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✔ Linear Separable

✘ Separating Hyperplanes

✔ Non-Linear Separable

✘ Soft-Margin Hyperplanes
✘ Support Vector Machines
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Support Vector Machines (SVM) are learning method for (binary)
classification (Vapnik, 1979,1995).

✔ find hyperplane which separates data perfectly into two
classes.

✔ Data is often not linearly separable:
✔ map data into higher dimensional space.
✔ kernel-trick and kernel induced feature space.
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✔ Given n trainingsdata {xi, yi} for i = 1, . . . n with xi ∈ R
k

and yi ∈ {−1, 1}

✔ Define a hyperplane by

L = {x : f(x) = xT β + β0 = 0}. (1)

✔ A classification rule induced by f(x) is given by

G(x) = sign[xTβ + β0]



Hyperplanes II

Contents

Motivation

Idea

Hyperplanes

Hyperplanes II

Optimal Separating
Hyperplanes - LS

Non-linear separable
Data

Suppot Vector
Machines

Hofmarcher/Theussl SVM – 5/21

f(x) in Equation 1 gives the signed distance form a point x to
hyperplane

✔ For two points x1 and x2 in L βT (x1 − x2) = 0 and hence
β∗ = β/ ‖β‖ and hence is the vector normal to the surface of
L.

✔ for any point x0 in L, we have βT x0 = −β0.

✔ The signed distance of any point x to L

β∗T (x − x0) =
1

‖β‖(βT x + β0) =
1

‖f ′(x)‖f(x). (2)

Hence f(x) is proportional to the signed distance from x to
hyperplane f(x) = 0.
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Optimal separating hyperplane separates two classes and
maximizes the distance to the closest point from either class.

max
β0, β

C s.t. yi(x
T
i β + β0) ≥ C ‖β‖ (3)

This is equivalent to

min
β0, β

1

2
‖β‖2 s.t. yi(x

T
i β + β0) ≥ 1 ∀i (4)

In light of 2 this defines a margin around linear decision boundary
of thickness 1/ ‖β‖ and is a convex optimization problem!
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The according Lagrangian (primal) Function is:

LP = min
β0, β

1

2
‖β‖2 +

N
∑

i=1

αi[yi(x
T
i β + β0) − 1], (5)

with the derivatives:

β =
N

∑

i=1

αiyixi, 0 =
N

∑

i=1

αiyi (6)

and the so-called Wolfe-dual

LD =
N

∑

i=1

αi −
1

2

N
∑

i=1

N
∑

k=1

αiαkyiykx
T
i xk s.t αi ≥ 0 (7)
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Solution is obtained by maximizing LD.

✔ must satisfy Karush-Kuhn-Tucker conditions ((6) and s.t.(7))
and

αi[yi(x
T
i β + β0) − 1] = 0 ∀i. (8)

✔ if αi > 0 then yi(x
T
i β + β0) = 1 w.o.w xi is on the boundary.

✔ if yi(x
T
i β + β0) > 1, xi is not on the boundary and αi = 0

From 6 we see that the solution β is a linear combination of the
support points xi, those points defined to be on the boundary of
the Hyperplane.
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The optimal separating hyperplane produces a function
f̂(x) = xT β̂ + β̂0 for classifying new observations:

Ĝ(x) = signf̂(x). (9)

The intuition is, that a large margin on the training data wil lead
to good separation on the test data.

✔ Description in terms of support points suggests that the
optimal hyperplane focuses more on points that count.

✔ The LDA, on the other hand depends on all of the data, even
points that are far away from the decision boundery.



Support Vector Classifier

Contents

Motivation

Idea

Optimal Separating
Hyperplanes - LS

Non-linear separable
Data
Support Vector
Classifier
Support Vector
Classifier II

non-separable case

non-separable case

Suppot Vector
Machines

Hofmarcher/Theussl SVM – 10/21

Discuss hyperplanes for cases, where the clases may not be
separable by a linear boundery.

✔ training data consist of (x1, y1), . . . , (xN , yN ) with xi ∈ R
p

and yi ∈ {−1, 1}.
✔ with a unit vector β, the hyperplane is defined as

{x : f(x) = xT β + β0 = 0} (10)

✔ Classification rule is induced by f(x),

G(x) = sign[xTβ + β0] (11)
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As before, by dropping the norm constraint on β and defining
C := 1/ ‖β‖ we get

min‖β‖, s.t. yi(x
T
i β + β0) ≥ 1 − ξi ∀i , ξi ≥ 0,

∑

ξi ≤ const.

(12)
The value ξi (slack variable) is the proportional amount by which
the prediction is on the wrong side of its margin. Misclassifications
occur when ξi > 1, so bounding

∑

ξi at a value K, bounds the
total number of training misclassifications.
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Equation 12 is a quadratic problem with linear constraints, hence a
convex optimization problem. Equation 12 can be rewritten to

min
β0, β

0.5‖β‖2 + γ
∑

i

ξi, s.t. yi(x
T
i β + β0) ≥ 1 − ξi , ξi ≥ 0∀i ,

(13)
where γ replaces the constant in 12. As before we want to derive
the Lagrangian Wolfe-dual objective function:

LD =
∑

i

αi − 0.5
∑

i

∑

j

αiαjyiyjx
T
i xj , (14)

which gives a lower bound on the objective function 12 for any
feasible point. We maximize LD subject to 0 ≤ αi ≤ γ and
∑

i αiyi = 0.
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By using the Karush-Kuhn Tucker conditions we get a solution β̂
of the form

β̂ =
∑

i

α̂iyixi, (15)

with nonzero coefficients αi only for those observations i for which
the constraints yi(x

T
i β + β0) − (1 − ξi) = 0. These observations

are the support vectors, since β̂ is represented in terms of them
alone.
Given solution β̂, β̂0, the decision function can be written as

Ĝ(x) = sign[f̂(x)] = sign[xT β̂ + β̂0] (16)
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Methods described so far, find linear boundaries in the input
feature space. SVMs are more flexible by enlarging the feature
space using basis expansions such as splines. Linear boundaries in
the enlarged space achieve better training-class separation.

✔ select basis functions hm(x), m = 1, . . . , M
✔ fit the SV classifier using input features

h(xi) = (h1(xi), . . . , hM (xi)), i = 1, . . . , N and produce the
(nonlinear) function f̂(x) = h(x)T β̂ + β̂0

✔ The classifier is Ĝ(x) = sign(f̂(x))
✔ SVMs allow the enlarged space to get very, large, even infinite

dimension
✔ “Problem”: It might seem that computations would become

prohibitive.
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✔ To make the SV algorithm nonlinear, this could be achieved by
simply preprocessing the training patterns xi by a map
h : X → F into some feature space F .

✔ Example: Consider a map h : R
2 → R

3 with
h(xi1, xi2) = (x2

i1,
√

2xi1xi2, x
2

i2).
✔ Training a linear SV machine on the preprocessed features

would yield a quadratic function.
✔ This approach can easily become computationally infeasible for

both polynomial features of higher order or higher dimension.
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The Lagrangian dual function of our new optimization problem
gets the form:

LD =
∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyj〈h(xi)h(xj)〉. (17)

Analogous to the previous cases (separable, non-separable), the
solution function f(x) can be written as

f(x) = h(x)T β + β0 =
∑

i

αiyi〈h(x), h(xi)〉 + β0 (18)

As before, αi, β0 can be determined by solving f(xi) = 0 for any
xi which 0 < αi < γ
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So both, 17 and 18 involve h(x) only through inner products. And
in fact we do not need to specify the transformation h(x) at all,
but only require knowledge of the kernel function

k(x, x′) = 〈h(x), h(x′)〉, (19)

that computes inner products in the transformed space.
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✔ A Hilbert Space is essentially an infinite-dimensional Euclidean
space. It is a vector space, i.e., closed under addition and
scalar multiplication...

✔ It is endowed with an inner product 〈·, ·〉, a bilinear form. From
this inner product we get a norm ‖ · ‖ via ‖x‖ =

√

〈x, x〉,
which allows to define notions of convergence.

✔ Adding all limit points of Cauchy sequences to our space
yields a Hilbert space.

✔ We will use kernel functions k to construct Hilbert Spaces.
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✔ Let X be a (non-empty) set. A mapping

k : X × X → R, (x, x′) → k(x, x′), (20)

is called a kernel if k is symmetric, i.e., k(x, x′) = k(x′, x)
✔ A kernel k is positive definite, if its Gram Matrix

Ki,j := k(xi, xj) is positive definite ∀x.
✔ The Cauchy-Schwarz inequality holds for p.d. kernels.
✔ Define a reproducing kernel map:

Φ : x → k(·, x), (21)

i.e., to each point x in the original space we associate a
function k(·, x).
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✔ Example: Gaussian kernel. Each point x maps to a Gaussian
distribution centered at that point.

k(x, x′) = e−
‖x−x

′‖2

2σ
2 (22)

✔ Construct a vector space containing all linear combinations of
functions k(·, x):

f(·) =
∑

i

αik(·, xi). (23)

This will be our RKHS.
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✔ We now have to define an inner product in RKHS. Let
g(·) =

∑

j βjk(·, xj) and define:

〈f, g〉 =
∑

i

∑

j

αiβjk(xi, x
′

j) (24)

✔ One needs to verify that this is in fact an inner product
(Symmetry, Linearity, 〈f, f〉 = 0 → f = 0).
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