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Support Vector Machines (SVM) are learning method for (binary)
classification (Vapnik, 1979,1995).

Motivation

Idea

Optimal Separating 0 find hyperplane which separates data perfectly into two
Hyperplanes - LS

_ classes.
Dy Separebe [0 Data is often not linearly separable:
Suppat Vector [0 map data into higher dimensional space.
0  kernel-trick and kernel induced feature space.
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Motivation 0 Given n trainingsdata {x;,y;} fori =1,...n with x; € RF
Idea and yz - {_1, ]_}

Hyperplanes I

[0 Define a hyperplane by

Optimal Separating
Hyperplanes - LS

Non-linear separable L={z: f(x)= w18+ By = 0}. (1)

Data
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Machines

0 A classification rule induced by f(x) is given by

G(z) = sign[z’ B + Bo]
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Contents f(x) in Equation 1 gives the signed distance form a point x to

Motivation hyperplane

:jj:erplanes 0 For two points 21 and x5 in L 3 (z1 — x2) = 0 and hence

B* = B/ ||3]| and hence is the vector normal to the surface of

Optimal Separating
Hyperplanes - LS

Non-linear separable

Data 0 for any point zg in L, we have 81z = —f3.

Suppot Vector
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[0 The signed distance of any point x to L

1 1
[ L ()]

Hence f(x) is proportional to the signed distance from x to
hyperplane f(x) =
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B(r —20) = — (B2 + By) =

wand (@) (2)
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Optimal separating hyperplane separates two classes and
maximizes the distance to the closest point from either class.

max €' .t vi(z] B+ Bo) = C 8] (3)

This is equivalent to

.1 .
min= ||B]°  s.t. yi(z! B+ Bo) > 1 Vi (4)
/80762
In light of 2 this defines a margin around linear decision boundary

of thickness 1/ ||3|| and is a convex optimization problem!
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The according Lagrangian (primal) Function is:

N
Lp:frﬁm'g% |\BH2+ZO&¢[%($¢T5+5O)—1]7 (5)
0 i=1

with the derivatives:

N N
B=) iz, 0= oy (6)
i=1 i=1

and the so-called Wolfe-dual

N N N
1
Lp = ;:1 o — 5 ;21 kg_l aiakyiyk:czr:ck sta; >0 (7)
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Solution is obtained by maximizing Lp.

0 must satisfy Karush-Kuhn-Tucker conditions ((6) and s.t.(7))
and

a;lyi(z B4 Bo) — 1] =0 Vi. (8)

O if a; > 0 then yz(:czTﬁ + Bp) = 1 w.o.w z; is on the boundary.
O if yz(:czTﬂ + Bo) > 1, x; is not on the boundary and a; =0

From 6 we see that the solution (3 is a linear combination of the
support points x;, those points defined to be on the boundary of
the Hyperplane.
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The optlmal separatmg hyperplane produces a function
f(:c) = 273 + B, for classifying new observations:

AN

G(x) = signf (). (9)

The intuition is, that a large margin on the training data wil lead
to good separation on the test data.

[0 Description in terms of support points suggests that the
optimal hyperplane focuses more on points that count.

[0 The LDA, on the other hand depends on all of the data, even
points that are far away from the decision boundery.
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\dea Discuss hyperplanes for cases, where the clases may not be

Optimal Separating :
Huperlance . LS separable by a linear boundery.

wor-inear separable 0 training data consist of (z1,41),...,(zN,yn) with z; € RP

Support Vector . _
and y; € {~1,1}.

Support Vector [0 with a unit vector 3, the hyperplane is defined as

Classifier 11

non-separable case

non-separable case {x : f(g;) — Q;Tﬁ + By = O} (10)
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0 Classification rule is induced by f(z),

G(z) = signlz" 8+ fh (11)
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As before, by dropping the norm constraint on 3 and defining
C:=1/]B] we get

min||Bll, s.t.yi(a] B+ 6o) >1—& Vi & >0,) & < const.
(12)
The value &; (slack variable) is the proportional amount by which
the prediction is on the wrong side of its margin. Misclassifications
occur when &; > 1, so bounding > &; at a value K, bounds the
total number of training misclassifications.
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Equation 12 is a quadratic problem with linear constraints, hence a
convex optimization problem. Equation 12 can be rewritten to

;nigwwn?ﬂzgi, st.yi(zIB+Po) > 1—& & > 0Vi |
0> .

(13)
where v replaces the constant in 12. As before we want to derive
the Lagrangian Wolfe-dual objective function:

LD = Z oy — 0.5 Z Z ozz-ozjyiijiij, (14)
1 1 J

which gives a lower bound on the objective function 12 for any
feasible point. We maximize Lp subject to 0 < a; < and
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AN

By using the Karush-Kuhn Tucker conditions we get a solution (3
of the form
=) diyii, (15)

with nonzero coefficients «; only for those observations ¢ for which
the constraints y;(z! 3+ By) — (1 — &) = 0. These observations
are the support vectors, since B Is represented in terms of them
alone.

Given solution B,BO, the decision function can be written as

AN AN AN

G(z) = Szgn[f( )] = sign[z! 8 + B (16)
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Motivation Methods described so far, find linear boundaries in the input

dea _ feature space. SVMs are more flexible by enlarging the feature
35;:;!?:??2% space using basis expansions such as splines. Linear boundaries in
Non-linear separable the enlarged space achieve better training-class separation.

Suppot Vector 0 select basis functions h,,(z), m=1,..., M

0 fit the SV classifier using input features

n:venijlirr;iaersist%;y h(xz) = (h1 (mz), Ceey fLM(xZ)), 1 :Al, cee N and produce the
gupp<?rt Vector (nonlinear) function f(z) = h(z)* 3 + By

gﬂuapc;c;?‘fi/ector 0 The classifier is G(z) = sign(f(x))

Lﬂiif::zsp!ce 0 SVMs allow the enlarged space to get very, large, even infinite
E::::z | dimension

RKHS 0 "Problem™: It might seem that computations would become

prohibitive.
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Motivation 0 To make the SV algorithm nonlinear, this could be achieved by

\dea simply preprocessing the training patterns x; by a map
Optimal Separating .
Hyperplanes - LS h : X — F into some feature space F.

Non-linear separable

oate 0 Example: Consider a map h : R? — R? with

Suppot Vector

Machines ]’L(ﬂ?il, 3%'2) — (xzzla \/533'@'133@'27 :CZ22)

Idea of Support L . .
Vector Machines 0 Training a linear SV machine on the preprocessed features

nonlinearity by

preprocessing would yield a quadratic function.
Support Vector . . . . .
Machines [0  This approach can easily become computationally infeasible for
Support Vector

Machines Il both polynomial features of higher order or higher dimension.
Hilbert Space
Kernels
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The Lagrangian dual function of our new optimization problem
gets the form:

LD_Z%__ZZ%%% h(z)h(z;).  (17)

Analogous to the previous cases (separable, non-separable), the
solution function f(x) can be written as

f(a) = h(z)" B+ o = Z aiyi(h(z), () + Bo (18)

As before, a;, By can be determined by solving f(z;) = 0 for any
x; which 0 < a; <~y
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Motivation So both, 17 and 18 involve h(x) only through inner products. And
dea in fact we do not need to specify the transformation h(z) at all,
Optimal Separating . .

Hyperplanes - LS but only require knowledge of the kernel function

Non-linear separable

Data / /

Suppot Vector k(ﬂj, X ) - <h($)7 h(ﬂj )>7 (19)
Machines

Vector Nachimes that computes inner products in the transformed space.

nonlinearity by
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[0 A Hilbert Space is essentially an infinite-dimensional Euclidean
space. It is a vector space, i.e., closed under addition and
scalar multiplication...

0 It is endowed with an inner product (-, -), a bilinear form. From
this inner product we get a norm || - || via ||z|| = /(x, x),
which allows to define notions of convergence.

0 Adding all limit points of Cauchy sequences to our space
yields a Hilbert space.

[0 We will use kernel functions k£ to construct Hilbert Spaces.
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Let X’ be a (non-empty) set. A mapping

k: X xX—R, (v,2") — k(z,2"), (20)
is called a kernel if k is symmetric, i.e., k(z,z’) = k(2/, x)

A kernel k is positive definite, if its Gram Matrix

K; j := k(zi,x;) is positive definite Vz.

The Cauchy-Schwarz inequality holds for p.d. kernels.

Define a reproducing kernel map:
S:x— k(- x), (21)

l.e., to each point z in the original space we associate a
function k(-, ).
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Motivation 0 Example: Gaussian kernel. Each point x maps to a Gaussian
Idea distribution centered at that point.
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|z —a’||?
k(z,z') = e 202 (22)
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Vector Machines - . . .
ol by [0 Construct a vector space containing all linear combinations of

preprocessing : . .
B functions k(-, z):

Machines
Support Vector

Machines Il f() = Zazk(,xz) (23)

Hilbert Space
Kernels

RKHS This will be our RKHS.
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0 We now have to define an inner product in RKHS. Let
g(+) = Zj Bik(-, ;) and define:

(f.q) = Zzaiﬁjkm,x;)

(24)

[0 One needs to verify that this is in fact an inner product

(Symmetry, Linearity, (f, f) =0 — f = 0).
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