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SNLP

Goal of this Chapter

• How can we identify particular features of language data that

are salient for classifying it?

• How can we construct models of language that can be used

to perform language processing tasks automatically?

• What can we learn about language form these models?

• Tools: Decision Tree, naive Bayes classi�ers, maximum en-

tropy classi�ers.
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Supervised Classi�cation

• Choosing the correct class label for a given input.

• Classi�er is supervised if it is build based on a training corpus

containing the correct label for each input.

• Creating a classi�er deciding which features of the input are

relevant.
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Generative vs. Conditional Classi�ers

• Generative Classi�ers predict P (input, label) (e.g. Naive

Bayes)

• Conditional Classi�ers predict P (label|input) (e.g. Maximum

Entropy)

Questions that these classi�ers may answer

1. What is the most likely label for an input? (G,C)

2. How likely is a given label fo a given input? (G,C)

3. What is the most likely input value? (G)

4. How likely is a given input value? (G)

5. How likely is a given input value with a given label? (G)

6. What is the most likely label for an input that might have

one of two values, but we won't know? (G)
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Evaluation - General

• We need to �nd a way to decide how well our classi�cation

model works

• Classic evaluation approach: training set, test set, evaluation

set (distinct and non-overlapping)

• We know the correct labels and can assess performance of

our classi�cation model

• Evaluation set should be balanced as to which labels occur

and quite general

• Size of evaluation set can be important as well

• Special cases: Cross validation and bootstrap sampling

Learning to Classify Text, Vienna Nov. 26, 2010



SNLP

Features

• Means something di�erent than we would think

• We distinguish between the label l and property some fi of

input x

• fi is called �feature� (e.g. end with letter �a�)

• We need to de�ne a combination of labels and properties

(�joint-feature�)

g(x, l) =

1 if fi = a, (i = 1, . . . , k)

0 otherwise
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Methods - Naive Bayes Classi�ers I

• Every feature gets a say in determining the label of an input

value

� Assumes independence of features (�naive�)

� Value gets label l, l = 1, . . . , L and then the k features are

generated according to that label

� We want to maximize P (l|f1, . . . , fk) ∝ P (f1, . . . , fk, l)
� Bayes theorem states that P (f1, . . . , fk, l) = P (l) ×

P (f1, . . . , fk|l)
� Under the independence assumption P (f1, . . . , fk|l) =∏

i P (fi|l)
� Choose label as maxP (f1, . . . , fk, l)
� Calculation of P (fi|l) should be calculated via smoothing

techniques

� Non-binary features can be binned or expanded to Dummy

coding or metric values can be regressed
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Gender Identi�cation I

• Creating Classi�er, deciding which features of the input are

relevant, e.g., just looking at the �nal letter.

> feature_last_letter <- function(x,number=1)

{unlist(lapply(strsplit(x,""), tail,number))}

• Split data into training, dev, prediction set.

• Training set is used to train via naive Bayes classi�er�

library(�e1071�).

• dev-set is used for error analysis (contains 600 names).

• prediction set for label forecasting.
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Gender Identi�cation II

> bayes <- naiveBayes(sex~letter, data=test_data)

> sex_predict <- predict(bayes,dev_data[,-1])

• check classi�cation hit-ratio and misclassi�ed names (149

names).

• re�ne extractor function to improve hit-ratio, based on mis-

classi�cations observed in dev set.

Learning to Classify Text, Vienna Nov. 26, 2010



SNLP

Gender Identi�cation III

> 1-length(which(check!=sex_predict))/length(dev_index)

[1] 0.7516667

> missclass_names

names letter sex predicted_sex

1480 hunter r f m

1086 karen n f m

1721 jacquelyn n f m

376 kelly y m f

367 kane e m f

1207 eileen n f m
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Gender Identi�cation IV

> table(twoletters)

ah al am an ar at ay be by ce de dy ee el en er

6 1 1 9 1 1 2 1 1 4 1 5 1 4 10 6

et ex ey ge he id ie in is ke ly my nd ne ni nn

1 1 6 2 1 1 4 5 1 1 1 2 2 6 2 6

on ow oy pe re ri ry se te th ty ue us vi yn

6 1 1 1 4 2 3 2 5 2 1 2 1 1 12

• names ending in yn tend to be female, despite the fact that

names ending in n tend to be male.

• re�ne extractor function to improve hit-ratio, based on mis-

classi�cations observed in dev set.
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Document Classi�cation I

• Pang Lee MovieReviews Corpus tm.corpus.MovieReviews

• De�ne feature extractor, so classi�er will know which words

it should pay attention.

• 1000 positive and 1000 negative movie reviews.

• Limit number of features (words) to 2000 and de�ne feature

extractor that simply checks whether word is in document or

not.

• For counting the words, we can use DTM from tm, maybe

�Binary(DTM)�.
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Document Classi�cation II

• instead of nltk.NaiveBayesClassifier, train from caret, or

naiveBayes??

tail(pos_neg_ratios, 9) ## positive keywords

friendship surround courag paxton howard

6.0 6.0 6.0 6.0 7.0

segment balanc castl outstand

7.0 7.0 11.0 22.0

head(pos_neg_ratios, 8) ## negative keywords

patch schumach idiot lame seagal

0.1250 0.1250 0.1363 0.1500 0.2000

failur worst stupid

0.2000 0.2200 0.2439
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Methods - Decision trees I

• Trees are a simple and intuitive form of additive models

• They partition the feature space into disjoint rectangles and

�t a constant in every partition

• All observations in a terminal node are classi�ed to belong

to the majority category

• Binary Trees: Idea and Visualization

� One starts with the whole feature space of inputs

� That one is split into two regions based on a split point

of a single input

� The split point and variable is chosen to optimize a �t

criterion

� The procedure is then repeated recursively in each region

until a stopping rule applies
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Methods - Decision trees II

• Possible objective functions

� Gini index

� Deviance

� misclassi�cation error

� Entropy or information gain

• Avoid over�tting via Pruning

� CV based pruning (misclassi�cation rate, deviance, en-

tropy or Gini index)

� Cost-complexity pruning
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Methods - Decision trees III

> t1 <- rpart(sex ~ letter1, data = trainData, control = rpart.control(cp = 0))
> plot(t1)
> text(t1)

|letter1=a

letter1=ehiwyz

letter1=eh

f

f m m
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Methods - Maximum Entropy Classi�ers

• Look for a set of parameters {θj} that maximize total like-

lihood of the training corpus, where Pθ(x, l) ∝ Pθ(l|x) =
1

C(θ,l)exp(
∑

j θjgj(x, l))
• Features can interact

• Iterative Optimization (BFGS or CG)

• Similar to Naive Bayes, but all feature-label combinations

(joint-features) can be used (e.g. one label many features or

vice versa)

• ME models tries to capture frequencies of individual joint-

features without making strong assumptions

• Maximum entropy principle: from all candidate distributions

(i.e. re�ect our knowledge) of joint-features choose the dis-

tribution with highest entropy H =
∑

l P (l)× log2 P (l)
• Statisticians call this a log-linear model
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Part-of-Speech Tagging I

• Choose a part-of-speech tag for a word by looking at the

internal makeup of the word.

• in R openNLP provides functions for part-of-speech tagging.

> sentence <- "They may have thought it was the end

of the crisis.

It turned out to be more like the beginning."

> tagPOS(sentence, language="en")

[1] "They/PRP may/MD have/VB thought/VBN it/PRP was/VBD

the/DT end/NN of/IN the/DT crisis./NN It/PRP turned/VBD

out/RP to/TO be/VB more/JJR like/IN the/DT beginning./NN"
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Part-of-Speech Tagging II

• Train a classi�er to work out which su�xes are most infor-

mative.

• Train Decision Tree classi�er, based on the su�xes.

� �," → �,�

� �the" → �Determiner�

� �s" → �verb'

∗ �is" → �BEZ�

� �if not�→ �noun�
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Part-of-Speech Tagging � Exploiting Context

• When tagging the word �y, knowing the previous word was

a, �y should be classi�ed as a noun not as a verb.

• E.g., classi�er should learn that a word is likely to be a noun

if it comes after the word large.

• Simple classi�ers always treat each input as independent from

all other inputs.
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Part-of-Speech Tagging � Sequence Classi�ca-

tion

• To captue dependencies between related classi�cation tasks

�joint classi�er. They choose an appropriate labeling for a

collection of related inputs.

• Greedy sequence classi�cation is to �nd the most likely class

label for the �rst input. Given this class label �nd the best

label for the next input...(This approach was taken by the

bigram tagger (Section 5.5))

� Feature extractor function requires history argument.

� Each tag in histopry corresponds with a word in the sen-

tence.

� Training is done with annotated corpus.
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Other Methods for Sequence Classi�cation

• Note: We commit every decision that we make. E.g., if we

label a word as a noun, but later �nd evidence that it should

be a verb, we can't change it.

• One solution is to adopt a transformed strategy instead.

These classi�ers work by creating initial assignment of la-

bels of inputs and then iteratively re�ning the assignment

Brill tagger.

• Another solution is to assign scores to all possible sequences

of part-of-speech tags and choose the sequence with the

highest overall score Hidden Markov Models → number of

possible tag sequences is quite large.

• Maximum Entropy Markov Models, Linear-Chain Conditional

Random Field Models.
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Sentence Segementation

• Classi�cation task for punctuation.

• Whenever we encounter a symbol that could possibly and a

sentence we have to decide whether it terminates the pre-

ceding sentence.

• openNLP provides the function sentDetect

> sentence <- "They may have thought it was the end of the crisis.

It turned out to be more like the beginning."

> sentDetect(sentence)

[1] "They may have thought it was the end of the crisis. "

[2] "It turned out to be more like the beginning."
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Sentence Segmentation

sentDetect for dialog act types:

> dialog <- "A: How did you get that horrible swelling on your nose?

B: I bent down to smell a brose.

A: There isn't a B in rose.

B: There was in this one!"

> sentDetect(dialog)

[1] "A: How did you get that horrible swelling on your nose?\n"

[2] "B: I bent down to smell a brose.\n"

[3] "A: There isn't a B in rose.\n"

[4] "B: There was in this one!"
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Sentence Segmentation

sentDetect for dialog act types:

> dialog <- "A: How did you get that horrible swelling on your nose?

B: I bent down to smell a brose...

A: There isn't a B in rose.

B: There was in this one!"

> sentDetect(dialog)

[1] "A: How did you get that horrible swelling on your nose?\n"

[2] "B: I bent down to smell a brose...\nA: There

isn't a B in rose.\n"

[3] "B: There was in this one!"
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Sentence Segmentation

> tokenize(sentence)

[1] "They" " " "may" " " "have" " "

[7] "thought" " " "it" " " "was" " "

[13] "the" " " "end" " " "of" " "

[19] "the" " " "crisis" "." " " "It"

[25] " " "turned" " " "out" " " "to"

[31] " " "be" " " "more" " " "like"

[37] " " "the" " " "beginning" "."
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Evaluation - Cross validation

• Especially useful if only limited amount of data is available

• Idea

� Divide original data set A into N subsets (folds) Ai, . . . , An

with
⋃

i Ai = A and
⋂

i Ai = ∅
� For each i, (i = 1, . . . , N) train the model on all A \Ai

� Evaluate model on the set Ai

� Combine the results for each of the N evaluation sets
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Evaluation - Bootstrap Sampling

• Training set: Sample n rows from a n× k data myslide with

replacement

• Evaluation set: All rows that were not in the training set

(�out-of-bag�)

• Train the model on the training set

• Evaluate it on the evaluation set

• Repeat as often as desired (e.g. 10 times)
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Evaluation - Assessing performance I

Confusion matrix: Matrix that displays how often label i was

predicted as label j(i, j = 1, . . . , k)

gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.

gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
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> confusionMatrix(sexPredictNB, check)
Confusion Matrix and Statistics

Reference
Prediction f m

f 225 44
m 81 250

Accuracy : 0.7917
95% CI : (0.7569, 0.8235)

No Information Rate : 0.51
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.5842
Mcnemar's Test P-Value : 0.001282

Sensitivity : 0.7353
Specificity : 0.8503

Pos Pred Value : 0.8364
Neg Pred Value : 0.7553

Prevalence : 0.5100
Detection Rate : 0.3750

Detection Prevalence : 0.4483

'Positive' Class : f
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Evaluation - Assessing performance II

Performance visualisation

• ROC curve: true positive vs. false positive rate

• Precision/recall graph: Precision vs. recall

• Sensitivity/speci�ty plot: Sensitivity vs. speci�city

• Lift charts: Lift vs. rate of positive predictions
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Evaluation - Assessing performance III

Some performance measures

• Accuracy. P (Ŷ = Y )

• Error rate. P (Ŷ 6= Y )

• False positive rate (fallout) P (Ŷ = ⊕|Y = 	)

• True positive rate (recall, sensitivity). P (Ŷ = ⊕|Y = ⊕)

• False negative rate (miss). P (Ŷ = 	|Y = ⊕)

• True negative rate (speci�city). P (Ŷ = 	|Y = 	)

• Positive predictive value (precision). P (Y = ⊕|Ŷ = ⊕)

• Negative predictive value. P (Y = 	|Ŷ = 	)

• Prediction-conditioned fallout. P (Y = 	|Ŷ = ⊕)

• Prediction-conditioned miss. P (Y = ⊕|Ŷ = 	)
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Evaluation - Assessing performance III

More performance measures

• Rate of positive predictions. P (Ŷ = ⊕)

• Rate of negative predictions. P (Ŷ = 	)

• Phi correlation coe�cient (Matthews correlation).
TP ·TN−FP ·FN√

(TP+FN)·(TN+FP )·(TP+FP )·(TN+FN)

• Mutual information. I(Ŷ , Y ) := H(Y ) − H(Y |Ŷ ), where H is

the (conditional) entropy.

• Chi square test statistic.

• Odds ratio. TP ·TN
FN ·FP

• Lift value.
P (Ŷ =⊕|Y =⊕)

P (Ŷ =⊕)

Learning to Classify Text, Vienna Nov. 26, 2010



SNLP

Evaluation - Assessing performance IV

Behold! we found some more performance measures

• Precision-recall break-even point. The cuto�(s) where pre-

cision and recall are equal.

• Calibration error (absolute di�erence between predicted con-

�dence and actual reliability).

• Mean cross-entropy MXE := − 1
P+N (

∑
yi=⊕ ln(ŷi) +∑

yi=	 ln(1− ŷi))

• Root-mean-squared error RMSE :=
√

1
P+N

∑
i(yi − ŷi)

2

• SAR = 1/3 * ( Accuracy + Area under the ROC curve +

Root mean-squared error )

• Expected cost

• Cost of a classi�er when class-conditional misclassi�cation

costs are explicit
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Methods - Other

• Possibly many more

• Highly predictive or modern methods

• Improve POS with them (e.g. random forests)

• R infrastructure is clearly an advantage here
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tm.classify plugin I

• Feature extractor

� generic, object-oriented, �exible (i.e. work on letter, word,

token, sentence, context, sequence, textual basis etc.)

� fe control=list(...)

� to work with tm objects (vcorpus, dtm, etc.)

� outputs inputs for the classi�cation function

� ...
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tm.classify plugin II

• Classi�cation

� Uses the feature extractor output object

� Exploit the R infrastructure

� Support for lists of training and test sets and many clas-

si�cation methods

� We thought of a simpli�ed version of train() from �caret�

� outputs training and test predictions, classi�cation model

etc.

� predict() method for new data

� ...
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tm.classify plugin III

• Utility functions

� Support for CV and BS sampling

� Variable importance

� Visualisation

� Preformance measures

� Reuse ROCR and caret functions

� ...

• POS taggers perhaps?
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