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Order Statistics
Let X1, · · · , Xn be n independent identically distributed
(IID) random variables from a popln. with cumulative
distribution function (cdf) F (x) and an absolutely
continuous probability density function (pdf) f(x).
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Order Statistics
Let X1, · · · , Xn be n independent identically distributed
(IID) random variables from a popln. with cumulative
distribution function (cdf) F (x) and an absolutely
continuous probability density function (pdf) f(x).

If we arrange these Xi’s in increasing order of
magnitude, we obtain the so-called order statistics,
denoted by

X1:n ≤ X2:n ≤ · · · ≤ Xn:n,

which are clearly dependent.
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Order Statistics (cont.)

Using multinomial argument, we readily have for
r = 1, · · · , n

Pr (x < Xr:n ≤ x + δx)

=
n!

(r − 1)!(n − r)!
{F (x)}r−1 {F (x + δx) − F (x)}

×{1 − F (x + δx)}n−r + O
(

(δx)2
)

.
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Order Statistics (cont.)

Using multinomial argument, we readily have for
r = 1, · · · , n

Pr (x < Xr:n ≤ x + δx)

=
n!

(r − 1)!(n − r)!
{F (x)}r−1 {F (x + δx) − F (x)}

×{1 − F (x + δx)}n−r + O
(

(δx)2
)

.

From this, we obtain the pdf of Xr:n as (for x ∈ R)

fr:n(x) =
n!

(r − 1)!(n − r)!
{F (x)}r−1 {1 − F (x)}n−r

f(x).
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Order Statistics (cont.)

Similarly, we obtain the joint pdf of (Xr:n, Xs:n) as (for
1 ≤ r < s ≤ n and x < y)

fr,s:n(x, y) =
n!

(r − 1)!(s − r − 1)!(n − s)!
{F (x)}r−1 f(x)

×{F (y) − F (x)}s−r−1 {1 − F (y)}n−s f(y).
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Order Statistics (cont.)

Similarly, we obtain the joint pdf of (Xr:n, Xs:n) as (for
1 ≤ r < s ≤ n and x < y)

fr,s:n(x, y) =
n!

(r − 1)!(s − r − 1)!(n − s)!
{F (x)}r−1 f(x)

×{F (y) − F (x)}s−r−1 {1 − F (y)}n−s f(y).

From the pdf and joint pdf, we can derive, for example,
means, variances and covariances of order statistics,
and also study their dependence structure.
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Order Statistics (cont.)

Similarly, we obtain the joint pdf of (Xr:n, Xs:n) as (for
1 ≤ r < s ≤ n and x < y)

fr,s:n(x, y) =
n!

(r − 1)!(s − r − 1)!(n − s)!
{F (x)}r−1 f(x)

×{F (y) − F (x)}s−r−1 {1 − F (y)}n−s f(y).

From the pdf and joint pdf, we can derive, for example,
means, variances and covariances of order statistics,
and also study their dependence structure.

The area of order statistics has a long and rich history,
and a very vast literature.
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Some key references are the books by
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Order Statistics (cont.)

Some key references are the books by
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N. Balakrishnan & C.R. Rao (1998 a,b)

H.A. David & H.N. Nagaraja (2003)
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Order Statistics (cont.)

Some key references are the books by

H.A. David (1970, 1981)

B. Arnold & N. Balakrishnan (1989)

N. Balakrishnan & A.C. Cohen (1991)

B. Arnold, N. Balakrishnan & H.N. Nagaraja (1992)

N. Balakrishnan & C.R. Rao (1998 a,b)

H.A. David & H.N. Nagaraja (2003)

Among the many known results, the triangle rule is
(for 1 ≤ r ≤ n − 1)

rfr+1:n(x) + (n − r)fr:n(x) = nfr:n−1(x) ∀x ∈ R.
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Order Statistics (cont.)

Similarly, the rectangle rule is (2 ≤ r < s ≤ n, x < y)

(r − 1)fr,s:n(x, y) + (s − r)fr−1,s:n(x, y)

+ (n − s + 1)fr−1,s−1:n(x, y) = nfr−1,s−1:n−1(x, y).
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Order Statistics (cont.)

Similarly, the rectangle rule is (2 ≤ r < s ≤ n, x < y)

(r − 1)fr,s:n(x, y) + (s − r)fr−1,s:n(x, y)

+ (n − s + 1)fr−1,s−1:n(x, y) = nfr−1,s−1:n−1(x, y).

Among many more interesting results is the following.

Let X1, X2, · · · , Xn be a random sample from a
symmetric (about 0) population with pdf f(x), cdf F (x).
Let Y1, Y2, · · · , Yn be a random sample from the
corresponding folded distribution with pdf and cdf

g(x) = 2f(x) and G(x) = 2F (x) − 1 for x > 0.
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Order Statistics (cont.)

Let Xr:n and Yr:n be the corresponding order statistics,

and
(

µ
(k)
r:n, µr,s:n

)

and
(

ν
(k)
r:n, νr,s:n

)

denote their single

and product moments, respectively. We then have:
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Order Statistics (cont.)

Let Xr:n and Yr:n be the corresponding order statistics,

and
(

µ
(k)
r:n, µr,s:n

)

and
(

ν
(k)
r:n, νr,s:n

)

denote their single

and product moments, respectively. We then have:

µ(k)
r:n =

1

2n

{

r−1
∑

i=0

(

n

i

)

ν
(k)
r−i:n−i + (−1)k

n
∑

i=r

(

n

i

)

ν
(k)
i−r+1:i

}

;
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Order Statistics (cont.)

Let Xr:n and Yr:n be the corresponding order statistics,

and
(

µ
(k)
r:n, µr,s:n

)

and
(

ν
(k)
r:n, νr,s:n

)

denote their single

and product moments, respectively. We then have:

µ(k)
r:n =

1

2n

{

r−1
∑

i=0

(

n

i

)

ν
(k)
r−i:n−i + (−1)k

n
∑

i=r

(

n

i

)

ν
(k)
i−r+1:i

}

;

µr,s:n =
1

2n

{

r−1
∑

i=0

(

n

i

)

νr−i,s−i:n−i +

n
∑

i=s

(

n

i

)

νi−s+1,i−r+1:i

−
s−1
∑

i=r

(

n

i

)

νi−r+1:i νs−i:n−i

}

.
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Order Statistics (cont.)

Prominent and most significant applications of order
statistics include:
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Order Statistics (cont.)

Prominent and most significant applications of order
statistics include:

Parametric Inference
Nonparametric Inference
Robust Inference

For example, in the area of Robust Inference, order
statistics are explicitly present in

Trimmed Means
Winsorized Means
Linearly Weighted Means, etc.
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Single-Outlier Model

It is natural to examine the sensitivity of these robust
estimators when outliers are present in the sample.
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Single-Outlier Model

It is natural to examine the sensitivity of these robust
estimators when outliers are present in the sample.

An outlier is an observation that is distinctly different
from bulk of the data.

A Single-Outlier Model (S-O Model) simply
stipulates that the sample contains IID observations
X1, · · · , Xn−1 from a pdf f(x) and one independent
observation Y from another pdf g(x).
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Single-Outlier Model

It is natural to examine the sensitivity of these robust
estimators when outliers are present in the sample.

An outlier is an observation that is distinctly different
from bulk of the data.

A Single-Outlier Model (S-O Model) simply
stipulates that the sample contains IID observations
X1, · · · , Xn−1 from a pdf f(x) and one independent
observation Y from another pdf g(x).

While f(·) and g(·) can be any two densities, it is
common to assume that g(x) corresponds to a scale
and/or location shift of f(x).
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S-O Model (cont.)

Let Z1:n ≤ Z2:n ≤ · · · ≤ Zn:n be the order statistics
obtained by arranging (X1, · · · , Xn−1, Y ) in increasing
order of magnitude.
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Let Z1:n ≤ Z2:n ≤ · · · ≤ Zn:n be the order statistics
obtained by arranging (X1, · · · , Xn−1, Y ) in increasing
order of magnitude.

As in the case of order statistics, using multinomial
arguments and realizing that the outlier can be in any
one of three intervals

– p. 12/52



S-O Model (cont.)
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S-O Model (cont.)

Let Z1:n ≤ Z2:n ≤ · · · ≤ Zn:n be the order statistics
obtained by arranging (X1, · · · , Xn−1, Y ) in increasing
order of magnitude.

As in the case of order statistics, using multinomial
arguments and realizing that the outlier can be in any
one of three intervals

(−∞, x], (x, x + δx] and (x + δx,∞),

we obtain for r = 1, 2, · · · , n,
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S-O Model (cont.)

Pr (x < Zr:n ≤ x + δx)

=
(n − 1)!

(r − 2)!(n − r)!
{F (x)}r−2 G(x)

×{F (x + δx) − F (x)} {1 − F (x + δx)}n−r

+
(n − 1)!

(r − 1)!(n − r)!
{F (x)}r−1

×{G(x + δx) − G(x)} {1 − F (x + δx)}n−r

+
(n − 1)!

(r − 1)!(n − r − 1)!
{F (x)}r−1 {F (x + δx) − F (x)}

×{1 − F (x + δx)}n−r−1 {1 − G(x + δx)}
+ O

(

(δx)2
)

,
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S-O Model (cont.)

Pr (x < Zr:n ≤ x + δx)

=
(n − 1)!

(r − 2)!(n − r)!
{F (x)}r−2 G(x)

×{F (x + δx) − F (x)} {1 − F (x + δx)}n−r

+
(n − 1)!

(r − 1)!(n − r)!
{F (x)}r−1

×{G(x + δx) − G(x)} {1 − F (x + δx)}n−r

+
(n − 1)!

(r − 1)!(n − r − 1)!
{F (x)}r−1 {F (x + δx) − F (x)}

×{1 − F (x + δx)}n−r−1 {1 − G(x + δx)}
+ O

(

(δx)2
)

,

from which we obtain the pdf of Zr:n as
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S-O Model (cont.)

fr:n(x) =
(n − 1)!

(r − 2)!(n − r)!
{F (x)}r−2 G(x)

×f(x) {1 − F (x)}n−r

+
(n − 1)!

(r − 1)!(n − r)!
{F (x)}r−1 g(x) {1 − F (x)}n−r

+
(n − 1)!

(r − 1)!(n − r − 1)!
{F (x)}r−1 f(x)

×{1 − F (x)}n−r−1 {1 − G(x)} ,
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S-O Model (cont.)

fr:n(x) =
(n − 1)!

(r − 2)!(n − r)!
{F (x)}r−2 G(x)

×f(x) {1 − F (x)}n−r

+
(n − 1)!

(r − 1)!(n − r)!
{F (x)}r−1 g(x) {1 − F (x)}n−r

+
(n − 1)!

(r − 1)!(n − r − 1)!
{F (x)}r−1 f(x)

×{1 − F (x)}n−r−1 {1 − G(x)} ,

where first and last terms vanish when r = 1 and n.
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S-O Model (cont.)

fr:n(x) =
(n − 1)!

(r − 2)!(n − r)!
{F (x)}r−2 G(x)

×f(x) {1 − F (x)}n−r

+
(n − 1)!

(r − 1)!(n − r)!
{F (x)}r−1 g(x) {1 − F (x)}n−r

+
(n − 1)!

(r − 1)!(n − r − 1)!
{F (x)}r−1 f(x)

×{1 − F (x)}n−r−1 {1 − G(x)} ,

where first and last terms vanish when r = 1 and n.

Similarly, the joint density of (Zr:n, Zs:n) will have five
terms depending on which of the five intervals the
outlier Y falls in. – p. 14/52



S-O Model (cont.)

Naturally, the densities will get even more complicated
when the number of outliers increases.
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Naturally, the densities will get even more complicated
when the number of outliers increases.

For example, if there are two outliers in the sample,

marginal density will have 5 terms

joint density will have 13 terms.

For this reason, majority of the work in outlier literature
deal with only Single-Outlier Model; see
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Naturally, the densities will get even more complicated
when the number of outliers increases.

For example, if there are two outliers in the sample,

marginal density will have 5 terms

joint density will have 13 terms.

For this reason, majority of the work in outlier literature
deal with only Single-Outlier Model; see

V. Barnett and T. Lewis (1993). Outliers in Statistical Data,

3rd edition, John Wiley & Sons.
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S-O Model (cont.)

Naturally, the densities will get even more complicated
when the number of outliers increases.

For example, if there are two outliers in the sample,

marginal density will have 5 terms

joint density will have 13 terms.

For this reason, majority of the work in outlier literature
deal with only Single-Outlier Model; see

V. Barnett and T. Lewis (1993). Outliers in Statistical Data,

3rd edition, John Wiley & Sons.

We, therefore, need a different approach to handle
multiple outliers. – p. 15/52



Permanents

Suppose A = ((ai,j)) is a square matrix of order n.
Then, the permanent of the matrix A is defined to be

Per [A] =
∑

P

n
∏

i=1

ai,P (i),

where
∑

P denotes the sum over all n! permutations
(P (1), P (2), . . . , P (n)) of (1, 2, . . . , n).
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P
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ai,P (i),

where
∑

P denotes the sum over all n! permutations
(P (1), P (2), . . . , P (n)) of (1, 2, . . . , n).

The above definition is similar to that of a determinant,
except that it does not have the alternating sign.
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Permanents

Suppose A = ((ai,j)) is a square matrix of order n.
Then, the permanent of the matrix A is defined to be

Per [A] =
∑

P

n
∏

i=1

ai,P (i),

where
∑

P denotes the sum over all n! permutations
(P (1), P (2), . . . , P (n)) of (1, 2, . . . , n).

The above definition is similar to that of a determinant,
except that it does not have the alternating sign.

So, it is not surprising to see the following basic
properties of permanents.
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Permanents (cont.)

Per [A] is unchanged if the rows or columns of A are
permuted.
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Permanents (cont.)

Per [A] is unchanged if the rows or columns of A are
permuted.

If A(i, j) denotes the sub-matrix of order n− 1 obtained
from A by deleting the ith row and the jth column, then

Per [A] =
n

∑

i=1

ai,j Per [A(i, j)] =
n

∑

j=1

ai,j Per [A(i, j)] ;

i.e., permanent is expandable by any row (column).
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Permanents (cont.)

Per [A] is unchanged if the rows or columns of A are
permuted.

If A(i, j) denotes the sub-matrix of order n− 1 obtained
from A by deleting the ith row and the jth column, then

Per [A] =
n

∑

i=1

ai,j Per [A(i, j)] =
n

∑

j=1

ai,j Per [A(i, j)] ;

i.e., permanent is expandable by any row (column).

Due to the absence of the alternating sign, a
permanent in which two or more rows (or columns) are
repeated need not be zero (unlike a determinant).
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Permanents (cont.)

If A
∗ denotes the matrix obtained from A simply by

replacing the ith row by c ai,j (j = 1, . . . , n), then

Per [A∗] = c Per [A] .
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Permanents (cont.)

If A
∗ denotes the matrix obtained from A simply by

replacing the ith row by c ai,j (j = 1, . . . , n), then

Per [A∗] = c Per [A] .

If A
∗∗ denotes the matrix obtained from A by replacing

the ith row by ai,j + bi,j (j = 1, . . . , n) and A
∗ the matrix

obtained from A by replacing the ith row by
bi,j (j = 1, . . . , n), then

Per [A∗∗] = Per [A] + Per [A∗] .

– p. 18/52



Permanents (cont.)

Let








a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

· · · · · · · · · · · ·









} i1

} i2

denote a matrix in which first row is repeated i1 times,
second row is repeated i2 times, and so on.
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Permanents (cont.)

Let








a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

· · · · · · · · · · · ·









} i1

} i2

denote a matrix in which first row is repeated i1 times,
second row is repeated i2 times, and so on.

We will now use the idea of permanents to study order
statistics from n independent non-identically distributed
(INID) variables Xi ∼ (Fi(x), fi(x)) , i = 1, · · · , n.
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INID Model
Using multinomial-type arguments, it can be shown in
this case that the pdf of Xr:n (1 ≤ r ≤ n) is
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INID Model
Using multinomial-type arguments, it can be shown in
this case that the pdf of Xr:n (1 ≤ r ≤ n) is

fr:n(x) =
1

(r − 1)!(n − r)!

∑

P

r−1
∏

ℓ=1

FP (ℓ)(x) fP (r)(x)

×
n

∏

ℓ=r+1

{

1 − FP (ℓ)(x)
}

,

where (P (1), · · · , P (r − 1)) , P (r), (P (r + 1), · · · , P (n)) are

mutually exclusive subsets of permutation (P (1), · · · , P (n))

of (1, · · · , n).
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INID Model (cont.)

Similarly, joint density of (Xr:n, Xs:n), 1 ≤ r < s ≤ n, is
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INID Model (cont.)

Similarly, joint density of (Xr:n, Xs:n), 1 ≤ r < s ≤ n, is

fr,s:n(x, y) =
1

(r − 1)!(s − r − 1)!(n − s)!

∑

P

r−1
∏

ℓ=1

FP (ℓ)(x)

×fP (r)(x)

s−1
∏

ℓ=r+1

{

FP (ℓ)(y) − FP (ℓ)(x)
}

×fP (s)(y)

n
∏

ℓ=s+1

{

1 − FP (ℓ)(y)
}

, x < y,

where (P (1), · · · , P (r − 1)) , P (r), (P (r + 1), · · · , P (s − 1)),

P (s), (P (s + 1), · · · , P (n)) are mutually exclusive subsets of

permutation (P (1), · · · , P (n)) of (1, · · · , n).
– p. 21/52



INID Model (cont.)

Thus, in terms of permanents, the pdf of Xr:n can be
expressed as
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INID Model (cont.)

Thus, in terms of permanents, the pdf of Xr:n can be
expressed as

fr:n(x) =
1

(r − 1)!(n − r)!

× Per











F1(x) · · · Fn(x)

f1(x) · · · fn(x)

1 − F1(x) · · · 1 − Fn(x)











} r − 1

} 1

} n − r

for r = 1, · · · , n and x ∈ R.
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INID Model (cont.)

Similarly, the joint pdf of (Xr:n, Xs:n) can be expressed,
in terms of permanents, as
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INID Model (cont.)

Similarly, the joint pdf of (Xr:n, Xs:n) can be expressed,
in terms of permanents, as

fr,s:n(x, y) =
1

(r − 1)!(s − r − 1)!(n − s)!

× Per

2

6

6

6

6

6

6

6

4

F1(x) · · · Fn(x)

f1(x) · · · fn(x)

F1(y) − F1(x) · · · Fn(y) − Fn(x)

f1(y) · · · fn(y)

1 − F1(y) · · · 1 − Fn(y)

3

7

7

7

7

7

7

7

5

} r − 1

} 1

} s − r − 1

} 1

} n − s

for 1 ≤ r < s ≤ n and x < y.
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INID Model (cont.)

Triangle Rule: For 1 ≤ r ≤ n − 1 and x ∈ R,

r fr+1:n(x) + (n − r) fr:n(x) =
n

∑

i=1

f
[i]
r:n−1(x),

where f
[i]
r:n−1(x) is the pdf of rth order statistic among

X1, · · · , Xn with Xi removed.
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INID Model (cont.)

Triangle Rule: For 1 ≤ r ≤ n − 1 and x ∈ R,

r fr+1:n(x) + (n − r) fr:n(x) =
n

∑

i=1

f
[i]
r:n−1(x),

where f
[i]
r:n−1(x) is the pdf of rth order statistic among

X1, · · · , Xn with Xi removed.

Proof: For 1 ≤ r ≤ n − 1, we have

r fr+1:n(x) =
1

(r − 1)!(n − r − 1)!

× Per

2

6

6

4

F1(x) · · · Fn(x)

f1(x) · · · fn(x)

1 − F1(x) · · · 1 − Fn(x)

3

7

7

5

} r

} 1

} n − r − 1
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INID Model (cont.)

Expanding the permanent by first row, we get
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INID Model (cont.)

Expanding the permanent by first row, we get

r fr+1:n(x) =
n

∑

i=1

Fi(x) f
[i]
r:n−1(x).
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INID Model (cont.)

Expanding the permanent by first row, we get

r fr+1:n(x) =
n

∑

i=1

Fi(x) f
[i]
r:n−1(x).

Similarly, by considering the permanent expression of
(n − r) fr:n(x) and expanding by last row, we get
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INID Model (cont.)

Expanding the permanent by first row, we get

r fr+1:n(x) =
n

∑

i=1

Fi(x) f
[i]
r:n−1(x).

Similarly, by considering the permanent expression of
(n − r) fr:n(x) and expanding by last row, we get

(n − r) fr:n(x) =
n

∑

i=1

{1 − Fi(x)} f
[i]
r:n−1(x).
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INID Model (cont.)

Expanding the permanent by first row, we get

r fr+1:n(x) =
n

∑

i=1

Fi(x) f
[i]
r:n−1(x).

Similarly, by considering the permanent expression of
(n − r) fr:n(x) and expanding by last row, we get

(n − r) fr:n(x) =
n

∑

i=1

{1 − Fi(x)} f
[i]
r:n−1(x).

Adding the above two expressions, we get the result.
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INID Model (cont.)

Proceeding similarly, we can establish the following
result.
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INID Model (cont.)

Proceeding similarly, we can establish the following
result.

Rectangle Rule: For 2 ≤ r < s ≤ n and x < y,

(r − 1) fr,s:n(x, y) + (s − r) fr−1,s:n(x, y)

+(n − s + 1) fr−1,s−1:n(x, y) =

n
∑

i=1

f
[i]
r−1,s−1:n−1(x, y),

where f
[i]
r−1,s−1:n−1(x, y) is the joint density of

(

rth, sth
)

order statistics among X1, · · · , Xn with Xi removed.
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INID Model (cont.)

Relations between two sets of OS: Let us consider
Xi ∼ (Fi(x), fi(x)) , i = 1, · · · , n, as independent
random variables, and X1:n ≤ · · · ≤ Xn:n as the
corresponding order statistics.
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random variables, and X1:n ≤ · · · ≤ Xn:n as the
corresponding order statistics.

Let fi(x) be all symmetric about 0.
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INID Model (cont.)

Relations between two sets of OS: Let us consider
Xi ∼ (Fi(x), fi(x)) , i = 1, · · · , n, as independent
random variables, and X1:n ≤ · · · ≤ Xn:n as the
corresponding order statistics.

Let fi(x) be all symmetric about 0.

Let Yi ∼ (Gi(x), gi(x)) , i = 1, · · · , n, be the
corresponding folded (about 0) variables with

gi(x) = 2 fi(x) and Gi(x) = 2Fi(x) − 1 for x > 0,

and Y1:n ≤ · · · ≤ Yn:n be the corresponding order
statistics.
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INID Model (cont.)

Let
(

µ
(k)
r:n, µr,s:n

)

and
(

ν
(k)
r:n, νr,s:n

)

denote the moments

of OS (X1:n ≤ · · · ≤ Xn:n) and (Y1:n ≤ · · · ≤ Yn:n).
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INID Model (cont.)

Let
(

µ
(k)
r:n, µr,s:n

)

and
(

ν
(k)
r:n, νr,s:n

)

denote the moments

of OS (X1:n ≤ · · · ≤ Xn:n) and (Y1:n ≤ · · · ≤ Yn:n).

Then, for r = 1, · · · , n and k ≥ 0,
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INID Model (cont.)

Let
(

µ
(k)
r:n, µr,s:n

)

and
(

ν
(k)
r:n, νr,s:n

)

denote the moments

of OS (X1:n ≤ · · · ≤ Xn:n) and (Y1:n ≤ · · · ≤ Yn:n).

Then, for r = 1, · · · , n and k ≥ 0,

µ(k)
r:n =

1

2n







r−1
∑

ℓ=0

∑

1≤i1<···<iℓ≤n

ν
(k)[i1,··· ,iℓ]
r−ℓ:n−ℓ

+ (−1)k
n

∑

ℓ=r

∑

1≤i1<···<in−ℓ≤n

ν
(k)[i1,··· ,in−ℓ]
ℓ−r+1:ℓ







,

where ν
(k)[i1,··· ,iℓ]
r:n−ℓ is the kth moment of the rth OS from

Y1, · · · , Yn with Yi1 , · · · , Yiℓ removed.
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INID Model (cont.)

Similarly, for 1 ≤ r < s ≤ n,
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INID Model (cont.)

Similarly, for 1 ≤ r < s ≤ n,

µr,s:n =
1

2n







r−1
∑

ℓ=0

∑

1≤i1<···<iℓ≤n

ν
[i1,··· ,iℓ]
r−ℓ,s−ℓ:n−ℓ

+

n
∑

ℓ=s

∑

1≤i1<···<in−ℓ≤n

ν
[i1,··· ,in−ℓ]
ℓ−s+1,ℓ−r+1:ℓ

−
s−1
∑

ℓ=r

∑

1≤i1<···<iℓ≤n

ν
[i1,··· ,iℓ]
s−ℓ:n−ℓ ν

[iℓ+1,··· ,in]
ℓ−r+1:ℓ







,

where ν
[i1,··· ,iℓ]
r,s:n−ℓ is the product moment of the

(

rth, sth
)

OS

from Y1, · · · , Yn with Yi1 , · · · , Yiℓ removed.
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Multiple-Outlier Model

Now, let us consider the p-outlier model

F1 = · · · = Fn−p ≡ F (x) and Fn−p+1 = · · · = Fn ≡ G(x).
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Multiple-Outlier Model

Now, let us consider the p-outlier model

F1 = · · · = Fn−p ≡ F (x) and Fn−p+1 = · · · = Fn ≡ G(x).

Then, the generalized results of the type presented
could be used to carry out exact computations
efficiently for multiple-outlier model (M-O Model).
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Multiple-Outlier Model

Now, let us consider the p-outlier model

F1 = · · · = Fn−p ≡ F (x) and Fn−p+1 = · · · = Fn ≡ G(x).

Then, the generalized results of the type presented
could be used to carry out exact computations
efficiently for multiple-outlier model (M-O Model).

For example, the triangle rule becomes

r µ
(k)
r+1:n + (n − r) µ(k)

r:n

= (n − p) µ
(k)
r:n−1[p] + p µ

(k)
r:n−1[p − 1],

where µ
(k)
r:n−1[p] and µ

(k)
r:n−1[p − 1] are the moments when

there are p and p − 1 outliers, respectively. – p. 30/52



M-O Model (cont.)

In their book Outliers in Statistical Data, Barnett
and Lewis (1993, p. 68) have stated
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M-O Model (cont.)

In their book Outliers in Statistical Data, Barnett
and Lewis (1993, p. 68) have stated

“A study of the multiple-outlier model has been recently carried

out by Balakrishnan, who gives a substantial body of results on

the moments of order statistics. He indicated that these results

can in principle be applied to robustness studies in the

multiple-outlier situation, but at the time of writing, we are not

aware of any published application. There is much work waiting

to be done in this important area.”
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Exponential Case

Consider the case when the variables Xi (i = 1, · · · , n)

are independent with

fi(x) =
1

θi
e−x/θi and Fi(x) = 1 − e−x/θi , x ≥ 0, θi > 0.
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Exponential Case

Consider the case when the variables Xi (i = 1, · · · , n)

are independent with

fi(x) =
1

θi
e−x/θi and Fi(x) = 1 − e−x/θi , x ≥ 0, θi > 0.

In this case, the distributions satisfy the differential
equations (for i = 1, · · · , n)

fi(x) =
1

θi

{1 − Fi(x)} , x ≥ 0, θi > 0.
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Exponential Case

Consider the case when the variables Xi (i = 1, · · · , n)

are independent with

fi(x) =
1

θi
e−x/θi and Fi(x) = 1 − e−x/θi , x ≥ 0, θi > 0.

In this case, the distributions satisfy the differential
equations (for i = 1, · · · , n)

fi(x) =
1

θi

{1 − Fi(x)} , x ≥ 0, θi > 0.

Then, these differential equations can be used along
with the permanents approach to establish the
following results for moments of order statistics.
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Exponential Case (cont.)

Result 1: For n = 1, 2, · · · and k = 0, 1, 2, · · · ,

µ
(k+1)
1:n =

k + 1
∑n

i=1
1
θi

µ
(k)
1:n.
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Exponential Case (cont.)

Result 1: For n = 1, 2, · · · and k = 0, 1, 2, · · · ,

µ
(k+1)
1:n =

k + 1
∑n

i=1
1
θi

µ
(k)
1:n.

Result 2: For 2 ≤ r ≤ n and k = 0, 1, 2, · · · ,

µ(k+1)
r:n =

1
∑n

i=1
1
θi

{

(k + 1)µ(k)
r:n +

n
∑

i=1

1

θi
µ

(k+1)[i]
r−1:n−1

}

.
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Exponential Case (cont.)

Result 1: For n = 1, 2, · · · and k = 0, 1, 2, · · · ,

µ
(k+1)
1:n =

k + 1
∑n

i=1
1
θi

µ
(k)
1:n.

Result 2: For 2 ≤ r ≤ n and k = 0, 1, 2, · · · ,

µ(k+1)
r:n =

1
∑n

i=1
1
θi

{

(k + 1)µ(k)
r:n +

n
∑

i=1

1

θi
µ

(k+1)[i]
r−1:n−1

}

.

Result 3: For n = 2, 3, · · · ,

µ1,2:n =
1

∑n
i=1

1
θi

{µ1:n + µ2:n} .
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Exponential Case (cont.)

Result 4: For 2 ≤ r ≤ n − 1,

µr,r+1:n =
1

∑n
i=1

1
θi

{

µr:n + µr+1:n +

n
∑

i=1

1

θi
µ

[i]
r−1,r:n−1

}

.
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Exponential Case (cont.)

Result 4: For 2 ≤ r ≤ n − 1,

µr,r+1:n =
1

∑n
i=1

1
θi

{

µr:n + µr+1:n +

n
∑

i=1

1

θi
µ

[i]
r−1,r:n−1

}

.

Result 5: For 3 ≤ s ≤ n,

µ1,s:n =
1

∑n
i=1

1
θi

{µ1:n + µs:n} .
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Exponential Case (cont.)

Result 4: For 2 ≤ r ≤ n − 1,

µr,r+1:n =
1

∑n
i=1

1
θi

{

µr:n + µr+1:n +

n
∑

i=1

1

θi
µ

[i]
r−1,r:n−1

}

.

Result 5: For 3 ≤ s ≤ n,

µ1,s:n =
1

∑n
i=1

1
θi

{µ1:n + µs:n} .

Result 6: For 2 ≤ r < s ≤ n and s − r ≥ 2,

µr,s:n =
1

∑n
i=1

1
θi

{

µr:n + µs:n +

n
∑

i=1

1

θi
µ

[i]
r−1,s−1:n−1

}

.
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Exponential Case (cont.)

These results give an efficient simple recursive
algorithm for the computation of moments of order
statistics from a M-O exponential model.
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These results give an efficient simple recursive
algorithm for the computation of moments of order
statistics from a M-O exponential model.

Let X1, · · · , Xn−p and Xn−p+1, · · · , Xn be independent
Exp(θ) and Exp(τ) random variables, with θ < τ .
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Exponential Case (cont.)

These results give an efficient simple recursive
algorithm for the computation of moments of order
statistics from a M-O exponential model.

Let X1, · · · , Xn−p and Xn−p+1, · · · , Xn be independent
Exp(θ) and Exp(τ) random variables, with θ < τ .

Then, Results 1 and 2, for example, reduce to
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Exponential Case (cont.)

These results give an efficient simple recursive
algorithm for the computation of moments of order
statistics from a M-O exponential model.

Let X1, · · · , Xn−p and Xn−p+1, · · · , Xn be independent
Exp(θ) and Exp(τ) random variables, with θ < τ .

Then, Results 1 and 2, for example, reduce to

µ
(k+1)
1:n [p] =

k + 1
n−p

θ + p
τ

µ
(k)
1:n[p];

µ(k+1)
r:n [p] =

1
n−p

θ + p
τ

{

(k + 1)µ(k)
r:n[p] +

n − p

θ
µ

(k+1)
r−1:n−1[p]

+
p

τ
µ

(k+1)
r−1:n−1[p − 1]

}

.
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Exponential Case (cont.)

Thus, starting with the IID results, viz.,
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Exponential Case (cont.)

Thus, starting with the IID results, viz.,

µr:n[0] = θ
r
X

i=1

1

n − i + 1
,

µ
(2)
r:n[0] = θ2

8

<

:

r
X

i=1

1

(n − i + 1)2
+

 

r
X

i=1

1

n − i + 1

!2
9

=

;

,

µr,s:n[0] = θ2

8

<

:

r
X

i=1

1

(n − i + 1)2
+

 

r
X

i=1

1

n − i + 1

!

0

@

s
X

j=1

1

n − j + 1

1

A

9

=

;

,
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Exponential Case (cont.)

Thus, starting with the IID results, viz.,

µr:n[0] = θ
r
X

i=1

1

n − i + 1
,

µ
(2)
r:n[0] = θ2

8

<

:

r
X

i=1

1

(n − i + 1)2
+

 

r
X

i=1

1

n − i + 1

!2
9

=

;

,

µr,s:n[0] = θ2

8

<

:

r
X

i=1

1

(n − i + 1)2
+

 

r
X

i=1

1

n − i + 1

!

0

@

s
X

j=1

1

n − j + 1

1

A

9

=

;

,

first two single and product moments of OS from a
single-outlier model can be produced.
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Exponential Case (cont.)

Thus, starting with the IID results, viz.,

µr:n[0] = θ
r
X

i=1

1

n − i + 1
,

µ
(2)
r:n[0] = θ2

8

<

:

r
X

i=1

1

(n − i + 1)2
+

 

r
X

i=1

1

n − i + 1

!2
9

=

;

,

µr,s:n[0] = θ2

8

<

:

r
X

i=1

1

(n − i + 1)2
+

 

r
X

i=1

1

n − i + 1

!

0

@

s
X

j=1

1

n − j + 1

1

A

9

=

;

,

first two single and product moments of OS from a
single-outlier model can be produced.

These can be used to produce single and product
moments of OS from a two-outlier model, and so on. – p. 36/52



Robustness Issue
Optimal Winsorized estimator of θ and relative

efficiency when h = θ
τ

and n = 15 a

p=1 p=2 p=3 p=4

h m∗ RE m∗ RE m∗ RE m∗ RE

0.50 15 1.000 14 1.048 13 1.104 12 1.161

0.40 14 1.084 13 1.237 12 1.404 10 1.555

0.30 14 1.329 12 1.793 10 2.222 9 2.543

0.20 13 2.222 11 3.628 9 4.777 7 5.583

0.10 13 7.649 10 14.355 8 19.249 6 22.423

a
Winsorized mean Wm,n = 1

m+1

n

Pm−1
i=1 Xi:n + (n − m + 1)Xm:n

o

.
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Robustness Issue (cont.)

Optimal Trimmed estimator of θ and relative efficiency
when h = θ

τ
and n = 15 a

p=1 p=2 p=3 p=4

h m∗ RE m∗ RE m∗ RE m∗ RE

0.50 14 0.982 14 1.185 14 1.378 13 1.537

0.40 14 1.051 14 1.313 13 1.511 13 2.000

0.30 14 1.140 14 1.350 13 1.864 13 2.217

0.20 14 1.229 13 1.558 13 1.996 12 2.776

0.10 14 1.314 13 1.838 12 2.457 11 3.128

a
Trimmed mean Tm,n = 1

m

Pm
i=1 Xi:n.

– p. 38/52



Robustness Issue (cont.)

Of course, h and p will be unknown in practice.
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Of course, h and p will be unknown in practice.

p may be determined from a simple Q-Q plot or by using the

‘greatest measure of agreement’.

– p. 39/52



Robustness Issue (cont.)

Of course, h and p will be unknown in practice.

p may be determined from a simple Q-Q plot or by using the

‘greatest measure of agreement’.

Once p is determined, we find Wn−p,n as a provisional

estimate of θ (say, θ̃), then estimate h from the equation

nWn,n =
(

n − p +
p

h

)

θ̃,

and then determine m∗ from the tables.
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Of course, h and p will be unknown in practice.

p may be determined from a simple Q-Q plot or by using the

‘greatest measure of agreement’.

Once p is determined, we find Wn−p,n as a provisional

estimate of θ (say, θ̃), then estimate h from the equation

nWn,n =
(

n − p +
p

h

)

θ̃,

and then determine m∗ from the tables.

Next, the corresponding Wm∗,n may be used in place of θ̃ in

the above equation, and a new m∗ be determined.
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Robustness Issue (cont.)

Of course, h and p will be unknown in practice.

p may be determined from a simple Q-Q plot or by using the

‘greatest measure of agreement’.

Once p is determined, we find Wn−p,n as a provisional

estimate of θ (say, θ̃), then estimate h from the equation

nWn,n =
(

n − p +
p

h

)

θ̃,

and then determine m∗ from the tables.

Next, the corresponding Wm∗,n may be used in place of θ̃ in

the above equation, and a new m∗ be determined.

Continue until m∗ is stable, and use Wm∗,n as estimate. – p. 39/52



Robustness Issue (cont.)

This process, when used with Winsorized and Trimmed

estimators, produced the following results.
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Robustness Issue (cont.)

This process, when used with Winsorized and Trimmed

estimators, produced the following results.

Bias of Winsorized and Trimmed estimators of θ and
relative efficiency when h = θ

τ
= 0.10 and n = 20

Estimator p = 1 p = 2 p = 3 p = 4

W20,20 0.3810 0.8095 1.2381 1.6667

W18,20 0.0528 0.2029 0.5246 0.9360

T18,20 -0.1594 -0.0615 0.1103 0.3453

W16,20 0.0241 0.1261 0.2568 0.4360

T16,20 -0.3307 -0.2737 -0.2038 -0.1144
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Robustness Issue (cont.)

This process, when used with Winsorized and Trimmed

estimators, produced the following results.

Bias of Winsorized and Trimmed estimators of θ and
relative efficiency when h = θ

τ
= 0.10 and n = 20

Estimator p = 1 p = 2 p = 3 p = 4

W20,20 0.3810 0.8095 1.2381 1.6667

W18,20 0.0528 0.2029 0.5246 0.9360

T18,20 -0.1594 -0.0615 0.1103 0.3453

W16,20 0.0241 0.1261 0.2568 0.4360

T16,20 -0.3307 -0.2737 -0.2038 -0.1144

When p increases, Winsorized mean develops serious bias,

but not Trimmed mean. – p. 40/52



Robustness Issue (cont.)

Bias and MSE of estimators of θ when p outliers are
present in the sample with h = θ

τ
and n = 20 a

p=1 p=2 p=3

h Est Bias MSE Bias MSE Bias MSE

1.00 Wn,n -0.048 0.048

W.9n,n -0.053 0.053

T.9n,n -0.233 0.088

CKn -0.073 0.048

0.25 Wn,n 0.095 0.088 0.238 0.170 0.381 0.293

W.9n,n 0.020 0.060 0.107 0.084 0.213 0.141

T.9n,n -0.181 0.071 -0.119 0.060 -0.047 0.057

CKn 0.065 0.078 0.202 0.146 0.339 0.252

aCKn is Chikkagoudar-Kunchur estimator of θ
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Robustness Issue (cont.)

Complete sample estimator Wn,n and Chikkagoudar–

Kunchur estimator CKn are both very efficient when there is

no outlier.
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Robustness Issue (cont.)

Complete sample estimator Wn,n and Chikkagoudar–

Kunchur estimator CKn are both very efficient when there is

no outlier.

When the number of outliers is at least 2, Chikkagoudar–

Kunchur estimator develops serious bias and possesses a

MSE as large as that of Wn,n.
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Robustness Issue (cont.)

Complete sample estimator Wn,n and Chikkagoudar–

Kunchur estimator CKn are both very efficient when there is

no outlier.

When the number of outliers is at least 2, Chikkagoudar–

Kunchur estimator develops serious bias and possesses a

MSE as large as that of Wn,n.

Trimmed estimator performs quite efficiently, and the gain in

efficiency is substantial as compared to all other estimators.

– p. 42/52



Robustness Issue (cont.)

Complete sample estimator Wn,n and Chikkagoudar–

Kunchur estimator CKn are both very efficient when there is

no outlier.

When the number of outliers is at least 2, Chikkagoudar–

Kunchur estimator develops serious bias and possesses a

MSE as large as that of Wn,n.

Trimmed estimator performs quite efficiently, and the gain in

efficiency is substantial as compared to all other estimators.

It is important to note that the greater protection provided by

trimmed estimator (to the presence of one or more extreme

outliers) comes at a higher premium.
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Robustness Issue (cont.)

In the Discussion on a paper by Balakrishnan (1994,
pp. 243–246), Barry Arnold stated
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Robustness Issue (cont.)

In the Discussion on a paper by Balakrishnan (1994,
pp. 243–246), Barry Arnold stated

“When confronted with Professor Balakrishnan’s results with

myriad relations among moments of non-homogeneous

exponential order statistics, lack of memory property could be

used to produce alternate formulas. But, there would be little

gain in efficiency when compared to Bala’s algorithm. Bala’s

specialized differential equation techniques may perhaps have

their finest hour in dealing with logistic case for which minima

and maxima are not nice. His proposed work in this direction

will be interesting.”
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Other Cases
Consider the case when Xi’s are independent logistic
random variables with

fi(x) =

π√
3
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1 + exp
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− π√
3
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x−µi
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)})2 , x ∈ R,

Fi(x) =
1

1 + exp
{

− π√
3

(

x−µi

σi

)} , x ∈ R.

In this case, we have the differential equations

fi(x) =
π

σi

√
3

Fi(x) {1 − Fi(x)} , x ∈ R.
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Other Cases (cont.)

Let us denote the moments E
(

Xk
r:n

)

by µ
(k)
r:n.
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Other Cases (cont.)

Let us denote the moments E
(

Xk
r:n

)

by µ
(k)
r:n.

As before, let µ
(k)[i]
r:n−1 denote the single moments of OS

from X1, · · · , Xn with Xi removed.
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Let us denote the moments E
(
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r:n

)

by µ
(k)
r:n.

As before, let µ
(k)[i]
r:n−1 denote the single moments of OS

from X1, · · · , Xn with Xi removed.

Next, let µ
(k)[i]+

r:n+1 denote the single moments of OS from
n + 1 variables obtained by adding an independent

Xn+1
d
= Xi to the original variables X1, · · · , Xn.
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Other Cases (cont.)

Let us denote the moments E
(

Xk
r:n

)

by µ
(k)
r:n.

As before, let µ
(k)[i]
r:n−1 denote the single moments of OS

from X1, · · · , Xn with Xi removed.

Next, let µ
(k)[i]+

r:n+1 denote the single moments of OS from
n + 1 variables obtained by adding an independent

Xn+1
d
= Xi to the original variables X1, · · · , Xn.

Then, the differential equations can be used along with
the permanents approach to establish the following
results for moments of order statistics.
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Other Cases (cont.)

Result 1: For n = 1, 2, · · · and k = 0, 1, 2, · · · ,
n
X

i=1

1

σi

µ
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√

3

π
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(k)
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n
X
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σi

!

µ
(k+1)
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Other Cases (cont.)
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Other Cases (cont.)

In the case of p-outlier model given by

(X1, · · · , Xn−p) ∼ L(µ, σ) and (Xn−p+1, · · · , Xn) ∼ L(µ1, σ1),

these reduce to the following results:
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Other Cases (cont.)

In the case of p-outlier model given by

(X1, · · · , Xn−p) ∼ L(µ, σ) and (Xn−p+1, · · · , Xn) ∼ L(µ1, σ1),

these reduce to the following results:
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· · · · · ·
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Other Cases (cont.)

Bias of estimators of the mean of a logistic distribution
when p = 1 outlier is present in the sample with

µ0 = 0, σ = σ1 = 1 and n = 20

µ1

Estimator 0.5 1.0 2.0 3.0 4.0

Mean 0.0250 0.0500 0.1000 0.1500 0.2000

Trim(10%) 0.0245 0.0459 0.0728 0.0817 0.0836

Trim(20%) 0.0241 0.0434 0.0626 0.0672 0.0681

Wins(10%) 0.0248 0.0479 0.0812 0.0943 0.0974

Wins(20%) 0.0244 0.0451 0.0683 0.0745 0.0756

LWMean(10%) 0.0240 0.0432 0.0624 0.0673 0.0682

LWMean(20%) 0.0239 0.0420 0.0585 0.0620 0.0627

Median 0.0236 0.0407 0.0548 0.0576 0.0581
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Other Cases (cont.)

Bias of estimators of the mean of a logistic distribution
when p = 2 outliers are present in the sample with

µ0 = 0, σ = σ1 = 1 and n = 20

µ1

Estimator 0.5 1.0 2.0 3.0 4.0

Mean 0.500 0.1000 0.2000 0.3000 0.4000

Trim(10%) 0.0491 0.0933 0.1562 0.1862 0.1968

Trim(20%) 0.0485 0.0887 0.1332 0.1458 0.1482

Wins(10%) 0.0496 0.0969 0.1751 0.2224 0.2420

Wins(20%) 0.0490 0.0920 0.1464 0.1643 0.1680

LWMean(10%) 0.0484 0.0883 0.1328 0.1467 0.1500

LWMean(20%) 0.0480 0.0861 0.1236 0.1327 0.1343

Median 0.0476 0.0836 0.1153 0.1219 0.1231
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Other Cases (cont.)

Some other distributions for which robust estimation
has been discussed are:
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Other Cases (cont.)

Some other distributions for which robust estimation
has been discussed are:

Normal distribution
Laplace distribution
Pareto distribution
Power function distribution
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