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Chapter 1

Order statistics. Basic distribution theory

1.1 Introduction

Definition 1.1.1 Let X, ..., X, be n random variables. Suppose that they are arranged in increasing order to obtain
Ky B e Mgty B o2 N

Then the random variable (rv) X;., is called the ith-order statistics of the sample of size n.

In the following we will assume that X, ..., X, are independent and identically distributed random variables with
common cumulative distribution function (cdf) F. We will distinguish two cases: the absolutely continuous case and

the discrete case.
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1.2 Distribution theory in the absolutely continuous case

Let Xy,..., X, be iid rv’s from a cdf F' and with density function (df) f.

1.2.1 Distribution of a single order statistics

The distribution function of a single order statistics X,,,, denoted by Fi.,, is obtained as follows:

= P(at least ¢ observations among X, ..., X, are < z)
-3 (3 P@a-Fer
k=i

and the density function is then:

fin(z) = Fi,(z) = Oi:nFi_l(a") (1- F(x))n_z f(z),

where
o n! B 1
=D —9)!  Bl,n—i+1)

(1.1)
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Particular cases of some interest in the applications are:

¢ The maximum, X,,.,, with distribution and density functions respectively:

Fon(z) = F"'(2);
fnn(w) = nFn_l(x)f('m)

¢ The minimum, X;.,, with distribution and density functions respectively:

Fin(@) =1—(1 = F@));
frn(@) = n (1 = F(2))'™ f(z)
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e In particular, if Uy, ..., U, are iid from an uniform distribution in the unit interval, (1/(0, 1) distribution), then
the ith order statistics, Uj.,, follows a beta distribution with parameters ¢ and n—i+1, i.e., U;,, ~ Be(i,n—i+1),

with density
1

Finl®) = Bn T D)

and its distribution function can be obtained using the so called incomplete beta function:

(1 — 2™, z € (0,1),

Fin(z) = IBe(z;4,n — i+ 1)

1 ? t— n—1
:ﬁ(in—i—kl)ﬁ T —8T Y, w € [U.T):
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1.2.2 Joint density of two order statistics

e It can be checked that the joint density of two order statistics (X, Xjm) with 1 <i<j <nis

fi,j:n('jc:y) = Oi,j:nFi_l(x) (F(y) - F(x))j_i_l (1 - F(y))n_Jf(x)f(y)a

for z < y, with
n!

Cijn = G—G —i—Dn—HI

e In particular the joint density of the maximum and the minimum, (Xi.,, X,,.,) is

Finn(@,y) = n(n — 1) (F(y) — F())" " f(2)f(y), for & <y.

e The joint density of two consecutive order statistics, (X;,,, X; 1) Is:

n!

fi,i+1:n($7y) = (’L IR 1)*(71 o e 1)

FH @)1 = Py f(2)f (), for @ <y
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1.2.3 Joint density of all the order statistics

e The joint density of all the order statistics is:

n

fio. (@1, @, ..., Ty) = n*Hf(:cz), forz; <ax<...<z, (1.2)
i=1

From this joint density we could have obtained, by integration, the density of a single order statistics, or the
joint of two order statistics.

o In general, the joint density of k£ order statistics, 1 <4; < --- <9 < n, from a sample of size n is:

fii,iz,---,ik!n(xil y Ligy e ey xlk) =

Gy unF* Ma) [] (Fla) = Fa))* ™77 (1= Flaa )" [ f()

for z;, <z, < ... <z, with

. n!
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1.3 Some properties of order statistics

First, we introduce the quantile function (or generalized inverse):

Definition 1.3.1 Let F' be a distribution function. The quantile function is:

€ (0,1], Qr(u) =inf{zx € R: F(z) > u}.

For any cdf F, QF is non-decreasing and right-continuous. If F' is continuous, then Q) is continuous. If F' is
strictly increasing, then Qr is the inverse function F~1. To our purposes, the most important property of the quantile
function is:

Theorem 1.3.2 (Quantile transformation). Let X be a rv with cdf F. Let U ~ U(0,1). Then, the cdf of the rv Qp(U)

18 I, or in other words

X £ Qr(U).



Models for ordered statistical data. Fernando Lépez Bldzquez 8

o Let Xi.,,..., X, be the order statistics of n iid observations from a rv X with distribution function F. Consider
the transformed random variable ¥ = ¢g(X), with g a Borel-measurable function. As the order is preserved by
non-decreasing functions, we have:

(3 ST, . 4 (0 Xy - -8 Xnmd) 4

for any non-decreasing measurable function g.

e In particular, the order statistics from a U/(0, 1)-distribution are intimately connected with the order statistics
from another random variable X ~ F':

(Xl:na sy Xn:n) i (QF(Ul:n)a “ o s QF(Un:n)) . (1~3)

e From (1.3), we have:
Xi:n i QF(Ui:n)a

and consequently the cdf of X, can be written as

Fn(z) = IBe(F(z);i,n — 1+ 1).
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Let g be a non-increasing measurable function and consider the transformed random variable ¥ = g(X). As the

o
order is inverted,
d
(Yimy o vs Yun) = (0 Xnindy o o+, 9(X1m)) - (1.4)
e From (1.4),
d
}/;:n = g(Xn—H—l:n)-
e For instance,
d
_Xi:n - (_X)n—i—l—l:n;
e Moreover, if X is a symmetric rv (with respect to the origin), that is to say X L£_X , we have
d
Xi:n = _Xn—i+1:n-
e Similarly, for symmetric random variables
d
(Xi:n;Xj:n) = (_Xn—i+1:n, _Xn—j—l—l:n)-
o If the rv is symmetric with respect to other point rather than the origin, similar arguments as before can be

made with slight changes.
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1.4 Conditional distributions in the absolutely continuous case

Definition 1.4.1 Let F be a cdf and xo € R, the distribution F truncated on the right at xp is the distribution

function
p{;‘(go)): Y < Tp
Fei)(y) = (1.5)
17 Y Z Lo-

o Let X ~ F. We will denote by X @) a v having cdf F =3) defined as in (1.5). For instance, the rv X conditional
to the event {X < o} has cdf F& and we denote this fact

{X|X <z}~ F=, or {X|X <o} 4 x(g)
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Similarly,

Definition 1.4.2 Let F be a cdf and zo € R, the distribution F truncated on the left at xo is the distribution function
F!y!—ngo] y % Zo

- 1-F(zo) °
FEa) (y) = (1.6)
O, y < Zo.

o Let X ~ F. We will denote by X(®0) a rv having cdf F®o) defined as in (1.6). For instance, the rv X conditional
to the event {X > xp} has cdf F*o’ and we denote this fact

{X | X >z} ~ F®), or {X\X>:c0}iX(x0_).
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Theorem 1.4.3 Let Xy.,,..., X, be the order statistics from an absolutely continuous distribution F. Then, the
conditional distribution of the vector (Xim,...,Xj-1n) given X;.,, = x; is the same as the joint distribution of the

3 — 1 order statistics of a sample of size 7 — 1 from the population X(““"j), that s to say:

Cop) oy

d (@
{(le, s :Xj—l:n) ‘ Xj:n = xj} = (Xl:j—h ke 7Xj—1:j—1> .

e As a consequence of the previous result, for 1 < ¢ < j <mn,

@)

d
{Xin | Xjin = 5} = X1,
that is to say, the conditional density of X, given X, = z; is:

o mted =0 (53) - (PE5E0) T £

T; < Ij.
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Theorem 1.4.4 Let Xy.,,..., X, be the order statistics from an absolutely continuous distribution F. Then, the
conditional distribution of the vector (Xii1m,- .-, Xnm) given Xy, = ; is the same as the joint distribution of the

n — i order statistics of a sample of size n — i from the population X&) that is to say:

Lin—i) < *n—in—1

e As a consequence of the previous result, for 1 < ¢ < 7 <n,

Jj—tn—1?
that is to say, the conditional density of X, given X;, = x; Is:

FilXin=e:(25) = Cjmin— (F(fj_) ;(Zi(fi)y_i_l G:—%> - %’

for T; > T
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1.5 Markov property

When the original iid variables X3, ..., X,, ~ F are ordered, the corresponding order statistics, X1.1, ..., X, are no
longer independent. For absolutely continuous distributions, the dependence structure can be described by a Markov

Chain.

Theorem 1.5.1 If F is absolutely continuous, the order statistics, Xi.1,...,Xnm, form a (discrete time) Markov
chain with transition densities:

Fly) - F(ff»))"‘“1 fy)

firyi(y | ) = (n =) ( | — 7o) - F)’

for g zm; 9= 1 sum— L,
Although the order statistics are dependent, they satisfy the following conditional independence property:

Theorem 1.5.2 Let F' be absolutely continuous. For any 1 < k < n, the random vectors
XY = (Ximy oy Xio1m) and X&) = (Xp i1y, Xnn)
are conditionally independent given that Xi., = xy, that is to say
P[XY € By, X® € B | Xy = T =

P[.X(l) € By ’ K, = xk]P[X(g) € By | X = Ti ;
for any By € B(RF71) and By € B(R" ).
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1.6 Distribution of order statistics from discrete distributions

Let X be a discrete random variable with probability function p, = P[X = x]. We define,

s = PIX 2a] = Flg),v: = PIX <g]| =Flz ")
and w, = PX >z|=1— F(z).

Consider Xi,...,X, iid rv distributed as X and the corresponding order statistics X7, < ... < X,.,. The
distribution function of the ith order statistics can be obtained using the same argument as in (1.1) to obtain:

Fyp(@) = Z (Z) ubwl ™,
k=1

from which the probability function of X, is given by:

P[in = 37} = E’n(m) - En(l’_)
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There are some other arguments that permits to obtain the probability function of X, :

e Integral representation: Let () be the quantile function of the discrete random variable X. Then,
P X, = x| = PlQe(Usy) = 2] = PlF(x™ ) < Us, € Flz)| =

1 /F(m) i—l(l )n—zd
= 8 — 8 S.
5(37n_%+ 1) F(z—)

¢ Multinomial argument: Given a X,..., X, from a discrete distribution F', we can define a random vector
(11, I5,13), where I;, i = 1,2, 3, represents the number of observations in the sample Xj,..., X,, which are
respectively (strictly) less than x, equal to = and (strictly) large than . It is clear that

(IIJIQJI?)) ~ M(TT/, UI7p$7w03)'
Then,

P[in:.fl?]:P[.[1<’L,[1+_[222]:

1—1 n -
— konGon—k—37
= 5 LU pw s
k=0 j=i—k
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e The joint probability function of two order statistics, let’s say X, and X;,, with 1 < ¢ < j < n can be obtained
using the multinomial argument. For & < y, define the random vector (11, I5, I3, Iy, I5), where I;, i = 1,...,5,
represents the number of observations in the sample X1, ..., X, which are respectively (strictly) less than z,
equal to z, strictly between z and y, equal to y and (strictly) large than y. In this case,

(11712713714715) ~ M(TL, Vay Py Vy — uy;py;wy)-
Then,

P[X'i:n = T, Xj:n — y] =
Ph<i h+L>i h+L+L<jh+L+L+1,>7].
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Example 1.6.1 Suppose that X is a discrete rv taking non-negative integer values with pmf: p, = P[X = k|, k > 0.
For an 1d sample of size n = 2,

2pipr, Jor0<j <k
PlX1o=j, Xoo =k = { P}, Jorj=k >0

(1.7)
0

A otherwise.
From (1.7), it can be easily obtained

P[Xys = §] = p5 + 2wy, j =0,
P{Xg:g = ]ﬂ] = pi + ka’vk;, k > 0.
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e The dependence structure between order statistics in the discrete case is different to the absolutely continuous
case. In fact, if the discrete random variable X has more than three points in its support, it can be shown, (see

Arnold, Balakrishnan, Nagaraja, (1992), p.48) that:

P[Xi+1:n =X | in =Y, Xi—l:n = Z] < P[Xi+1:n = | Xi:'n — y]

e This non-Markovian behavior is due to the fact that in the discrete case ties between observations are possible.
By extending the state space, it is possible to obtain a Markov process, for instance, Riischendorf (1985) has
shown that {(Xin, M;)}_; with M,=the number of X, 's with k < ¢ that are tied with X, is a bivariate
Markov process. Also Nagaraja (1986) has shown that conditioning on the event that all the X; “s are different,
the order statistics of discrete distributions behave as a Markov Chain.
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1.7 Order statistics in sampling without replacement

Up to this point we have assumed that X, ..., X,, are iid random variables. When we choose a sample, X1, ..., X, of
size n without replacement from a finite population of size N > n, say x; < x5 < --- < zy, it is well known that the
X; ’s are identically distributed but not independent. We will determine the distribution of X,.,, under this sampling
scheme.

e For that, we use a hypergeometric argument: for z;, (one of the elements of the finite population), we consider
the vector (1q, Iz, I3), where I;, i = 1,2, 3, represents the number of observations in the sample X7, ..., X, which
are respectively (strictly) less than x, equal to z; and (strictly) large than zy. It follows that,

(117]2713) ~ H(?’L,k’ - 1; 17N - k)a
then

P[Xz'm:J?k]:P[Il:i—l,Igz 1,[3:77,—7; =
k—1\/N—-k
w—1 fh—7
N .
n
e Similarly, the joint probability function of two order statistics is for ¢ < j and k < [
P[Xi:n = T, Xj:n — xl] —

()66
()
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1.8 Order statistics from some specific distributions

1.8.1 Exponential distribution

A random variable X has the exponential distribution with parameter A > 0 if its density function is
flx; A) = Aexp(—Az), z > 0.

Then, we denote X ~ Exp(A). We will restrict our study to the standard exponential distribution, which is obtained
when A = 1, because it is easy to show that X ~ Ezp(A) iff W = AX ~ Exp(1).
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Theorem 1.8.1 Let Wi.,,...,W,., be the order statistics corresponding to n wud rv’s from a standard exponential
dustribution. Then 7 . 5 7
(Wl:n,”.,Wn:n)i _1,_1+ 2 7.”7_1_+_ 2 —|—+Zn 5
n n n-—1 n n-—1
where Z;, 1 =1,...,n are ud standard exponential random variables.

Some consequences of the previous theorem are:

4,

N

b4 Wk::n

Z1 4 Za o ... Zy
n +n—l+ +n—ls+1'

o Wi, < %, that is to say, the minimum of (iid) standard exponential variables follows a exponential distribution
with parameter n (or with mean 1/n).

e It is also immediate that

Z Z:
(len; W2:n - W].:TL) ) W'n,:n - Wn—l:'n) i (_1 2 PR ;Zn) )
n' n—1

and

(MW, (n— 1) (Wam — Win) s oo s Wan — Waiim) = (Z1, Zo, ..., Zn), (1.8)
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e In general a difference between two order statistics is called a spacing Sy, = Wiy — Wi_1m, k= 1,...,n, (we
agree that Wy, = 0).

e So, the previous results show that spacings between consecutive order statistics from a exponential distribution
are independent.

e Moreover, (n — k +1)S;,k = 1,...,n are iid standard exponential rv’s.
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1.8.2 TUniform distribution

A random variable X has the uniform distribution on the interval (a,b), a < b, if its density function is

f(z;a,b) =

—— TE (a,b).
Then, we denote X ~ U(a,b).

We will restrict our study to the uniform distribution on the unit interval, which is obtained when ¢ = 0 and
b =1, because it is easy to show that X ~ U(a,b) if U = (X —a) /(b—a) ~U(0,1).

Let Uy, ..., Unn denote the order statistics corresponding to n iid rv’s from a uniform distribution on the unit
interval.
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e Recall that Uy, ~ Be(i,n —i+1).

o As the uniform distribution on the unit interval is symmetric with respect to 1/2, (that is U 21-U ),

Ui:'n i Lo~ U’n—i+1:n

e The joint distribution of the order statistics Uy.,, ..., Uy, 1s described in the following theorem:
Theorem 1.8.2 Let Uy.,, ..., U, be the order statistics corresponding to n ud rv's from a uniform distribution on
the unit interval. Then p & g
d 1 2
Oinr o) & (G5 )

where Sy, =21+ Zo+-+Zp,m=1,...,n and Z;, 1 =1,...,n are utd standard exponential random variables.
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Consider the spacings between consecutive order statistics: T = Uy — Ug_1m, k= 1,...,n+ 1, (here, we agree
that Up., = 0 and Uy, 1., = 1). So, easily, from Theorem 1.8.2, we have,
i & Zs Zin+1
(Tl,...,Tn+1):<S—,—,..., n—i—)‘
n+1 n+1 n+1

As a conse quence:

e Spacings are equally distributed.

e Although they are not independent, they are symmetrically dependent in the sense that the structure of depen-
dence within any pair (7;,7}) is always the same, i.e., does not depend on 4, (¢ # j). More generally, all the
possible k-dimensional subvectors of the form (7, ...,7;, ), with 4; # 4, for j # [ are equally distributed.

e Suppose that the (n+ 1) spacings are ordered to obtain: 71,41 < ... <7, 11,1 . Then,

T a Zk:n+1
kin+1 —

Sn+1

and from the results of subsection (1.8.1):

LY g B e Zy,
4 n+l + n + +n—k+2

Tk:n—|—1 S
n+1
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e Due to the quantile transformation, the order statistics from a (standard) exponential distribution are related
to the order statistics of the (unit) uniform by

(Whins -y Wi ) = (—log Uty -, —log Unin ). (1.9)
We showed before, see (1.8), that

(Wi, (0= 1) (Wam — W) s .o, Wi — Wain) = (21, Zoy -« Zn) - (1.10)
Combining (1.9) and (1.10), we get

Ul:n U2:'n 2 ny| d
(Ugm, (U&n) yo s (Unn ) ) =MW,...,Va), (1.11)

where Vi, ..., V, are iid U(0,1).
e From (1.11),

Uk:n i ]:[V;‘l/j) (112)
j=k
where Vi, ..., V, are iid U(0,1).

e It is not difficult to show that for & € (0,1), and U ~ U£(0, 1), the transformed random variable B = U follows
a Be(l/a,1) distribution. Then, from (1.12)

where Bj, j = 1,...,n are independent Be(j, 1) distributions.
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1.9 Moments of order statistics

Let X4, ..., X, be iid from a common distribution F. We showed in section 1.3 that

(Xl:n: s :Xn:n) i (QF(Ul:n)r . :QF(Un:n)) ) (1-13)

where (U1, ..., Unm), represents the order statistic from n iid ¢(0,1) rv’s. This fact permits to write the moments
of X, provided that they exists, as:

r r 1 * r i— n—t
ull = BXL, = mA Qr(s)s (1 — s)**ds.

Sen (1959) gave a sufficient condition for the existence of moments of order statistics:

Theorem 1.9.1 If | X|* < co for some o > 0, then the moment uz(:r) exists for all i such that

n

An easy instance of Theorem (1.9.1) occurs when « = r; in this case we can conclude that if F'|X|" < co for some
v 3 U them /%(72 exists for all 1 <7 < n.
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The variance of X,.,, will be denoted o2, . Besides the ordinary moments and variances we can consider multivariate
moments as:

Mi jin = EXi:an:n;
covariances:
Oi5m = COU(Xi:np Xj:n) = Migin — Mintljin,
and correlation coefficients:
Oijin

Pijmn = .
O-i:no-j:n
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Example 1.9.2 Let 7Zy., < ... < Z,., be the order statistics from a standard exponential distribution, then:

S —
R n—i+1’
P D S T
2 (n—1)2 (n—i+1)%’
2

Migin = Oy forj >
Example 1.9.3 Let Uy, < ... < U,., be the order statistics from a unit uniform distribution, then:

(@) 6(i+a,n—i+1)
Moy = . .
Bli,n—i+1)

. ?
,uz:n—n_'_ly
; in—i+1)
Tin — ’
(n+1)%(n+2)
Wh—4+1) —_
R i
Mi gin (n+1)2(n+2)’ forj >
o _Hn—g+l) . .o,
pi,j:n_ j(n—@+1)’ fO?“j Z T

30
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1.10 Limit distributions of extreme order statistics

1.10.1 Limits for maxima

Let {X;};5; be a sequence of iid rv’s from a cdf F. The problem here is to find sequences of real numbers {an n>1
and {by, }n>1 with b, > 0 such that (X,., — a)/b, converges in distribution to a non-degenerate distribution.
A distribution function G is said to be F—type, with F' another cdf, if: for certain 4 € R and o > 0

G(:c)zF( _“>, for all z € R.

o

The following theorem is due to Gnedenko:

Theorem 1.10.1 The set of all non-degenerate limit distributions of (X — an) /by consists only of distributions
that belong to the types:

1. A(z) = exp(— exp(—x)), z € R
2, &y(x) = exp(—z™ @), forz >0 and o > 0.

3. ¥, (z) = exp(—(—x)%), for z < 0 and o > 0.

A distribution function F for which the limit distribution of (X,., — a,)/b, is A—type (or ®,-type or ¥, -type) is
said to belong to the domain of attraction of A (resp. ®, or ¥,,) and this fact is denoted F' € D(A) (resp. F € D(P,)
or F € D(¥,)).
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There are necessary and sufficient conditions to establish when a given distribution F' belong to one of the domains
of attraction above described, see Galambos (1978, 1987). For practical purposes we present only sufficient conditions.

Theorem 1.10.2 Let F' be a cdf with positive derwative for all x > xy. If for some oo > 0
xF'(x)
lim ——— =
Pae! 1— F(x) %

then F € D(®,). The normalizing constants can be taken as

1
a'n:QF<]-__>; bn:O
n

Theorem 1.10.3 Let F be a cdf with positive derivative in some interval (zo, x1) and F'(x) = 0 for all x > zy. If
for some o >0

e =B

e—z 1 — F(x) 7

then F € D(V,). The normalizing constants can be taken as

n — L1 — QF‘ (1—l> bn:.lfl.
n

Theorem 1.10.4 Let F be a cdf with negative second derivative in some interval (zg, x1) and F'(x) = 0 for all
x> xy. If for some oo > 0
() (1 — F(z))

e (F@) ’

then F € D(A). The normalizing constants can be taken as

C1-Fby) 1
o= F »=e(1-3)
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1.10.2 Limits for minima

Note that :
Xl:'n = _)/;’L!’I’LJ

with ¥ = —X. Also note that if Y ~ F| then the distribution function of X is ﬁ’(:c) = 1 — F(—xz%). Then, the
domains of attraction for a sequence of minima conveniently normalized are:

1. Alz) =1 — A(—z) = 1 — exp(—exp(z)), z € R

2. Do) =1 — Bo(—2) = 1 — exp(—(—z)™®), for z < 0 and a > 0.

3. \AI}Q(:C) =1 — exp(—z®), for £ > 0 and o > 0.

And the relation between the domains of attraction is:
FeD(A) & Fe D)
FeD(d,) & F e D(®)
FeD(V,) = FeDW,)

1.10.3 Limits for kth largest

In this case, we study the limit distribution (conveniently normalized) of the kth largest observation X, _ji1, when

n goes to infinity and & is fixed.
Note that

&

=1

Foosirn(®) = 3 ) @ (1= F@)™

0

3
Il

So, the following result holds:
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Theorem 1.10.5 For fized k and n — o0,
with W a rv with cdf H(x) if and only if

with Wy, a rv with cdf
H(z) (—log H(z))"
m! '

A similar result can be obtained considering the sequence of kth smallest observation, Xj., when n goes to infinity

and k is fixed.

For the limit behavior of the joint distribution function of order statistics, see Finner and Roters (1994).



Chapter 2

Records. Basic distribution theory

2.1 Ordinary records
Let { X, }n>1 be a sequence of iid rv’s with common distribution F'. Let us define the record time sequence as:

ty=1,
Tn=min{j>T1: X; >Xp,_,}, n>1,

then the nth record of the sequence is the random variable

R, = Xz..
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Some remarks should be taken into account:

e The sequence of record times {7, },,-, is not well defined if the distribution function F' has an atom at its right
end, that is to say, if there exists 2o < oo such that F(zo) — F(z5) > 0 and F(z) = 1. Consequently, in this
case the sequence of records { R, }, ., is not well defined. Appropriate definitions of record times and records
will be given later to handle such cases.

e [n some applications it is more convenient to look at the sequence of minima rather than the sequence of
maxima. So, we can consider lower records: Let {X,},>1 be a sequence of iid rv’s with common distribution
F. Let us define the lower record time sequence as:

Lo=1,
Ly=min{j >Tp1: X; <X, .}, n>1,

then the nth lower record of the sequence is the random variable

Vo= X1

e We will develop the distribution theory for upper records.
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2.2 Distribution theory in the absolutely continuous case

2.2.1 Density of a single record

o Let {X,}n>1 be a sequence of iid rv’s with common distribution F. We will assume that F' is absolutely
continuous with density f. By definition, it is clear that

RO g Xl)
then, the density of the 0th record is

fa,(x) = f ().
e Note that for any n > 0 and « such that 0 < F(z) < 1:

_1-F(y)

Ry V" 21

P(Rp1 >y | Ra=2)=) Fi(z)(1 - F(y))
=0
Note also that (2.1) is independent of n. Then, the conditional density of the (n+ 1)th record given that R, = x

° fy)
—— Y>>z
Frme) =4 L F@" Y (22)

0 y<z

?

e From (2.2), and standard properties of conditional densities, we obtain the recurrent formula:

froa(y) = /_io 1f(—lz)($)f1%n(93)d93: n >0,

and by induction, it can be checked that
1 n
fro(z) = —{~log(1 - F(2))}" f(x). (2.3)
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2.2.2 Joint density

o Note that the occurrence of the nth record depends only on the value of R,,_;. So, we can say that the sequence
{R,}, - 1s a Markov chain with transition densities as given in (2.2). This Markovian property allows us to

obtain the joint density of R = (R, Ry, ..., RBp) :

fR(wO, L1y« vy xm) = fRo (wo)fR1\Ro=xo (.171) T me\Rm—1=9«"m—1(mm)
m—1
fl:)
= [ =y
=0

for g <1 < ... < Tppy..

e The joint density of two records, say (R, Ry,) with n < m, can be derived from the joint density of (Rg, Ry, ...

and is; for @, < =, with 0 < Fz,); Flan,) < 1

m—n—1

(— log F(:{:n))n (log F(:L‘n) — log F(xm)) T ) f ()
n! (m—n—1)! F(z,)

f (B ) (T Trn) =

where F(z) =1 — F(z).

e In particular, for consecutive records, i.e. m=n+1:

(—log F(@))" f () f (%ns1)

- ?

n! F(x,)

f(Rn,Rn—l—l)(:cn? $n+1) =

for 0< F(a,) < Fop41) < 1.



Models for ordered statistical data. Fernando Lépez Bldzquez

2.3 Conditional densities

e If F'is an absolutely continuous distribution with density f:

fRnJ—l,H.,Rn+j|Rﬂ:T*m($n+1? ceey wn—b—j H —

for @ € Trgr K vree L

o From (235), for m.>n, and @y, >

B (log F(2,) — log F(n,

)) m—n+1

A

Tin)

I R R () = m—nt1D)

F(

]

(2.5)
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e On the other hand,

n—1
. i T;
fRo,.H,Rn—lan=$n(x07 % e ;xn—l) =nl (_ 10g F(J:TL)) H i( ) ’ (26)
for mp <y & . .- & w0
e Note that if F is a continuous cdf, then G = —log F' is a non-decreasing function. The truncated distribution
on the right:
Glz)
H(z) = { Gy ¥ ST (2.7)
1 e
has density h(z) = (— log F(?‘n))_l %((m))) for £ < r,. Then, comparing (2.6) with the joint density of order
55
statistics, we obtain:
Theorem 2.3.1 For a continuous distribution F, the conditional distribution of records (Rq, . .., R,_1) given R, =1,

s the same as the n order statistics of a sample of size n of 1d random variables having the truncated distribution
given in (2.7).
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e As a consequence of the previous theorem, the distribution of R; given R, = z, for0 < j < n is equal to the
distribution of the (j + 1)th order statistic of a sample of size n from the truncated (2.7), that is:

ij‘Rn=y('lL,) =

Cpern (108 T () " (- los P(@))’ (10 F(a) ~ log Fly))" ™ L

F(z)

for x < y. In particular, for consecutive records:

Foytors®) = (e T(0) " (- s T0) "™

for z < y.
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2.4 Some properties of records

o Let {R,}n>0 be the sequence of records of an iid sequence { X, }n>1 from an absolutely continuous distribution
F. 1f the original sequence {X,},>1 is transformed by a strictly increasing function g, as the strict order is
preserved, we obtain that the records of the transformed sequence {g(X,,)}n>1 are distributed as {g(R,,) }n>o-

e Observe that if F' is strictly increasing in the set S = {x € R: 0 < F(z) < 1} then the function G(z) =

—log(1l — F(z)) is strictly increasing in S. It is easy to check that if X ~ F then, the transformed rv
G(X) ~ Exzp(1).

e The conclusion of the above arguments is that the records {R,}n>0 from a strictly increasing distribution F
can be related to the records of a sequence of iid standard exponential variables, denoted hereafter { B! },,>0, by
means of the relationship

{G(Bn)}tnz0 = {B:}nzo.
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2.5 Record indicators

The sequence of record indicators is defined as follows:

[1 = 1,
I,=1 {Xn & X(n—l:n—l)} , 2> 2.

The meaning of this sequence is that I, = 1 if and only if the observation X, is a record.

Theorem 2.5.1 Let {X;} .., be a sequence of id rv's with continuous distribution F. Then, {I.}, ., is a sequence
of independent random variables with I, ~ Be(%), n>1.
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2.6 The number of records
The record counting process is { N, }, ., with

Np=number of records among X1, ..., X,.
It is obvious that:

Np = anfj,
j=1

where {/;},, is the sequence of record indicators.
For n > 1, consider the polynomial Q,(z) = z(z +1)...(xz +n — 1). If this polynomial is expanded in powers of
x, we obtain

Bles)= z Sn,kask.
k=1

The coefficients S, 5, with 1 < k < n are called Stirling numbers of the first kind. These numbers can be
obtained by the recurrence formulas:

Sp-i1s =802 + Bng-a
Sl,l — ]_7

with the agreement that S, =0 for bk <1 or k > n.

Theorem 2.6.1 The probability function of N, s

PN, =k) =22k p=1,...,n.
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Some properties of the record counting process are:

e EN, =571

=13"
o Var(N,) =" 1 (1 - %) .

o For large n,
B

g:

where v = 0.5772... is the Euler’s constant. So, we can say that records are rather uncommon. For instance

EN, =logn+y; Var(N,)=logn+y—

in a sequence of 1000 observations we expect to observe approximately 7 records.

e From the Strong Law of Large Numbers for sequences with uniformly bounded variance

N’I‘L a.s.

—= 1.

log n

¢ From the Liapounov condition for the Central Limit Theorem

Mo —logm o neg 1),
Viegn
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2.7 The distribution of record times

Let {X;},,, be asequence of iid rv’s with continuous distribution F.
Once we have obtained the distribution of the record indicators, one can obtain the joint distribution of the record
times. For 1 <ny <ng <+ < nyp,

P(T1:nl,Tg:ng,...,Tm:nm):P(Ig:O,...,Im_l:O, [n1:1;~~-7[n :1):

m

={(m — D2 —1)-- (g — Dny} " (2.8)
The marginal distribution of 7} is:
PT =)= L ny > 2
1—1ie] _nl(nl_l), 1 = By
and it can be easily checked that
ETl = 0.

The distribution of the kth record time can be obtained from the joint given in (2.8) or alternatively using the
record counting process:

P(T,=n)=P(Ny=k+1,Ny1=k)=P(, =1, Ny1=k) =
Sn—l,k:

n!
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Some properties of the sequence of record times are:

[ ET;Q = OQ; E(Tk: _Tk:—l) =0

10g Tk; a.s.

. — 1, & — o0.

. logTy, — k

d
— N(0,1), k — 0.
- 0,1,

13
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2.8 Markov properties

There are several Markov chains related to a sequence of records from a continuous distribution:

e The counting process {1.7\%}”2 , 18 a non-homogeneous Markov process with transition probabilities:

n—1

—, =i
P(Nn:j’Nn—lzi):

= j=1+1
= =g 1.
mt J

o The sequence of record times {7} ., is a homogeneous Markov process with transition probabilities:

)

>

e The sequence of records {R,}, ., is a Markov process with transitions given by the conditional densities:

fRn|Rn—1=CD(y) = 1_f(—ga)($)7 y>x

14
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2.9 Records from discrete distributions

e In section 2.1 we pointed out that records are not well defined for distributions with an atom at is upper end.
For that reason, Vervaat (1973) introduced the concept of weak records:

o Let {X,}n>1 be a sequence of iid rv’s with common distribution F. Let as define the weak record time
sequence as:

Fy=1,

Tn =min{j > Tp_1: X; > Xz hn>1,
then the nth weak record of the sequence is the random variable

Wy = X7 .

e Note that the difference with ordinary records is that ties with previous records are also considered as records.
Obviously, for continuous distributions weak records coincide (almost surely) with ordinary records. In the case
of discrete distributions ordinary and weak records lead to different definitions.

For distributions with an atom at its upper end the sequence of weak records is well defined while ordinary records
are not.
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Suppose that X is a discrete rv with pmf P(X = x) = p;, > 0,for k=1, 2, ..., N, where N is a natural number
and possibly N = co. Let ¢z = P(X > ). For simplicity, we will assume that z; < 25 < -+ < ap.

e For an iid sequence { X}, }n>1, the joint distribution of weak records is given by:

n—1
Pr;
P(Woza?ko, W1 :$kl,...,Wn:$kN>:pkn qi, (29)
j=0 i

forxlgxkogxkl...gcckNg:cN.

e For ordinary records a bounded support is not permitted, then necessarily N = 0o and the joint distribution is
given by

n—1

(2.10)

for & < mp, < Ty, ... < Ty,
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2.10 Records from some specific distributions

2.10.1 Exponential distribution

e The density of R, is
1

fR;(x) = gxn exp(—:c),:c > 07

then R: ~ Ga(n+1,1).

e The joint density of two records (R}, R},) with n <mis

1
nl(m—n—1

m—n—1

exp(—y), 0 <z < y.

f(R;,R;)(% y) = )!53%(3! — )

e In particular, if they are consecutive, i.e. m =n+1,

1 V£
fas, (@ y) = —a" exp(—y), 0 <z <y.

Ly
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The joint density of R* = (R}, Rf,...,R}) Is

™m

P lmp, i goens §05] = OXPL— )i Ty LB & oo o B Wy (21T

Note that the density given in (2.11) coincides with the density function of (S, Sa, ..., Sp), where Sy, = E’;Zl L
with {gj}j>l a sequence of iid standard exponential random variables, that is to say

(R57 R{: . 7R:n) i (Sla 527 . "JSm+1)' (212)

Then, from (2.12),
* * * * * d
(ROJ Rl - RO?"’JR’I‘TL o Rm—l) = (517 §27 ---;é-m);

which means that spacings between consecutive records are iid and distributed as standard exponentials.

Another consequence of (2.12) is that { Rf, — (m + 1)}m20 is a martingale, i.e.,

E(R,—(m+1)|Ry_) =RsH_ —m, m>0.
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2.10.2 Geometric distributions
Weak records

A discrete random variable X follows a geometric distribution with parameter p € (0, 1), if
P(X=k)=q"p, k=0,1,2,...withg=1—»p.

We denote X ~ Ge(p). For this distribution ¢, = P[X > k| = ¢*, k > 0.

e The joint distribution of weak records is
P (Wo = ko, Wi = ky,..., Wy = ky) = ¢"™p"*, (2.13)

forOSkOSk’lgSkn
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It can be checked that (2.13) is also the probability function of (Si, Ss, ...,Sy,), where S = Zf.:l &, with
{ﬁj}pl a sequence of iid Ge(p) random variables, that is to say,

(Wo, Wi, ..., W) Z (S1, S, ..., Sms1). (2.14)

Some consequences of the representation given in (2.14) are:

Wi ~ NB(k+1,p), k >0, i.e.,

Spacings between consecutive records are iid Ge(p) random variables:

(W07 Wl - WO:' "7W’m - W’W—l) i (517 527 cee 7§m)7

The sequence {W,, — (n +1)q/p}n>o is a martingale:

EW,—(n+1)g/p| Wh_1) = Wh_1 —ng/p, n> 1.
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Geometric distribution. Ordinary records

e The joint distribution of ordinary records is
P (Ro=ko, Ry =y, ..., Bp = k) = g™, (2.15)
forogkogklggkn

e It can be checked that (2.15) is also the probability function of (Sy, S+ 1, S5+ 2, ...,S, + (n — 1)), where
Sy = Zf‘:l &;, with {@-}Pl a sequence of iid Ge(p) random variables, that is to say,

(ROJ Rl)"' JR'n) i (Sla ‘82 +17 S3 + 27 JS’n +(n_ 1)) (2‘16)
Some consequences of the representation given in (2.16) are:

e Ry —k~NB(k+1,p), k>0, ie.,
P{R,—j)— ( : k:)qj‘kpk“, j=kk+1,...
j —
e For spacings between consecutive ordinary records:
(Ro, Rl _P'"O_L“':Rn_Rn—l _1) i (§17 627 "'ag'm)a

e The sequence { R, — n/p}n>o Is a martingale:

E(By —n/p | Bp1) = Bon—(n—=1)/p, n> L.



Models for ordered statistical data. Fernando Lépez Bldzquez 22

2.11 k-th records

e In the definition of ordinary (upper) records, we look at the sequence of largest observations, but it can be also
interesting to keep track of the second largest, or more generally the kth largest observation. Thus, the concept
of kth record appear:

o Let {X,}n>1 be a sequence of independent and identically distributed (iid) random variables (rv’s) from a
distribution F. Let us consider the kth-record times defined recurrently as:

T* =k

7®), = min {j LGS TH, X, > XT£k>_k+1:Tgk>} n>0,
and the nth ordinary kth-record from F' as

R = X

T 1. T

n >0, (2.17)

where X, denotes the ith order statistics of a sample of size m.
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e Note that definition (2.17) does not make sense for a distribution with an atom at the right endpoint of its
support. Following Vervaat (1973), this problem can be avoided with a slight change. So, we introduce firstly
the weak kth-record times recurrently as:

U = k;
U =min{j: 5> UP, X; 2 Xyw 000}, 020,

and the nth weak kth-record from F as

wk = X

gl peip, s W > 0.

e Note that the difference between both definitions is that in the later a new observation from the sequence is
labeled as a kth-record even in the case in which it takes the same value of the actual kth-record. Of course,
if the underlying distribution F' is continuous there is no difference between ordinary and weak kth-records.
According to Wesolowski and Ahsanullah (2001) the use of weak records rather than ordinary records is more
natural in the iid setting due to the fact that there is no preference between tied observations, moreover the
mathematical theory for weak records seems to be richer than the one for ordinary records.
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e In pag. 43 of the book Records by Arnold, Balakrishnan and Nagaraja (1998), one can read: The sequence
{Rq(f), n > 0} from a (discrete or continuous) cdf. F is identical in distribution to a first record sequence
(RY, n >0} from the cdf Fip=1—(1— F)-.

e We denote this fact by
d

{RB(F),n>0} = {RY (Fux),n>0}. (2.18)

e We will show later that (2.18) is not true for discrete distributions.
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e In the absolutely continuous case (2.18) holds, and consequently the theory of kth records can be reduced to
the theory of (first) record. So, we have the following results in the absolutely continuous case:

o The joint density of R® = (R{", R, ..., RW)
fR(k) (370, L1, .- 'me) —

- k}m+1F H )7
=0 F (:cl)

for g < @1 < ... < Ty, with F(z) =1 — F().

e The density of R/gk) 18
kn—l—l

far(@) = = {~log F@)}" F* (@) f ().

e The sequence of kth-records {R,(Lk)} is a Markov process with transitions given by the conditional densities:
n>1

1 —Fy)" ' fly)
Rn|Rp—1=2 = k %
TRl (v) - F@)

?

for y > x.
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For the standard exponential distribution, we have the following results:

The density of R,(lk) 18

n—+1
fR;‘C) (JZ‘) = 7l z" exp(—k:c),:c P 07

then RY ~ Ga(n + 1,k).

The joint density of R* = (R}, Ry,...,R},) is

fr(@o, T1,...,Tm) = K" exp(—kzm), To <21 < .. . < T (2.19)

Note that the density given in (2.19) coincides with the density function of (S;/k, Sa/k, ..., Sm/k), where
O = El;zl &;, with {&;} ;>1 @ sequence of iid standard exponential random variables, that is to say

KRS, RP, ..., R®) L (81, S3, . .., Smp1)- (2.20)

Then, from (2.20),
KR, RY — R,...,R® —RpL) £ (6, &, - 6n),

which means that spacings between consecutive kth records from standard exponential distributions are iid and
distributed as exponential distributions with mean 1/k.

Another consequence of (2.20) is that {ngf) — (m+ 1)/]43} is a martingale, i.e.,

m>0

E[R® — (m+1)/k | RE,) = R® |, —m/k, m>0.
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2.12 kth records from discrete distributions
Property
{R®(F), n> 0} £ {RY (Fi4), n >0} .
does not hold for discrete distributions

For simplicity, consider discrete random variables with support on a set of integers of the form S = {0,1,2,...,N}
with N possibly infinite. Let us suppose that the probability mass function (pmf) of X is p; = P(X = j) > 0 and
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e We consider k = 2 and we will show that the sequence {WT(L2)(F ), n > 0} does not have the same distribution
as the sequence {W,El)(Fl:g), n > 0}.

e Note that for n = 0, it is immediate that
d d
Wéz) () = Wél) (F12) = X12. (2:21)

e We will show that forn =1,
d
W (F) £ W (F2), (2.22)

and so, we will prove that property (2.18) does not hold for weak records. The case of ordinary records will be
discussed later.

e In order to prove (2.22), taking into account (2.21), it is enough to show that the conditional distribution
Wi (F) | We? (F) =4, G €8 (2.23)

and

WO (Fio) | W (Fie) =34, j€S (2.24)

are different.
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e Hirstly, using formulas for the conditional pmf of ordinary weak records:

5 __ a2
P (Wl(l) (Fu2) =m | chl) (Fi2) = j) = %, m 2 j. (2:25)
J

e On the other hand:

Pj G — Gt

5 5y ]
9 9 — 95
P (WP (F) =m | W (F) = j) = (2.26)
o —
qjg‘ - qu‘+1 ’

see Lépez Blazquez, Salamanca Mifio and Dembinska (2005).
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e Following similar arguments it can be shown that property (2.18) does not hold even if ordinary records are
used. In fact, for m,j € S :

Pi Gn = G

qj+1 QJQ' = qgg+1

2 , m>j

P(RO(F) = m| BP(F) = j) = 2
P; :
? m = ;77
qag' - q92‘+1
while

2 _ 2
P(BP (Fio) =m | B (Fio) = j) = Tomst e Il >
J+1

e For more information about the distribution theory of k-th records in the discrete case, consult Dembinska,

Lépez-Blazquez (2005a).
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2.13 Moments of records

e Let F be an absolutely continuous distribution function with density f. The moments of records, provided that
they exists, can be obtained as:

R = [ am{-log 1 F@)" )t

—00

e If Fis strictly increasing in the set {z : 0 < F(z) < 1}, and QF Is its quantile function, the following alternative

formulas can be used:
grr =L [ om ] eg(——) 14
n n, s F U Og 1 == gy ’Ub,
ER" = i’/ QF (1 — exp(—t))t" exp(—t)dt.
! 0

e Conditions for the existence of moments of records are given in Nagaraja (1978):
Theorem 2.13.1 If X ~ F strictly increasing and E | X |° < oo for some p > 1, then ER,, exists for all n.
In the case of non-negative random variables, the following necessary and sufficient condition can be given:

Theorem 2.13.2 If X is an unbounded positive and absolutely continuous random variable, a necessary and sufficient
condition for the existence of ER,, is that E (X log(X))" ewxists.

Note that if X is bounded, R, is also bounded and then, all its moments exists.
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2.14 Limit distributions for records

The basic result in this area is due to Resnick (1973). In short, there exist three possible domains of attractions for
(R, — A(n)) /B(n), as n goes to infinite for suitable chosen sequences A(n) and B(n) > 0 of real numbers.

Theorem 2.14.1 To each cdf F' associate the cdf

F(a) =1 exp{—/~log(l - F(@))}

and let N(n) = [exp(n)'/?],
Then, F' belongs to the domain of atraction of the limiting distribution H for maxima if and only iof F' belongs to the
domain of attraction of the limiting distribution

G(z) = ®(—log (—log H(x)))

for record values, where ® denotes the cdf of a N'(0,1) rv. The centering and normalizing constants for mazima (a(n)
and b(n)) and for records (A(n) and B(n)) are related by

A(n) = a(N(n)), B(n)) = b(N(n)).






