
tm and plugins

SLIDE 1 tm and plugins

Overview tm Plugins

tm.plugin.dc

tm.plugin.tags

tm.plugin.mail

tm.plugin.OAI

SLIDE 2 tm and plugins

Managing Linguistic Data

SLIDE 3 tm and plugins

Questions

Chapter 11 deals with the following questions:

How do we design a new language resource and ensure that its
coverage, balance, and documentation support a wide range of
uses?

When existing data is in the wrong format for some analysis tool,
how can we convert it to a suitable format?

What is a good way to document the existence of a resource we
have created so that others can easily find it?

SLIDE 4 tm and plugins

Corpus Structure

NLTK includes a diverse set of corpora which can be read using
the nltk.corpus package. Each corpus is accessed by means of
a “corpus reader” object from nltk.corpus.

Corpora consist of a set of files, each containing a document (or
other pieces of text).

Each corpus reader provides a variety of methods to read data
from the corpus, depending on the format of the corpus.

NLTK corpus types: Plaintext Corpora, Tagged Corpora, Chunked
Corpora, Parsed Corpora, Word Lists and Lexicons, Categorized
Corpora, Propbank Corpus, TIMIT, etc.

http:
//nltk.googlecode.com/svn/trunk/doc/howto/corpus.html

SLIDE 5 tm and plugins

http://nltk.googlecode.com/svn/trunk/doc/howto/corpus.html
http://nltk.googlecode.com/svn/trunk/doc/howto/corpus.html

Design Features

The TIMIT corpus (a speech corpus):

contains two layers of annotation, at the phonetic and
orthographic levels. In general, a text or speech corpus may be
annotated at many different linguistic levels, including
morphological, syntactic, and discourse levels.
is balanced across multiple dimensions of variation, for coverage
of dialect regions and diphones.
division between the original linguistic event and the annotations
of that event (text corpora, in the sense that the original text
usually has an external source, and is considered to be an
immutable artifact. Any transformations of that artifact which
involve human judgment (e.g., even tokenization) are subject to
later revision; thus it is important to retain the source material in
a form that is as close to the original as possible).
hierarchical structure of the corpusSLIDE 6 tm and plugins

Fundamental Data Types (1)

Corpora are basically collections of texts together with
record-structured data, thus two fundamental data types:

lexicons (record structure; e.g., conventional dictionary or
comparative wordlist, see also Chapter 2)

annotated texts (temporal organization, i.e., text is a
representation of a real or fictional speech event, and the
time-course of that event carries over into the text itself; word or
sentence, or a complete narrative or dialogue; with/out
annotation)

Two extremes: eg., Brown Corpus (text files and a table to relate the
files to 15 different genres) vs. WordNet containing 117,659 synset
records and many example sentences (mini-texts) to illustrate word
usages.

SLIDE 7 tm and plugins

Fundamental Data Types (2)

SLIDE 8 tm and plugins

The Life Cycle of a Corpus

Corpus Creation (three scenarios: field linguistics, common task,
reference corpus)

collect raw data
cleaned up and document
stored in a systematic structure

Quality control

find inconsistencies in the annotations
ensure the highest possible level of inter-annotator agreement
(Kappa coefficient)

SLIDE 9 tm and plugins

Acquiring Data

Obtaining data from the web, word processors, spreadsheets or
databases (discussed in Chapter 3)

Converting data formats (encodings discussed in Chapter 3)

Deciding which layers of annotation to include:

word tokenization
sentence segmentation
paragraph segmentation
part-of-speech (POS)
syntactic structure
shallow semantics
dialogue and discourse

Inline vs. standoff annotation

SLIDE 10 tm and plugins

Tools and Standards

Adequate tools for creation, publication, and use of linguistic
data are not widely available.
No adequate, generally accepted standards for expressing the
structure and content of corpora (adequate standards are
unlikely to be developed, used, and accepted)
Instead of focusing on a common format, we believe it is more
promising to develop a common interface.
A common corpus interface insulates application programs from
data formats.

SLIDE 11 tm and plugins

Meta Data

Metadata is descriptive information about an object or resource,
whether it be physical or electronic.
Dublin Core (DC) Metadata Initiative

represent a broad, interdisciplinary consensus about the core set
of elements that are likely to be widely useful to support resource
discovery.
consists of 15 metadata elements, where each element is optional
and repeatable (Title, Creator, Subject, etc.)

Open Archives Initiative (OAI)
provides a common framework across digital re- positories of
scholarly materials, regardless of their type, including documents,
data, software, recordings, physical artifacts, digital surrogates
Repository consists of a network-accessible server offering public
access to archived items
Each item has a unique identifier, and is associated with a Dublin
Core metadata record

SLIDE 12 tm and plugins

Meta Data

Open Language Archives Community (OLAC)

OLAC Metadata is a standard for describing language resources
http://www.language-archives.org/
extends DC Meta data sets and uses OAI protocol

SLIDE 13 tm and plugins

http://www.language-archives.org/

Summary Chapter 11

Fundamental data types, present in most corpora, are annotated
texts and lexicons. Texts have a temporal structure, whereas
lexicons have a record structure.

The life cycle of a corpus includes data collection, annotation,
quality control, and publication. The life cycle continues after
publication as the corpus is modified and enriched during the
course of research.

Corpus development involves a balance between capturing a
representative sample of language usage, and capturing enough
material from any one source or genre to be useful; multiplying
out the dimensions of variability is usually not feasible be- cause
of resource limitations.

The Open Language Archives Community (OLAC) provides an
infrastructure for documenting and discovering lang. resources.

SLIDE 14 tm and plugins

tm Corpora

SLIDE 15 tm and plugins

tm Corpora

Pre-constructed tm corpus packages

“free” corpora available from http://datacube.wu.ac.at.

E.g., Reuters21578:
install.packages("tm.corpus.Reuters21578", repos =
"http://datacube.wu.ac.at")

Usually includes a Corpus object and a DTM

SLIDE 16 tm and plugins

http://datacube.wu.ac.at

Overview tm Corpora

tm.corpus.20Newsgroups

tm.corpus.afg

tm.corpus.AmazonReviews

tm.corpus.APA

tm.corpus.Congress

tm.corpus.JSM.2008.abstracts

tm.corpus.LearnAtWU

tm.corpus.MovieReviews

tm.corpus.NSF

tm.corpus.NYTimes

tm.corpus.PNAS

tm.corpus.RCV1

tm.corpus.Reuters21578

tm.corpus.SpamAssassin

SLIDE 17 tm and plugins

Other Corpus Packages

corpus.CiteSeerX

corpus.CRAN.meta

corpus.ePubWU.theses

corpus.ePubWU.workingpapers

corpus.JSS.papers

corpus.Project.Euclid

corpus.useR.2008.abstracts

SLIDE 18 tm and plugins

tm.plugin.dc

SLIDE 19 tm and plugins

tm.plugin.dc

Objective: create a tm plugin package so that we can process
large corpora

We need to consider tm’s corpus class and corresponding
methods

Make use of large scale data processing tools

SLIDE 20 tm and plugins

Text Mining in R

Components of a text mining framework, in particular tm:

Sources which abstract input locations (DirSource(),
VectorSource(), etc.)

Readers (readPDF(), readPlain(), readXML(), etc.)

A (PlainText-) Document contains contents of the document and
meta data

A corpus contains one or several documents and corpus-level
meta data (abstract class in R)

SLIDE 21 tm and plugins

Functions and Methods

Display The print() and summary() convert documents to a
format so that R can display them. Additional meta
information can be shown via summary().

Length The length() function returns the number of documents
in the corpus.

Subset The [[operator must be implemented so that individual
documents can be extracted from a corpus.

Apply The tm_map() function which can be conceptually seen
as an lapply() implements functionality to apply a
function to a range of documents.

SLIDE 22 tm and plugins

Challenges

Big data volumes (corpora)

Processing large data sets in a single machine is limited by the
available main memory (i.e., RAM)

Many tasks, i.e. we produce output data via processing lots of
input data

Want to make use of many CPUs

Typically this is not easy (parallelization, synchronization, I/O,
debugging, etc.)

Need for an integrated framework

Preferably usable on large scale distributed systems

SLIDE 23 tm and plugins

Distributed Text Mining in R

Data sets:

Reuters Corpus Volume 1 (RCV1): > 800.000 text documents

New York Times Annotated Corpus (NYT): > 1.8 million articles
articles published by the New York Times between 1987-01-01
and 2007-06-19

documents corpus size [MB]1 size DTM [MB]
Reuters-21578 21, 578 87 16.4
NSF (Part 1) 51, 760 236 101.4
RCV1 806, 791 3, 800 1130.8
NYT 1, 855, 658 16, 160 > 2000

1calculated with the Unix tool du
SLIDE 24 tm and plugins

Distributed Text Mining in R

Distributed computing environments are scalable in terms of
CPUs and memory (disk space and RAM) employed.

Multi-processor environments and large scale compute
clusters/clouds available at WU

Integrated frameworks for parallel/distributed computing
available (e.g., Hadoop)

Thus, parallel/distributed computing is now easier than ever

R already offers extensions to use this software: e.g., via hive,
RHIPE, nws, iterators, multicore, Rmpi, snow, etc.

Employing such systems with the right tools we can significantly
reduce runtime for processing large data sets.

SLIDE 25 tm and plugins

Summary

Difficulties:

Large data sets

Corpus typically loaded into memory

Operations on all elements of the corpus (so-called
transformations)

Strategies:

Text mining using tm and MapReduce/hive1

Text mining using tm and MPI/snow2

1Stefan Theußl (version 0.1-2)
2Luke Tierney (version 0.3-3)

SLIDE 26 tm and plugins

The MapReduce Programming Model

Programming model inspired by functional language
primitives

Automatic parallelization and distribution

Fault tolerance

I/O scheduling

Examples: document clustering, web access log analysis, search
index construction, . . .

Dean and Ghemawat (2004)

Hadoop (http://hadoop.apache.org/core/) developed by
the Apache project is an open source implementation of MapReduce.

SLIDE 27 tm and plugins

http://hadoop.apache.org/core/

The MapReduce Programming Model

Local Data Local Data Local Data

Distributed Data

Map Map Map

Partial Result Partial Result Partial Result

Intermediate Data

Reduce Reduce

Aggregated Result

Figure: Conceptual Flow

SLIDE 28 tm and plugins

The MapReduce Programming Model

A MapReduce implementation like Hadoop typically
provides a distributed file system (DFS, Ghemawat et al., 2003):

Master/worker architecture (Namenode/Datanodes)

Data locality

Map tasks are applied to partitioned data

Map tasks scheduled so that input blocks are on same machine

Datanodes read input at local disk speed

Data replication leads to fault tolerance

Application does not care whether nodes are OK or not

SLIDE 29 tm and plugins

Hadoop Streaming

Utility allowing to create and run MapReduce jobs with any
executable or script as the mapper and/or the reducer

$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar

-input inputdir

-output outputdir

-mapper ./mapper

-reducer ./reducer

Local Data Intermediate Data Processed Data

R: Map

stdin() stdout()

R: Reduce

stdin() stdout()

SLIDE 30 tm and plugins

Hadoop InteractiVE (hive)

hive provides:

Easy-to-use interface to Hadoop

Currently, only Hadoop core
(http://hadoop.apache.org/core/) supported

High-level functions for handling Hadoop framework
(hive_start(), hive_create(), hive_is_available(), etc.)

DFS accessor functions in R (DFS_put(), DFS_list(),
DFS_cat(), etc.)

Streaming via Hadoop (hive_stream())

Available on R-Forge in project RHadoop

SLIDE 31 tm and plugins

http://hadoop.apache.org/core/

Example: Word Count

Use Hadoop via hive package

Access and modify DFS

Count Words

SLIDE 32 tm and plugins

Distributed Text Mining in R

Our Solution:

1 Distributed storage

Data set copied to DFS (‘DistributedCorpus’)
Only meta information about the corpus remains in memory

2 Parallel computation

Computational operations (Map) on all elements in parallel
MapReduce paradigm
Work horses tm_map() and TermDocumentMatrix()

Processed documents (revisions) can be retrieved on demand.

Implemented in a “plugin” package to tm: tm.plugin.dc.

SLIDE 33 tm and plugins

Example: Distributed Text Mining in R

‘DistributedCorpus’ usage

Parallel computation

SLIDE 34 tm and plugins

Constructing DTMs via MapReduce

Parallelization of transformations via tm_map()

Parallelization of DTM construction by appropriate methods

Via Hadoop streaming utility (R interface hive_stream())

Key / Value pairs: docID / tmDoc (document ID, serialized tm
document)

Differs from MPI/snow approach where an lapply() gets
replaced by a parLapply()

SLIDE 35 tm and plugins

Constructing DTMs via MapReduce

1 Input: <docID, tmDoc>

2 Preprocess (Map): <docID, tmDoc> → <term, docID, tf>

3 Partial combine (Reduce): <term, docID, tf> → <term, list(docID,
tf)>

4 Collection: <term, list(docID, tf)> → DTM

SLIDE 36 tm and plugins

Text Corpora and Lexical Resources

SLIDE 37 tm and plugins

Questions

Chapter 2 deals with the following questions:

What are some useful text corpora and lexical resources, and
how can we access them with Python?

Which Python constructs are most helpful for this work?

How do we avoid repeating ourselves when writing Python code?

SLIDE 38 tm and plugins

Text Corpus Structure

a collection of isolated texts with no particular organization

structured into categories, such as genre (e.g., Brown Corpus)

categorizations overlap, such as topic categories (e.g., Reuters
Corpus)

represent language use over time (e.g., Inaugural Address
Corpus, news collections)

SLIDE 39 tm and plugins

Basic NLTK Corpus functionality

fileids() The files of the corpus

fileids([categories]) The files of the corpus corresponding to these categories

categories() The categories of the corpus

categories([fileids]) The categories of the corpus corresponding to these files

raw() The raw content of the corpus

raw(fileids=[f1,f2,f3]) The raw content of the specified files

raw(categories=[c1,c2]) The raw content of the specified categories

words() The words of the whole corpus

words(fileids=[f1,f2,f3]) The words of the specified fileids

words(categories=[c1,c2]) The words of the specified categories

sents() The sentences of the specified categories

sents(fileids=[f1,f2,f3]) The sentences of the specified fileids

sents(categories=[c1,c2]) The sentences of the specified categories

abspath(fileid) The location of the given file on disk

encoding(fileid) The encoding of the file (if known)

open(fileid) Open a stream for reading the given corpus file

root() The path to the root of locally installed corpus

readme() The contents of the README file of the corpus

SLIDE 40 tm and plugins

Example: Accessing Text Corpora

Examine a variety of text corpora

Select individual texts

Work with text

Python: Gutenberg Corpus, Web and Chat Text, Brown Corpus,
Reuters Corpus, Inaugural Address Corpus (for further annotated text
corpora see Bird et al., 2009, page 42, 43)

SLIDE 41 tm and plugins

Example: Cond. Freq. Distributions

Find the most frequent words of a text.

Identify the words of a text that are most informative about the
topic and genre of the text.

How are the total number of word tokens in the text distributed
across the vocabulary items? (frequency distribution)

Compare separate frequency distributions for each category.
(conditional frequency distribution)

SLIDE 42 tm and plugins

Lexical Resources

A lexicon, or lexical resource, is a collection of words and/or
phrases along with associated information, such as
part-of-speech and sense definitions.

Lexical resources are secondary to texts, and are usually created
and enriched with the help of texts (e.g., vocabulary, word
frequencies).

SLIDE 43 tm and plugins

Example: Wordlist Corpora

Find unusual or misspelled

Stopwords

Comparative wordlists

Shoebox/Toolbox

SLIDE 44 tm and plugins

Summary Chapter 2

A text corpus is a large, structured collection of texts. NLTK
comes with many corpora.

Some text corpora are categorized, e.g., by genre or topic;
sometimes the categories of a corpus overlap each other.

A conditional frequency distribution is a collection of frequency
distributions, each one for a different condition. They can be
used for counting word frequencies, given a context or a genre.

SLIDE 45 tm and plugins

Skipped Sections

Generating Random Text with Bigrams

More Python: Reusing Code

Wordnet

Pronouncing Dictionary

SLIDE 46 tm and plugins

Skipped Sections

Special Considerations When Working with Endangered
Languages

Working with XML (discussed in Chapter 3?)

Working with Toolbox Data (discussed in Chapter 2)

SLIDE 47 tm and plugins

References

S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python. O’Reilly Media, 2009.
URL http://www.nltk.org/book.

J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
Proceedings of the Sixth Symposium on Operating System Design and Implementation,
pages 137–150, 2004. URL http://labs.google.com/papers/mapreduce.html.

S. Ghemawat, H. Gobioff, and S. Leung. The Google File System. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles, pages 29–43, New York, NY, USA, October
2003. ACM Press. doi: http://doi.acm.org/10.1145/1165389.945450.

SLIDE 48 tm and plugins

http://www.nltk.org/book
http://labs.google.com/papers/mapreduce.html

Thank you for your attention

Stefan Theußl
Department of Finance, Accounting and Statistics
Institute for Statistics and Mathematics
email: Stefan.Theussl@wu.ac.at
URL: http://statmath.wu.ac.at/˜theussl

WU Wirtschaftsuniversität Wien
Augasse 2–6, A-1090 Wien

SLIDE 49 tm and plugins

	tm Plugins
	Managing Linguistic Data
	Corpora
	The MapReduce Programming Model
	Accesing Text Corpora and Lexical Resources
	References

