WIRTSCHAFTS
UNIVERSITAT
WIEN VIENNA
UNIVERSITY OF
ECONOMICS
AND BUSINESS

-
Extracting Information from Text

Research Seminar
Statistical Natural Language Processing

Angela Bohn, Mathias Frey,
November 25, 2010

Main goals

» Extract structured data from unstructured text

» Training & Evaluation

» Identify entities and relationships described in text (i.e. named entity
recognition and relation extraction)

=] (=) = E acr

2/25

Structured vs. Unstructured Data

Which organizations are located in Atlanta?
Querying a database would be easy:
SELECT =«

FROM organization

WHERE UPPER(location) LIKE '%ATLANTA%';
whereas the real world looks like:

, said Ken Haldin, a spokesman for
Georgia-Pacific in Atlanta

- = = = ERNING
Introduction 3/25

sentences l

tokenized sentences l

raw text

|

N S—
sentence
segmentation

)

tokenization

| S —

—_—

part of speech
tagging

pos-tagged sentences

P S
entity
recognition

| S —

—_—

relation

recognition

| S —

|

relations
(list of tuples)

Figure: Simple pipeline, BKL, 2009. NLP with Python. p 263

Introduction 4 /25

l chunked sentences

Chaining NLTK's functions together

>>> def ie_preprocess(document):
S =
. s =

nltk.sent_tokenize (document)
S =

[nltk . word_tokenize(sent) for sent in s]
return s
Julia

[nltk.pos_tag(sent) for sent in s]
>>> document =

Gillard ,

"except for Australian Prime Minister
whose red—and—white dirndl dress
seemed more reminiscent of the Austrian Alps
than the outback. """
>>> je_preprocess (document)
[[... ('except',
("Australian'

UNT), (for', 'INTY,
"JJ"), ('Prime’,

'NNP '),
, , ulra ', e
'NNP 'Julia', 'NNP'
=] (=) = E E DA
e ntroduction. 75/ 25

('"Minister'

Usage of R and openNLP

Import library and try a sentence detection.

>
>
>
>
>

library (openNLP)

library (openNLPmodels.en)

s <- "The little yellow dog barked at the cat."
s <- sentDetect(s, language = "en")

s

[1] "The little yellow dog barked at the cat."

o =) = = E DA

Introduction 6 /25

POS tagging

POS tagging with tagPOS(). Mind the dependence on the input language.

> t <- tagP0S(s, language = "en")
>t

[1] "The/DT little/JJ yellow/JJ dog/NN barked/VBN at/IN the/DT cat./NN"

- = = = = 9ae
Introduction 7/25

Chunking

» aka "Partial parsing”

> sentence segmentation
» tokenization

» POS-tagging

=]) = = = DA
Chunking 8 /25

» Segment and label multitoken sequences w'o overlaps
» Pipeline is prerequisite of chunking

Chunking Techniques

NLTK's chunkers depend on

» Regular Expressions

» Unigrams, Bigrams, n-Grams

» Classifier + Feature Extractor

o) = = = DA
Chunking 9 /25

Chunk Grammar: A regex approach

>>> sentence = [("the”,"DT"), ("little"”, "JJ"),
("yellow”,”JJ"), ("dog"”,"NN"),("barked",

... "VBD"),("at”,"IN"),("the","DT"),("cat”,"NN")]

>>> grammar = "NP: _{<DT>?<JJ>+<NN>}"

>>> cp = nltk.RegexpParser(grammar)

>>> result = cp.parse(sentence)

>>> result.draw()

S
NP barked VBD atIN NP

the DT little JJ yellow JJ dog NN the DT catNN

o 5 = = DA
Chunking 10 / 25

Regexp Chunk Parser App

{(<DT>7<JJ.*>*<NN.">+}

'Welcome to the regular expression
chunk-parser grammar editor. You can use
this editor to develop and test chunk parser

grammars based on NLTK's
RegexpChunkParser class.

Use this box (Help) to learn more about the
leditor; click on the tabs for help on specific
topics:

Rules: grammar rule types

Regexps: regular expression syntax
Tags: part of speech tags

Use the upper-left box (Grammar’) to edit

your grammar. Each line of your grammar
specifies a single 'rule’, which performs an [
action such as creating a chunk or merging

Development Set (1/100) Evaluation:

Confidence/NN in/IN the/DT pound/NN is/VBZ widely/RB expected/VBN to/TO take/VB
another/DT shal sharp/JJ dive/NN if/IN trade/NN figures/NNS for/IN September/NNP ./,
due/JJ for/IN release/NN tomorrow/NN ,/, fail/VB to/TO show/VB a/DT substantial/JJ
improvement/NN from/IN July/NNP and/CC August/NNP 's/POS near-record/dJ
deficits/NNS ./.

100%|

Precision

. 0% Recall 100%
C o0 Real T

Prev Example (Ctrl-p) (" Next Example (Ctrl-n) Show trace)’ Show example

Precision: 70.48% Recall: 63.75% F-score: 66.95%

History

Figure: Tag pattern manipulation with NLTK's chunkparser application.

=] & =] E A
Chunking 11 /25

Exploring text corpora

brown = nltk.corpus.brown
>>> def find_cnk (grammar):
cp = nltk.RegexpParser(grammar)
for sent in brown.tagged_sents ():
tree = cp.parse(sent)
for subtree in tree.subtrees():
if subtree.node = 'CHUNK': yield subtree

>>> for t in find_cnk ("CHUNK: {<VBN>_<TO> <V.x>}"'):
print t

(CHUNK delighted /VBN to/TO meet/VB)

(CHUNK come/VBN to/TO talk /VB)

(CHUNK used /VBN to/TO express/VB)

(CHUNK given /VBN to/TO understand/VB)

M = = = E DA
Chunking 12 / 25

ChunkeR

A chunker in R:

>>> sentence = [("the”, "DT"), ("little”, "JJ"), ("yellow™, "JJ"),
... ("dog”, "NN"), ("barked”, "VBD"), ("at”, "IN"), ("the”, "DT"), ("cat”,
>>> grammar = "NP: _{<DT>?<JJ>x<NN>}"
>>> cp = nltk.RegexpParser(grammar)
>>> result = cp.parse(sentence)
>>> print result
(S
(NP the/DT little/JJ yellow/JJ dog/NN)
barked /VBD
at/IN
(NP the /DT cat/NN))

>t
[1] "The/DT little/JJ yellow/JJ dog/NN barked/VBN at/IN the/DT cat./NN"

> npchunker <- function(input) {

+ p <= "(\\<["[:space:]11+/DT\\>)?((\\<["[:space:]11+/JJ.?\\>)*) (\\<["[:space:]]+/NN\\>)"
+ r <= "(NP \\1\\2\\4\\5) "

+ output <- gsub(input, pattern = p, replacement = r)

+ output <- paste("(S ", output, ")", sep = "")

+ output

+}

> npchunker (t)

[1] "(S (NP The/DT little/JJ yellow/JJ dog/NN) barked/VBN at/IN (NP the/DT cat./NN))"
[m] = =

NN

£ DA

Chunking 13 /25

ChunkeR (2)

Another chunker in R:

grammar = r """
NP: {<DT| PP\ $>7<JJ>*<NN>} # chunk determiner/possessive, adjectives and nouns
{<NNP>-+} # chunk sequences of proper nouns
cp = nltk.RegexpParser(grammar)
sentence = [("Rapunzel”, "NNP"), ("let”, "VBD"), ("down", "RP"), [1]

("her”, "PP$"), ("long"”, "JJ"), ("golden”, "JJ"), ("hair”, "NN")]
>>> print cp.parse(sentence) [2]
(s
(NP Rapunzel /NNP)
let /VBD
down /RP
(NP her/PP$ long/JJ) golden/JJ hair/NN))

> rapunzel <- tagPOS("Rapunzel let down her long golden hair.")
> another.npchunker <- function(input) {
+ rulel <- "(\\<["[:space:]1]+/(PRP\\$|DT)) ((\\<["[:space:]11+/JI\\>)*) (\\<[~[:space:]]+/NN\\>)"

+ rule2 <- "(\\<["[:space:]]+/NNP\\>)+"

+ output <- gsub(input, pattern = rulel, replacement = "(NP \\1\\3\\5)")
+ output <- gsub(output, pattern = rule2, replacement = "(NP \\1)")

+ output <- paste("(S ", output, ")", sep = "")

+ output

+}

> another.npchunker (rapunzel)

[1] "(S (NP Rapunzel/NNP) let/VB down/RP (NP her/PRP$ long/JJ golden/JJ hair./NN))"
o) = = DA

Chunking 14 / 25

Chinking

grammar =

P
NP:

Chinks are patterns excluded from chunks.

[<>4)

(S

chunk everything
y<VBD| IN>+{ # chink VBD and IN

barked /VBD
at/IN

(NP the/DT little/JJ yellow/JJ dog/NN)
(NP the /DT cat/NN))
=] (=) = E E DA

>>> cp = nltk.RegexpParser(grammar)
>>> print cp.parse(sentence)

ChinkeR

A chinker in R:

> chinker <- function(input) {

+ p <= "O\\<.¥\\>)+ (\\<["[:space:]]+/VBN\\>) (\\<["[:space:]1]+/IN\\>) (\\<.*¥\\>)+"
+ r <= "(NP \\1) \\2 \\3 (WP \\9)"

+ output <- gsub(input, pattern = p, replacement = r)

+ output <- paste("(S", output, ")", sep = "")

+ output

+3

> chinker (t)

[1] "(S(NP The/DT little/JJ yellow/JJ dog/NN) barked/VBN at/IN (NP the/DT cat./NN))"

E DAl
Chunking 16

IOB tags

IOB tags are standard way to represent chunk structures in files with
» B marking a token as the beginning,
» | marking a token being inside, and

» O marking a token being outside of a chunk.

We PRP B—NP
saw VBD O

the DT B-NP
little JJ I-NP
yellow |-NP
dog NN |—-NP

[} [=

=] = DA
Chunking 17 / 25

IOB Tags

}

>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
>

write.IOB <- function(input, file) {

output <- npchunker (tagP0S(input))
output <- gsub(output, pattern = ""\\(S (.+)\\)$", replacement = "\\1")
output <- gsub(output, pattern = "(\\(NP [“\\)]+\\))", replacement = "[\\1]")

output <- gsub(output, pattern = ""\\//\\/$", replacement = "")
output <- unlist(strsplit(output, split = "[[:space:]]?\\|[[:space:]1]1?"))
output <- strsplit(output, split = " ")

annotate <- function(x) {
if (length(grep(x, pattern = "\\(NP")) == 0) {
y <- paste(gsub(x, pattern = "/", replacement = " "), "0")

if (length(grep(x, pattern = "\\(WP")) > 0) {
y <- paste(gsub(x, pattern = "/", replacement = " "), "I-NP")
y[2] <- gsub(y[2], pattern = "I-NP", replacement = "B-NP")
y <= yl[2:length(y)]

y <- gsub(y, pattern = "([[:upper:1]1{2,3}) (\\))([[:upper:]])", replacement = "\\1\\3")
y

}

output <- lapply(output, annotate)

unlink(file)

cat (unlist (output), file = file, append = TRUE, sep = "\n")

write.IOB(s, file = "output.txt")

=] & =] E E DAl
Chunking

write.IOB()'s output.txt

The DT B-NP
little JJ I-NP
yellow JJ I-NP
dog NN [-NP
barked VBN O
at IN O

the DT B-NP
cat. NN I-NP

o = = E T 9an

Chunking 19 / 25

Evaluation against training corpus

Establishing a baseline without a grammar. (Notice that 43.4 % of our
evaluation corpus’ tokens are outside of chunks.)

>>> from nltk.corpus import conll2000 as ev
>>> cp = nltk.RegexpParser("")
>>> test_sents = ev.chunked_sents(
"test.txt',chunk_types=['NP'])
>>> print cp.evaluate(test_sents)
ChunkParse score:
IOB Accuracy: 43.4%

Precision: 0.0%
Recall: 0.0%
F—Measure: 0.0%

=] F = = DA

Evaluation 20 /25

Evaluation against training corpus (2)

>>> grammar = r"NP:_{<[CDINP].x>+}"
>>> cp = nltk.RegexpParser(grammar)
>>> print cp.evaluate(test_sents)
ChunkParse score:

IOB Accuracy: 87.7%

Precision: 70.6%

Recall: 67.8%

F—Measure: 69.2%

Precision, Recall, F-Measure

|NP

chunked correctly
I chunked correctly

=] (=) = = D

Evaluation 21 /25

?

N

Named Entity Recognition (NER)

There are two approaches

» Gazetteer, dictionary
» Classifier

=] (=) = E acr
Named Entities and Relations 22 /2

22 /25

KEEP UP. YOUR - WITH AUDIO m

Vietnam Louisiana, USA
Audio W are hlghlyl popular | with{ library j patrons in the
Louisiana, USA S.Carolina, USA Pennsylvania, USA Mass., USA
(Springfield,] [Greene] County, "People are
Turkey Virginia, USA Maine, USA Norway Alabama, USA
and busier, and audio fit into that lifestyle" says
Louisiana, USA Indiana, USA
who oversees the [Iibrary‘s] $2 [million) budget...
Dominican Republic Pennsylvania, USA Kentucky, USA

Figure: Error-prone location detection with gazetteer, BKL, 2009. NLP with
Python. p 282

u}
8]
I
il
it

Named Entities and Relations 23 /25

Relation extraction

Based on identified named entities, regular expression

=] (=) = E E DA
Named Entities and Relations 24 /25

Exploring text corpora

>>> import re
>>> IN = re.compile(r'.x\ bin\b(?!\b.+ing)")
>>> for doc in nltk.corpus.ieer.parsed_docs(
"NYT_19980315"'):
for rel in nltk.sem.extract_rels(
'ORG','LOC', doc, corpus='ieer', pattern=IN)
print nltk.sem.show_raw_rtuple(rel)

[ORG: 'DDB_Needham'] 'in' [LOC: 'New_York']

[ORG: '"Kaplan_Thaler_Group'] 'in' [LOC: 'New_York']
[ORG: 'BBDO_South'] 'in' [LOC: 'Atlanta']

[ORG: 'Georgia—Pacific'] 'in' [LOC: 'Atlanta']

o = = E T 9an

Named Entities and Relations

	Introduction
	Chunking
	Evaluation
	Named Entities and Relations

