
tm Text Mining Environment

Ingo Feinerer

Technische Universität Wien, Austria

SNLP Seminar, 22.10.2010



Text Mining Package and Infrastructure

I. Feinerer
tm: Text Mining Package, 2010
URL http://CRAN.R-project.org/package=tm
R package version 0.5-4

I. Feinerer, K. Hornik, and D. Meyer
Text mining infrastructure in R
Journal of Statistical Software, 25(5):1–54, March 2008
ISSN 1548-7660
URL http://www.jstatsoft.org/v25/i05

http://CRAN.R-project.org/package=tm
http://www.jstatsoft.org/v25/i05


What is a Corpus?

Definition
A corpus represents a collection of documents and is often
augmented with meta data annotations.

Collections can be implemented by arbitrary data structures,
like lists or multi-sets.

Documents can be in any file format, like plain text or XML.
Meta Data can annotate the corpus, the documents, or higher

level entities (like classifications).



Corpus Representation in R

The tm Package

The tm extension package for R provides a sophisticated text
mining infrastructure.

Corpora are lists containing documents.
Documents are abstract containers with instantiations for each

file format.
Meta Data is stored in attached data frames and lists.



Meta Data Representation

Conceptually we have corpus and document meta data.

Meta Data in tm

Corpus meta data is stored in a list holding information
only relevant for the whole corpus.

Document meta data is stored locally at each document.
Mixed meta data either forms an own entity (like

classifications) or is aggregated for performance
reasons. Stored as data frame.



Conceptual Layers and Packages

Application Layer

Text Mining Framework

R System Environment

lsa

tm
wordnet
RWeka

kernlab
openNLP

Rstem Snowball

XML
R

Figure: Conceptual Layers and Packages.



UML Class Diagram

TermDocMatrix

Weighting : String
Data : Matrix

Corpus

DMetaData : DataFrame
DBControl : List

XMLTextDocument

URI : Call
Cached : Boolean

PlainTextDocument

URI : Call
Cached : Boolean

character

XMLDocument

TextRepository

RepoMetaData : List

TextDocument

Author : String
DateTimeStamp : Date
Description : String
ID : String
Origin : String
Heading : String
LocalMetaData : List
Language : String

1..* 1

MetaDataNode

NodeID : Integer
MetaData : List
Children : List

NewsgroupDocument

URI : Call
Cached : Boolean
Newsgroup : String

1

1..*

StructuredTextDocument

URI : Call
Cached : Boolean

1

CMetaData

1

Figure: UML class diagram of the tm package.



Corpus Construction

1. Fetch documents from sources (disk, Internet)
2. Parse document structure (HTML, PDF, getReaders())
3. Extract text and meta information
4. Dynamically create corpus
5. Fill corpus

I immediately
I delayed (load on demand)
I referentially (using pointers to a database)



Sources

Source

getElem() : Element
stepNext() : void
eoi() : Boolean

LoDSupport : Boolean
Position : Integer
DefaultReader : function
Encoding : String

DirSource

FileList : String
Load : Boolean

CSVSource

URI : Call
Content : String

ReutersSource

URI : Call
Content : XMLDocument

GmaneSource

URI : Call
Content : XMLDocument

Figure: UML class diagram for Sources in the tm package.



Algorithms

I Document and Corpora Handling:
I Constructors
I Merging
I Accessors and Extractors

I Transformations: Define mappings for corpora
I Most preprocessing functions are transformations
I Capture the concept of maps from functional programming

I Filters: Define predicate functions to extract documents
from corpora

I Full text search
I Filters have full access to meta data



Predefined Functionality

I Preprocessing: data import, stemming, stopword removal,
part of speech tagging, synonyms, . . .

I Basis analysis techniques: count based evaluation, text
clustering, text classification, . . .

I Access to more advanced functionality: full integration with
string kernels, latent semantic analysis, . . .

I Export of term-document matrices: basically all methods in
R working on matrices



Preprocessing

Definition
Preprocessing manipulates input data to generate output for
later analysis steps.

I Conversion to plain text or lower case
I Stemming
I Part-of-speech tagging
I Punctuation, stopword, or whitespace removal



Transformations

Definition
Under a transformation we understand a (non-bijective)
mapping between two states of the same corpus.

Example

Stemming maps words with suffixes to their stems.

I Very time consuming for large corpora
I Lazy mapping
I Parallel execution possible



Filters

Definition
A filter applies a predicate function on a corpus to extract
patterns of interest.

Example

Full text search filters out documents matching specified terms.



Extensions

I Modular structure designed for easy extensibility
I Readers, sources, etc. define interfaces
I Implementations for these interfaces generate first-class

objects (internal objects use the same mechanism)
I Easy plug-ins, we provide the infrastructure, the

(advanced) user his custom functionality



Handling Big Corpora

I Some real world examples use multiple 100000 documents
I tm and R start getting problems beginning with 50000

documents, depending on RAM
I Consider a term-document matrix consisting of 100000

documents with 20000 unique terms:

100000 · 20000 · 32
10243 ≈ 60 GByte

I Can be reasonably handled with sparse (slam) matrices
(supported in tm)

I We consider the construction of a sparse matrix in tm as
quite optimized now

I Problems arise when computing on such a matrix (e.g.
correlation)


