}, \cdots, i_{\ell}\right]}$ is the $k^{\text {th }}$ moment of the $r^{\text {th }}$ OS from $Y_{1}, \cdots, Y_{n}$ with $Y_{i_{1}}, \cdots, Y_{i_{\ell}}$ removed.

## INID Model (cont.)

$■$ Similarly, for $1 \leq r<s \leq n$,

## INID Model (cont.)

$■$ Similarly, for $1 \leq r<s \leq n$,

$$
\begin{aligned}
\mu_{r, s: n}= & \frac{1}{2^{n}}\left\{\sum_{\ell=0}^{r-1} \sum_{1 \leq i_{1}<\cdots<i_{\ell} \leq n} \nu_{r-\ell, s-\ell: n-\ell}^{\left[i_{1}, \cdots, i_{\ell}\right]}\right. \\
& +\sum_{\ell=s}^{n} \sum_{1 \leq i_{1}<\cdots<i_{n-\ell} \leq n} \nu_{\ell-s+1, \ell-r+1: \ell}^{\left[i_{1}, \cdots, i_{n-\ell}\right]} \\
& \left.-\sum_{\ell=r}^{s-1} \sum_{1 \leq i_{1}<\cdots<i_{\ell} \leq n} \nu_{s-\ell: n-\ell}^{\left[i_{1}, \cdots, i_{\ell}\right]} \nu_{\ell-r+1: \ell}^{\left[i_{\ell+1}, \cdots, i_{n}\right]}\right\},
\end{aligned}
$$

where $\nu_{r, s: n-\ell}^{\left[i_{1}, \cdots, i_{\ell}\right]}$ is the product moment of the $\left(r^{\text {th }}, s^{\text {th }}\right)$ OS from $Y_{1}, \cdots, Y_{n}$ with $Y_{i_{1}}, \cdots, Y_{i_{\ell}}$ removed.

## Multiple-Outlier Model

$■$ Now, let us consider the $p$-outlier model

$$
F_{1}=\cdots=F_{n-p} \equiv F(x) \text { and } F_{n-p+1}=\cdots=F_{n} \equiv G(x)
$$

## Multiple-Outlier Model

■ Now, let us consider the $p$-outlier model

$$
F_{1}=\cdots=F_{n-p} \equiv F(x) \text { and } F_{n-p+1}=\cdots=F_{n} \equiv G(x) .
$$

- Then, the generalized results of the type presented could be used to carry out exact computations efficiently for multiple-outlier model (M-O Model).


## Multiple-Outlier Model

■ Now, let us consider the $p$-outlier model

$$
F_{1}=\cdots=F_{n-p} \equiv F(x) \text { and } F_{n-p+1}=\cdots=F_{n} \equiv G(x) .
$$

- Then, the generalized results of the type presented could be used to carry out exact computations efficiently for multiple-outlier model (M-O Model).
- For example, the triangle rule becomes

$$
\begin{aligned}
r \mu_{r+1: n}^{(k)}+(n & -r) \mu_{r: n}^{(k)} \\
& =(n-p) \mu_{r: n-1}^{(k)}[p]+p \mu_{r: n-1}^{(k)}[p-1],
\end{aligned}
$$

where $\mu_{r: n-1}^{(k)}[p]$ and $\mu_{r: n-1}^{(k)}[p-1]$ are the moments when there are $p$ and $p-1$ outliers, respectively.

## M-O Model (cont.)

■ In their book Outliers in Statistical Data, Barnett and Lewis (1993, p. 68) have stated

## M-O Model (cont.)

■ In their book Outliers in Statistical Data, Barnett and Lewis (1993, p. 68) have stated
"A study of the multiple-outlier model has been recently carried out by Balakrishnan, who gives a substantial body of results on the moments of order statistics. He indicated that these results can in principle be applied to robustness studies in the multiple-outlier situation, but at the time of writing, we are not aware of any published application. There is much work waiting to be done in this important area."

## Exponential Case

■ Consider the case when the variables $X_{i}(i=1, \cdots, n)$ are independent with

$$
f_{i}(x)=\frac{1}{\theta_{i}} e^{-x / \theta_{i}} \text { and } F_{i}(x)=1-e^{-x / \theta_{i}}, x \geq 0, \theta_{i}>0
$$

## Exponential Case

■ Consider the case when the variables $X_{i}(i=1, \cdots, n)$ are independent with

$$
f_{i}(x)=\frac{1}{\theta_{i}} e^{-x / \theta_{i}} \text { and } F_{i}(x)=1-e^{-x / \theta_{i}}, x \geq 0, \theta_{i}>0
$$

- In this case, the distributions satisfy the differential equations (for $i=1, \cdots, n$ )

$$
f_{i}(x)=\frac{1}{\theta_{i}}\left\{1-F_{i}(x)\right\}, x \geq 0, \theta_{i}>0 .
$$

## Exponential Case

$\square$ Consider the case when the variables $X_{i}(i=1, \cdots, n)$ are independent with

$$
f_{i}(x)=\frac{1}{\theta_{i}} e^{-x / \theta_{i}} \text { and } F_{i}(x)=1-e^{-x / \theta_{i}}, x \geq 0, \theta_{i}>0 .
$$

- In this case, the distributions satisfy the differential equations (for $i=1, \cdots, n$ )

$$
f_{i}(x)=\frac{1}{\theta_{i}}\left\{1-F_{i}(x)\right\}, x \geq 0, \theta_{i}>0
$$

- Then, these differential equations can be used along with the permanents approach to establish the following results for moments of order statistics.


## Exponential Case (cont.)

■ Result 1: For $n=1,2, \cdots$ and $k=0,1,2, \cdots$,

$$
\mu_{1: n}^{(k+1)}=\frac{k+1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}} \mu_{1: n}^{(k)}
$$

## Exponential Case (cont.)

■ Result 1: For $n=1,2, \cdots$ and $k=0,1,2, \cdots$,

$$
\mu_{1: n}^{(k+1)}=\frac{k+1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}} \mu_{1: n}^{(k)}
$$

■ Result 2: For $2 \leq r \leq n$ and $k=0,1,2, \cdots$,

$$
\mu_{r: n}^{(k+1)}=\frac{1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}}\left\{(k+1) \mu_{r: n}^{(k)}+\sum_{i=1}^{n} \frac{1}{\theta_{i}} \mu_{r-1: n-1}^{(k+1)[i]}\right\} .
$$

## Exponential Case (cont.)

■ Result 1: For $n=1,2, \cdots$ and $k=0,1,2, \cdots$,

$$
\mu_{1: n}^{(k+1)}=\frac{k+1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}} \mu_{1: n}^{(k)}
$$

■ Result 2: For $2 \leq r \leq n$ and $k=0,1,2, \cdots$,

$$
\mu_{r: n}^{(k+1)}=\frac{1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}}\left\{(k+1) \mu_{r: n}^{(k)}+\sum_{i=1}^{n} \frac{1}{\theta_{i}} \mu_{r-1: n-1}^{(k+1)[i]}\right\} .
$$

■ Result 3: For $n=2,3, \cdots$,

$$
\mu_{1,2: n}=\frac{1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}}\left\{\mu_{1: n}+\mu_{2: n}\right\} .
$$

## Exponential Case (cont.)

■ Result 4: For $2 \leq r \leq n-1$,

$$
\mu_{r, r+1: n}=\frac{1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}}\left\{\mu_{r: n}+\mu_{r+1: n}+\sum_{i=1}^{n} \frac{1}{\theta_{i}} \mu_{r-1, r: n-1}^{[i]}\right\} .
$$

## Exponential Case (cont.)

■ Result 4: For $2 \leq r \leq n-1$,

$$
\mu_{r, r+1: n}=\frac{1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}}\left\{\mu_{r: n}+\mu_{r+1: n}+\sum_{i=1}^{n} \frac{1}{\theta_{i}} \mu_{r-1, r: n-1}^{[i]}\right\} .
$$

■ Result 5: For $3 \leq s \leq n$,

$$
\mu_{1, s: n}=\frac{1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}}\left\{\mu_{1: n}+\mu_{s: n}\right\} .
$$

## Exponential Case (cont.)

■ Result 4: For $2 \leq r \leq n-1$,

$$
\mu_{r, r+1: n}=\frac{1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}}\left\{\mu_{r: n}+\mu_{r+1: n}+\sum_{i=1}^{n} \frac{1}{\theta_{i}} \mu_{r-1, r: n-1}^{[i]}\right\} .
$$

■ Result 5: For $3 \leq s \leq n$,

$$
\mu_{1, s: n}=\frac{1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}}\left\{\mu_{1: n}+\mu_{s: n}\right\} .
$$

$\square$ Result 6: For $2 \leq r<s \leq n$ and $s-r \geq 2$,

$$
\mu_{r, s: n}=\frac{1}{\sum_{i=1}^{n} \frac{1}{\theta_{i}}}\left\{\mu_{r: n}+\mu_{s: n}+\sum_{i=1}^{n} \frac{1}{\theta_{i}} \mu_{r-1, s-1: n-1}^{[i]}\right\} .
$$

## Exponential Case (cont.)

■ These results give an efficient simple recursive algorithm for the computation of moments of order statistics from a M-O exponential model.

## Exponential Case (cont.)

- These results give an efficient simple recursive algorithm for the computation of moments of order statistics from a M-O exponential model.

■ Let $X_{1}, \cdots, X_{n-p}$ and $X_{n-p+1}, \cdots, X_{n}$ be independent $\operatorname{Exp}(\theta)$ and $\operatorname{Exp}(\tau)$ random variables, with $\theta<\tau$.

## Exponential Case (cont.)

- These results give an efficient simple recursive algorithm for the computation of moments of order statistics from a M-O exponential model.

■ Let $X_{1}, \cdots, X_{n-p}$ and $X_{n-p+1}, \cdots, X_{n}$ be independent $\operatorname{Exp}(\theta)$ and $\operatorname{Exp}(\tau)$ random variables, with $\theta<\tau$.

- Then, Results 1 and 2, for example, reduce to


## Exponential Case (cont.)

- These results give an efficient simple recursive algorithm for the computation of moments of order statistics from a M-O exponential model.

■ Let $X_{1}, \cdots, X_{n-p}$ and $X_{n-p+1}, \cdots, X_{n}$ be independent $\operatorname{Exp}(\theta)$ and $\operatorname{Exp}(\tau)$ random variables, with $\theta<\tau$.

- Then, Results 1 and 2, for example, reduce to

$$
\begin{aligned}
\mu_{1: n}^{(k+1)}[p]= & \frac{k+1}{\frac{n-p}{\theta}+\frac{p}{\tau}} \mu_{1: n}^{(k)}[p] ; \\
\mu_{r: n}^{(k+1)}[p]= & \frac{1}{\frac{n-p}{\theta}+\frac{p}{\tau}}\left\{(k+1) \mu_{r: n}^{(k)}[p]+\frac{n-p}{\theta} \mu_{r-1: n-1}^{(k+1)}[p]\right. \\
& \left.\quad+\frac{p}{\tau} \mu_{r-1: n-1}^{(k+1)}[p-1]\right\} .
\end{aligned}
$$

## Exponential Case (cont.)

■ Thus, starting with the IID results, viz.,

## Exponential Case (cont.)

■ Thus, starting with the IID results, viz.,

$$
\begin{aligned}
\mu_{r: n}[0] & =\theta \sum_{i=1}^{r} \frac{1}{n-i+1} \\
\mu_{r: n}^{(2)}[0] & =\theta^{2}\left\{\sum_{i=1}^{r} \frac{1}{(n-i+1)^{2}}+\left(\sum_{i=1}^{r} \frac{1}{n-i+1}\right)^{2}\right\} \\
\mu_{r, s: n}[0] & =\theta^{2}\left\{\sum_{i=1}^{r} \frac{1}{(n-i+1)^{2}}+\left(\sum_{i=1}^{r} \frac{1}{n-i+1}\right)\left(\sum_{j=1}^{s} \frac{1}{n-j+1}\right)\right\}
\end{aligned}
$$

## Exponential Case (cont.)

■ Thus, starting with the IID results, viz.,

$$
\begin{aligned}
& \mu_{r: n}[0]=\theta \sum_{i=1}^{r} \frac{1}{n-i+1} \\
& \mu_{r: n}^{(2)}[0]=\theta^{2}\left\{\sum_{i=1}^{r} \frac{1}{(n-i+1)^{2}}+\left(\sum_{i=1}^{r} \frac{1}{n-i+1}\right)^{2}\right\} \\
& \mu_{r, s: n}[0]=\theta^{2}\left\{\sum_{i=1}^{r} \frac{1}{(n-i+1)^{2}}+\left(\sum_{i=1}^{r} \frac{1}{n-i+1}\right)\left(\sum_{j=1}^{s} \frac{1}{n-j+1}\right)\right\}
\end{aligned}
$$

first two single and product moments of OS from a single-outlier model can be produced.

## Exponential Case (cont.)

■ Thus, starting with the IID results, viz.,

$$
\begin{aligned}
\mu_{r: n}[0] & =\theta \sum_{i=1}^{r} \frac{1}{n-i+1} \\
\mu_{r: n}^{(2)}[0] & =\theta^{2}\left\{\sum_{i=1}^{r} \frac{1}{(n-i+1)^{2}}+\left(\sum_{i=1}^{r} \frac{1}{n-i+1}\right)^{2}\right\} \\
\mu_{r, s: n}[0] & =\theta^{2}\left\{\sum_{i=1}^{r} \frac{1}{(n-i+1)^{2}}+\left(\sum_{i=1}^{r} \frac{1}{n-i+1}\right)\left(\sum_{j=1}^{s} \frac{1}{n-j+1}\right)\right\}
\end{aligned}
$$

first two single and product moments of OS from a single-outlier model can be produced.

- These can be used to produce single and product moments of OS from a two-outlier model, and so on.


## Robustness Issue

Optimal Winsorized estimator of $\theta$ and relative efficiency when $h=\frac{\theta}{\tau}$ and $n=15$ a

|  | $p=1$ |  | $p=2$ |  | $p=3$ |  | $p=4$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h$ | $m^{*}$ | $R E$ |
| 0.50 | 15 | 1.000 | 14 | 1.048 | 13 | 1.104 | 12 | 1.161 |
| 0.40 | 14 | 1.084 | 13 | 1.237 | 12 | 1.404 | 10 | 1.555 |
| 0.30 | 14 | 1.329 | 12 | 1.793 | 10 | 2.222 | 9 | 2.543 |
| 0.20 | 13 | 2.222 | 11 | 3.628 | 9 | 4.777 | 7 | 5.583 |
| 0.10 | 13 | 7.649 | 10 | 14.355 | 8 | 19.249 | 6 | 22.423 |

$$
a_{\text {Winsorized mean }} W_{m, n}=\frac{1}{m+1}\left\{\sum_{i=1}^{m-1} X_{i: n}+(n-m+1) X_{m: n}\right\}
$$

## Robustness Issue (cont.)

Optimal Trimmed estimator of $\theta$ and relative efficiency when $h=\frac{\theta}{\tau}$ and $n=15$ a

|  | $p=1$ |  | $p=2$ |  | $p=3$ |  | $p=4$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h$ | $m^{*}$ | $R E$ |
| 0.50 | 14 | 0.982 | 14 | 1.185 | 14 | 1.378 | 13 | 1.537 |
| 0.40 | 14 | 1.051 | 14 | 1.313 | 13 | 1.511 | 13 | 2.000 |
| 0.30 | 14 | 1.140 | 14 | 1.350 | 13 | 1.864 | 13 | 2.217 |
| 0.20 | 14 | 1.229 | 13 | 1.558 | 13 | 1.996 | 12 | 2.776 |
| 0.10 | 14 | 1.314 | 13 | 1.838 | 12 | 2.457 | 11 | 3.128 |

[^0]
## Robustness Issue (cont.)

■ Of course, $h$ and $p$ will be unknown in practice.

## Robustness Issue (cont.)

■ Of course, $h$ and $p$ will be unknown in practice.
■ $p$ may be determined from a simple Q-Q plot or by using the 'greatest measure of agreement'.

## Robustness Issue (cont.)

■ Of course, $h$ and $p$ will be unknown in practice.
$\square p$ may be determined from a simple Q-Q plot or by using the 'greatest measure of agreement'.
$\square$ Once $p$ is determined, we find $W_{n-p, n}$ as a provisional estimate of $\theta$ (say, $\tilde{\theta}$ ), then estimate $h$ from the equation

$$
n W_{n, n}=\left(n-p+\frac{p}{h}\right) \tilde{\theta}
$$

and then determine $m^{*}$ from the tables.

## Robustness Issue (cont.)

■ Of course, $h$ and $p$ will be unknown in practice.
$\square p$ may be determined from a simple Q-Q plot or by using the 'greatest measure of agreement'.
$■$ Once $p$ is determined, we find $W_{n-p, n}$ as a provisional estimate of $\theta$ (say, $\tilde{\theta}$ ), then estimate $h$ from the equation

$$
n W_{n, n}=\left(n-p+\frac{p}{h}\right) \tilde{\theta}
$$

and then determine $m^{*}$ from the tables.
■ Next, the corresponding $W_{m^{*}, n}$ may be used in place of $\tilde{\theta}$ in the above equation, and a new $m^{*}$ be determined.

## Robustness Issue (cont.)

■ Of course, $h$ and $p$ will be unknown in practice.
$\square p$ may be determined from a simple Q-Q plot or by using the 'greatest measure of agreement'.
$\square$ Once $p$ is determined, we find $W_{n-p, n}$ as a provisional estimate of $\theta$ (say, $\tilde{\theta}$ ), then estimate $h$ from the equation

$$
n W_{n, n}=\left(n-p+\frac{p}{h}\right) \tilde{\theta}
$$

and then determine $m^{*}$ from the tables.
$\square$ Next, the corresponding $W_{m^{*}, n}$ may be used in place of $\tilde{\theta}$ in the above equation, and a new $m^{*}$ be determined.
$\square$ Continue until $m^{*}$ is stable, and use $W_{m^{*}, n}$ as estimate.

## Robustness Issue (cont.)

■ This process, when used with Winsorized and Trimmed estimators, produced the following results.

## Robustness Issue (cont.)

■ This process, when used with Winsorized and Trimmed estimators, produced the following results.

Bias of Winsorized and Trimmed estimators of $\theta$ and relative efficiency when $h=\frac{\theta}{\tau}=0.10$ and $n=20$

| Estimator | $p=1$ | $p=2$ | $p=3$ | $p=4$ |
| :---: | :---: | :---: | :---: | :---: |
| $W_{20,20}$ | 0.3810 | 0.8095 | 1.2381 | 1.6667 |
| $W_{18,20}$ | 0.0528 | 0.2029 | 0.5246 | 0.9360 |
| $T_{18,20}$ | -0.1594 | -0.0615 | 0.1103 | 0.3453 |
| $W_{16,20}$ | 0.0241 | 0.1261 | 0.2568 | 0.4360 |
| $T_{16,20}$ | -0.3307 | -0.2737 | -0.2038 | -0.1144 |

## Robustness Issue (cont.)

$\square$ This process, when used with Winsorized and Trimmed estimators, produced the following results.

Bias of Winsorized and Trimmed estimators of $\theta$ and relative efficiency when $h=\frac{\theta}{\tau}=0.10$ and $n=20$

| Estimator | $p=1$ | $p=2$ | $p=3$ | $p=4$ |
| :---: | :---: | :---: | :---: | :---: |
| $W_{20,20}$ | 0.3810 | 0.8095 | 1.2381 | 1.6667 |
| $W_{18,20}$ | 0.0528 | 0.2029 | 0.5246 | 0.9360 |
| $T_{18,20}$ | -0.1594 | -0.0615 | 0.1103 | 0.3453 |
| $W_{16,20}$ | 0.0241 | 0.1261 | 0.2568 | 0.4360 |
| $T_{16,20}$ | -0.3307 | -0.2737 | -0.2038 | -0.1144 |

$\square$ When $p$ increases, Winsorized mean develops serious bias, but not Trimmed mean.

## Robustness Issue (cont.)

Bias and MSE of estimators of $\theta$ when $p$ outliers are present in the sample with $h=\frac{\theta}{\tau}$ and $n=20$ a

|  |  | $p=1$ |  | $p=2$ |  | $p=3$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h$ | $E s t$ | Bias | MSE | Bias | MSE | Bias | MSE |
| 1.00 | $W_{n, n}$ | -0.048 | 0.048 |  |  |  |  |
|  | $W .9 n, n$ | -0.053 | 0.053 |  |  |  |  |
|  | $T .9 n, n$ | -0.233 | 0.088 |  |  |  |  |
|  | $C K_{n}$ | -0.073 | 0.048 |  |  |  |  |
| 0.25 | $W_{n, n}$ | 0.095 | 0.088 | 0.238 | 0.170 | 0.381 | 0.293 |
|  | $W_{.9 n, n}$ | 0.020 | 0.060 | 0.107 | 0.084 | 0.213 | 0.141 |
|  | $T .9 n, n$ | -0.181 | 0.071 | -0.119 | 0.060 | -0.047 | 0.057 |
|  | $C K_{n}$ | 0.065 | 0.078 | 0.202 | 0.146 | 0.339 | 0.252 |

[^1]
## Robustness Issue (cont.)

■ Complete sample estimator $W_{n, n}$ and ChikkagoudarKunchur estimator $C K_{n}$ are both very efficient when there is no outlier.

## Robustness Issue (cont.)

■ Complete sample estimator $W_{n, n}$ and ChikkagoudarKunchur estimator $C K_{n}$ are both very efficient when there is no outlier.

- When the number of outliers is at least 2, ChikkagoudarKunchur estimator develops serious bias and possesses a MSE as large as that of $W_{n, n}$.


## Robustness Issue (cont.)

■ Complete sample estimator $W_{n, n}$ and ChikkagoudarKunchur estimator $C K_{n}$ are both very efficient when there is no outlier.
$\square$ When the number of outliers is at least 2, ChikkagoudarKunchur estimator develops serious bias and possesses a MSE as large as that of $W_{n, n}$.

- Trimmed estimator performs quite efficiently, and the gain in efficiency is substantial as compared to all other estimators.


## Robustness Issue (cont.)

■ Complete sample estimator $W_{n, n}$ and ChikkagoudarKunchur estimator $C K_{n}$ are both very efficient when there is no outlier.

- When the number of outliers is at least 2, ChikkagoudarKunchur estimator develops serious bias and possesses a MSE as large as that of $W_{n, n}$.
- Trimmed estimator performs quite efficiently, and the gain in efficiency is substantial as compared to all other estimators.
$\square$ It is important to note that the greater protection provided by trimmed estimator (to the presence of one or more extreme outliers) comes at a higher premium.


## Robustness Issue (cont.)

■ In the Discussion on a paper by Balakrishnan (1994, pp. 243-246), Barry Arnold stated

## Robustness Issue (cont.)

■ In the Discussion on a paper by Balakrishnan (1994, pp. 243-246), Barry Arnold stated
"When confronted with Professor Balakrishnan's results with myriad relations among moments of non-homogeneous exponential order statistics, lack of memory property could be used to produce alternate formulas. But, there would be little gain in efficiency when compared to Bala's algorithm. Bala's specialized differential equation techniques may perhaps have their finest hour in dealing with logistic case for which minima and maxima are not nice. His proposed work in this direction will be interesting."

## Other Cases

- Consider the case when $X_{i}$ 's are independent logistic random variables with


## Other Cases

- Consider the case when $X_{i}$ 's are independent logistic random variables with

$$
f_{i}(x)=\frac{\frac{\pi}{\sqrt{3}} \exp \left\{-\frac{\pi}{\sqrt{3}}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)\right\}}{\sigma_{i}\left(1+\exp \left\{-\frac{\pi}{\sqrt{3}}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)\right\}\right)^{2}}, \quad x \in \boldsymbol{R},
$$

## Other Cases

- Consider the case when $X_{i}$ 's are independent logistic random variables with

$$
\begin{gathered}
f_{i}(x)=\frac{\frac{\pi}{\sqrt{3}} \exp \left\{-\frac{\pi}{\sqrt{3}}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)\right\}}{\sigma_{i}\left(1+\exp \left\{-\frac{\pi}{\sqrt{3}}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)\right\}\right)^{2}}, \quad x \in \boldsymbol{R}, \\
F_{i}(x)=\frac{1}{1+\exp \left\{-\frac{\pi}{\sqrt{3}}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)\right\}}, \quad x \in \boldsymbol{R} .
\end{gathered}
$$

## Other Cases

■ Consider the case when $X_{i}$ 's are independent logistic random variables with

$$
\begin{gathered}
f_{i}(x)=\frac{\frac{\pi}{\sqrt{3}} \exp \left\{-\frac{\pi}{\sqrt{3}}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)\right\}}{\sigma_{i}\left(1+\exp \left\{-\frac{\pi}{\sqrt{3}}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)\right\}\right)^{2}}, \quad x \in \boldsymbol{R} \\
F_{i}(x)=\frac{1}{1+\exp \left\{-\frac{\pi}{\sqrt{3}}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)\right\}}, \quad x \in \boldsymbol{R} .
\end{gathered}
$$

■ In this case, we have the differential equations

## Other Cases

■ Consider the case when $X_{i}$ 's are independent logistic random variables with

$$
\begin{gathered}
f_{i}(x)=\frac{\frac{\pi}{\sqrt{3}} \exp \left\{-\frac{\pi}{\sqrt{3}}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)\right\}}{\sigma_{i}\left(1+\exp \left\{-\frac{\pi}{\sqrt{3}}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)\right\}\right)^{2}}, \quad x \in \boldsymbol{R} \\
F_{i}(x)=\frac{1}{1+\exp \left\{-\frac{\pi}{\sqrt{3}}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)\right\}}, \quad x \in \boldsymbol{R} .
\end{gathered}
$$

■ In this case, we have the differential equations

$$
f_{i}(x)=\frac{\pi}{\sigma_{i} \sqrt{3}} F_{i}(x)\left\{1-F_{i}(x)\right\}, x \in \boldsymbol{R} .
$$

## Other Cases (cont.)

■ Let us denote the moments $E\left(X_{r: n}^{k}\right)$ by $\mu_{r: n}^{(k)}$.

## Other Cases (cont.)

■ Let us denote the moments $E\left(X_{r: n}^{k}\right)$ by $\mu_{r: n}^{(k)}$.
■ As before, let $\mu_{r: n-1}^{(k)[i]}$ denote the single moments of OS from $X_{1}, \cdots, X_{n}$ with $X_{i}$ removed.

## Other Cases (cont.)

$■$ Let us denote the moments $E\left(X_{r: n}^{k}\right)$ by $\mu_{r: n}^{(k)}$.
$■$ As before, let $\mu_{r: n-1}^{(k)[i]}$ denote the single moments of OS from $X_{1}, \cdots, X_{n}$ with $X_{i}$ removed.
$■$ Next, let $\mu_{r: n+1}^{(k)\left[i^{+}\right.}$denote the single moments of OS from $n+1$ variables obtained by adding an independent $X_{n+1} \stackrel{d}{=} X_{i}$ to the original variables $X_{1}, \cdots, X_{n}$.

## Other Cases (cont.)

- Let us denote the moments $E\left(X_{r: n}^{k}\right)$ by $\mu_{r: n}^{(k)}$.
$■$ As before, let $\mu_{r: n-1}^{(k)[i]}$ denote the single moments of OS from $X_{1}, \cdots, X_{n}$ with $X_{i}$ removed.
$\square$ Next, let $\mu_{r: n+1}^{(k)[i]^{+}}$denote the single moments of OS from $n+1$ variables obtained by adding an independent $X_{n+1} \stackrel{d}{=} X_{i}$ to the original variables $X_{1}, \cdots, X_{n}$.
- Then, the differential equations can be used along with the permanents approach to establish the following results for moments of order statistics.


## Other Cases (cont.)

■ Result 1: For $n=1,2, \cdots$ and $k=0,1,2, \cdots$,

$$
\sum_{i=1}^{n} \frac{1}{\sigma_{i}} \mu_{1: n+1}^{(k+1)[i]^{+}}=-\frac{(k+1) \sqrt{3}}{\pi} \mu_{1: n}^{(k)}+\left(\sum_{i=1}^{n} \frac{1}{\sigma_{i}}\right) \mu_{1: n}^{(k+1)}
$$

## Other Cases (cont.)

■ Result 1: For $n=1,2, \cdots$ and $k=0,1,2, \cdots$,

$$
\sum_{i=1}^{n} \frac{1}{\sigma_{i}} \mu_{1: n+1}^{(k+1)[i]^{+}}=-\frac{(k+1) \sqrt{3}}{\pi} \mu_{1: n}^{(k)}+\left(\sum_{i=1}^{n} \frac{1}{\sigma_{i}}\right) \mu_{1: n}^{(k+1)} .
$$

■ Result 2: For $2 \leq r \leq n$ and $k=0,1,2, \cdots$,

$$
\begin{gathered}
\sum_{i=1}^{n} \frac{1}{\sigma_{i}} \mu_{r: n+1}^{(k+1)[i]^{+}}=\frac{(k+1) \sqrt{3}}{\pi}\left\{\mu_{r-1: n}^{(k)}-\mu_{r: n}^{(k)}\right\}-\sum_{i=1}^{n} \frac{1}{\sigma_{i}} \mu_{r-1: n-1}^{(k+1)[i]} \\
+\left(\sum_{i=1}^{n} \frac{1}{\sigma_{i}}\right)\left\{\mu_{r-1: n}^{(k+1)}+\mu_{r: n}^{(k+1)}\right\} .
\end{gathered}
$$

## Other Cases (cont.)

■ Result 1: For $n=1,2, \cdots$ and $k=0,1,2, \cdots$,

$$
\sum_{i=1}^{n} \frac{1}{\sigma_{i}} \mu_{1: n+1}^{(k+1)[i]^{+}}=-\frac{(k+1) \sqrt{3}}{\pi} \mu_{1: n}^{(k)}+\left(\sum_{i=1}^{n} \frac{1}{\sigma_{i}}\right) \mu_{1: n}^{(k+1)} .
$$

■ Result 2: For $2 \leq r \leq n$ and $k=0,1,2, \cdots$,

$$
\begin{gathered}
\sum_{i=1}^{n} \frac{1}{\sigma_{i}} \mu_{r: n+1}^{(k+1)[i]^{+}}=\frac{(k+1) \sqrt{3}}{\pi}\left\{\mu_{r-1: n}^{(k)}-\mu_{r: n}^{(k)}\right\}-\sum_{i=1}^{n} \frac{1}{\sigma_{i}} \mu_{r-1: n-1}^{(k+1)[i]} \\
+\left(\sum_{i=1}^{n} \frac{1}{\sigma_{i}}\right)\left\{\mu_{r-1: n}^{(k+1)}+\mu_{r: n}^{(k+1)}\right\} .
\end{gathered}
$$

■ Result 3: For $n=2,3, \cdots$ and $k=0,1,2, \cdots$,

$$
\sum_{i=1}^{n} \frac{1}{\sigma_{i}} \mu_{n+1: n+1}^{(k+1)[i]^{+}}=\frac{(k+1) \sqrt{3}}{\pi} \mu_{n: n}^{(k)}+\left(\sum_{i=1}^{n} \frac{1}{\sigma_{i}}\right) \mu_{n: n}^{(k+1)} .
$$

## Other Cases (cont.)

■ In the case of $p$-outlier model given by

$$
\left(X_{1}, \cdots, X_{n-p}\right) \sim L(\mu, \sigma) \text { and } \quad\left(X_{n-p+1}, \cdots, X_{n}\right) \sim L\left(\mu_{1}, \sigma_{1}\right),
$$

these reduce to the following results:

## Other Cases (cont.)

■ In the case of $p$-outlier model given by

$$
\left(X_{1}, \cdots, X_{n-p}\right) \sim L(\mu, \sigma) \text { and } \quad\left(X_{n-p+1}, \cdots, X_{n}\right) \sim L\left(\mu_{1}, \sigma_{1}\right),
$$

these reduce to the following results:
■ For $n=1,2, \cdots$ and $k=0,1,2, \cdots$,

$$
\begin{aligned}
\mu_{1: n+1}^{(k+1)}[p+1]= & \frac{\sigma_{1}}{p}\left\{\left(\frac{n-p}{\sigma}+\frac{p}{\sigma_{1}}\right) \mu_{1: n}^{(k+1)}[p]-\frac{n-p}{\sigma} \mu_{1: n+1}^{(k+1)}[p]\right. \\
& \left.-\frac{(k+1) \sqrt{3}}{\pi} \mu_{1: n}^{(k)}[p]\right\} \\
\mu_{n+1: n+1}^{(k+1)}[p+1]= & \frac{\sigma_{1}}{p}\left\{\left(\frac{n-p}{\sigma}+\frac{p}{\sigma_{1}}\right) \mu_{n: n}^{(k+1)}[p]-\frac{n-p}{\sigma} \mu_{n+1: n+1}^{(k+1)}[p]\right. \\
& \left.+\frac{(k+1) \sqrt{3}}{\pi} \mu_{n: n}^{(k)}[p]\right\}
\end{aligned}
$$

## Other Cases (cont.)

Bias of estimators of the mean of a logistic distribution when $p=1$ outlier is present in the sample with

$$
\mu_{0}=0, \sigma=\sigma_{1}=1 \text { and } n=20
$$

|  | $\mu_{1}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Estimator | 0.5 | 1.0 | 2.0 | 3.0 | 4.0 |
| Mean | 0.0250 | 0.0500 | 0.1000 | 0.1500 | 0.2000 |
| Trim $(10 \%)$ | 0.0245 | 0.0459 | 0.0728 | 0.0817 | 0.0836 |
| Trim $(20 \%)$ | 0.0241 | 0.0434 | 0.0626 | 0.0672 | 0.0681 |
| Wins $(10 \%)$ | 0.0248 | 0.0479 | 0.0812 | 0.0943 | 0.0974 |
| Wins $(20 \%)$ | 0.0244 | 0.0451 | 0.0683 | 0.0745 | 0.0756 |
| LWMean $(10 \%)$ | 0.0240 | 0.0432 | 0.0624 | 0.0673 | 0.0682 |
| LWMean $(20 \%)$ | 0.0239 | 0.0420 | 0.0585 | 0.0620 | 0.0627 |
| Median | 0.0236 | 0.0407 | 0.0548 | 0.0576 | 0.0581 |

## Other Cases (cont.)

Bias of estimators of the mean of a logistic distribution when $p=2$ outliers are present in the sample with

$$
\mu_{0}=0, \sigma=\sigma_{1}=1 \text { and } n=20
$$

|  | $\mu_{1}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Estimator | 0.5 | 1.0 | 2.0 | 3.0 | 4.0 |
| Mean | 0.500 | 0.1000 | 0.2000 | 0.3000 | 0.4000 |
| Trim $(10 \%)$ | 0.0491 | 0.0933 | 0.1562 | 0.1862 | 0.1968 |
| Trim $(20 \%)$ | 0.0485 | 0.0887 | 0.1332 | 0.1458 | 0.1482 |
| Wins $(10 \%)$ | 0.0496 | 0.0969 | 0.1751 | 0.2224 | 0.2420 |
| Wins $(20 \%)$ | 0.0490 | 0.0920 | 0.1464 | 0.1643 | 0.1680 |
| LWMean $(10 \%)$ | 0.0484 | 0.0883 | 0.1328 | 0.1467 | 0.1500 |
| LWMean $(20 \%)$ | 0.0480 | 0.0861 | 0.1236 | 0.1327 | 0.1343 |
| Median | 0.0476 | 0.0836 | 0.1153 | 0.1219 | 0.1231 |

## Other Cases (cont.)

■ Some other distributions for which robust estimation has been discussed are:

## Other Cases (cont.)

■ Some other distributions for which robust estimation has been discussed are:

- Normal distribution
- Laplace distribution
- Pareto distribution
- Power function distribution


## Bibliography

■ Most pertinent papers are:

## Bibliography

## ■ Most pertinent papers are:

Balakrishnan, N. (1988). Recurrence relations for order statistics from $n$ independent and non-identically distributed random variables, Annals of the Institute of Statistical Mathematics, 40, 273-277.

Balakrishnan, N. (1989). Recurrence relations among moments of order statistics from two related sets of independent and non-identically distributed random variables, Annals of the Institute of Statistical Mathematics, 41, 323-329.

- Balakrishnan, N. (1994). Order statistics from non-identical exponential random variables and some applications (with Discussion), Computational Statistics \& Data Analysis, 18, 203-253.
Childs, A. and Balakrishnan, N. (2006). Relations for order statistics from non-identical logistic random variables and assessment of the effect of multiple outliers on the bias of linear estimators, Journal of Statistical Planning and Inference, 136, 2227-2253.


## Bibliography (cont.)

■ Most pertinent books are:

## Bibliography (cont.)

■ Most pertinent books are:

- Arnold, B.C. and Balakrishnan, N. (1989). Relations, Bounds and Approximations for Order Statistics, Springer-Verlag, New York.
- Arnold, B.C., Balakrishnan, N. and Nagaraja, H.N. (1992). A First Course in Order Statistics, John Wiley \& Sons, New York.
$\square$ Balakrishnan, N. and Cohen, A.C. (1991). Order Statistics and Inference: Estimation Methods, Academic Press, Boston.
■ Balakrishnan, N. and Rao, C.R. (Eds.) (1998a,b). Handbook of Statistics: Order Statistics, Vols. 16 \& 17, North-Holland, Amsterdam.
$\square$ David, H.A. (1970, 1981). Order Statistics, 1st and 2nd editions, John Wiley \& Sons, New York.
David, H. A. and Nagaraja, H.N. (2003). Order Statistics, 3rd edition, John Wiley \& Sons, Hoboken, New Jersey.


[^0]:    ${ }^{a}$ Trimmed mean $T_{m, n}=\frac{1}{m} \sum_{i=1}^{m} X_{i: n}$.

[^1]:    ${ }^{a} C K_{n}$ is Chikkagoudar-Kunchur estimator of $\theta$

