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1. Step-stress Problem

In industrial experiments, products that are tested are often

extremely reliable with large mean times to failure under

normal operating conditions. So, an experimenter may

resort to accelerated life-testing (ALT) wherein the units are

subjected to higher stress levels than normal. Examples

include assessing the effects of temperature, voltage, load,

vibration, etc. on the lifetime of a product.
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1. Step-stress Problem

In industrial experiments, products that are tested are often

extremely reliable with large mean times to failure under

normal operating conditions. So, an experimenter may

resort to accelerated life-testing (ALT) wherein the units are

subjected to higher stress levels than normal. Examples

include assessing the effects of temperature, voltage, load,

vibration, etc. on the lifetime of a product.

Step-stress testing is one such ALT.

Some key references on ALT are:

Nelson (1990)

Meeker and Escobar (1998)

Bagdonavicius and Nikulin (2002)
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1. Step-stress Problem
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2. Models

There are three important models discussed in the
literature:

Tampered Random Variable Model

[DeGroot and Goel (1979)]

Tampered Hazard Model

[Bhattacharyya and Zanzawi (1989)]

Cumulative Exposure Model

[Nelson (1980)]

– p. 6/66



3. Cumulative Exposure Model

The cumulative exposure model [Nelson
(1980, 1990)] relates the life distribution of an
unit at one stress level to the life distribution
of that unit at the next stress level by
assuming that the residual life of the unit
depends only on the cumulative exposure
that unit had experienced, with no memory of
how this exposure was accumulated.
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3. Cumulative Exposure Model

In the case of a simple step-stress model,
with the life distributions as Exp(θ1) and
Exp(θ2) at stress levels s

0
and s

1
, the

cumulative exposure distribution (CED) of T
(time-to-failure of unit) becomes
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3. Cumulative Exposure Model

In the case of a simple step-stress model,
with the life distributions as Exp(θ1) and
Exp(θ2) at stress levels s

0
and s

1
, the

cumulative exposure distribution (CED) of T
(time-to-failure of unit) becomes

G(t) =







G1(t) = F1(t; θ1) if 0 < t < τ

G2(t) = F2

(

t −
(

1 − θ2
θ1

)

τ ; θ2

)

if τ ≤ t < ∞,

where

Fk(t; θk) = 1 − e−t/θk , t ≥ 0, θk > 0, k = 1, 2.
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3. Cumulative Exposure Model

The corresponding PDF is

g(t) =







g1(t) = 1
θ1

e
− 1

θ1
t

if 0 < t < τ

g2(t) = 1
θ2

e
− 1

θ2
(t−τ)− 1

θ1
τ

if τ ≤ t < ∞.

⇒
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4. Likelihood under Type-II Censoring & MLEs

Suppose n units are placed under a
step-stress test at an initial stress level of s0,
and at a pre-fixed time τ the stress level will
be changed to s1.
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4. Likelihood under Type-II Censoring & MLEs

Suppose n units are placed under a
step-stress test at an initial stress level of s0,
and at a pre-fixed time τ the stress level will
be changed to s1.

Under Type-II censoring, the experiment will
terminate when a required number (say, r) of
the n units fail. If r is taken as n, then a
complete sample would be observed from the
step-stress test.

Let n1 denote the (random) number of failures
that occur before τ .
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4. Likelihood under Type-II Censoring & MLEs

The likelihood of the observed Type-II
censored data t1:n < · · · < tr:n is
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4. Likelihood under Type-II Censoring & MLEs

The likelihood of the observed Type-II
censored data t1:n < · · · < tr:n is

L(θ1, θ2) =

8
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:

c1
θr
1

e
−

1
θ1

[
Pr

i=1 ti:n+(n−r)tr:n]

if n1 = r

c1
θr
2

e
−

1
θ2

h

Pr
i=1

“

θ2
θ1

τ+ti:n−τ
”

+(n−r)
“

θ2
θ1

τ+tr:n−τ
”i

if n1 = 0

c2

θ
n1
1

θ
r−n1
2

e
−

1
θ1

{
Pn1

i=1
ti:n+(n−n1)τ}

× e
−

1
θ2

n

Pr
i=n1+1(ti:n−τ)+(n−r)(tr:n−τ)

o

if 1 ≤ n1 ≤ r − 1.
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4. Likelihood under Type-II Censoring & MLEs

It is evident that the MLEs of θ1 and θ2 exist
only when 1 ≤ n1 ≤ r − 1, and they are:
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It is evident that the MLEs of θ1 and θ2 exist
only when 1 ≤ n1 ≤ r − 1, and they are:

θ̂1 =

∑n1

i=1 ti:n + (n − n1)τ

n1

,

θ̂2 =

∑r
i=n1+1(ti:n − τ) + (n − r)(tr:n − τ)

r − n1

.
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4. Likelihood under Type-II Censoring & MLEs

It is evident that the MLEs of θ1 and θ2 exist
only when 1 ≤ n1 ≤ r − 1, and they are:

θ̂1 =

∑n1

i=1 ti:n + (n − n1)τ

n1

,

θ̂2 =

∑r
i=n1+1(ti:n − τ) + (n − r)(tr:n − τ)

r − n1

.

These are the conditional MLEs of θ1 and θ2,
conditional on 1 ≤ n1 ≤ r − 1.

The inference we develop here will be exact
and conditional.
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5. Exact Conditional Distributions of MLEs

Denote the CMGFs of θ̂1 and θ̂2, given
1 ≤ n1 ≤ r − 1, by M1(t) and M2(t),
respectively.
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5. Exact Conditional Distributions of MLEs

Denote the CMGFs of θ̂1 and θ̂2, given
1 ≤ n1 ≤ r − 1, by M1(t) and M2(t),
respectively.

M1(t) = E
[

etθ̂1 |1 ≤ n1 ≤ r − 1
]

,

M2(t) = E
[

etθ̂2 |1 ≤ n1 ≤ r − 1
]

.

For deriving Mk(t), we may write

Mk(t) =

r−1
∑

j=1

E
[

etθ̂k |n1 = j
]

× P [n1 = j|1 ≤ n1 ≤ r − 1] .
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5. Exact Conditional Distributions of MLEs

Lemma 1 : The number of failures occurring
before τ , viz. n1, is a binomial random
variable with PMF (for j = 0, 1, · · · , n)

P [n1 = j] =

(

n

j

)

(

1 − e
− τ

θ1

)j

e
− τ

θ1
(n−j)

= pj (say).
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5. Exact Conditional Distributions of MLEs

Lemma 1 : The number of failures occurring
before τ , viz. n1, is a binomial random
variable with PMF (for j = 0, 1, · · · , n)

P [n1 = j] =

(

n

j

)

(

1 − e
− τ

θ1

)j

e
− τ

θ1
(n−j)

= pj (say).

So,

P [n1 = j|1 ≤ n1 ≤ r − 1] =
pj

∑r−1
i=1 pi

.
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5. Exact Conditional Distributions of MLEs

Lemma 2 : Let X1:n < · · · < Xn:n be the order
statistics of a sample of size n from PDF f(x)
and CDF F (x). Let D be the number of order
statistics ≤ τ (fixed time).
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5. Exact Conditional Distributions of MLEs

Lemma 2 : Let X1:n < · · · < Xn:n be the order
statistics of a sample of size n from PDF f(x)
and CDF F (x). Let D be the number of order
statistics ≤ τ (fixed time).

The conditional joint PDF of X1:n, · · · , XD:n,
given that D = j, is same as the joint PDF of
all order statistics from a sample of size j

from the right truncated density

fτ (t) =







f(t)
F (τ)

for 0 < t < τ

0 otherwise.
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5. Exact Conditional Distributions of MLEs

Lemma 3 : Let Z be a right-truncated
exponential random variable with PDF

fZ(z) =
1
θ1

e
− z

θ1

1 − e
− τ

θ1

for 0 < z < τ.
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5. Exact Conditional Distributions of MLEs

Lemma 3 : Let Z be a right-truncated
exponential random variable with PDF

fZ(z) =
1
θ1

e
− z

θ1

1 − e
− τ

θ1

for 0 < z < τ.

Then, the MGF of Z is

MZ(t) = E(etZ) =
1 − e

− τ
θ1

(1−θ1t)

(1 − e
− τ

θ1 )(1 − θ1t)
.
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5. Exact Conditional Distributions of MLEs

Lemma 4 : Let Y be a Gamma(α, λ), i.e., a
gamma random variable with shape
parameter α and scale parameter λ. The PDF
of Y is given by

fG(y;α, λ) =
λα

Γ(α)
yα−1e−λy for y > 0.
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5. Exact Conditional Distributions of MLEs

Lemma 4 : Let Y be a Gamma(α, λ), i.e., a
gamma random variable with shape
parameter α and scale parameter λ. The PDF
of Y is given by

fG(y;α, λ) =
λα

Γ(α)
yα−1e−λy for y > 0.

For any constant A, the MGF of Y + A is

MY +A(t) = etA

(

1 −
t

λ

)−α

.
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5. Exact Conditional Distributions of MLEs

By using the Lemmas, it can be shown that

E
(

etθ̂1|n1 = j
)

=
e

t
j
(n−j)τ

(

1 − e
− τ

θ1
(1−

θ1t

j )
)j

(

1 − e
− τ

θ1

)j (

1 − θ1t
j

)j
.
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5. Exact Conditional Distributions of MLEs

By using the Lemmas, it can be shown that

E
(

etθ̂1|n1 = j
)

=
e

t
j
(n−j)τ

(

1 − e
− τ

θ1
(1−

θ1t

j )
)j

(

1 − e
− τ

θ1

)j (

1 − θ1t
j

)j
.

So,
E
(

etθ̂1|1 ≤ n1 ≤ r − 1
)

=
r−1
∑

j=1

j
∑

k=0

cj,k

(

1 −
θ1t

j

)−j

e
tτ
j

(n−j+k).
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5. Exact Conditional Distributions of MLEs

Theorem 1 : The PDF of θ̂1, conditional on
1 ≤ n1 ≤ r − 1, is given by

f
θ̂1

(t) =
r−1
∑

j=1

j
∑

k=0

cj,k fG

(

t − τj,k; j,
j

θ1

)

;
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5. Exact Conditional Distributions of MLEs

Theorem 1 : The PDF of θ̂1, conditional on
1 ≤ n1 ≤ r − 1, is given by

f
θ̂1

(t) =
r−1
∑

j=1

j
∑

k=0

cj,k fG

(

t − τj,k; j,
j

θ1

)

;

here,

cj,k =
(−1)k

∑r−1
i=1 pi

(

n

j

)(

j

k

)

e
− τ

θ1
(n−j+k)

,

τj,k =
τ

j
(n − j + k).
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5. Exact Conditional Distributions of MLEs

Lemma 5 : Let T1:n < · · · < Tr:n be the first r

order statistics from the cumulative exposure
density. The conditional joint PDF of
Tn1+1:n, · · · , Tr:n, given that n1 = j, where
1 ≤ j ≤ r − 1, is given by
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5. Exact Conditional Distributions of MLEs

Lemma 5 : Let T1:n < · · · < Tr:n be the first r

order statistics from the cumulative exposure
density. The conditional joint PDF of
Tn1+1:n, · · · , Tr:n, given that n1 = j, where
1 ≤ j ≤ r − 1, is given by

fTn1+1:n,··· ,Tr:n|(n1=j)(tn1+1:n, · · · , tr:n)

=
c3

θ
r−j
2

e
−
n“

tj+1:n−τ

θ2

”

+···+
“

tr:n−τ
θ2

”

+(n−r)
“

tr:n−τ
θ2

”o

for τ < tj+1:n < · · · < tr:n < ∞, and c3 is the
normalizing constant.
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5. Exact Conditional Distributions of MLEs

By using the preceding Lemma, it can be
shown that the CMGF of θ̂2 is

M2(t) =
r−1
∑

j=1

pr−j
∑r−1

i=1 pi

(

1 −
tθ2

j

)−j

.
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5. Exact Conditional Distributions of MLEs

By using the preceding Lemma, it can be
shown that the CMGF of θ̂2 is

M2(t) =
r−1
∑

j=1

pr−j
∑r−1

i=1 pi

(

1 −
tθ2

j

)−j

.

Theorem 2 : The PDF of θ̂2, conditional on
1 ≤ n1 ≤ r − 1, is given by

fθ̂2
(t) =

r−1
∑

j=1

pr−j
∑r−1

i=1 pi

fG

(

t; j,
j

θ2

)

.
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5. Exact Conditional Distributions of MLEs

Theorem 3 : The first two moments of θ̂1 and
θ̂2 are as follows:
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5. Exact Conditional Distributions of MLEs

Theorem 3 : The first two moments of θ̂1 and
θ̂2 are as follows:

E
(

θ̂1

)

=

r−1
∑

j=1

j
∑

k=0

cj,k (τj,k + θ1) ,

E
(

θ̂2
1

)

=
r−1
∑

j=1

j
∑

k=0

cj,k

(

(j + 1)

j
θ2
1 + τ 2

j,k + 2θ1τj,k

)

,

E(θ̂2) = θ2

r−1
∑

j=1

pr−j
∑r−1

i=1 pi
= θ2,

E(θ̂2
2) = θ2

2

r−1
∑

j=1

pr−j
∑r−1

i=1 pi

(j + 1)

j
.
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5. Exact Conditional Distributions of MLEs

Remark 1 : The conditional PDF of θ̂2 in
Theorem 2 is a true mixture of gamma
densities.
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Remark 1 : The conditional PDF of θ̂2 in
Theorem 2 is a true mixture of gamma
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Remark 2 : The expressions of the expected
values in Theorem 3 clearly reveal that θ̂1 is a
biased estimator of θ1, while θ̂2 is an unbiased
estimator of θ2.

– p. 23/66



5. Exact Conditional Distributions of MLEs

Remark 1 : The conditional PDF of θ̂2 in
Theorem 2 is a true mixture of gamma
densities.

Remark 2 : The expressions of the expected
values in Theorem 3 clearly reveal that θ̂1 is a
biased estimator of θ1, while θ̂2 is an unbiased
estimator of θ2.

Remark 3 : The expressions of the second
moments in Theorem 3 can be used for
finding standard errors of the estimates.

– p. 23/66



6. Confidence Intervals & Bootstrap Intervals

Theorem 4 : The tail probability of θ̂1 is

Pθ1

(

θ̂1 ≥ b
)

=

r−1
∑

j=1

j
∑

k=0

cj,k Γ

(

j,
j

θ1
< b − τj,k >

)

,

where Γ(a, z) = 1
Γ(a)

∫∞

z
ta−1e−tdt is

incomplete gamma, and < x >= max{x, 0}.
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6. Confidence Intervals & Bootstrap Intervals

Theorem 4 : The tail probability of θ̂1 is

Pθ1

(

θ̂1 ≥ b
)

=

r−1
∑

j=1

j
∑

k=0

cj,k Γ

(

j,
j

θ1
< b − τj,k >

)

,

where Γ(a, z) = 1
Γ(a)

∫∞

z
ta−1e−tdt is

incomplete gamma, and < x >= max{x, 0}.

Similarly, the tail probability of θ̂2 is

Pθ2

(

θ̂2 ≥ b
)

=

r−1
∑

j=1

pr−j
∑r−1

i=1 pi
Γ

(

j,
bj

θ2

)

.
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6. Confidence Intervals & Bootstrap Intervals

Exact CIs : Using the results in Theorem 4,
exact conditional CIs can be constructed for
θ1 and θ2.
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6. Confidence Intervals & Bootstrap Intervals

Exact CIs : Using the results in Theorem 4,
exact conditional CIs can be constructed for
θ1 and θ2.

Approximate CIs : Using the observed Fisher
information matrix, approximate CIs can be
constructed for θ1 and θ2 using the asymptotic
normality of the MLEs.

BCA Bootstrap CIs : Using the bias-corrected
and accelerated percentile bootstrap method
[Efron and Tibshirani (1982)], bootstrap CIs
can be constructed for θ1 and θ2.
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7. Simulation Results & Comments

We simulated the coverage probabilities (CP)
of all three CIs for different values of n, r and
τ ; see Tables 1 and 2.
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7. Simulation Results & Comments

We simulated the coverage probabilities (CP)
of all three CIs for different values of n, r and
τ ; see Tables 1 and 2.

Exact conditional CI has its CP to be quite
close to the nominal level.
Approximate CI has its CP to be always
smaller than the nominal level, and so it will
often be unduly narrower.
Bootstrap CI has its CP to be close to the
nominal level for θ2, but is not satisfactory
for θ1, and especially worse for small n.

– p. 26/66



7. Simulation Results & Comments

Table 1: Estimated coverage probabilities (in %) based on 10 00

simulations with θ1 = 12.0 and θ2 = 4.5, n = 20, r = 16, B = 1000

C.I. of θ1 90% C.I. 95% C.I.

τ Boot Approx Exact Boot Approx Exact

1 97.7 74.0 90.6 99.0 74.7 95.8

2 98.5 83.6 88.0 99.6 84.3 94.6

3 85.4 83.5 89.0 85.7 86.6 94.0

4 84.2 81.8 88.4 92.1 87.0 94.2

5 93.8 85.4 91.4 96.8 89.0 95.8

6 95.3 87.1 90.7 97.3 89.8 95.8
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7. Simulation Results & Comments

Table 2: Estimated coverage probabilities (in %) based on 10 00

simulations with θ1 = 12.0 and θ2 = 4.5, n = 20, r = 16, B = 1000

C.I. of θ2 90% C.I. 95% C.I.

τ Boot Approx Exact Boot Approx Exact

1 90.7 88.7 90.9 94.8 92.8 95.8

2 90.1 86.1 90.5 94.3 91.1 95.8

3 89.8 87.1 91.9 94.2 91.0 96.1

4 89.4 86.2 90.5 94.5 90.2 96.1

5 89.7 86.6 91.0 93.8 89.9 96.0

6 88.3 84.7 91.0 93.4 87.4 96.2
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8. Illustrative Example

Let us consider the data presented by Xiong
(1998). The data n = 20, r = 16 and τ = 5 are
as follows:
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8. Illustrative Example

Let us consider the data presented by Xiong
(1998). The data n = 20, r = 16 and τ = 5 are
as follows:

Stress level Failure Time

θ1 = e2.5 2.01 3.60 4.12 4.34

θ2 = e1.5 5.04 5.94 6.68 7.09 7.17 7.49

7.60 8.23 8.24 8.25 8.69 12.05

– p. 29/66



8. Illustrative Example

In this example, we have

n1 = 4 and n2 = r − n1 = 12.
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θ̂1 = 23.5175 and θ̂2 = 5.0558
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8. Illustrative Example

In this example, we have

n1 = 4 and n2 = r − n1 = 12.

We then find

θ̂1 = 23.5175 and θ̂2 = 5.0558

The confidence intervals for θ1 and θ2 are
presented in Table 3.

– p. 30/66



8. Illustrative Example

Table 3: Confidence intervals for θ1 and θ2

CI for θ1 90% 95%

Bootstrap CI (7.78, 34.05) (6.03, 34.05)

Approx CI (0.00, 35.66) (0.00, 39.36)

Exact CI (11.70, 72.95) (10.35, 94.78)

CI for θ2 90% 95%

Bootstrap CI (5.76, 11.43) (5.51, 12.80)

Approx CI (2.66, 7.46) (2.20, 7.92)

Exact CI (3.33, 8.80) (3.07, 9.86)
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8. Illustrative Example

From Table 3, we observe the following:
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From Table 3, we observe the following:

Exact CIs are wider in general than the other two intervals;

Approximate CIs are always narrower while Bootstrap CIs

are sometimes narrower and sometimes wider;
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8. Illustrative Example

From Table 3, we observe the following:

Exact CIs are wider in general than the other two intervals;

Approximate CIs are always narrower while Bootstrap CIs

are sometimes narrower and sometimes wider;

This is so because the CPs for the approximate method are

lower than the nominal level while those of the bootstrap

method are sometimes lower and sometimes higher;

CIs for θ2 are considerably narrower than those for θ1. This

is so since when τ is small relative to θ1, relatively small

(large) numbers of failures would occur before (after) τ .
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9. Time-Constrained Step-Stress Test

Consider the step-stress testing when there is
a time constraint on the experiment.

n identical units are tested at an initial stress
level s0. The stress level is changed to s1 at
time τ1, and the testing is terminated at time
τ

2
, where 0 < τ1 < τ2 < ∞ are pre-fixed.

Let

N1 = no. of units that fail before time τ
1
;

N2 = no. of units that fail before time τ
2

at stress level s1.
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9. Time-Constrained Step-Stress Test

With these notation, we will observe the
following data:

t =
{

t
1:n

< · · · < t
N1:n

≤ τ
1

< t
N1+1:n

< · · · < t
N1+N2:n

≤ τ
2

}

.

We obtain the likelihood function of θ1 and θ2

based on the above Type-I censored sample
as follows:
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9. Time-Constrained Step-Stress Test

If N1 = n and N2 = 0, the likelihood is

L(θ1, θ2|t) = n!
n
∏

k=1

g1

(

t
k:n

)

=
n!

θn1
exp

{

−
1

θ1

n
∑

k=1

t
k:n

}

,

0 < t1:n < · · · < tn:n < τ1 ;
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9. Time-Constrained Step-Stress Test

If N1 = n and N2 = 0, the likelihood is

L(θ1, θ2|t) = n!
n
∏

k=1

g1

(

t
k:n

)

=
n!

θn1
exp

{

−
1

θ1

n
∑

k=1

t
k:n

}

,

0 < t1:n < · · · < tn:n < τ1 ;

In all other cases, the likelihood function is

L(θ1, θ2|t) =
n!

(n − r)! θN1
1 θN2

2

exp

{

−
1

θ1
D1 −

1

θ2
D2

}

,

0 < t1:n < · · · < t
N1:n

< τ1 ≤ t
N1+1:n

< · · · < tr:n < τ2 ,
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where

r = N1 +N2 (2 ≤ r ≤ n),

D1 =

N1
X

k=1

t
k:n

+
`

n−N1

´

τ
1
,

D2 =

r
X

k=N1+1

`

t
k:n

− τ
1

´

+ (n− r)(τ
2
− τ

1
).

– p. 36/66



9. Time-Constrained Step-Stress Test

where

r = N1 +N2 (2 ≤ r ≤ n),

D1 =

N1
X

k=1

t
k:n

+
`

n−N1

´

τ
1
,

D2 =

r
X

k=N1+1

`

t
k:n

− τ
1

´

+ (n− r)(τ
2
− τ

1
).

We observe that if at least one failure occurs
before τ

1
and between τ

1
and τ

2
, the MLE of

(

θ1, θ2

)

exists, and
(

D1, D2

)

is joint complete
sufficient for (θ1, θ2).
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9. Time-Constrained Step-Stress Test

In this situation, the log-likelihood function of
θ1 and θ2 is

l(θ1, θ2|t) = log
n!

(n − r)!
− N1 log θ1 − N2 log θ2 −

D1

θ1
−

D2

θ2
.
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l(θ1, θ2|t) = log
n!

(n − r)!
− N1 log θ1 − N2 log θ2 −

D1
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−
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.

The MLEs of θ1 and θ2 are obtained as

θ̂1 =
D1

N1
and θ̂2 =

D2

N2
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9. Time-Constrained Step-Stress Test

In this situation, the log-likelihood function of
θ1 and θ2 is

l(θ1, θ2|t) = log
n!

(n − r)!
− N1 log θ1 − N2 log θ2 −

D1

θ1
−

D2

θ2
.

The MLEs of θ1 and θ2 are obtained as

θ̂1 =
D1

N1
and θ̂2 =

D2

N2
.

We can similarly develop here conditional
inference (conditioned on N1 ≥ 1 and N2 ≥ 1),
basing it on truncated trinomial distribution.
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9. Time-Constrained Step-Stress Test

Theorem 5 : The conditional PDF of θ̂1, given
{

1 ≤ N1 ≤ n − 1 and 1 ≤ N2 ≤ n − N1

}

, is

f
θ̂1

(x) = Cn

n−1
∑

i=1

i
∑

k=0

Cik fG

(

x − τ
ik
; i,

i

θ1

)

,

where fG(·) is the gamma density as before,

τ
ik

=
1

i
(n− i+ k)τ

1
, p

1
= G1(τ

1
) = 1 − e−τ

1
/θ1 ,

p
2

= G2(τ2 ) −G1(τ
1
) =

`

1 − p
1

´

n

1 − e−(τ
2
−τ

1
)/θ2

o

,

p
3

= 1 − p
1
− p

2
, Cn =

1

1 − (1 − p
1
)n − (1 − p

2
)n + pn

3

,

Cik = (−1)k
“n

i

”“ i

k

”n

`

1 − p
1

´n−i
− pn−i

3

o

`

1 − p
1

´k
.
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9. Time-Constrained Step-Stress Test

Theorem 6 : The conditional PDF of θ̂2, given
{

1 ≤ N1 ≤ n − 1 and 1 ≤ N2 ≤ n − N1

}

, is

f
θ̂2

(x) = Cn

n−1
∑

i=1

n−i
∑

j=1

j
∑

k=0

Cijk fG

(

x − τ
ijk

; j,
j

θ2

)

,

where
τ

ijk
=

1

j
(n− i− j + k)(τ

2
− τ

1
),

Cijk = (−1)k
“ n

i, j, n− i− j

”“j

k

”

pi
1
pn−i−j+k
3

`

1 − p
1

´j−k
.
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9. Time-Constrained Step-Stress Test

Theorem 6 : The conditional PDF of θ̂2, given
{

1 ≤ N1 ≤ n − 1 and 1 ≤ N2 ≤ n − N1

}

, is

f
θ̂2

(x) = Cn

n−1
∑

i=1

n−i
∑

j=1

j
∑

k=0

Cijk fG

(

x − τ
ijk

; j,
j

θ2

)

,

where
τ

ijk
=

1

j
(n− i− j + k)(τ

2
− τ

1
),

Cijk = (−1)k
“ n

i, j, n− i− j

”“j

k

”

pi
1
pn−i−j+k
3

`

1 − p
1

´j−k
.

We obtained the following CIs for θ1 and θ2

based on earlier data for different choices of
the time constraint, viz., τ2.
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9. Time-Constrained Step-Stress Test

Table 4: Interval estimation for θ1 with τ
1
= 5 and

different τ
2

τ
2

Method 90% 95%

6.00 Bootstrap (BCa) (11.8452, 97.0986) (10.4813, 97.9780)

Approximation ( 0.0000, 35.1448) ( 0.0000, 38.8501)

Exact (11.4823, 71.8781) (10.1474, 93.3925)

8.00 Bootstrap (BCa) (11.5395, 95.6438) (10.2748, 97.3843)

Approximation ( 0.0000, 35.6525) ( 0.0000, 39.3578)

Exact (11.6965, 72.9479) (10.3429, 94.7722)

12.05 Bootstrap (BCa) (11.4043, 96.3999) (10.4989, 98.1858)

Approximation ( 0.0000, 35.6561) ( 0.0000, 39.3614)

Exact (11.7003, 72.9524) (10.3472, 94.7775)
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Table 5: Interval estimation for θ2 with τ
1
= 5 and

different τ
2

τ
2

Method 90% 95%

6.00 Bootstrap (BCa) ( 2.8799, 16.6801) ( 2.4932, 17.3774)

Approximation ( 0.0000, 14.9771) ( 0.0000, 16.6460)

Exact ( 2.7403, 61.6015) ( 2.3523,117.4822)

8.00 Bootstrap (BCa) ( 2.5731, 8.2473) ( 2.2987, 9.8267)

Approximation ( 1.2354, 8.1647) ( 0.5717, 8.8284)

Exact ( 3.1190, 11.2912) ( 2.8251, 13.2468)

12.05 Bootstrap (BCa) ( 3.3126, 6.3473) ( 2.86336, 7.1828)

Approximation ( 2.5111, 7.9818) ( 1.98708, 8.5058)

Exact ( 3.5491, 9.4128) ( 3.27812, 10.5409)
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Progressive Type-II Censoring
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10. Progressive Type-II Censoring and Results

Set-up

Let us consider a simple step-stress model when the
observed failure data are progressively Type-II censored.

Exp(θ1) and Exp(θ2) are the distributions.

Let

N1 = no. of units that fail before time τ at stress level s
0

N2 = no. of units that fail after time τ at stress level s
1
.

Observed data are

t =
{

t
1:r:n

< · · · < t
N1:r:n

≤ τ < t
N1+1:r:n

< · · · < t
r:r:n

}

.
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation
The likelihood function is

L(θ1, θ2|t) = Cp ·

(

r
Y

k=1

g
`

t
k:r:n

´

h

1 −G
`

t
k:r:n

´

iRk

)

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Cp

θr
1

exp
n

− 1
θ1

Pr
k=1

`

Rk + 1
´

t
k:r:n

o

if N1 = r and N2 = 0

Cp

θr
2

exp
n

− 1
θ2

Pr
k=1

`

Rk + 1
´`

t
k:r:n

− τ
´

− 1
θ1

Pr
k=1

`

Rk + 1
´

τ
o

if N1 = 0 and N2 = r

Cp

θ
N1
1

θ
N2
2

e
−

1
θ1

D1−
1

θ2
D2 otherwise,

where r = N1 +N2 (2 ≤ r ≤ n), Cp =
Qr

j=1

Pr
k=j(Rk + 1) and

D1 =

N1
X

k=1

`

Rk+1
´

t
k:r:n

+τ
r
X

k=N1+1

`

Rk+1
´

, D2 =
r
X

k=N1+1

`

Rk+1
´`

t
k:r:n

−τ
´

.
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10. Progressive Type-II Censoring and Results

The MLEs of θ1 and θ2 exist only if at least one failure
occurs before τ and after τ .
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10. Progressive Type-II Censoring and Results

The MLEs of θ1 and θ2 exist only if at least one failure
occurs before τ and after τ .

They are

θ̂1 =
D1

N1

and θ̂2 =
D2

N2

.

In this case, we can develop exact conditional
inference based on the conditional PMF

Pθ1,θ2,c
{

N1 = i
}

= P
{

N1 = i
∣

∣ 1 ≤ N1 ≤ r − 1
}

, i = 1, · · · , r.
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Notation

Let us denote M12(ν, ω|N1

)

for the joint CMGF of θ̂1 and θ̂2, and

Mk

(

ω|N1

)

for the CMGF of θ̂k, k = 1, 2.
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Notation

Let us denote M12(ν, ω|N1

)

for the joint CMGF of θ̂1 and θ̂2, and

Mk

(

ω|N1

)

for the CMGF of θ̂k, k = 1, 2.

Then,

M12

(

ν, ω|N1

)

= E
{

eνθ̂1+ωθ̂2

∣

∣1 ≤ N1 ≤ r − 1
}

=
r−1
∑

i=1

Eθ1,θ2

{

eνθ̂1+ωθ̂2

∣

∣N1 = i
}

· Pθ1,θ2,c

{

N1 = i
}

,

Mk

(

ω|N1

)

= E
{

eωθ̂k
∣

∣1 ≤ N1 ≤ r − 1
}

=
r−1
∑

i=1

Eθ1,θ2

{

eωθ̂k
∣

∣N1 = i
}

· Pθ1,θ2,c

{

N1 = i
}

.
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10. Progressive Type-II Censoring and Results

Lemma 6 : Let T1:r:n < · · · < Tr:r:n denote the progressively Type-II censored
sample from the cumulative exposure PDF g(t).
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Lemma 6 : Let T1:r:n < · · · < Tr:r:n denote the progressively Type-II censored
sample from the cumulative exposure PDF g(t).

Then, the joint density function of T1:r:n, · · · , Tr:r:n is [see Balakrishnan and
Aggarwala (2000)]

f
`

t
1
, . . . , tr

´

= Cp ·

(

N1
Y

k=1

g
1

`

t
k

´

h

1 −G1

`

t
k

´

iRk

)

×

(

r
Y

k=N1+1

g
2

`

t
k

´

h

1 −G2

`

t
k

´

iRk

)

,

0 < t
1
< · · · < t

N1
≤ τ < t

N1+1
< · · · < tr ≤ ∞;
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Lemma 6 : Let T1:r:n < · · · < Tr:r:n denote the progressively Type-II censored
sample from the cumulative exposure PDF g(t).

Then, the joint density function of T1:r:n, · · · , Tr:r:n is [see Balakrishnan and
Aggarwala (2000)]

f
`

t
1
, . . . , tr

´

= Cp ·

(

N1
Y

k=1

g
1

`

t
k

´

h

1 −G1

`

t
k

´

iRk

)

×

(

r
Y

k=N1+1

g
2

`

t
k

´

h

1 −G2

`

t
k

´

iRk

)

,

0 < t
1
< · · · < t

N1
≤ τ < t

N1+1
< · · · < tr ≤ ∞;

further, the probability of the event
˘

N1 = i, i = 1, . . . , r − 1
¯

is

P
˘

N1 = i
¯

= Cp ·
i
X

k=0

r−i−1
X

l=0

Ck,i(Si )Cl,r−i−1(Si+l)

Bl.r−i(Si+l)
· exp

(

−
τ

θ1

r
X

j=i−k+1

Sj

)

,
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10. Progressive Type-II Censoring and Results

where

Sj = Rj + 1, Si = (S1, . . . , Si), Si+l = (Si+1, . . . , Si+l),

Bl.r−i(Si+l ) =

r−i
X

j=r−i−l

Si+j with
0
X

j=i

Aj ≡ 0,

Ck,i(Si ) =
(−1)k

n

Qk
j=1

Pi−k+j
m=i−k+1 Sm

on

Qi−k
j=1

Pi−k
m=j Sm

o ,

Cl,r−i−1(Si+l ) =
(−1)l

n

Ql
j=1

Pr−i−l+j−1
m=r−i−l Si+m

on

Qr−i−l−1
j=1

Pr−i−l−1
m=j Si+m

o ,

with
Q0

j=1Aj ≡ 1 and Cp is as given earlier.
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Lemma 7 : The joint conditional density of T1:r:n, . . . , Tr:r:n,
given N1 = i, is given by [see Balakrishnan and Aggarwala
(2000)]

f
(

t
1
, . . . , t

r
|N1 = i

)

=
Cp

P
{

N1 = i
} ·

{

i
∏

k=1

g
1

(

t
k

)

[

1 − G1

(

t
k

)

]Rk

}

×

{

r
∏

k=i+1

g
2

(

t
k

)

[

1 − G2

(

t
k

)

]Rk

}

,

0 < t
1

< · · · < t
i
≤ τ < t

i+1
< · · · < t

r
≤ ∞.
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Conditional MGFs
Using Lemmas 6 and Lemma 7, it can be shown that

M12(ν, ω|N1) = D

r−1
X

i=1

i
X

k=0

r−i−1
X

l=0

Dikl ·
e

τ
i

Pr
j=i−k+1

Sjν

`

1 − θ1

i
ν
´i`

1 − θ2

r−i
ω
´r−i

,

M1(ω|N1) = D

r−1
X

i=1

i
X

k=0

r−i−1
X

l=0

Dikl ·
e

τ
i

Pr
j=i−k+1

Sjω

`

1 − θ1

i
ω
´i

,

M2(ω|N1) = D

r−1
X

i=1

i
X

k=0

r−i−1
X

l=0

Dikl ·
1

`

1 − θ2

r−i
ω
´r−i

,

where

D =
Cp

Pr−1
j=1 P

˘

N1 = j
¯ , Dikl =

Ck,i(Si )Cl,r−i−1(Si+l )

Bl.r−i(Si+l )
exp

(

−
τ

θ1

r
X

j=i−k+1

Sj

)

and Cp is as defined earlier.
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Theorem 7 : The joint conditional PDF of θ̂1 and θ̂2,
given 1 ≤ N1 ≤ r − 1, is

f
θ̂1,θ̂2

(x, y) = D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · fG

(

x − τ
ik
; i,

θ1

i

)

·fG

(

y; r − i,
θ2

r − i

)

,

where τ
ik

= τ
i

∑r
j=i−k+1(Rj + 1).
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Theorem 8 : The conditional PDF of θ̂1, given
1 ≤ N1 ≤ r − 1, is

f
θ̂1
(x) = D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · fG

(

x − τ
ik
; i,

θ1

i

)

.
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Theorem 8 : The conditional PDF of θ̂1, given
1 ≤ N1 ≤ r − 1, is

f
θ̂1
(x) = D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · fG

(

x − τ
ik
; i,

θ1

i

)

.

Theorem 9 : The conditional PDF of θ̂2, given
1 ≤ N1 ≤ r − 1, is

f
θ̂2
(x) = D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · fG

(

x; r − i,
θ2

r − i

)

.
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Theorem 10 : The mean and variance of θ̂1 and θ̂2 are
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Theorem 10 : The mean and variance of θ̂1 and θ̂2 are

E
(

θ̂1

)

= θ1 + D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · τik
,

Var
(

θ̂1

)

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl ·

(

τ2
ik

+
θ2
1

i

)

−

(

D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · τik
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Remark 4 : We observe that θ̂1 is a biased estimator of θ1

while θ̂2 is an unbiased estimator of θ2.
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Remark 4 : We observe that θ̂1 is a biased estimator of θ1

while θ̂2 is an unbiased estimator of θ2.

Furthermore, from the joint density of θ̂1 and θ̂2 in Theorem

7, we obtain

E
(

θ̂1θ̂2

)

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl ·

(

τ
ik

+ i
θ1

i

)[

(r − i)
θ2

r − i

]

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl ·
(

τ
ik

+ θ1

)

θ2

= E
(

θ̂1

)

E
(

θ̂2

)

so that Cov
(

θ̂1, θ̂2

)

= 0.
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Theorem 11 : The tail probabilities of θ̂1 and θ̂2, given

1 ≤ N1 ≤ r − 1, are

– p. 56/66



10. Progressive Type-II Censoring and Results

Theorem 11 : The tail probabilities of θ̂1 and θ̂2, given

1 ≤ N1 ≤ r − 1, are

Pθ1

{

θ̂1 > ξ
}

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · Γ

(

i

θ1

〈

ξ − τ
ik

〉

; i

)

,

Pθ2

{

θ̂2 > ξ
}

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · Γ

(

r − i

θ2

〈

ξ
〉

; r − i

)

,

where
〈

w
〉

= max {0, w}, and

Γ(w;α) =

∫ ∞

w
fG
(

x;α, 1
)

dx =

∫ ∞

w

1

Γ(α)
xα−1e−xdx.
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Simulation Results and Comments

The coverage probabilities (in %) of CIs for θ1 and θ2 based

on 1000 simulations and M = 1000 replications with

n = 20, r = 8, θ1 = e2.5 and θ2 = e1.5 are presented in the

following Tables 6 and 7.
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Table 6: Coverage Probabilities of CIs for θ1
90% C.I. 95% C.I.

PCS τ Bootstrap App. Exact Bootstrap App. Exact

P St BCa P St BCa

(7⋆0, 12) 1 96.9 51.0 82.0 75.4 89.9 97.5 52.4 85.9 73.5 96.7

2 96.7 61.6 79.3 83.6 88.9 100.0 62.8 85.3 81.7 94.4

3 89.7 63.3 75.8 78.8 90.9 95.6 65.1 81.4 83.6 94.8

4 94.2 66.2 76.5 83.1 88.5 93.2 65.2 80.0 90.5 94.6

5 83.2 65.8 73.0 79.1 92.1 91.5 67.0 80.2 87.0 96.0

6 88.9 71.8 70.7 82.3 90.8 93.9 74.8 85.6 89.4 96.0

7 92.3 69.0 74.9 79.9 90.1 96.0 71.3 89.0 85.7 94.3

8 89.1 70.1 78.3 79.1 91.2 94.7 72.7 87.5 86.9 95.5

9 87.9 65.0 76.7 84.0 89.8 92.6 78.7 86.3 88.4 94.2

10 88.9 72.2 70.0 82.5 90.6 94.2 73.6 89.9 87.7 95.9

(12, 7⋆0) 1 88.8 69.0 80.7 75.7 89.2 96.4 76.3 87.6 79.4 94.8

2 96.1 69.9 83.5 79.6 89.0 97.6 76.1 89.6 84.8 95.4

3 94.2 74.7 86.8 79.5 90.0 97.4 77.7 92.8 86.1 96.0

4 90.5 75.3 87.9 82.4 90.6 96.3 80.7 94.1 83.7 93.8

5 91.5 80.2 91.8 80.5 89.0 94.3 81.2 94.4 86.6 95.0

6 88.6 78.6 86.9 84.3 91.0 94.1 84.2 93.3 84.5 95.8

7 91.5 80.1 88.0 79.3 88.8 93.5 81.1 90.8 88.0 95.2

8 89.3 77.9 86.7 81.5 90.2 95.0 82.5 91.3 87.5 95.5

9 88.4 75.8 84.1 82.0 91.7 94.1 80.1 89.4 86.8 95.9

10 89.8 75.7 85.6 82.5 90.0 94.5 81.4 90.4 86.0 95.0

(6⋆0, 6, 6) 1 97.0 50.3 79.8 75.9 89.8 99.4 53.6 86.5 74.5 94.6

2 96.3 70.7 83.0 81.4 89.8 99.5 72.1 87.8 83.3 95.3

3 87.8 67.3 77.4 76.4 88.5 95.0 74.4 84.1 86.3 94.8

4 92.4 63.6 76.0 82.7 90.3 94.5 67.2 83.8 88.9 95.6

5 90.5 65.4 72.7 80.1 88.1 92.6 71.1 83.3 87.3 95.2

6 88.9 69.2 69.3 82.0 89.4 93.0 75.6 79.5 88.8 94.1

7 92.8 69.8 74.5 81.9 89.2 91.1 76.1 86.9 87.4 94.5

8 87.8 67.9 79.2 83.9 89.9 93.9 73.5 86.6 88.7 95.1

9 90.8 63.2 73.1 80.5 90.0 95.9 75.2 86.9 88.8 95.3

10 92.3 63.1 73.5 81.8 89.7 96.0 74.6 85.8 88.9 95.9



Table 7: Coverage Probabilities of CIs for θ2
90% C.I. 95% C.I.

PCS τ Bootstrap App. Exact Bootstrap App. Exact

P St BCa P St BCa

(7⋆0, 12) 1 83.6 88.8 89.7 84.1 91.3 91.1 96.1 96.7 88.4 96.1

2 84.2 89.6 90.6 83.9 91.3 88.1 94.9 95.0 87.7 95.5

3 81.4 90.5 88.9 80.7 90.7 86.1 95.5 93.5 81.2 95.4

4 80.1 90.3 86.7 77.0 88.8 83.1 95.8 91.8 81.1 95.6

5 79.3 90.1 83.5 75.6 87.5 79.6 95.3 88.5 79.7 95.4

6 78.3 90.9 83.4 74.7 90.5 79.2 94.9 88.4 79.7 93.7

7 78.4 91.5 83.1 73.1 89.6 79.1 94.6 87.1 78.4 94.9

8 77.6 89.7 80.7 73.6 89.8 78.6 95.3 86.7 78.7 95.3

9 76.3 88.8 79.8 73.6 90.0 78.3 94.3 86.1 76.2 94.9

10 76.0 89.9 79.5 72.7 91.6 77.2 95.4 85.7 75.8 94.1

(12, 7⋆0) 1 86.8 90.6 90.9 86.2 89.4 92.5 95.5 95.2 88.7 95.0

2 87.4 89.4 89.7 83.6 89.2 92.3 95.5 95.9 85.9 94.3

3 86.0 88.7 89.6 83.1 89.7 89.8 95.8 95.6 86.0 94.4

4 87.3 90.4 91.3 84.9 90.0 92.1 95.4 95.7 87.6 94.3

5 84.5 90.7 90.7 83.5 91.1 90.8 96.2 96.4 85.6 96.5

6 83.8 89.3 90.2 82.6 89.5 90.6 95.9 96.8 86.4 95.3

7 83.1 89.4 89.7 82.2 90.0 89.1 94.7 94.9 85.4 96.0

8 81.9 89.8 89.2 80.2 91.1 89.4 95.4 95.2 81.7 95.8

9 83.7 91.9 91.9 78.4 88.9 88.6 94.8 94.2 84.5 94.6

10 82.3 91.2 90.7 77.0 90.4 86.9 95.4 93.2 84.2 95.0

(6⋆0, 6, 6) 1 86.8 89.2 90.1 84.9 90.8 91.1 95.0 96.1 87.4 94.8

2 85.7 89.7 91.4 80.3 88.6 91.2 95.4 95.2 86.4 95.1

3 81.2 88.7 88.6 79.4 91.1 88.9 96.2 95.4 83.7 95.0

4 79.4 90.1 87.3 79.4 91.4 85.0 96.7 93.1 80.7 95.7

5 77.5 90.3 83.9 73.3 89.1 81.0 96.2 89.4 78.9 94.2

6 73.9 91.6 82.7 74.0 89.6 80.1 96.5 88.5 76.3 94.8

7 72.2 91.0 79.3 72.2 89.9 80.5 95.7 86.8 75.2 94.5

8 73.3 91.8 80.1 74.4 91.0 77.7 97.2 86.0 74.3 95.3

9 71.3 90.2 78.3 71.4 89.3 76.7 95.8 83.2 73.8 94.5

10 67.1 88.7 75.5 70.3 89.1 75.4 95.7 82.7 76.3 93.2



10. Progressive Type-II Censoring and Results

Comments :
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10. Progressive Type-II Censoring and Results

Comments :

The approximate CIs and the Studentized-t bootstrap CIs are
both unsatisfactory in terms of coverage probabilities.

The percentile bootstrap method seems to be sensitive for
small values of τ

1
and τ

2
, the method does improve for larger

sample size.

Among all three bootstrap methods, the adjusted percentile
method seems to be the one with somewhat satisfactory
coverage probabilities (not so for θ1 when τ

1
is small).

Use the exact method whenever possible, and use the
adjusted percentile method in case of large sample size when
the computation of the exact CIs becomes difficult.
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Optimal Sampling Scheme :

With (R1, . . . , Rr) as the progressive censoring scheme, we may consider the
optimal choice of R = (R1, . . . , Rr), denoted by R∗ = (R∗

1, . . . , R
∗

r).
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With (R1, . . . , Rr) as the progressive censoring scheme, we may consider the
optimal choice of R = (R1, . . . , Rr), denoted by R∗ = (R∗

1, . . . , R
∗
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With (R1, . . . , Rr) as the progressive censoring scheme, we may consider the
optimal choice of R = (R1, . . . , Rr), denoted by R∗ = (R∗
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Determination of Optimal Censoring Schemes :

For θ1 = e1.5 and θ2 = e0.5, we present in Tables 8 and 9 the

best and worst censoring schemes determined under

variance optimality and mean square error optimality,

respectively, for different choices of n, r and τ .
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Determination of Optimal Censoring Schemes :

For θ1 = e1.5 and θ2 = e0.5, we present in Tables 8 and 9 the

best and worst censoring schemes determined under

variance optimality and mean square error optimality,

respectively, for different choices of n, r and τ .

The relative efficiency values of worst to best censoring

schemes presented in these two tables reveal the distinct

advantage of adopting an optimal censoring scheme in the

simple step-stress life-test.
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Table 8: Optimal Censoring Schemes under Variance Optimality
n r τ Best PCS Var Worst PCS Var RE

10 4 1 (6, 3⋆0) 6.67 (0, 6, 2⋆0) 11.48 58%
3 (0, 6, 2⋆0) 16.20 (3⋆0, 6) 27.33 59%
5 (2⋆0, 6, 0) 11.10 (3⋆0, 6) 28.76 39%
7 (2⋆0, 6, 0) 9.58 (3⋆0, 6) 26.00 37%
9 (2⋆0, 6, 0) 9.43 (3⋆0, 6) 22.82 41%

6 1 (4, 5⋆0) 6.97 (0, 4, 4⋆0) 10.13 69%
3 (0, 4, 4⋆0) 14.90 (4, 5⋆0) 19.74 75%
5 (3⋆0, 4, 2⋆0) 8.50 (4, 5⋆0) 13.99 61%
7 (3⋆0, 4, 2⋆0) 6.99 (4, 5⋆0) 10.11 69%
9 (3⋆0, 3, 0, 1) 6.74 (4, 5⋆0) 8.41 80%

8 1 (2, 7⋆0) 7.90 (0, 2, 6⋆0) 9.40 84%
3 (2⋆0, 2, 5⋆0) 14.18 (2, 7⋆0) 16.82 84%
5 (3⋆0, 2, 4⋆0) 7.40 (2, 7⋆0) 9.45 78%
7 (4⋆0, 1, 2⋆0, 1) 5.71 (2, 7⋆0) 6.73 85%
9 (7⋆0, 2) 5.28 (1, 5⋆0, 1, 0) 5.91 89%

12 6 1 (6, 5⋆0) 8.87 (0, 6, 4⋆0) 13.21 67%
3 (2⋆0, 6, 3⋆0) 11.75 (6, 5⋆0) 19.40 61%
5 (3⋆0, 6, 2⋆0) 7.22 (6, 5⋆0) 13.38 54%
7 (3⋆0, 5, 0, 1) 6.70 (6, 5⋆0) 9.86 68%
9 (3⋆0, 4, 0, 2) 6.66 (6, 5⋆0) 8.30 80%

8 1 (4, 7⋆0) 9.80 (0, 4, 6⋆0) 12.46 79%
3 (2⋆0, 4, 5⋆0) 11.01 (4, 7⋆0) 16.11 68%
5 (4⋆0, 3, 2⋆0, 1) 6.05 (4, 7⋆0) 8.96 68%
7 (4⋆0, 2, 2⋆0, 2) 5.23 (4, 7⋆0) 6.59 79%
9 (4⋆0, 1, 2⋆0, 3) 5.08 (3, 5⋆0, 1, 0) 5.88 86%

10 1 (2, 9⋆0) 10.82 (2⋆0, 2, 7⋆0) 12.01 90%
3 (3⋆0, 2, 6⋆0) 10.61 (2, 9⋆0) 12.91 82%
5 (9⋆0, 2) 5.40 (2, 9⋆0) 6.47 83%
7 (9⋆0, 2) 4.46 (8⋆0, 2, 0) 5.08 88%
9 (9⋆0, 2) 4.29 (8⋆0, 2, 0) 4.98 86%



Table 9: Optimal Censoring Schemes under MSE Optimality
n r τ Best PCS MSE Worst PCS MSE RE (%)

10 4 1 (6, 3⋆0) 6.69 (0, 6, 2⋆0) 11.62 57%
3 (0, 6, 2⋆0) 17.47 (3⋆0, 6) 68.45 26%
5 (2⋆0, 6, 0) 14.02 (3⋆0, 6) 150.75 9%
7 (2⋆0, 6, 0) 15.04 (3⋆0, 6) 274.81 5%
9 (2⋆0, 6, 0) 18.43 (3⋆0, 6) 444.74 4%

6 1 (4, 5⋆0) 7.06 (0, 4, 4⋆0) 10.40 68%
3 (2⋆0, 4, 3⋆0) 15.67 (5⋆0, 4) 21.87 72%
5 (3⋆0, 4, 2⋆0) 9.26 (5⋆0, 4) 26.67 35%
7 (3⋆0, 4, 2⋆0) 8.54 (5⋆0, 4) 45.33 19%
9 (3⋆0, 4, 2⋆0) 9.62 (5⋆0, 4) 75.64 13%

8 1 (2, 7⋆0) 8.24 (0, 2, 6⋆0) 9.82 84%
3 (2⋆0, 2, 5⋆0) 14.94 (2, 7⋆0) 18.06 83%
5 (3⋆0, 2, 4⋆0) 7.74 (2, 7⋆0) 9.96 78%
7 (4⋆0, 2, 3⋆0) 6.31 (7⋆0, 2) 10.46 60%
9 (4⋆0, 2, 3⋆0) 6.53 (7⋆0, 2) 15.21 43%

12 6 1 (6, 5⋆0) 9.21 (2⋆0, 6, 3⋆0) 14.00 66%
3 (2⋆0, 6, 3⋆0) 12.19 (5⋆0, 6) 24.64 49%
5 (3⋆0, 6, 2⋆0) 7.94 (5⋆0, 6) 43.25 18%
7 (3⋆0, 6, 2⋆0) 8.37 (5⋆0, 6) 84.83 10%
9 (2, 2⋆0, 4, 2⋆0) 9.63 (5⋆0, 6) 146.24 7%

8 1 (4, 7⋆0) 10.51 (2⋆0, 4, 5⋆0) 13.45 78%
3 (2⋆0, 4, 5⋆0) 11.46 (4, 7⋆0) 17.22 67%
5 (4⋆0, 4, 3⋆0) 6.31 (7⋆0, 4) 11.96 53%
7 (4⋆0, 4, 3⋆0) 5.97 (7⋆0, 4) 20.72 29%
9 (1, 2⋆0, 1, 2, 3⋆0) 6.51 (7⋆0, 4) 36.08 18%

10 1 (2, 9⋆0) 11.83 (2⋆0, 2, 7⋆0) 13.12 90%
3 (3⋆0, 2, 6⋆0) 11.09 (2, 9⋆0) 13.70 81%
5 (4⋆0, 2, 5⋆0) 5.57 (2, 9⋆0) 6.72 83%
7 (5⋆0, 2, 4⋆0) 4.83 (9⋆0, 2) 6.58 73%
9 (5⋆0, 2, 4⋆0) 5.03 (9⋆0, 2) 9.35 54%
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Plot of Censoring Schemes vs. MSE when
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11. Other Extensions and Generalizations

Some other extensions and generalizations have been
carried out:
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11. Other Extensions and Generalizations

Some other extensions and generalizations have been
carried out:

Other forms of censoring, such as hybrid censoring,
have been considered;

Extensions of these results to the multiple-step
stress model have been done.
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12. Further Problems of Interest

Generalization to k-step stress model and discuss
exact conditional inference for the full-parameter
model;

– p. 63/66



12. Further Problems of Interest

Generalization to k-step stress model and discuss
exact conditional inference for the full-parameter
model;

With a link function (connecting the mean lifetimes to
the stress levels), discuss inference for the parameters
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12. Further Problems of Interest

Generalization to k-step stress model and discuss
exact conditional inference for the full-parameter
model;

With a link function (connecting the mean lifetimes to
the stress levels), discuss inference for the parameters
in this reduced-parameter model and compare
efficiency;

Test for the suitability of this reduced-parameter model;

Generalizations to other life-time models such as
Weibull and lognormal.
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