Categorizing and Tagging Words

CHAPTER 5
Syed Kamran Ali Ahmad

Goal:

What are lexica
used in natural

What is a good

categories, and how are they
anguage processing

Python data structure for

storing words and their categories?

How can we automatically tag each word of a
text with its word class?

Cover fundamental techniques in NLP,
including sequence labeling, n-gram models,
backoff, and evaluation

Tagging:

* The process of classifying words into their
parts-of-speech and labeling them accordingly
is known as part-of-speech tagging, POS

tagging, or simply tagging.
e Parts-of-speech are also known as word
classes or lexical categories.

* The collection of tags used for a particular task
is known as a tagset.

Using a Tagger
processes a sequence of words, and attaches a
part of speech tag to each word

>>> import nltk

>>> text = nltk.word tokenize("And now for
something completely different")

>>> nltk.pos_tag(text)

[('And’, 'CC"), ('now’, 'RB'), ('for’, 'IN'),
('something’, 'NN'),

(‘completely’, 'RB'), ('different’, 'JJ')]

we need to know which word is being used in
order to pronounce the text correctly

>>> text = nltk.word_tokenize("They refuse to
permit us to obtain the refuse permit")

>>> nltk.pos_tag(text)

[('They', 'PRP'), ('refuse’, 'VBP'), ('to', 'TO"), ('permit’,
'VB'), ('us’, 'PRP’), ('to’, 'TO'), (‘obtain’, 'VB'), ('the’,
'DT'), (‘'refuse’, 'NN'), (‘permit’, 'NN')]

* refUSE is a verb meaning “deny,” while REFuse is
a noun meaning “trash”

* text-to-speech systems usually perform tagging

text.similar() method

* The takes a word w, finds all contexts wlw w2, then
finds all words w' that appear in the same context, i.e.
wiw'w?2.

>>> text = nltk.Text(word.lower() for word in
nltk.corpus.brown.words())

>>> text.similar(‘'woman')
Building word-context index...

man time day year car moment world family house
country child boy state job way war girl place room
word

e categories arise from superficial analysis of the
distribution of words in text

Tagged Corpora(Representing Tagged Tokens)

* By convention in NLTK, a tagged token is
represented using a tuple consisting of the
token and the tag

* We can create one of these special tuples
from the standard string representation of a
tagged token, using the function str2tuple()

* >>>tagged token =
nltk.tag.str2tuple('fly/NN")

Tagged Corpora(Reading Tagged Corpora)

 Brown Corpus with a text editor:
The/at Fulton/np-tl County/nn-tl

 NLTK’s corpus readers provide a uniform
interface so that you don’t have to be
concerned with the different file form

>>> nltk.corpus.brown.tagged_words()
[('The', 'AT"), ('Fulton’, 'NP-TL'), ('County', 'NN-
TL'), ...]

Note: (Reading

Tagged Corpora)

* Whenever a corpus contains tagged text, the
NLTK corpus interface will have a tagged_words()

method.

* part-of-speech tags
uppercase (standarc

nave been converted to
practice)

* Not all corpora emp

oy the same set of tags

Tagged corpora for several other languages are

distributed with NLTK, including Chinese, Hindi...

These usually contai

n non-ASCI| text, and Python

always displays this in hexadecimal when printing

A Simplified Part-of-Speech Tagset

* Tagged corpora use many different
conventions for tagging words.

Tag Meaning Examples

ADJ adjective new, good, high,
ADV adverb really, already, still,
CNJ conjunction and, or, but, if, while,

DET determiner the, a, some, most,

Nouns (a word class in simplified Tags)

* generally refer to people, places, things, or
concepts, e.g., woman, Scotland.

e can appear after determiners and adjectives,
and can be the subject or object of the verb.

Verbs (a word class in simplified Tags)

e are words that describe events and actions,
e.g., fall and eat,

* |n the context of a sentence, verbs typically
express a relation involving the referents of
one or more noun phrases.

Adjectives (word classes in simplified Tags)

* Adjectives describe nouns, and can be used as
modifiers (e.g., large in the large pizza), or as
predicates (e.g., the pizza is large).

* English adjectives can have internal structure
(e.g., fall+ing in the falling stocks).

Adverbs (word classes in simplified Tags)

* Adverbs modify verbs to specify the time,
manner, place, or direction of the event
described by the verb (e.g., quickly in the stocks
fell quickly).

* Adverbs may also modify adjectives (e.g., really in
Mary’s teacher was really nice).

Other closed class words

* English has several categories of closed class
words in addition to prepositions, such as
articles (also called determiners) (e.g., the, a),
modals (e.g., should, may), and personal
pronouns (e.g., she, they).

e Each dictionary and grammar classifies these
words differently.

Unsimplified Tags:
Program to find the most frequent nouns
You will see that there are many variants of NN;

def findtags(tag_prefix, tagged_text):

cfd = nltk.ConditionalFreqDist((tag, word) for (word, tag) in tagged_text

if tag.startswith(tag_prefix))

return dict((tag, cfd[tag].keys()[:5]) for tag in cfd.conditions())

>>> tagdict = findtags('NN’,
nltk.corpus.brown.tagged words(categories='news'))
>>> for tag in sorted(tagdict):
print tag, tagdict[tag]

NN ['year', 'time’, 'state’, 'week’, 'man’]

NNS ["year's", "world's", "state's", "nation's", "company's"]

NNS-HL ["Golf's" "Navy' "

NNS-TL ["President's", "University's", "League's", "Gallery's", "Army's"]
NN-HL ['cut’, 'Salary’, 'condition’, 'Question’, 'business']

Exploring Tagged Corpora

>>> brown_learned text =
brown.words(categories='learned’)

>>> sorted(set(b for (a, b) in
nltk.ibigrams(brown_learned_text) if a ==
'often'))

[',', .}, 'accomplished’, 'analytically', 'appear’,
'apt’, 'associated’, 'assuming’, ...]

Mapping Words to Properties

e Using Python Dictionaries data type

>>> pos = {}

>>> pos {'colorless': 'ADJ'}

>>> pos['ideas'] = 'N'

>>> pos|['sleep'] = 'V’

>>> pos['furiously'] = '"ADV'

>>> pos

{'furiously': 'ADV', 'ideas': 'N', 'colorless': 'AD/J', 'sleep": 'V'}

* the dictionary methods keys(), values(), and items()
>>> pos.keys()

['colorless’, 'furiously', 'sleep’, 'ideas’]

>>> pos.values()

['ADJ', 'ADV', 'V', 'N']

>>> pos.items()

[(‘colorless', 'ADJ'), (‘furiously’, 'ADV'), ('sleep’, 'V'), ('ideas’, 'N')]

Automatic Tagging

e tag of a word depends on the word and its
context within a sentence

* Simply loading the data
>>> from nltk.corpus import brown

>>> brown_tagged sents =
brown.tagged sents(categories='news')

>>> brown_sents =
brown.sents(categories='news’)

The Default Tagger:
assigns the same tag to each token.

e Let’s find out which tag is most likely

>>> tags = [tag for (word, tag) in
brown.tagged words(categories='news')]

>>> nltk.FregDist(tags).max()

‘NN

* Now we can create a tagger that tags everything as NN.

>>> ra\llv ="'l do not like green eggs and ham, | do not like them Sam |
am!'

>>> tokens = nltk.word_tokenize(raw)

>>> default_tagger = nltk.DefaultTagger('NN')

>>> default_tagger.tag(tokens)

[('I', 'NN"), ('do’, 'NN'), ('not’, 'NN'), ('like', 'NN'), ('green’, 'NN'),

('eggs’, 'NN'), ('and’, 'NN’'), (‘ham’', 'NN"), (*,', 'NN'), ('I', 'NN'),

The Regular Expression Tagger
assigns tags to tokens on the basis of matching patterns
* our guess that any word ending in ed is the past participle of a verb. We

can express all our guesses as a list of regular expressions:
>>> patterns = [

(r'.*ingS', 'VBG'), # gerunds

(r'.*edS', 'VBD'), # simple past

(r'.*esS', 'VBZ'), # 3rd singular present
(r'.*ouldS', 'MD"), # modals

(r'.*\'sS', 'NNS'), # possessive nouns
(r'.*sS', 'NNS'), # plural nouns
(r'A-?[0-9]+(.[0-9]+)?S', 'CD'), # cardinal numbers
(r'.*', 'NN'") # nouns (default)

e]
* Note that these are processed in order, and final regular expression «.*»

is a catch-all that tags everything as a noun. (equivalent to less efficient
version of the default tagger)

* Now we set up a tagger and use it to tag a
sentence.

>>> regexp_tagger = nltk.RegexpTagger(patterns)

>>> regexp_tagger.tag(brown_sents[3])

[("', 'NNY), ('Only’, 'NN'), ('a’, 'NN'), ('relative’, 'NN'),
(‘handful’, 'NN"),

('of', 'NN'), ('such’, 'NN'), (‘reports’, 'NNS'), ('was’,
'NNS'), (‘received’, 'VBD'),

(""", 'NN'), ("', 'NN'), ('the’, 'NN’), (‘jury’, 'NN’),
(‘'said’, 'NN’'), (',', 'NN’),

(""", 'NN'), (‘considering’, 'VBG'), ('the', 'NN'),
(‘widespread’, 'NN'), ...]

>>> regexp_tagger.evaluate(brown_tagged_sents)
0.20326391789486245

The Lookup Tagger

* Let’s find 100 most frequent words and their most likely tag. We can
then use this information as the model for a “lookup tagger” (an NLTK
UnigramTagger):

>>> fd = nltk.FreqDist(brown.words(categories='news'))

>>> cfd = nltk.ConditionalFreqDist(brown.tagged words(categories='news'))
>>> most_freq_words = fd.keys()[:100]

>>> likely_tags = dict((word, cfd[word].max()) for word in most_freq_words)
>>> baseline_tagger = nltk.UnigramTagger(model=likely_tags)

>>> baseline_tagger.evaluate(brown_tagged_sents)

0.45578495136941344

* simply knowing the tags for the 100 most frequent words enables us to
tag a large fraction of tokens correctly

* Let’s see what it does on some untagged input
text:

>>> sent = brown.sents(categories='news')[3]
>>> baseline_tagger.tag(sent)

(", "), ('Only', None), ('a', 'AT'), ('relative’,
None), (‘handful’, None), (‘of', 'IN'), ('such’,
None), (‘reports', None), ...]

 Many words have been assigned a tag of
None, because they were not among the 100
most frequent words

backoff

* |n these cases we would like to assign the default tag of
NN. In other words, we want to use the lookup table
first, and if it is unable to assign a tag, then use the
default tagger, a process known as backoff

* Now the lookup tagger will only store word-tag pairs
for words other than nouns, and whenever it cannot
assign a tag to a word, it will invoke the default tagger.

>>> baseline _tagger =
nltk.UnigramTagger(model=likely tags,

backoff=nltk.DefaultTagger('NN'))

Lookup tagger with varying model size.

def performance(cfd, wordlist):
It = dict((word, cfd[word].max()) for word in wordlist)

baseline_tagger = nltk.UnigramTagger(model=It, backoff=nltk.DefaultTagger('NN'))

return baseline_tagger.evaluate(brown.tagged sents(categories='news'))
def display():

import pylab
words_by freq = list(nltk.FregDist(brown.words(categories='news')))
cfd = nltk.ConditionalFreqDist(brown.tagged words(categories='news'))
sizes = 2 ** pylab.arange(15)
perfs = [performance(cfd, words_by freq[:size]) for size in sizes]
pylab.plot(sizes, perfs, '-bo')
pylab.title('Lookup Tagger Performance with Varying Model Size')
pylab.xlabel('Model Size')
pylab.ylabel('Performance')
pylab.show()

>>> display()

Evaluation

* We evaluate the performance of a tagger relative
to tags a human expert would assign

* gold standard test data.

This is a corpus which has been manually annotated
and accepted as a standard against which the
guesses of an automatic system are assessed.

The tagger is regarded as being correct if the tag it
guesses for a given word is the same as the gold
standard tag.

N-Gram Tagging

e assign the tag that is most likely for that particular token (like a lookup
tagger, except technique for setting it up, called training. In the following
code sample, we train a unigram tagger, use it to tag a sentence, and then
evaluate:

>>> from nltk.corpus import brown

>>> brown_tagged_sents = brown.tagged sents(categories='news')
>>> brown_sents = brown.sents(categories='news')

>>> unigram_tagger = nltk.UnigramTagger(brown_tagged_sents)
>>> unigram_tagger.tag(brown_sents[2007])

[('"Various', 'J)'), ('of', 'IN'), ('the’, 'AT'), (‘apartments’, 'NNS'),

(‘are', 'BER’), ('of', 'IN"), ('the’, 'AT"), ('terrace’, 'NN'), (‘type’, 'NN'),
(',',), ('being’, 'BEG'), ('on', 'IN'), ('the’, 'AT'), ('ground’, 'NN'),
(‘floor', 'NN'), ('so’, 'QL'), ('that', 'CS'), ('entrance’, 'NN'), ('is', 'BEZ'),
(‘'direct', 'JJY), (*.", "]

>>> unigram_tagger.evaluate(brown_tagged_sents)
0.9349006503968017

Separating Training and Testing Data

>>> size = int(len(brown_tagged sents) * 0.9)
>>> sjze

4160

>>> train_sents = brown_tagged sents|:size]
>>> test_sents = brown_tagged sents[size:]

>>> unigram_tagger =
nltk.UnigramTagger(train_sents)

>>> unigram_tagger.evaluate(test_sents)
0.81202033290142528

General N-Gram Tagging

Context

w w

Tokens: ,
Wn-2 Wn-1 n n+1

Tags: -2 {1 (1

An n-gram tagger is a generalization of a unigram tagger whose context is
the current word together with the part-of-speech tags of the n-1 preceding
tokens

>> bigram_tagger =
nltk.BigramTagger(train_sents)

>>> bigram_tagger.tag(brown_sents[2007])

[('Various', 'JJY), (‘'of', 'IN'), ('the', 'AT"),
('apartments’, 'NNS'), ...]

>>> unseen_sent = brown_sents[4203]

>>> bigram_tagger.tag(unseen_sent)

[('The', 'AT"), ('population’, 'NN'), (‘of', 'IN"),
('the', 'AT'), ('Congo’, 'NP'), ...]

* Note: it does badly on an unseen sentence.

Combining Taggers

 Most NLTK taggers permit a backoff tagger . The
backoff tagger may itself have a backoff tagger:

>>> t0 = nltk.DefaultTagger('NN')

>>> t1 = nltk.UnigramTagger(train_sents,
backoff=t0)

>>> t2 = nltk.BigramTagger(train_sents, backoff=t1)
>>> t2.evaluate(test_sents)

0.84491179108940495

Tagging Unknown Words

e A useful method to tag unknown words based
on context is to limit the vocabulary of a
tagger to the most frequent n words, and to

replace every other word with a special word
UNK

Storing Taggers

>>> from cPickle import dump
>>> output = open('t2.pkl’, 'wb')
>>> dump(t2, output, -1)

>>> output.close()

>>> from cPickle import load
>>> input = open('t2.pkl’, 'rb')
>>> tagger = load(input)

>>> input.close()

Transformation-Based Tagging

* Brill tagging is a kind of transformation-based learning. The

general idea is very simple:
guess the tag of each word, then go back and fix the

mistakes.
* Analogies to Painter

>>> nltk.tag.brill.demo()
Training Brill tagger on 80 sentences...
Finding initial useful rules...

Found 6555 useful rules.

>>> print(open("errors.out").read())

Phrase to increase grants to states for vocational rehabilitation

Unigram TO AN NNS TO NNS IN 1 NN
Rule1 VB

Rule 2 IN

Qutput O VB NNS IN NNS IN 1) NN
Gold 10 VB NNS IN NNS IN 1) NN

In table above, steps in Brill tagging, we see two rules.
All such rules are generated from a template of the

following form: “replace T1 with T2 in the context C.”

During its training phase, the tagger guesses values for T1, T2, and C, to
create thousands of candidate rules. Each rule is scored according to its
net benefit: the number of incorrect tags that it corrects, less the

number of correct tags it incorrectly modifies.

Brill taggers have another interesting property: the rules are
linguistically interpretable.

How to Determine the Category of a Word?

Morphological Clues

e.g., happy = happiness, ill & illness.
Syntactic Clues

 typical contexts in which a word can occur.

 anadjective in English is that it can occur immediately
before a noun, or immediately following the words be or
very.

Semantic Clues

* the meaning of a word is a useful clue as to its lexical
category. For example, the best-known definition of a noun
is semantic: “the name of a person, place, or thing.”

New Words(Open and Close Class)

* All languages acquire new lexical items. A list
of words recently added to the Oxford
Dictionary of English includes cyberslacker,
fatoush, blamestorm, SARS, cantopop,

* Notice that all these new words are nouns,
and this is reflected in calling nouns an open
class. By contrast, prepositions are regarded
as a closed class. That is, there is a limited set
of words belonging to the class

OpenNLP (enhance the tm package)

>library("openNLP")

> sentence<-"This is a short sentence consisting of
+ some nouns,verbs, and adjectives.”
>tagPOS(sentence,language="en")

[1]"This/DT is/VBZ a/DT short/JJ sentence/NN
consisting/VBG of/IN"

[2]"some/DT nouns,/JJ verbs,/NNS and/CC
adjectives./VBG"

