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Prior Knowledge

Prior knowledge in mathematics (and statistics) of students of the
master programme in economics differ heavily:

I Students with courses in mathematics with a total of 25 ECTS
points (or more) in their bachelor programme.

I Students who did not attend any mathematics course at all.

Prior knowledge differ in

I Basic skills (like computations with “symbols”)

I Tools (like methods for optimization)

I Mathematical reasoning (proving your claim)
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Knowledge Gap

The following problems cause issues for quite a few students:

I Drawing (or sketching) of graphs of functions.

I Transform equations into equivalent ones.

I Handling inequalities.

I Correct handling of fractions.

I Calculations with exponents and logarithms.

I Obstructive multiplying of factors.

I Usage of mathematical notation.

Presented “solutions” of such calculation subtasks are surprisingly
often wrong.
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Learning Objectives

This bridging course is intended to help participants to

I close possible knowledge gaps, and

I raise prior knowledge in basic mathematical skills to the same
higher level.

Further courses:

I Foundations of Mathematics (Msc Economics):

Essential mathematical tools.
(matrix algebra, Taylor series, implicit functions, static optimization,
Hessian, Lagrange multiplier, difference equations, . . . )

I Mathematics 1 and 2 (science track only):

Advanced (new) tools and mathematical reasoning.
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Learning Methods

I Revision of mathematical notions and concepts by the instructor.

I Solve problems collectively during the course.

I Solve homework problems.
Solutions are discussed during the next course.

I The subject matter may not be presented in a linear way.

I There will be no exams.

I For a positive grade (“erfolgreich teilgenommen” ) you have to be
present in at least 8 units.
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Solutions of Problems

I A problem is solved when the problem question is answered.

I It is not sufficient when you just present the computations that are
necessary to answer the question.

I In particular, fragments of computations that start and end at some
point are not considered as correct solution of a (homework)
problem.

I You have to show that you can draw the right conclusions from
your computations.
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Maxima – Computer Algebra System (CAS)

Maxima is a so called Computer Algebra System (CAS),
i.e., one can
I handle algebraic expressions,
I solve (in-) equalities with parameters,
I differentiate and integrate analytically,
I handle abstract matrices,
I plot univariate and bivariate functions,
I . . .

Program wxMaxima provides a GUI:

http://wxmaxima.sourceforge.net/

The manuscript Introduction to Maxima for Economics can be
downloaded from the webpage of this course.
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May you do well!

Josef Leydold – Bridging Course Mathematics – WS 2023/24 Introduction – 12 / 12



Chapter 1

Sets and Maps
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Set

The notion of set is fundamental in modern mathematics.

We use a simple definition from naïve set theory:

A set is a collection of distinct objects.

An object a of a set A is called an element of the set. We write:

a ∈ A

Sets are defined by enumerating or a description of their elements
within curly brackets {. . . }.

A = {1, 2, 3, 4, 5, 6} B = {x | x is an integer divisible by 2}
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Important Sets

Symbol Description

∅ empty set sometimes: {}
N natural numbers {1, 2, 3, . . .}
Z integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
Q rational numbers { k

n | k, n ∈ Z, n 6= 0}
R real numbers

[ a, b ] closed interval {x ∈ R | a ≤ x ≤ b}
( a, b ) open intervala {x ∈ R | a < x < b}
[ a, b ) half-open interval {x ∈ R | a ≤ x < b}
C complex numbers {a + bi | a, b ∈ R, i2 = −1}

aalso: ] a, b [
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Venn Diagram

We assume that all sets are subsets of some universal superset Ω.

Sets can be represented by Venn diagrams where Ω is a rectangle
and sets are depicted as circles or ovals.

Ω

A
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Subset and Superset

Set A is a subset of B, A ⊆ B , if each element of A is also an

element of B, i.e., x ∈ A⇒ x ∈ B.

Ω

B

A ⊆ B

Vice versa, B is then called a superset of A, B ⊇ A .

Set A is a proper subset of B, A ⊂ B (or: A $ B),
if A ⊆ B and A 6= B.
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Problem 1.1

Which of the the following sets is a subset of

A = {x | x ∈ R and 10 < x < 200}

(a) {x | x ∈ R and 10 < x ≤ 200}

(b) {x | x ∈ R and x2 = 121}

(c) {x | x ∈ R and 4π < x <
√

181}

(d) {x | x ∈ R and 20 < |x| < 100}
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Basic Set Operations

Symbol Definition Name

A ∩ B {x|x ∈ A and x ∈ B} intersection

A ∪ B {x|x ∈ A or x ∈ B} union

A \ B {x|x ∈ A and x 6∈ B} set-theoretic differencea

A Ω \ A complement

aalso: A− B

Two sets A and B are disjoint if A ∩ B = ∅.
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Basic Set Operations

Ω

A B

A∩ B

Ω

A B

A∪ B

Ω

A B

A \ B

Ω

A
A
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Problem 1.2

The set Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} has subsets A = {1, 3, 6, 9},
B = {2, 4, 6, 10} and C = {3, 6, 7, 9, 10}.

Draw the Venn diagram and give the following sets:

(a) A ∪ C
(b) A ∩ B
(c) A \ C
(d) A
(e) (A ∪ C) ∩ B
(f) (A ∪ B) \ C

(g) (A ∪ C) ∩ B
(h) (A \ B) ∩ (A \ C)
(i) (A ∩ B) ∪ (A ∩ C)
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Problem 1.3

Mark the following set in the corresponding Venn diagram:

(A ∩ B) ∪ (A ∩ B)
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Rules for Basic Operations

Rule Name

A ∪ A = A ∩ A = A Idempotence

A ∪∅ = A and A ∩∅ = ∅ Identity

(A ∪ B) ∪ C = A ∪ (B ∪ C) and

(A ∩ B) ∩ C = A ∩ (B ∩ C)
Associativity

A ∪ B = B ∪ A and A ∩ B = B ∩ A Commutativity

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) and

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
Distributivity

A ∪ A = Ω and A ∩ A = ∅ and A = A
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De Morgan’s Law

(A ∪ B) = A ∩ B and (A ∩ B) = A ∪ B

Ω

A B

Ω

A B
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Problem 1.4

Simplify the following set-theoretic expression:

(A ∩ B) ∪ (A ∩ B)
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Problem 1.5

Simplify the following set-theoretic expressions:

(a) (A ∪ B) ∩ B

(b) (A ∪ B) ∩ (A ∪ B)

(c) ((A ∪ B) ∩ (A ∩ B)) ∩ A

(d) (C ∪ B) ∩ (C ∩ B) ∩ (C ∪ B)
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Cartesian Product

The set

A× B = {(x, y)|x ∈ A, y ∈ B}

is called the Cartesian product of sets A and B.

Given two sets A and B the Cartesian product A× B is the set of all
unique ordered pairs where the first element is from set A and the
second element is from set B.

In general we have A× B 6= B× A.
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Cartesian Product

The Cartesian product of A = {0, 1} and B = {2, 3, 4} is

A× B = {(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)}.

A× B 2 3 4
0 (0, 2) (0, 3) (0, 4)
1 (1, 2) (1, 3) (1, 4)
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Cartesian Product

The Cartesian product of A = [2, 4] and B = [1, 3] is

A× B = {(x, y) | x ∈ [2, 4] and y ∈ [1, 3]}.

0 1 2 3 4

1

2

3

A = [2, 4]

B = [1, 3] A× B
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Problem 1.6

Describe the Cartesian products of

(a) A = [0, 1] and P = {2}.

(b) A = [0, 1] and Q = {(x, y) : 0 ≤ x, y ≤ 1}.

(c) A = [0, 1] and O = {(x, y) : 0 < x, y < 1}.

(d) A = [0, 1] and C = {(x, y) : x2 + y2 ≤ 1}.

(e) A = [0, 1] and R.

(f) Q1 = {(x, y) : 0 ≤ x, y ≤ 1} and Q2 = {(x, y) : 0 ≤ x, y ≤ 1}.
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Map

A map (or mapping) f is defined by

(i) a domain D f ,

(ii) a codomain (target set) W f and

(iii) a rule, that maps each element of D to exactly one element of W.

f : D →W, x 7→ y = f (x)

I x is called the independent variable, y the dependent variable.
I y is the image of x, x is the preimage of y.
I f (x) is the function term, x is called the argument of f .
I f (D) = {y ∈W : y = f (x) for some x ∈ D}

is the image (or range) of f .

Other names: function, transformation
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Problem 1.7

We are given map

ϕ : [0, ∞)→ R, x 7→ y = xα for some α > 0

What are
I function name,
I domain,
I codomain,
I image (range),
I function term,
I argument,
I independent and dependent variable?
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Injective · Surjective · Bijective

Each argument has exactly one image.
Each y ∈W, however, may have any number of preimages.
Thus we can characterize maps by their possible number of preimages.

I A map f is called one-to-one (or injective), if each element in the
codomain has at most one preimage.

I It is called onto (or surjective), if each element in the codomain
has at least one preimage.

I It is called bijective, if it is both one-to-one and onto, i.e., if each
element in the codomain has exactly one preimage.

Injections have the important property

f (x) 6= f (y) ⇔ x 6= y
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Injective · Surjective · Bijective

Maps can be visualized by means of arrows.

D f W f D f W f D f W f

one-to-one onto one-to-one and onto

(not onto) (not one-to-one) (bijective)
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Problem 1.8

Which of these diagrams represent maps?
Which of these maps are one-to-one, onto, both or neither?

D W D W D W D W

(a) (b) (c) (d)
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Problem 1.9

Which of the following are proper definitions of mappings?
Which of the maps are one-to-one, onto, both or neither?

(a) f : [0, ∞)→ R, x 7→ x2

(b) f : [0, ∞)→ R, x 7→ x−2

(c) f : [0, ∞)→ [0, ∞), x 7→ x2

(d) f : [0, ∞)→ R, x 7→
√

x

(e) f : [0, ∞)→ [0, ∞), x 7→
√

x

(f) f : [0, ∞)→ [0, ∞), x 7→ {y ∈ [0, ∞) : x = y2}
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Problem 1.10

Let Pn = {∑n
i=0 aixi : ai ∈ R} be the set of all polynomials in x of

degree less than or equal to n.

Which of the following are proper definitions of mappings?
Which of the maps are one-to-one, onto, both or neither?

(a) D : Pn → Pn, p(x) 7→ dp(x)
dx (derivative of p)

(b) D : Pn → Pn−1, p(x) 7→ dp(x)
dx

(c) D : Pn → Pn−2, p(x) 7→ dp(x)
dx
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Function Composition

Let f : D f →W f and g : Dg →Wg be functions with W f ⊆ Dg.

Function

g ◦ f : D f →Wg, x 7→ (g ◦ f )(x) = g( f (x))

is called composite function.
(read: “g composed with f ”, “g circle f ”, or “g after f ”)

D f W f ⊆ Dg Wg

f g

g ◦ f
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Inverse Map

If f : D f →W f is a bijection, then every y ∈W f can be uniquely
mapped to its preimage x ∈ D f .

Thus we get a map

f−1 : W f → D f , y 7→ x = f−1(y)

which is called the inverse map of f .

We obviously have for all x ∈ D f and y ∈W f ,

f−1( f (x)) = f−1(y) = x and f ( f−1(y)) = f (x) = y .
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Inverse Map

D f
W f−1

W f
D f−1

f

f−1
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Identity

The most elementary function is the identity map id,
which maps its argument to itself, i.e.,

id : D →W = D, x 7→ x

D

1
2
3
4

W = D

1
2
3
4

id
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Identity

The identity map has a similar role for compositions of functions as 1
has for multiplications of numbers:

f ◦ id = f and id ◦ f = f

Moreover,

f−1 ◦ f = id : D f → D f and f ◦ f−1 = id : W f →W f
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Real-valued Functions

Maps where domain and codomain are (subsets of) real numbers are
called real-valued functions,

f : R→ R, x 7→ f (x)

and are the most important kind of functions.

The term function is often exclusively used for real-valued maps.

We will discuss such functions in more details later.
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Summary

I sets, subsets and supersets
I Venn diagram
I basic set operations
I de Morgan’s law
I Cartesian product
I maps
I one-to-one and onto
I inverse map and identity
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Chapter 2

Terms
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Term

A mathematical expression like

B = R · qn − 1
qn(q− 1)

or (x + 1)(x− 1) = x2 − 1

contains symbols which denote mathematical objects.
These symbols and compositions of symbols are called terms.

Terms can be
I numbers,
I constants (symbols, which represent fixed values),
I variables (which are placeholders for arbitrary values), and
I compositions of terms.
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Domain

We have to take care that a term may not be defined for some values of
its variables.

I 1
x−1 is only defined for x ∈ R \ {1}.

I
√

x + 1 is only defined for x ≥ −1.

The set of values for which a term is defined is called the domain of the
term.
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Sigma Notation

Sums with many terms that can be generated by some rule can be
represented in a compact form called summation or sigma notation.

6

∑
n=1

an = a1 + a2 + · · ·+ a6

an . . . formula for the terms

n . . . index of summation

1 . . . first value of index n
6 . . . last value of n

The expression is read as the “sum of an as n goes from 1 to 6.”

First and last value can (and often are) given by symbols.
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Sigma Notation

The sum of the first 10 integers greater than 2 can be written in both
notations as

10

∑
i=1

(2 + i) = (2 + 1) + (2 + 2) + (2 + 3) + · · ·+ (2 + 10)

The sigma notation can be seen as a convenient shortcut of the long
expression on the r.h.s.

It also avoids ambiguity caused by the ellipsis “. . .” that might look like
an IQ test rather than an exact mathematical expression.
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Sigma Notation – Rules

Keep in mind that all the usual rules for multiplication and addition
(associativity, commutativity, distributivity) apply:

I
n
∑

i=1
ai =

n
∑

k=1
ak

I
n
∑

i=1
ai +

n
∑

i=1
bi =

n
∑

i=1
(ai + bi)

I
n
∑

i=1
c ai = c

n
∑

i=1
ai
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Sigma Notation – Rules

Simplify
n

∑
i=2

(ai + bi)
2 −

n

∑
j=2

a2
j −

n

∑
k=2

b2
k

Solution:

=
n

∑
i=2

(ai + bi)
2 −

n

∑
i=2

a2
i −

n

∑
i=2

b2
i

=
n

∑
i=2

(
(ai + bi)

2 − a2
i − b2

i
)

=
n

∑
i=2

2 aibi

= 2
n

∑
i=2

aibi
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Problem 2.1

Which of the following expressions is equal to the summation

10

∑
i=2

5(i + 3) ?

(a) 5(2 + 3 + 4 + . . . + 9 + 10 + 3)

(b) 5(2 + 3 + 3 + 3 + 4 + 3 + 5 + 3 + 6 + 3 + . . . + 10 + 3)

(c) 5(2 + 3 + 4 + . . . + 9 + 10) + 5 · 3

(d) 5(2 + 3 + 4 + . . . + 9 + 10) + 9 · 5 · 3

Josef Leydold – Bridging Course Mathematics – WS 2023/24 2 – Terms – 8 / 63



Problem 2.2

Compute and simplify:

(a)
5

∑
i=0

aib5−i

(b)
5

∑
i=1

(ai − ai+1)

(c)
n

∑
i=1

(ai − ai+1)

Remark: The sum in (c) is a so called telescoping sum.
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Problem 2.3

Simplify the following summations:

(a)
n

∑
i=1

a2
i +

n

∑
j=1

b2
j −

n

∑
k=1

(ak − bk)
2

(b)
n

∑
i=1

(aibn−i+1 − an−i+1bi)

(c)
n

∑
i=1

(xi + yi)
2 +

n

∑
j=1

(xj − yj)
2

(d)
n−1

∑
j=0

xj −
n

∑
i=1

xi
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Problem 2.4

Arithmetic mean (“average”)

x̄ = 1
n

n

∑
i=1

xi

and variance

σ2 = 1
n

n

∑
i=1

(xi − x̄)2

are important location and dispersion parameters in statistics.

Variance σ2 can be computed by means of formula

σ2 = 1
n

n

∑
i=1

x2
i − x̄2 = 1

n

n

∑
i=1

x2
i −

(
1
n

n

∑
i=1

xi

)2

which requires to read data (xi) only once.
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Problem 2.4 / 2

Verify

σ2 = 1
n

n

∑
i=1

(xi − x̄)2 = 1
n

n

∑
i=1

x2
i − x̄2

for

(a) n = 2,

(b) n = 3,

(c) n ≥ 2 arbitrary.

Hint: Show that
n

∑
i=1

(xi − x̄)2 −
(

n

∑
i=1

x2
i − nx̄2

)
= 0.
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Problem 2.5

Let µ be the “true” value of a metric variate and {xi} the results of
some measurement with stochastic errors. Then

MSE = 1
n

n

∑
i=1

(xi − µ)2

is called the mean square error of sample {xi}.

Verify:

MSE = σ2 + (x̄− µ)2

i.e., the MSE is the sum of
I the variance of the measurement (dispersion), and
I the squared deviation of the sample mean from µ (bias).
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Absolute value

The absolute value (or modulus) |x| of a number x is its distance from
origin 0 on the number line:

|x| =
{

x, for x ≥ 0,

−x, for x < 0.

|5| = 5 and | − 3| = −(−3) = 3.

We have

|x| · |y| = |x · y|
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Problem 2.6

Find simple equivalent formulas for the following expressions without
using absolute values:

(a) |x2 + 1|

(b) |x| · x3

Find simpler expressions by means of absolute values:

(c)

{
x2, for x ≥ 0,

−x2, for x < 0.

(d)

{
xα, for x > 0,

−(−x)α for x < 0,
for some fixed α ∈ R.
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Power

The n-th power of x is defined by

xn = x · x · . . . · x︸ ︷︷ ︸
n factors

I x is the basis, and
I n is the exponent of xn.

Expression xn is read as “x raised to the n-th power”,
“x raised to the power of n”, or “the n-th power of x”.

Example: 35 = 3 · 3 · 3 · 3 · 3 = 243

For negative exponents we define:

x−n =
1
xn
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Root

A number y is called the
I n-th root n

√
x of x, if yn = x.

Computing the n-th root can be seen as the inverse operation of
computing a power.

We just write
√

x for the square root 2
√

x.

Beware:
Symbol n

√
x is used for the positive (real) root of x.

If we need the negative square root of 2 we have to write −
√

2 .
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Powers with Rational Exponents

Powers with rational exponents are defined by

x
1
m = m

√
x for m ∈ Z and x ≥ 0;

and

x
n
m = m

√
xn for m, n ∈ Z and x ≥ 0.

Important:
For non-integer exponents the basis must be non-negative!

Powers xα can also be generalized for α ∈ R.
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Calculation Rule for Powers and Roots

x−n =
1
xn x0 = 1 (x 6= 0)

xn+m = xn · xm x
1
m = m

√
x (x ≥ 0)

xn−m =
xn

xm x
n
m = m

√
xn (x ≥ 0)

(x · y)n = xn · yn x−
n
m =

1
m
√

xn
(x ≥ 0)

(xn)m = xn·m

Important!

00 is not defined!
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Computations with Powers and Roots

I 3
√

56 = (56)
1
3 = 5(6·

1
3 ) = 5

6
3 = 52 = 25

I ( 3
√

5)6 = (5
1
3 )6 = 5(

1
3 ·6) = 5

6
3 = 52 = 25

I 54−3 = 51 = 5

I 54−3 = 54

53 = 625
125 = 5

I 52−2 = 50 = 1

I 52−2 = 52

52 = 25
25 = 1
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Computations with Powers and Roots

I (x · y)4

x−2y3 = x4 y4 x−(−2) y−3 = x6 y

I (2 x2)3 (3y)−2

(4 x2 y)2 (x3 y)
=

23 x2·3 3−2 y−2

42 x2·2 y2 x3 y
=

8
9 x6 y−2

16 x7 y3

= 1
18 x6−7 y−2−3 = 1

18 x−1y−5 =
1

18 x y5

I
(

3 x
1
3 y−

4
3

)3
= 33 x

3
3 y−

12
3 = 27 x y−4 =

27 x
y4
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Sources of Errors

Important!

I −x2 is not equal to (−x)2 !

I (x + y)n is not equal to xn + yn !

I xn + yn cannot be simplified (in general)!
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Problem 2.7

Simplify the following expressions:

(a)
(xy)

1
3

x
1
6 y

2
3

(b)
1

(
√

x)−
3
2

(c)

(
|x| 13
|x| 16

)6
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Monomial

A monomial is a real number, variable, or product of variables raised to
positive integer powers.

The degree of a monomial is the sum of all exponents of the variables
(including a possible implicit exponent 1).

6 x2 is a monomial of degree 2.

3 x3 y and x y2 z are monomials of degree 4.

√
x and 2

3 x y2 are not monomials.
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Polynomial

A polynomial is a sum of (one or more) monomials.

The degree of a polynomial is the maximum degree among its
monomials.

4 x2 y3 − 2 x3 y + 4 x + 7 y is a polynomial of degree 5.

Polynomials in one variable (in sigma notation):

P(x) =
n

∑
i=0

ai xi = an xn + an−1 xn−1 + · · ·+ a1 x + a0

where x is the variable and ai ∈ R are constants.
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Problem 2.8

Which of the following expressions are monomials or polynomials?
What is their degree?
Assume that x, y, and z are variables and all other symbols represent constants.

(a) x2

(b) x2/3

(c) 2x2 + 3xy + 4y2

(d) (2x2 + 3xy + 4y2) (x2 − z2)

(e) (x− a)(y− b)(z + 1)

(f) x
√

y−
√

xy

(g) ab + c

(h) x
√

a−
√

by
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Binomial Theorem

(x + y)n =
n

∑
k=0

(
n
k

)
xn−k yk

where (
n
k

)
=

n!
k! (n− k)!

is called the binomial coefficient (read: “n choose k”) and

n! = 1 · 2 · . . . · n

denotes the factorial of n (read: “n-factorial”).

For convenience we set 0! = 1 .
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Binomial Coefficient

Note: (
n
k

)
=

n!
k! (n− k)!

=

(
n

n− k

)

Computation: (
n
k

)
=

n · (n− 1) · . . . · (n− k + 1)
k · (k− 1) · . . . · 1

(n
k) is the number of ways to choose an (unordered) subset of k

elements from a fixed set of n elements.
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Binomial Theorem

I (x + y)2 =

(
2
0

)
x2 +

(
2
1

)
xy +

(
2
2

)
y2 = x2 + 2xy + y2

I (x + y)3 =

(
3
0

)
x3 +

(
3
1

)
x2y +

(
3
2

)
xy2 +

(
3
3

)
y3

= x3 + 3x2y + 3xy2 + y3
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Problem 2.9

Compute

(a) (x + y)4

(b) (x + y)5

by means of the binomial theorem.
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Problem 2.10

Show by means of the binomial theorem that

n

∑
k=0

(
n
k

)
= 2n

Hint: Use 1 + 1 = 2.
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Multiplication

The product of two polynomials of degree n and m, resp., is a
polynomial of degree n + m.

(2 x2 + 3 x− 5) · (x3 − 2 x + 1) =

= 2 x2 · x3 + 2 x2 · (−2 x) + 2 x2 · 1
+ 3 x · x3 + 3 x · (−2 x) + 3 x · 1
+ (−5) · x3 + (−5) · (−2 x) + (−5) · 1

= 2 x5 + 3 x4 − 9 x3 − 4 x2 + 13 x− 5
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Problem 2.11

Simplify the following expressions:

(a) (x + h)2 − (x− h)2

(b) (a + b)c− (a + bc)

(c) (A− B)(A2 + AB + B2)

(d) (x + y)4 − (x− y)4
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Division

Polynomials can be divided similarly to the division of integers.

( x3 + x2 + 0 x− 2 ) : (x− 1) = x2 + 2 x + 2
x2 · (x− 1) −→ x3− x2

2 x2 + 0 x
2 x · (x− 1) −→ 2 x2− 2 x

2 x− 2
2 · (x− 1) −→ 2 x− 2

0

We thus yield x3 + x2 − 2 = (x− 1) · (x2 + 2 x + 2).

If the divisor is not a factor of the dividend, then we obtain a remainder.
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Factorization

The process of expressing a polynomial as the product of polynomials
of smaller degree (factor) is called factorization.

2 x2 + 4 x y + 8 x y3 = 2 x · (x + 2 y + 4 y3)

x2 − y2 = (x + y) · (x− y)

x2 − 1 = (x + 1) · (x− 1)

x2 + 2 x y + y2 = (x + y) · (x + y) = (x + y)2

x3 + y3 = (x + y) · (x2 − x y + y2)

These products can be easily verified by multiplying their factors.
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Factorization

The factorization

(x2 − y2) = (x + y) · (x− y)

or equivalently

(x− y) = (
√

x +
√

y) · (
√

x−√y)

can be very useful.

Memorize it!
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The “Ausmultiplizierreflex”

Important!
Factorizing a polynomial is often very hard
while multiplying its factors is fast and easy.
(The RSA public key encryption is based on this idea.)

Beware!
A factorized expression contains more information than their expanded
counterpart.

In my experience many students have an
acquired “Ausmultiplizierreflex”:

Instantaneously (and without thinking) they multiply all factors
(which often turns a simple problem into a difficult one).
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The “Ausmultiplizierreflex”

Suppress your “Ausmultiplizierreflex”!

Think first and multiply factors only when it seems to be useful!
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Linear Term

A polynomial of degree 1 is called a linear term.

I a + b x + y + a c is a linear term in x and y,
if a, b and c are constants.

I xy + x + y is not linear, as xy has degree 2.
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Linear Factor

A factor (polynomial) of degree 1 is called a linear factor.

A polynomial in one variable x with root x1 has linear factor (x− x1).

If a polynomial in x of degree n,

P(x) =
n

∑
i=0

ai xi

has n real roots x1, x2, . . . , xn, then it can be written as the product of
the n linear factors (x− xi):

P(x) = an

n

∏
i=1

(x− xi)

(This is a special case of the Fundamental Theorem of Algebra.)
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Problem 2.12

(a) Give a polynomial in x of degree 4 with roots −1, 2, 3, and 4.

(b) What is the set of all such polynomials?

(c) Can such a polynomial have other roots?
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Rational Term

A rational term is one of the form

P(x)
Q(x)

where P(x) and Q(x) are polynomials called numerator and
denominator, resp.

Alternatively one can write P(x)/Q(x).

The domain of a rational term is R without the roots of the denominator.

x2 + x− 4
x3 + 5

is a rational term with domain R \ {− 3
√

5}.

Beware! The expression
0
0

is not defined.
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Calculation Rule for Fractions and Rational Terms

Let b, c, e 6= 0.

c · a
c · b =

a
b

Reduce

a
b
=

c · a
c · b Expand

a
b
· d

c
=

a · d
b · c Multiplying

a
b

:
e
c
=

a
b
· c

e
Dividing

a
b
e
c

=
a · c
b · e Compound fraction
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Calculation Rule for Fractions and Rational Terms

Let b, c 6= 0.

a
b
+

d
b
=

a + d
b

Addition with common denominator

a
b
+

d
c
=

a · c + d · b
b · c Addition

Very important! Really!
You have to expand fractions such that they have a common
denominator before you add them!
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Calculation Rule for Fractions and Rational Terms

I x2 − 1
x + 1

=
(x + 1)(x− 1)

x + 1
= x− 1

I 4 x3 + 2 x2

2 x y
=

2 x2(2 x + 1)
2 x y

=
x(2 x + 1)

y

I x + 1
x− 1

+
x− 1
x + 1

=
(x + 1)2 + (x− 1)2

(x− 1)(x + 1)

=
x2 + 2 x + 1 + x2 − 2 x + 1

(x− 1)(x + 1)
= 2

x2 + 1
x2 − 1
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Calculation Rule for Fractions and Rational Terms

I want to stress at this point that there happen a lot of mistakes in
calculations that involve rational terms.

The following examples of such fallacies are collected from students’
exams.
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Sources of Errors

Very Important! Really!

a + c
b + c

is not equal to
a
b

x
a
+

y
b

is not equal to
x + y
a + b

a
b + c

is not equal to
a
b
+

a
c

x + 2
y + 2

6= x
y

1
2
+

1
3
6= 1

5
.

1
x2 + y2 6=

1
x2 +

1
y2
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Problem 2.13

Simplify the following expressions:

(a)
1

1 + x
+

1
x− 1

(b)
s

st2 − t3 −
1

s2 − st
− 1

t2

(c)
1
x + 1

y

xy + xz + y(z− x)

(d)

x+y
y

x−y
x

+
x+y

x
x−y

y
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Problem 2.14

Factorize and reduce the fractions:

(a)
1− x2

1− x

(b)
1 + x2

1− x

(c)
x3 − x4

1− x

(d)
x3 − x5

1− x

(e)
x2 − x6

1− x

(f)
1− x3

1− x
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Problem 2.15

Simplify the following expressions:

(a) y(xy + x + 1)− x2y2 − 1
x− 1

y

(b)
x2+y
2x+1
2xy

2x+y

(c)
a
x −

b
x+1

a
x+1 +

b
x

(d)
2x2y− 4xy2

x2 − 4y2 +
x2

x + 2y
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Problem 2.16

Simplify the following expressions:

(a)
x

1
4 − y

1
3

x
1
8 + y

1
6

(b)
√

x− 4

x
1
4 − 2

(c)

2

x−
1
7

x−
7
2
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Problem 2.17

Simplify the following expressions:

(a)
(
√

x + y)
1
3

x
1
6

(b)
1

3
√

x− 1
· 1

1 + 1
3
√

x

· 1√
x

(c)
(xy)

1
6 − 3

(xy)
1
3 − 9

(d)
x− y√
x−√y
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Exponential Function

I Power function

(0, ∞)→ (0, ∞), x 7→ xα for some fixed exponent α ∈ R

I Exponential function

R→ (0, ∞), x 7→ ax for some fixed basis a ∈ (0, ∞)
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Exponent and Logarithm

A number y is called the logarithm to basis a, if ay = x.
The logarithm is the exponent of a number to basis a.
We write

y = loga(x) ⇔ x = ay

Important logarithms:
I natural logarithm ln(x) with basis e = 2.7182818 . . .

(sometimes called Euler’s number )
I common logarithm lg(x) with basis 10

(sometimes called decadic or decimal logarithm)
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Exponent and Logarithm

I log10(100) = 2, as 102 = 100

I log10

( 1
1000

)
= − 3, as 10−3 = 1

1000

I log2(8) = 3, as 23 = 8

I log√2(16) = 8, as
√

2
8
= 28/2 = 24 = 16
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Calculations with Exponent and Logarithm

Conversion formula:

ax = ex ln(a) loga(x) =
ln(x)
ln(a)

log2(123) =
ln(123)

ln(2)
≈ 4.812184

0.6931472
= 6.942515

37 = e7 ln(3)
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Implicit Basis

Important:
Often one can see log(x) without an explicit basis.

In this case the basis is (should be) implicitly given by the context of the
book or article.

I In mathematics: natural logarithm
financial mathematics, programs like R, Mathematica, Maxima, . . .

I In applied sciences: common logarithm
economics, pocket calculator, Excel, . . .
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Calculation Rules for Exponent and Logarithm

ax+y = ax · ay loga(x · y) = loga(x) + loga(y)

ax−y = ax

ay loga(
x
y ) = loga(x)− loga(y)

(ax)y = ax·y loga(xβ) = β · loga(x)

(a · b)x = ax · bx

aloga(x) = x loga(ax) = x

a0 = 1 loga(1) = 0

loga(x) has (as real-valued function) domain x > 0!
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Problem 2.18

Compute without a calculator:

(a) log2(2)

(b) log2(4)

(c) log2(16)

(d) log2(0)

(e) log2(1)

(f) log2

( 1
4

)
(g) log2

(√
2
)

(h) log2

(
1√
2

)
(i) log2(−4)
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Problem 2.19

Compute without a calculator:

(a) log10(300)

(b) log10(3
10)

Use log10(3) = 0.47712.
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Problem 2.20

Compute (simplify) without a calculator:

(a) 0.01− log10(100)

(b) log√5

( 1
25

)
(c) 103 log10(3)

(d) log10(200)
log 1√

7
(49)

(e) log8

( 1
512

)
(f) log 1

3
(81)
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Problem 2.21

Represent the following expression in the form y = A ecx

(i.e., determine A and c):

(a) y = 10x−1

(b) y = 4x+2

(c) y = 3x52x

(d) y = 1.08x− x
2

(e) y = 0.9 · 1.1
x

10

(f) y =
√

q 2x/2
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Summary

I sigma notation
I absolute value
I powers and roots
I monomials and polynomials
I binomial theorem
I multiplication, factorization, and linear factors
I trap door “Ausmultiplizierreflex”
I fractions, rational terms and many fallacies
I exponent and logarithm
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Chapter 3

Equations and Inequalities
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Equation

We get an equation by equating two terms.

l.h.s. = r.h.s.

I Domain:
Intersection of domains of all involved terms restricted to
a feasible region (e.g., non-negative numbers).

I Solution set:
Set of all objects from the domain that solve the equation(s).
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Transform into Equivalent Equation

Idea:
The equation is transformed into an equivalent but simpler equation,
i.e., one with the same solution set.

I Add or subtract a number or term on both sides of the equation.

I Multiply or divide by a non-zero number or term on both sides of
the equation.

I Take the logarithm or antilogarithm on both sides.

A useful strategy is to isolate the unknown quantity on one side of the
equation.
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Sources of Errors

Beware!
These operations may change the domain of the equation.
This may or may not alter the solution set.

In particular this happens if a rational term is reduced or expanded by a
factor that contains the unknown.

Important!
Verify that both sides are strictly positive before taking the logarithm.

Beware!
Any term that contains the unknown may vanish (become 0).

I Multiplication may result in an additional but invalid “solution”.
I Division may eliminate a valid solution.

Josef Leydold – Bridging Course Mathematics – WS 2023/24 3 – Equations and Inequalities – 4 / 49



Non-equivalent Domains

Equation
(x− 1)(x + 1)

x− 1
= 1

can be transformed into the seemingly equivalent equation

x + 1 = 1

by reducing the rational term by factor (x− 1).

However, the latter has domain R

while the given equation has domain R \ {1}.

Fortunately, the solution set L = {0} remains unchanged by this
transformation.
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Multiplication

By multiplication of
x2 + x− 2

x− 1
= 1

by (x− 1) we get
x2 + x− 2 = x− 1

with solution set L = {−1, 1}.

However, x = 1 is not in the domain of
x2 + x− 2

x− 1
and thus not a valid

solution of our equation.
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Division

If we divide both sides of equation

(x− 1)(x− 2) = 0 (solution set L = {1, 2})

by (x− 1) we obtain equation

x− 2 = 0 (solution set L = {2})

Thus solution x = 1 has been “lost” by this division.
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Division

Important!
We need a case-by-case analysis when we divide by some term that
contains an unknown:

Case 1: Division is allowed (the divisor is non-zero).

Case 2: Division is forbidden (the divisor is zero).

Find all solutions of (x− 1)(x− 2) = 0:

Case x− 1 6= 0:
By division we get equation x− 2 = 0 with solution x1 = 2.

Case x− 1 = 0:
This implies solution x2 = 1.

We shortly will discuss a better method for finding roots.
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Division

System of two equations in two unknowns{
x y− x = 0
x2 + y2 = 2

Addition and division in the first equation yields:

x y = x  y =
x
x
= 1

Substituting into the second equation then gives x = ±1.
Seemingly solution set: L = {(−1, 1), (1, 1)}.

However: Division is only allowed if x 6= 0.

x = 0 also satisfies the first equation (for every y).

Correct solution set: L = {(−1, 1), (1, 1), (0,
√

2), (0,−
√

2)}.
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Factorization

Factorizing a term can be a suitable method for finding roots (points
where a term vanishes). {

x y− x = 0
x2 + y2 = 2

The first equation x y− x = x · (y− 1) = 0 implies

x = 0 or y− 1 = 0 (or both).

Case x = 0: y = ±
√

2

Case y− 1 = 0: y = 1 and x = ±1.

Solution set L = {(−1, 1), (1, 1), (0,
√

2), (0,−
√

2)}.
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Verification

A (seemingly correct) solution can be easily verified by substituting it
into the given equation.

If unsure, verify the correctness of a solution.

Hint for your exams:
If a (homework or exam) problem asks for verification of a given
solution, then simply substitute into the equation.
There is no need to solve the equation from scratch.

Josef Leydold – Bridging Course Mathematics – WS 2023/24 3 – Equations and Inequalities – 11 / 49



Linear Equation

Linear equations only contain linear terms and can (almost) always be
solved.

Express annuity R from the formula for the present value

Bn = R · qn − 1
qn(q− 1)

.

As R is to the power 1 only we have a linear equation which can be
solved by dividing by (non-zero) constant qn−1

qn(q−1) :

R = Bn ·
qn(q− 1)

qn − 1
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Equation with Absolute Value

An equation with absolute value can be seen as an abbreviation for a
system of two (or more) equations:

|x| = 1 ⇔ x = 1 or −x = 1

Find all solutions of |2x− 3| = |x + 1|.

Union of the respective solutions of the two equations

(2x− 3) = (x + 1) ⇒ x = 4
−(2x− 3) = (x + 1) ⇒ x = 2

3

(Equations −(2x− 3) = −(x + 1) and (2x− 3) = −(x + 1)
are equivalent to the above ones.)

We thus find solution set: L =
{ 2

3 , 4
}

.
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Problem 3.1

Solve the following equations:

(a) |x(x− 2)| = 1

(b) |x + 1| = 1
|x− 1|

(c)

∣∣∣∣ x2 − 1
x + 1

∣∣∣∣ = 2

Josef Leydold – Bridging Course Mathematics – WS 2023/24 3 – Equations and Inequalities – 14 / 49



Equation with Exponents

Equations where the unknown is an exponent can (sometimes) be
solved by taking the logarithm:
I Isolate the term with the unknown on one side of the equation.
I Take the logarithm on both sides.

Solve equation 2x = 32.
By taking the logarithm we obtain

2x = 32
⇔ ln(2x) = ln(32)
⇔ x ln(2) = ln(32)
⇔ x = ln(32)

ln(2) = 5

Solution set: L = {5}.
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Equation with Exponents

Compute the term n of a loan over K monetary units and accumulation
factor q from formula

X = K · qn q− 1
qn − 1

for installment X.

X = K · qn q−1
qn−1 | ·(qn − 1)

X (qn − 1) = K qn (q− 1) | −K qn (q− 1)

qn (X− K(q− 1))− X = 0 | +X

qn (X− K(q− 1)) = X | : (X− K(q− 1))

qn = X
X−K(q−1) | ln

n ln(q) = ln(X)− ln(X− K(q− 1)) | : ln(q)

n = ln(X)−ln(X−K(q−1))
ln(q)
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Equation with logarithms

Equations which contain (just) the logarithm of the unknown can
(sometimes) be solved by taking the antilogarithm.

We get solution of ln(x + 1) = 0 by:

ln(x + 1) = 0

⇔ eln(x+1) = e0

⇔ x + 1 = 1

⇔ x = 0

Solution set: L = {0}.
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Problem 3.2

Solve the following equations:

(a) 2x = 3x−1

(b) 32−x = 4
x
2

(c) 2x52x = 10x+2

(d) 2 · 10x−2 = 0.13x

(e) 1
2x+1 = 0.2x104

(f) (3x)2 = 4 · 53x
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Problem 3.3

Function

cosh(x) =
ex + e−x

2
is called the hyperbolic cosine.
Find all solutions of

cosh(x) = a

Hint: Use auxiliary variable y = ex. Then the equation simplifies to
(y + 1

y )/2 = a.
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Problem 3.4

Solve the following equation:

ln
(

x2
(

x− 7
4

)
+
( x

4
+ 1
)2
)
= 0
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Equation with Powers

An Equation that contains only one power of the unknown which in
addition has integer degree can be solved by calculating roots.

Important!
I Take care that the equation may not have a (unique) solution (in

R) if the power has even degree.

I If its degree is odd, then the solution always exists and is unique
(in R).

The solution set of x2 = 4 is L = {−2, 2}.

Equation x2 = −4 does not have a (real) solution, L = ∅.

The solution set of x3 = −8 is L = {−2}.
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Equation with Roots

We can solve an equation with roots by squaring or taking a power of
both sides.

We get the solution of 3
√

x− 1 = 2 by taking the third power:

3
√

x− 1 = 2 ⇔ x− 1 = 23 ⇔ x = 9
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Square Root

Beware!
Squaring an equation with square roots may create additional but
invalid solutions (cf. multiplying with possible negative terms).

Squaring “non-equality” −3 6= 3 yields equality (−3)2 = 32.

Beware!
The domain of an equation with roots often is just a subset of R.

For roots with even root degree the radicand must not be negative.

Important!

Always verify solutions of equations with roots!
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Square Root

Solve equation
√

x− 1 = 1−
√

x− 4.

Domain is D = {x|x ≥ 4}.

Squaring yields

√
x− 1 = 1−

√
x− 4 |2

x− 1 = 1− 2 ·
√

x− 4 + (x− 4) | − x + 3 | : 2

1 = −
√

x− 4 |2

1 = x− 4

x = 5

However, substitution gives
√

5− 1 = 1−
√

5− 4 ⇔ 2 = 0,
which is false. Thus we get solution set L = ∅.
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Square Root

Solve equation
√

x− 1 = 1 +
√

x− 4.

Domain is D = {x|x ≥ 4}.

Squaring yields

√
x− 1 = 1 +

√
x− 4 |2

x− 1 = 1 + 2 ·
√

x− 4 + (x− 4) | − x + 3 | : 2

1 =
√

x− 4 |2

1 = x− 4

x = 5

Now, verification yields
√

5− 1 = 1 +
√

5− 4 ⇔ 2 = 2,
which is a true statement. Thus we get non-empty solution L = {5}.
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Problem 3.5

Solve the following equations:

(a)
√

x + 3 = x + 1

(b)
√

x− 2 =
√

x + 1− 1
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Quadratic Equation

A quadratic equation is one of the form

a x2 + b x + c = 0 Solution: x1,2 =
−b±

√
b2 − 4ac

2a

or in standard form

x2 + p x + q = 0 Solution: x1,2 = − p
2
±
√( p

2

)2
− q
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Roots of Polynomials

Quadratic equations are a special case of algebraic equations
(polynomial equations)

Pn(x) = 0

where Pn(x) is a polynomial of degree n.

There exist closed form solutions for algebraic equations of degree 3
(cubic equations) and 4, resp. However, these are rather tedious.

For polynomials of degree 5 or higher no general formula does exist.
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Roots of Polynomials

A polynomial equation can be solved by reducing its degree recursively.

1. Search for a root x1 of Pn(x)
(e.g. by trial and error, by means of Vieta’s formulas,
or by means of Newton’s method)

2. We obtain linear factor (x− x1) of Pn(X).

3. By division Pn(x) : (x− x1)
we get a polynomial Pn−1(x) of degree n− 1.

4. If n− 1 = 2, solve the resulting quadratic equation.

Otherwise goto Step 1.
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Roots of Polynomials

Find all solutions of

x3 − 6x2 + 11x− 6 = 0.

By educated guess we find solution x1 = 1.

Division by the linear factor (x− 1) yields

(x3 − 6x2 + 11x− 6) : (x− 1) = x2 − 5x + 6

Quadratic equation x2 − 5x + 6 = 0 has solutions x2 = 2 and x3 = 3.

The solution set is thus L = {1, 2, 3}.
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Roots of Products

A product of two (or more) terms f (x) · g(x) is zero if and only if at
least one factor is zero:

f (x) = 0 or g(x) = 0 (or both).

Equation x2 · (x− 1) · ex = 0 is satisfied if
I x2 = 0 (⇒ x = 0), or
I x− 1 = 0 (⇒ x = 1), or
I ex = 0 (no solution).

Thus we have solution set L = {0, 1}.
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Roots of Products

Important!

If a polynomial is already factorized one should resist to expand this
expression.

The roots of polynomial

(x− 1) · (x + 2) · (x− 3) = 0

are obviously 1, −2 and 3.

Roots of the expanded expression

x3 − 2x2 − 5x + 6 = 0

are hard to find.
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Problem 3.6

Compute all roots and decompose into linear factors:

(a) f (x) = x2 + 4x + 3

(b) f (x) = 3x2 − 9x + 2

(c) f (x) = x3 − x

(d) f (x) = x3 − 2x2 + x

(e) f (x) = (x2 − 1)(x− 1)2
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Problem 3.7

Solve with respect to x and with respect to y:

(a) xy + x− y = 0

(b) 3xy + 2x− 4y = 1

(c) x2 − y2 + x + y = 0

(d) x2y + xy2 − x− y = 0

(e) x2 + y2 + 2xy = 4

(f) 9x2 + y2 + 6xy = 25

(g) 4x2 + 9y2 = 36

(h) 4x2 − 9y2 = 36

(i)
√

x +
√

y = 1
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Problem 3.8

Solve with respect to x and with respect to y:

(a) xy2 + yx2 = 6

(b) xy2 + (x2 − 1)y− x = 0

(c) x
x+y = y

x−y

(d) y
y+x = y−x

y+x2

(e) 1
y−1 = y+x

2y+1

(f) yx
y+x = 1

y

(g) (y + 2x)2 = 1
1+x + 4x2

(h) y2 − 3xy + (2x2 + x− 1) = 0

(i) y
x+2y = 2x

x+y
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Problem 3.9

Find constants a, b and c such that the following equations hold for all x
in the corresponding domains:

(a)
x

1 + x
− 2

2− x
= −2a + bx + cx2

2 + x− x2

(b)
x2 + 2x
x + 2

− x2 + 3
x + 3

=
a(x− b)

x + c
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Inequalities

We get an inequality by comparing two terms by means of one of the
“inequality” symbols

≤ (less than or equal to),

< (less than),

> (greater than),

≥ (greater than or equal to):

l.h.s. ≤ r.h.s.

The inequality is called strict if equality does not hold.

Solution set of an inequality is the set of all numbers in its domain that
satisfy the inequality.
Usually this is an (open or closed) interval or union of intervals.

Josef Leydold – Bridging Course Mathematics – WS 2023/24 3 – Equations and Inequalities – 37 / 49



Transform into Equivalent Inequality

Idea:
The inequality is transformed into an equivalent but simpler inequality.
Ideally we try to isolate the unknown on one side of the inequality.

Beware!
If we multiply an inequality by some negative number, then the
direction of the inequality symbol is reverted.
Thus we need a case analysis:

I Case: term is greater than zero:
Direction of inequality symbol is not revert.

I Case: term is less than zero:
Direction of inequality symbol is revert.

I Case: term is equal to zero:
Multiplication or division is forbidden!
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Transform into Equivalent Inequality

Find all solutions of
2 x− 1
x− 2

≤ 1.

We multiply inequality by (x− 2).
I Case x− 2 > 0⇔ x > 2:

We find 2 x− 1 ≤ x− 2⇔ x ≤ −1,
a contradiction to our assumption x > 2.

I Case x− 2 < 0⇔ x < 2:
The inequality symbol is reverted, and
we find 2 x− 1 ≥ x− 2⇔ x ≥ −1.
Hence x < 2 and x ≥ −1.

I Case x− 2 = 0⇔ x = 2:
not in domain of inequality.

Solution set is the interval L = [−1, 2).
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Sources of Errors

Inequalities with polynomials cannot be directly solved by
transformations.

Important!
One must not simply replace the equality sign “=” in the formula for
quadratic equations by an inequality symbols.

We want to find all solutions of

x2 − 3 x + 2 ≤ 0

Invalid approach: x1,2 ≤ 3
2 ±

√
9
4 − 2 = 3

2 ±
1
2

and thus x ≤ 1 (and x ≤ 2) which would imply “solution” set
L = (−∞, 1].
However, 0 ∈ L but violates the inequality as 2 6≤ 0.
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Inequalities with Polynomials

1. Move all terms on the l.h.s. and obtain an expression of the form
T(x) ≤ 0 (and T(x) < 0, resp.).

2. Compute all roots x1 < . . . < xk of T(x),
i.e., solve equation T(x) = 0 as we would with any polynomial as
described above.

3. These roots decompose the domain into intervals Ij.
These are open if the inequality is strict (with < or >), and closed
otherwise.

In each of these intervals the inequality now holds
either in all or in none of its points.

4. Select some point zj ∈ Ij which is not on the boundary.
If zj satisfies the corresponding strict inequality,
then Ij belongs to the solution set, else none of its points.
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Inequalities with Polynomials

Find all solutions of
x2 − 3 x + 2 ≤ 0 .

The solutions of x2 − 3 x + 2 = 0 are x1 = 1 and x2 = 2.

We obtain three intervals and check by means of three points (0, 3
2 , and

3) whether the inequality is satisfied in each of these:

(−∞, 1] not satisfied: 02 − 3 · 0 + 2 = 2 6≤ 0

[1, 2] satisfied:
( 3

2

)2 − 3 · 3
2 + 2 = − 1

4 < 0

[2, ∞) not satisfied: 32 − 3 · 3 + 2 = 2 6≤ 0

Solution set is L = [1, 2].
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Continuous Terms

The above principle also works for inequalities where all terms are
continuous.

If there is any point where T(x) is not continuous, then we also have to
use this point for decomposing the domain into intervals.

Furthermore, we have to take care when the domain of the inequality is
a union of two or more disjoint intervals.
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Continuous Terms

Find all solutions of inequality

x2 + x− 3
x− 2

≥ 1 .

Its domain is the union of two intervals: (−∞, 2) ∪ (2, ∞).

We find for the solutions of the equation
x2 + x− 3

x− 2
= 1:

x2 + x− 3
x− 2

= 1 ⇔ x2 + x− 3 = x− 2 ⇔ x2 − 1 = 0

and thus x1 = −1, x2 = 1.
So we get four intervals:

(−∞,−1], [−1, 1], [1, 2) and (2, ∞).
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Continuous Terms

We check by means of four points whether the inequality holds in these
intervals:

(−∞,−1] not satisfied: (−2)2+(−2)−3
(−2)−2 = 1

4 6≥ 1

[−1, 1] satisfied: 02−0−3
0−2 = 3

2 > 1

[1, 2) not satisfied: 1.52+1.5−3
1.5−2 = − 3

2 6≥ 1

(2, ∞) satisfied: 32+3−3
3−2 = 9 > 1

Solution set is L = [−1, 1] ∪ (2, ∞).
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Inequalities with Absolute Values

Inequalities with absolute values can be solved by the above procedure.

However, we also can see such an inequality as a system of two (or
more) inequalities:

|x| < 1 ⇔ x < 1 and x > −1

|x| > 1 ⇔ x > 1 or x < −1
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Problem 3.10

Solve the following inequalities:

(a) x3 − 2x2 − 3x ≥ 0

(b) x3 − 2x2 − 3x > 0

(c) x2 − 2x + 1 ≤ 0

(d) x2 − 2x + 1 ≥ 0

(e) x2 − 2x + 6 ≤ 1
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Problem 3.11

Solve the following inequalities:

(a) 7 ≤ |12x + 1|

(b)
x + 4
x + 2

< 2

(c)
3(4− x)

x− 5
≤ 2

(d) 25 < (−2x + 3)2 ≤ 50

(e) 42 ≤ |12x + 6| < 72

(f) 5 ≤ (x + 4)2

|x + 4| ≤ 10
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Summary

I equations and inequalities
I domain and solution set
I transformation into equivalent problem
I possible errors with multiplication and division
I equations with powers and roots
I equations with polynomials and absolute values
I roots of polynomials
I equations with exponents and logarithms
I method for solving inequalities
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Chapter 4

Sequences and Series
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Sequences

A sequence is an enumerated collection of objects in which repetitions
are allowed. These objects are called members or terms of the
sequence.

In this chapter we are interested in sequences of numbers.

Formally a sequence is a special case of a map:

a : N→ R, n 7→ an

Sequences are denoted by
(
an
)∞

n=1or just
(
an
)

for short.

An alternative notation used in literature is
〈

an
〉∞

n=1.
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Sequences

Sequences can be defined

I by enumerating of its terms,

I by a formula, or

I by recursion.
Each term is determined by its predecessor(s).

Enumeration:
(
an
)
=
(
1, 3, 5, 7, 9, . . .

)
Formula:

(
an
)
=
(
2 n− 1

)
Recursion: a1 = 1, an+1 = an + 2
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Graphical Representation

A sequence
(
an
)

can by represented

(1) by drawing tuples (n, an) in the plane, or
an

n

1

1 2 3 4 5 6 7 8 9 10

•

•
• • • • • • • •

( 1
n

)∞
n=1

(2) by drawing points on the number line.

0 1
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Properties

Properties of a sequence
(
an
)
:

Property Definition

monotonically increasing an+1 ≥ an for all n ∈N

monotonically decreasing an+1 ≤ an

alternating an+1 · an < 0 i.e. the sign changes

bounded |an| ≤ M for some M ∈ R

Sequence
( 1

n

)
is

I monotonically decreasing
I bounded, as for all n ∈N, |an| = |1/n| ≤ M = 1

(we could also choose M = 1000)
I but not alternating.
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Problem 4.1

Draw the first 10 elements of the following sequences.
Which of these sequences are monotone, alternating, or bounded?

(a)
(
n2)∞

n=1

(b)
(
n−2)∞

n=1

(c)
(

sin(π/n)
)∞

n=1

(d) a1 = 1, an+1 = 2an

(e) a1 = 1, an+1 = − 1
2 an
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Series

The sum of the first n terms of sequence
(
ai
)∞

i=1

sn =
n

∑
i=1

ai

is called the n-th partial sum of the sequence.

The sequence
(
sn
)

of all partial sums is called the series of the
sequence.

The series of sequence
(
ai
)
=
(
2 i− 1

)
is

(
sn
)
=

(
n

∑
i=1

(2 i− 1)

)
=
(
1, 4, 9, 16, 25, . . .

)
=
(
n2) .
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Problem 4.2

Compute the first 5 partial sums of the following sequences:

(a) 2n

(b)
1

2 + n

(c) 2n/10
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Arithmetic Sequence

Formula and recursion:

an = a1 + (n− 1) · d an+1 = an + d

Differences of consecutive terms are constant:

an+1 − an = d

Each term is the arithmetic mean of its neighboring terms:

an = 1
2 (an+1 + an−1)

Arithmetic series:

sn = n
2 (a1 + an)
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Geometric Sequence

Formula and recursion:

an = a1 · qn−1 an+1 = an · q

Ratios of consecutive terms are constant:

an+1

an
= q

Each term is the geometric mean of its neighboring terms:

an =
√

an+1 · an−1

Geometric series:

sn = a1 ·
qn − 1
q− 1

for q 6= 1
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Sources of Errors

Indices of sequences may also start with 0 (instead of 1).

Beware!
Formulæ then are slightly changed.

Arithmetic sequence:

an = a0 + n · d and sn = n+1
2 (a0 + an)

Geometric sequence:

an = a0 · qn and sn = a0 ·
qn+1 − 1

q− 1
(for q 6= 1)
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Problem 4.3

We are given a geometric sequence
(
an
)

with a1 = 2 and relative
change 0.1, i.e., each term of the sequence is increased by 10%
compared to its predecessor.
Give formula and term a7.
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Problem 4.4

Compute the first 10 partial sums of the arithmetic series for

(a) a1 = 0 and d = 1,

(b) a1 = 1 and d = 2.
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Problem 4.5

Compute ∑N
n=1 an for

(a) N = 7 and an = 3n−2

(b) N = 7 and an = 2(−1/4)n
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Applications of Geometric Sequences

See your favorite book /course on finance and accounting.
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Summary

I sequence
I formula and recursion
I series and partial sums
I arithmetic and geometric sequence
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Chapter 5

Real Functions
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Real Function

Real functions are maps where both domain and codomain are
(unions of) intervals in R.

Often only function terms are given but neither domain nor codomain.
Then domain and codomain are implicitly given as following:

I Domain of the function is the largest sensible subset of the domain
of the function terms (i.e., where the terms are defined).

I Codomain is the image (range) of the function

f (D) = {y | y = f (x) for an x ∈ D f } .
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Implicit Domain

Production function f (x) =
√

x is an abbreviation for

f : [0, ∞)→ [0, ∞), x 7→ f (x) =
√

x

(There are no negative amounts of goods.
Moreover,

√
x is not real for x < 0.)

Its derivative f ′(x) = 1
2
√

x is an abbreviation for

f ′ : (0, ∞)→ (0, ∞), x 7→ f ′(x) =
1

2
√

x

(Note the open interval (0, ∞); 1
2
√

x is not defined for x = 0.)
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Problem 5.1

Give the largest possible domain of the following functions?

(a) h(x) = x−1
x−2

(b) D(p) = 2p+3
p−1

(c) f (x) =
√

x− 2

(d) g(t) = 1√
2t−3

(e) f (x) = 2−
√

9− x2

(f) f (x) = 1− x3

(g) f (x) = 2− |x|
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Problem 5.2

Give the largest possible domain of the following functions?

(a) f (x) = |x−3|
x−3

(b) f (x) = ln(1 + x)

(c) f (x) = ln(1 + x2)

(d) f (x) = ln(1− x2)

(e) f (x) = exp(−x2)

(f) f (x) = (ex − 1)/x
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Graph of a Function

Each tuple (x, f (x)) corresponds to a point in the xy-plane.
The set of all these points forms a curve called the graph of function f .

G f = {(x, y) | x ∈ D f , y = f (x)}

Graphs can be used to visualize functions.
They allow to detect many properties of the given function.

x

f (x)

0 1 2 3 4 5
0

1

2

3

4

5

f (x) = x− ln(x)
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How to Draw a Graph

1. Get an idea about the possible shape of the graph. One should be
able to sketch graphs of elementary functions by heart.

2. Find an appropriate range for the x-axis.
(It should show a characteristic detail of the graph.)

3. Create a table of function values and draw the corresponding
points into the xy-plane.

If known, use characteristic points like local extrema or
inflection points.

4. Check if the curve can be constructed from the drawn points.
If not add adapted points to your table of function values.

5. Fit the curve of the graph through given points in a proper way.
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How to Draw a Graph

x

f (x)

0 1 2 3 4 5
0

1

2

3

4

5

Graph of function

f (x) = x− ln x

Table of values:

x f (x)
0 ERROR
1 1
2 1.307
3 1.901
4 2.614
5 3.391
0.5 1.193
0.25 1.636
0.1 2.403
0.05 3.046
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Sources of Errors

Most frequent errors when drawing function graphs:

I Table of values is too small:
It is not possible to construct the curve from the computed function
values.

I Important points are ignored:
Ideally extrema and inflection points should be known and used.

I Range for x and y-axes not suitable:
The graph is tiny or important details vanish in the “noise” of
handwritten lines (or pixel size in case of a computer program).
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Sources of Errors

Graph of function f (x) = 1
3 x3 − x in interval [−2, 2]:

−2 −1 1 2

−1

1Wrong!

−2 −1 1 2

−1

1
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Sources of Errors

Graph of f (x) = x3 has slope 0 in x = 0:

−2 −1 1 2

−2

−1

1

2

Wrong!

−2 −1 1 2

−2

−1

1

2
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Sources of Errors

Function f (x) = exp( 1
3 x3 + 1

2 x2) has a local maximum in x = −1:

−3 −2 −1 1 2 3

10

50

100

Wrong!

−3 −2 −1 1 2 3

1

5
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Sources of Errors

Graph of function f (x) = 1
3 x3 − x in interval [−2, 2]:

−10 −5 5 10

−10

−5

5

10

Wrong!

−2 −1 1 2

−1

1
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Sources of Errors

Graph of function f (x) = 1
3 x3 − x in interval [0, 2]: (not in [−2, 2]!)

−2 −1 1 2

−1

1Wrong!

−2 −1 1 2

−1

1
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Extrema and Inflection Points

Graph of function f (x) = 1
15 (3x5 − 20x3):

−2 −1 1 2

−5

−1

1

5 inflection points
maximum

minimum
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Sources of Errors

It is important that one already has an idea of the shape of the function
graph before drawing the curve.

Even a graph drawn by means of a computer program can differ
significantly from the true curve.

1

−1

0

1

f (x) = sin( 1
x )
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Sources of Errors

f (x) = sin( 1
x )

0.001

−1

0

1
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Sketch of a Function Graph

Often a sketch of the graph is sufficient. Then the exact function values
are not so important. Axes may not have scales.

However, it is important that the sketch clearly shows all characteristic
details of the graph (like extrema or important function values).

Sketches can also be drawn like a caricature:
They stress prominent parts and properties of the function.
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Piece-wise Defined Functions

The function term can be defined differently in subintervals of the
domain.

At the boundary points of these subintervals we have to mark which
points belong to the graph and which do not:

• (belongs) and ◦ (does not belong).

x

f (x)

−1 1 2

1

2

f (x) =


1, for x < 0,

1− x2

2 , for 0 ≤ x < 1,

x, for x ≥ 1.

Josef Leydold – Bridging Course Mathematics – WS 2023/24 5 – Real Functions – 19 / 67



Problem 5.3

Draw the graph of function

f (x) = −x4 + 2x2

in interval [−2, 2].
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Problem 5.4

Draw the graph of function

f (x) = e−x4+2x2

in interval [−2, 2].
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Problem 5.5

Draw the graph of function

f (x) =
x− 1
|x− 1|

in interval [−2, 2].
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Problem 5.6

Draw the graph of function

f (x) =
√
|1− x2|

in interval [−2, 2].
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Bijectivity

Recall that each argument has exactly one image and that the number
of preimages of an element in the codomain can vary.
Thus we can characterize maps by their possible number of preimages.

I A map f is called one-to-one (or injective), if each element in the
codomain has at most one preimage.

I It is called onto (or surjective), if each element in the codomain
has at least one preimage.

I It is called bijective, if it is both one-to-one and onto, i.e.,
if each element in the codomain has exactly one preimage.

Also recall that a function has an inverse if and only if it is one-to-one
and onto (i.e., bijective).

Josef Leydold – Bridging Course Mathematics – WS 2023/24 5 – Real Functions – 24 / 67



A Simple Horizontal Test

How can we determine whether a real function is one-to-one or onto?
I.e., how many preimage may a y ∈W f have?

(1) Draw the graph of the given function.

(2) Mark some y ∈W on the y-axis and draw a line parallel to the
x-axis (horizontal) through this point.

(3) The number of intersection points of horizontal line and graph
coincides with the number of preimages of y.

(4) Repeat Steps (2) and (3) for a representative set of y-values.

(5) Interpretation: If all horizontal lines intersect the graph in
(a) at most one point, then f is one-to-one;
(b) at least one point, then f is onto;
(c) exactly one point, then f is bijective.
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Example

−1 1 2

1

2

3

4

5
f : [−1, 2]→ R, x 7→ x2

I is not one-to-one;
I is not onto.

f : [0, 2]→ R, x 7→ x2

I is one-to-one;
I is not onto.

f : [0, 2]→ [0, 4], x 7→ x2

I is one-to-one and onto.

Beware! Domain and codomain
are part of the function!
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Problem 5.7

Draw the graphs of the following functions and determine whether these
functions are one-to-one or onto (or both).

(a) f : [−2, 2]→ R, x 7→ 2 x + 1

(b) f : R \ {0} → R, x 7→ 1
x

(c) f : R→ R, x 7→ x3

(d) f : [2, 6]→ R, x 7→ (x− 4)2 − 1

(e) f : [2, 6]→ [−1, 3], x 7→ (x− 4)2 − 1

(f) f : [4, 6]→ [−1, 3], x 7→ (x− 4)2 − 1

Josef Leydold – Bridging Course Mathematics – WS 2023/24 5 – Real Functions – 27 / 67



Function Composition

Let f : D f →W f and g : Dg →Wg be functions with W f ⊆ Dg.

g ◦ f : D f →Wg, x 7→ (g ◦ f )(x) = g( f (x))

is called composite function.
(read: “g composed with f ”, “g circle f ”, or “g after f ”)

Let g : R→ [0, ∞), x 7→ g(x) = x2,

f : R→ R, x 7→ f (x) = 3x− 2.

Then (g ◦ f ) : R→ [0, ∞),
x 7→ (g ◦ f )(x) = g( f (x)) = g(3x− 2) = (3x− 2)2

and ( f ◦ g) : R→ R,
x 7→ ( f ◦ g)(x) = f (g(x)) = f (x2) = 3x2 − 2
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Problem 5.8

Let f (x) = x2 + 2x− 1 and g(x) = 1 + |x| 32 .

Compute

(a) ( f ◦ g)(4)

(b) ( f ◦ g)(−9)

(c) (g ◦ f )(0)

(d) (g ◦ f )(−1)
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Problem 5.9

Determine f ◦ g and g ◦ f .
What are the domains of f , g, f ◦ g and g ◦ f ?

(a) f (x) = x2, g(x) = 1 + x

(b) f (x) =
√

x + 1, g(x) = x2

(c) f (x) = 1
x+1 , g(x) =

√
x + 1

(d) f (x) = 2 +
√

x, g(x) = (x− 2)2

(e) f (x) = x2 + 2, g(x) = x− 3

(f) f (x) = 1
1+x2 , g(x) = 1

x

(g) f (x) = ln(x), g(x) = exp(x2)

(h) f (x) = ln(x− 1), g(x) = x3 + 1
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Inverse Function

If f : D f →W f is a bijection, then there exists a so called
inverse function

f−1 : W f → D f , y 7→ x = f−1(y)

with the property

f−1 ◦ f = id and f ◦ f−1 = id

We get the function term of the inverse by interchanging the roles of
argument x and image y.
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Example

We get the term for the inverse function by expressing x as function of y

We need the inverse function of

y = f (x) = 2x− 1

By rearranging we obtain

y = 2x− 1 ⇔ y + 1 = 2x ⇔ 1
2
(y + 1) = x

Thus the term of the inverse function is f−1(y) = 1
2 (y + 1).

Arguments are usually denoted by x. So we write

f−1(x) =
1
2
(x + 1) .

The inverse function of f (x) = x3 is f−1(x) = 3
√

x.
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Geometric Interpretation

Interchanging of x and y corresponds to reflection across the median
between x and y-axis.

median
f (x)

(x, y)

f−1(x)

(y, x)

(Graph of function f (x) = x3 and its inverse.)
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Problem 5.10

Find the inverse function of

f (x) = ln(1 + x)

Draw the graphs of f and f−1.

Josef Leydold – Bridging Course Mathematics – WS 2023/24 5 – Real Functions – 34 / 67



Linear Function and Absolute Value

I Linear function

f (x) = k x + d

k . . . slope
d . . . intercept

d

k

1

I Absolute value (or modulus)

f (x) = |x| =
{

x for x ≥ 0
−x for x < 0
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Problem 5.11

Draw the graph of function

f (x) = 2x + 1

in interval [−2, 2].

Hint: Two points and a ruler are sufficient.
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Power Function

Power function with integer exponents:

f : x 7→ xn, n ∈ Z D =

{
R for n ≥ 0
R \ {0} for n < 0

−1

1

−1

1

n = 1n = 3

n = −1
n = −3

−1 1

1
n = 0

n = 2
n = 4

n = −2
n = −4
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Power Function

Power function with real exponents:

f : x 7→ xα α ∈ R D =

{
[0, ∞) for α ≥ 0
(0, ∞) for α < 0

1

1

α = 1α > 1α = ∞

0 < α < 1
α = 0

α < 0
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Problem 5.12

Draw (sketch) the graph of power function

f (x) = xn

in interval [0, 2] for

n = −4,−2,−1,− 1
2 , 0, 1

4 , 1
2 , 1, 2, 3, 4 .
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Polynomial and Rational Functions

I Polynomial of degree n:

f (x) =
n

∑
k=0

ak xk

ai ∈ R, for i = 1, . . . , n, an 6= 0.

I Rational Function:

D → R, x 7→ p(x)
q(x)

p(x) and q(x) are polynomials
D = R \ {roots of q}
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Problem 5.13

Draw (sketch) the graphs of the following functions in interval [−2, 2]:

(a) f (x) =
x

x2 + 1

(b) f (x) =
x

x2 − 1

(c) f (x) =
x2

x2 + 1

(d) f (x) =
x2

x2 − 1
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Exponential Function

I Exponential function:

R→ R+, x 7→ exp(x) = ex

e = 2, 7182818 . . . Euler’s number

I Generalized exponential function:

R→ R+, x 7→ ax a > 0

1

1

a
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Problem 5.14

Draw (sketch) the graph of the following functions:

(a) f (x) = ex

(b) f (x) = 3x

(c) f (x) = e−x

(d) f (x) = ex2

(e) f (x) = e−x2

(f) f (x) = e−1/x2

(g) cosh(x) = (ex + e−x)/2

(h) sinh(x) = (ex − e−x)/2
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Logarithm Function

I Logarithm:

Inverse of exponential function.

R+ → R, x 7→ log(x) = ln(x)

I Generalized Logarithm to basis a:

R+ → R, x 7→ loga(x)

1

1

a
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Problem 5.15

Draw (sketch) the graph of the following functions:

(a) f (x) = ln(x)

(b) f (x) = ln(x + 1)

(c) f (x) = ln
( 1

x

)
(d) f (x) = log10(x)

(e) f (x) = log10(10x)

(f) f (x) = (ln(x))2
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Trigonometric Functions

I Sine:

R→ [−1, 1], x 7→ sin(x)

I Cosine:

R→ [−1, 1], x 7→ cos(x)

1

−1

π
2

π 3π
2

2π

sin(x)

cos(x)

Beware!
These functions use radian for their arguments, i.e., angles are
measured by means of the length of arcs on the unit circle and not by
degrees. A right angle then corresponds to x = π/2.
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Sine and Cosine

α

1
sin α

cos α

(cos α, sin α)
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Sine and Cosine

Important formulas:

Periodic: For all k ∈ Z,

sin(x + 2kπ) = sin(x)

cos(x + 2kπ) = cos(x)

Relation between sin and cos:

sin2(x) + cos2(x) = 1
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Problem 5.16

Assign the following functions to the graphs 1 – 18 :

(a) f (x) = x2

(b) f (x) = x
x+1

(c) f (x) = 1
x+1

(d) f (x) =
√

x

(e) f (x) = x3 − 3x2 + 2x

(f) f (x) =
√
|2x− x2|

(g) f (x) = −x2 − 2x

(h) f (x) = (x3 − 3x2 + 2x)sgn(1− x) + 1
(sgn(x) = 1 if x ≥ 0 and −1 otherwise.)
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Problem 5.16 / 2

(i) f (x) = ex

(j) f (x) = ex/2

(k) f (x) = e2x

(l) f (x) = 2x

(m) f (x) = ln(x)

(n) f (x) = log10(x)

(o) f (x) = log2(x)

(p) f (x) =
√

4− x2

(q) f (x) = 1− |x|

(r) f (x) = ∏2
k=−1(x + k)
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Problem 5.16 / 3

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

1

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

2

−6 −4 −2 2 4 6

−3
−2
−1

1
2
3

3

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

4

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

5

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

6
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Problem 5.16 / 4

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

7

−1.5−1−0.5 0.5 1 1.5

−3
−2
−1

1
2
3

8

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

9

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

10

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

11

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

12
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Problem 5.16 / 5

−4−3−2−1 1 2 3 4

−3
−2
−1

1
2
3

13

−3 −2 −1 1 2 3

−4

−2

2

4
14

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

15

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

16

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

17

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

18
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Multivariate Function

A function of several variables (or multivariate function)
is a function with more than one argument which evaluates to a real
number.

f : Rn → R, x 7→ f (x) = f (x1, x2, . . . , xn)

Arguments xi are the variables of function f .

f (x, y) = exp(−x2 − 2y2)

is a bivariate function in variables x and y.

p(x1, x2, x3) = x2
1 + x1x2 − x2

2 + 5x1x3 − 2x2x3

is a function in the three variables x1, x2, and x3.
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Graphs of Bivariate Functions

Bivariate functions (i.e., of two variables) can be visualized by its graph:

G f = {(x, y, z) | z = f (x, y) for x, y ∈ R}

It can be seen as the two-dimensional surface of a three-dimensional
landscape.

The notion of graph exists analogously for functions of three or more
variables.

G f = {(x, y) | y = f (x) for an x ∈ Rn}

However, it can hardly be used to visualize such functions.
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Graphs of Bivariate Functions

f (x, y) = e−x2−2y2

x

y

z

x

y

z
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Contour Lines of Bivariate Functions

Let c ∈ R be fixed. Then the set of all points (x, y) in the real plane
with f (x, y) = c is called contour line of function f .

Function f is constant on each of its contour lines.

Other names:
I Indifference curve
I Isoquant
I Level set (is a generalization of a contour line for functions of any

number of variables.)

A collection of contour lines can be seen as a kind of “hiking map” for
the “landscape” of the function.
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Contour Lines of Bivariate Functions

x

y

z

x

y

graph contour lines

f (x, y) = e−x2−2y2
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Problem 5.17

In a simplistic model we are given utility function U of a household w.r.t.
two complementary goods (e.g. left and right shoes):

U(x1, x2) =
√

min{x1, x2}, x1, x2 ≥ 0.

(a) Sketch the graph of U.

(b) Sketch the contour lines for U = U0 = 1 and U = U1 = 2.

Josef Leydold – Bridging Course Mathematics – WS 2023/24 5 – Real Functions – 59 / 67



Indifference Curves

Indifference curves are determined by an equation

F(x, y) = 0

We can (try to) draw such curves by expressing one of the variables as
function of the other one
(i.e., solve the equation w.r.t. one of the two variables).

So we may get an univariate function. The graph of this function
coincides with the indifference curve.

We then draw the graph of this univariate function by the method
described above.
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Cobb-Douglas-Function

We want to draw indifference curve

x
1
3 y

2
3 = 1 , x, y > 0.

Expressing x by y yields:

x =
1
y2

Alternatively we can express y by x:

y =
1√
x

x

y

0 1 2 3 4
0

1

2

3

4
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CES-Function

We want to draw indifference curve(
x

1
2 + y

1
2

)2
= 4 , x, y > 0.

Expressing x by y yields:

y =
(

2− x
1
2

)2

(Take care about the domain of this
curve!)

x

y

0 1 2 3 4
0

1

2

3

4
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Problem 5.18

Draw the following indifference curves:

(a) x + y2 − 1 = 0

(b) x2 + y2 − 1 = 0

(c) x2 − y2 − 1 = 0
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Paths

A function

s : R→ Rn, t 7→ s(t) =


s1(t)

...

sn(t)


is called a path in Rn.
Variable t is often interpreted as time.

[0, ∞)→ R2, t 7→
(

cos(t)
sin(t)

)
x1

x2

t = 0

t = 13
12 π
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Problem 5.19

Sketch the graphs of the following paths:

(a) s : [0, ∞)→ R2, t 7→
(

cos(t)
sin(t)

)

(b) s : [0, ∞)→ R2, t 7→
(

cos(2πt)
sin(2πt)

)

(c) s : [0, ∞)→ R2, t 7→
(

t cos(2πt)
t sin(2πt)

)
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Vector-valued Function

Generalized vector-valued function:

f : Rn → Rm, x 7→ y = f(x) =


f1(x)

...

fm(x)

 =


f1(x1, . . . , xn)

...

fm(x1, . . . , xn)


I Univariate functions:

R→ R, x 7→ y = x2

I Multivariate functions:
R2 → R, x 7→ y = x2

1 + x2
2

I Paths:
[0, 1)→ Rn, s 7→ (s, s2)t

I Linear maps:
Rn → Rm, x 7→ y = Ax A . . . m× n-Matrix
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Summary

I real functions
I implicit domain
I graph of a function
I sources of errors
I piece-wise defined functions
I one-to-one and onto
I function composition
I inverse function
I elementary functions
I multivariate functions
I paths
I vector-valued functions
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Chapter 6

Limits
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Limit of a Sequence

Consider the following sequence of numbers

(an)∞
n=1 =

(
(−1)n 1

n

)∞
n=1 = (−1, 1

2 ,− 1
3 , 1

4 ,− 1
5 , 1

6 , . . .)

0a1 a2a3 a4a5

The terms of this sequence tend to 0 with increasing n.
We say that sequence

(
an
)

converges to 0.

We write

(an)→ 0 or lim
n→∞

an = 0

(read: “limit of an for n tends to ∞”)
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Limit of a Sequence / Definition

Definition:
A number a ∈ R is a limit of sequence

(
an
)
, if there exists an N for

every interval (a− ε, a + ε) such that an ∈ (a− ε, a + ε) for all n ≥ N;
i.e., all terms following aN are contained in this interval.

Equivalent Definition: A sequence
(
an
)

converges to limit a ∈ R if
there exists an N for every ε > 0 such that |an − a| < ε for all n ≥ N.

[Mathematicians like to use ε for a very small positive number.]

A sequence that has a limit is called convergent.
It converges to its limit.

It can be shown that a limit of a sequence is uniquely defined
(if it exists).

A sequence without a limit is called divergent.
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Limit of a Sequence / Example

Sequence(
an
)∞

n=1 =
(
(−1)n 1

n

)∞
n=1 =

(
− 1, 1

2 ,− 1
3 , 1

4 ,− 1
5 , 1

6 , . . .
)

has limit a = 0.

For example, if we set ε = 0.3, then all terms following a4 are contained
in interval (a− ε, a + ε).

If we set ε = 1
1 000 000 , then all terms starting with the 1 000 001-st term

are contained in the interval.

Thus

lim
n→∞

(−1)n

n
= 0 .
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Limit of a Sequence / Example

Sequence
(
an
)∞

n=1 =
( 1

2n

)∞
n=1 =

( 1
2 , 1

4 , 1
8 , 1

16 , . . .
)

converges to 0:

lim
n→∞

an = 0

Sequence
(
bn
)∞

n=1 =
( n−1

n+1

)∞
n=1 =

(
0, 1

3 , 2
4 , 3

5 , 4
6 , 5

7 , . . .
)

is convergent:

lim
n→∞

bn = 1

Sequence
(
cn
)∞

n=1 =
(
(−1)n)∞

n=1 =
(
− 1, 1,−1, 1,−1, 1, . . .

)
is divergent.

Sequence
(
dn
)∞

n=1 =
(
2n)∞

n=1 =
(
2, 4, 8, 16, 32, . . .

)
is divergent,

but tends to ∞. By abuse of notation we write:

lim
n→∞

dn = ∞
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Limits of Important Sequences

lim
n→∞

na =


0 for a < 0
1 for a = 0
∞ for a > 0

lim
n→∞

qn =


0 for |q| < 1
1 for q = 1
∞ for q > 1
@ for q ≤ −1

lim
n→∞

na

qn =


0 for |q| > 1
∞ for 0 < q < 1
@ for −1 < q < 0

(|q| 6∈ {0, 1})
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Rules for Limits

Let
(
an
)∞

n=1 and
(
bn
)∞

n=1 be convergent sequences with lim
n→∞

an = a

and lim
n→∞

bn = b, resp., and let
(
cn
)∞

n=1 be a bounded sequence.

Then

(1) lim
n→∞

(k · an + d) = k · a + d

(2) lim
n→∞

(an + bn) = a + b

(3) lim
n→∞

(an · bn) = a · b

(4) lim
n→∞

an

bn
=

a
b

for b 6= 0

(5) lim
n→∞

(an · cn) = 0 provided a = 0

(6) lim
n→∞

ak
n = ak
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Rules for Limits

lim
n→∞

(
2 +

3
n2

)
= 2 + 3 lim

n→∞
n−2︸ ︷︷ ︸

=0

= 2 + 3 · 0 = 2

lim
n→∞

(2−n · n−1) = lim
n→∞

n−1

2n = 0

lim
n→∞

1 + 1
n

2− 3
n2

=
lim
n→∞

(
1 + 1

n

)
lim
n→∞

(
2− 3

n2

) =
1
2

lim
n→∞

sin(n)︸ ︷︷ ︸
bounded

· 1
n2︸︷︷︸
→0

= 0
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Rules for Limits / Rational Terms

Important!
When we apply these rules we have to take care that we never obtain
expressions of the form 0

0 , ∞
∞ , or 0 ·∞.

These expressions are not defined!

lim
n→∞

3n2 + 1
n2 − 1

=
lim
n→∞

3n2 + 1

lim
n→∞

n2 − 1
=

∞
∞

(not defined)

Trick: Reduce the fraction by the largest power in its denominator.

lim
n→∞

3n2 + 1
n2 − 1

= lim
n→∞

6n2

6n2 ·
3 + n−2

1− n−2 =
lim
n→∞

3 + n−2

lim
n→∞

1− n−2 =
3
1
= 3
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Euler’s Number

lim
n→∞

(
1 +

1
n

)n

= e = 2.7182818284590 . . .

This limit is very important in many applications including finance
(continuous compounding).

lim
n→∞

(
1 +

x
n

)n
= lim

n→∞

(
1 +

1
n/x

)n

= lim
m→∞

(
1 +

1
m

)mx (
m =

n
x

)
=

(
lim

m→∞

(
1 +

1
m

)m)x

= ex

Josef Leydold – Bridging Course Mathematics – WS 2023/24 6 – Limits – 10 / 47



Problem 6.1

Compute the following limits:

(a) lim
n→∞

(
7 +

(
1
2

)n)

(b) lim
n→∞

(
2n3 − 6n2 + 3n− 1

7n3 − 16

)
(c) limn→∞

(
n2 − (−1)nn3)

(d) lim
n→∞

(
n2 + 1
n + 1

)

(e) lim
n→∞

(
n mod 10
(−2)n

)
a mod b is the remainder after integer division, e.g., 17 mod 5 = 2 and 12 mod 4 = 0.
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Problem 6.2

Compute the following limits:

(a) lim
n→∞

(
1 +

1
n

)nx

(b) lim
n→∞

(
1 +

x
n

)n

(c) lim
n→∞

(
1 +

1
nx

)n
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Limit of a Function

What happens with the value of a function f , if the argument x tends to
some value x0 (which need not belong to the domain of f )?

Function

f (x) =
x2 − 1
x− 1

is not defined in x = 1.

By factorizing and reducing we get
function

g(x) = x + 1 =

{
f (x), if x 6= 1
2, if x = 1

x

f (x)

−1 1 2

1

2

3
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Limit of a Function

Suppose we approach argument x0 = 1.

Then the value of function f (x) =
x2 − 1
x− 1

tends to 2.

We say:
f (x) converges to 2 when x tends to 1

and write:

lim
x→1

x2 − 1
x− 1

= 2

x

f (x)

−1 1 2

1

2

3
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Limit of a Function

Formal definition:
If sequence

(
f (xn))∞

n=1 of function values converges to number y0 for
every convergent sequence

(
xn)∞

n=1 → x0 of arguments,
then y0 is called the limit of f as x approaches x0.

We write

lim
x→x0

f (x) = y0 or f (x)→ y0 for x → x0

x0 need not belong to the domain of f .
y0 need not belong to the codomain of f .
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Rules for Limits

Rules for limits of functions are analogous to rules for sequences.

Let lim
x→x0

f (x) = a and lim
x→x0

g(x) = b.

(1) lim
x→x0

(c · f (x) + d) = c · a + d

(2) lim
x→x0

( f (x) + g(x)) = a + b

(3) lim
x→x0

( f (x) · g(x)) = a · b

(4) lim
x→x0

f (x)
g(x)

=
a
b

for b 6= 0

(5) lim
x→x0

( f (x))k = ak for k ∈N
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How to Find Limits?

The following recipe is suitable for “simple” functions:
1. Draw the graph of the function.
2. Mark x0 on the x-axis.
3. Follow the graph with your pencil until we reach x0 starting from

right of x0.
4. The y-coordinate of your pencil in this point is then the so called

right-handed limit of f as x approaches x0 (from above):
lim

x→x+0
f (x). (Other notations: lim

x↓x0
f (x) or lim

x↘x0
f (x))

5. Analogously we get the left-handed limit of f as x approaches x0
(from below): lim

x→x−0
f (x).

6. If both limits coincide, then the limit exists and we have

lim
x→x0

f (x) = lim
x→x−0

f (x) = lim
x→x+0

f (x)
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How to Find Limits?

x

f (x)

−1 1 2

1

2

lim
x→1−

f (x)

lim
x→1+

f (x) f (x) =


1, for x < 0
1− x2

2 , for 0 ≤ x < 1
x
2 + 1, for x ≥ 1

0.5 = limx→1− f (x) 6= limx→1+ f (x) = 1.5
i.e., the limit of f at x0 = 1 does not exist.

The limits at other points, however, do exist,
e.g. lim

x→0
f (x) = 1.
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How to Find Limits?

x

f (x)

−1 1 2

1

2

f (x) =


1, for x < 0
0, for x = 0
1− x2

2 , for 0 < x < 1
x
2 + 1, for x ≥ 1

The only difference is to above is the function value at x0 = 0.
Nevertheless, the limit does exist:

lim
x→0−

f (x) = 1 = lim
x→0+

f (x) ⇒ lim
x→0

f (x) = 1 .

Josef Leydold – Bridging Course Mathematics – WS 2023/24 6 – Limits – 19 / 47



Unbounded Function

It may happen that f (x) tends to ∞ (or −∞) if x tends to x0.

We then write (by abuse of notation):

lim
x→x0

f (x) = ∞

x

f (x)

lim
x→0

1
x2 = ∞
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Limit as x→ ∞

By abuse of language we can define the limit analogously for x0 = ∞

and x0 = −∞, resp.

Limit
lim
x→∞

f (x)

exists, if f (x) converges whenever x tends to infinity.

lim
x→∞

1
x2 = 0 and lim

x→−∞

1
x2 = 0
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Problem 6.3

Draw the graph of function

f (x) =


− x2

2 , for x ≤ −2,
x + 1, for −2 < x < 2,
x2

2 , for x ≥ 2.

and determine lim
x→x+0

f (x), lim
x→x−0

f (x), and lim
x→x0

f (x)

for x0 = −2, 0 and 2:

lim
x→−2+

f (x) lim
x→−2−

f (x) lim
x→−2

f (x)

lim
x→0+

f (x) lim
x→0−

f (x) lim
x→0

f (x)

lim
x→2+

f (x) lim
x→2−

f (x) lim
x→2

f (x)
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Problem 6.4

Determine the following left-handed and right-handed limits:

(a) lim
x→0−

f (x)

lim
x→0+

f (x)

for f (x) =

{
1, for x 6= 0,
0, for x = 0.

(b) lim
x→0−

1
x

lim
x→0+

1
x

(c) lim
x→1−

x

lim
x→1+

x
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Problem 6.5

Determine the following limits:

(a) lim
x→∞

1
x+1

(b) lim
x→0

x2

(c) lim
x→∞

ln(x)

(d) lim
x→0

ln |x|

(e) lim
x→∞

x+1
x−1
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Problem 6.6

Determine

(a) lim
x→1+

x3/2−1
x3−1

(b) lim
x→−2−

√
|x2−4|2
x+2

(c) lim
x→0−
bxc

(d) lim
x→1+

x−1√
x−1

Remark: bxc is the largest integer less than or equal to x.
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Problem 6.7

Determine

(a) lim
x→2+

2x2−3x−2
|x−2|

(b) lim
x→2−

2x2−3x−2
|x−2|

(c) lim
x→−2+

|x+2|3/2

2+x

(d) lim
x→1−

x+1
x2−1

(e) lim
x→−7+

2|x+7|
x2+4x−21
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Problem 6.8

Compute

lim
h→0

f (x + h)− f (x)
h

for

(a) f (x) = x

(b) f (x) = x2

(c) f (x) = x3

(d) f (x) = xn, for n ∈N.
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L’Hôpital’s Rule

Suppose we want to compute

lim
x→x0

f (x)
g(x)

and find
lim

x→x0
f (x) = lim

x→x0
g(x) = 0 (or = ±∞)

However, expressions like 0
0 or ∞

∞ are not defined.

(You must not reduce the fraction by 0 or ∞!)

Josef Leydold – Bridging Course Mathematics – WS 2023/24 6 – Limits – 28 / 47



L’Hôpital’s Rule

If lim
x→x0

f (x) = lim
x→x0

g(x) = 0 (or = ∞ or = −∞), then

lim
x→x0

f (x)
g(x)

= lim
x→x0

f ′(x)
g′(x)

Assumption: f and g are differentiable in x0.

This formula is called l’Hôpital’s rule (also written as l’Hospital’s rule).
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L’Hôpital’s Rule

lim
x→2

x3 − 7 x + 6
x2 − x− 2

= lim
x→2

3 x2 − 7
2 x− 1

=
5
3

lim
x→∞

ln x
x2 = lim

x→∞

1
x

2 x
= lim

x→∞

1
2 x2 = 0

lim
x→0

x− ln(1 + x)
x2 = lim

x→0

1− (1 + x)−1

2 x
= lim

x→0

(1 + x)−2

2
=

1
2
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L’Hôpital’s Rule

L’Hôpital’s rule can be applied iteratively:

lim
x→0

ex − x− 1
x2 = lim

x→0

ex − 1
2x

= lim
x→0

ex

2
=

1
2
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Problem 6.9

Compute the following limits:

(a) lim
x→4

x2 − 2 x− 8
x3 − 2 x2 − 11 x + 12

(b) lim
x→−1

x2 − 2 x− 8
x3 − 2 x2 − 11 x + 12

(c) lim
x→2

x3 − 5 x2 + 8 x− 4
x3 − 3 x2 + 4

(d) lim
x→0

1− cos(x)
x2

(e) lim
x→0+

x ln(x)

(f) lim
x→∞

x ln(x)
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Problem 6.10

If we apply l’Hôpital’s rule on the following limit we obtain

lim
x→1

x3 + x2 − x− 1
x2 − 1

= lim
x→1

3 x2 + 2 x− 1
2 x

= lim
x→1

6 x + 2
2

= 4 .

However, the correct value for the limit is 2.

Why does l’Hôpital’s rule not work for this problem?

How do you get the correct value?
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Continuous Functions

We may observe that we can draw the graph of a function without
removing the pencil from paper. We call such functions continuous.

For some other functions we have to remove the pencil. At such points
the function has a jump discontinuity.

−2 −1 1 2

−1

1

−1 1 2

1

2

continuous jump discontinuity at x = 1
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Continuous Functions

Formal Definition:

Function f : D → R is called continuous at x0 ∈ D, if

1. lim
x→x0

f (x) exists, and

2. lim
x→x0

f (x) = f (x0) .

The function is called continuous if it is continuous at all points of its
domain.

Note that continuity is a local property of a function.
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Discontinuous Function

x

f (x)

−1 1 2

1

2

lim
x→1−

f (x)

lim
x→1+

f (x) f (x) =


1, for x < 0
1− x2

2 , for 0 ≤ x < 1
x
2 + 1, for x ≥ 1

Not continuous in x = 1 as lim
x→1

f (x) does not exist.

So f is not a continuous function.

However, it is still continuous in all x ∈ R \ {1}.
For example at x = 0, lim

x→0
f (x) does exist and lim

x→0
f (x) = 1 = f (0).
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Discontinuous Function

x

f (x)

−1 1 2

1

2

f (x) =


1, for x < 0
0, for x = 0
1− x2

2 , for 0 < x < 1
x
2 + 1, for x ≥ 1

Not continuous in all x = 0, either.
lim
x→0

f (x) = 1 does exist but lim
x→0

f (x) 6= f (0).

So f is not a continuous function.

However, it is still continuous in all x ∈ R \ {0, 1}.
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Recipe for “Nice” Functions

(1) Draw the graph of the given function.

(2) At all points of the domain, where we have to remove the pencil
from paper the function is not continuous.

(3) At all other points of the domain (where we need not remove the
pencil) the function is continuous.

x

f (x)

−1 1 2

1

2
f (x) =


1, for x < 0,

1− x2

2 , for 0 ≤ x < 1,
x
2 + 1, for x ≥ 1.

f is continuous
except at point x = 1.
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Discontinuous Function

x

f (x)

−1 1 2

1

2

f (x) =


1, for x < 0
0, for x = 0
1− x2

2 , for 0 < x < 1
x
2 + 1, for x ≥ 1

Function f is continuous except at points x = 0 and x = 1.
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Problem 6.11

Draw the graph of function

f (x) =


− x2

2 , for x ≤ −2,

x + 1, for −2 < x < 2,
x2

2 , for x ≥ 2.

and compute lim
x→x+0

f (x), lim
x→x−0

f (x), and lim
x→x0

f (x)

for x0 = −2, 0, and 2.

Is function f continuous at these points?
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Problem 6.12

Determine the left and right-handed limits of function

f (x) =


x2 + 1, for x > 0,

0, for x = 0,

−x2 − 1, for x < 0.

at x0 = 0.

Is function f continuous at this point?

Is function f differentiable at this point?
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Problem 6.13

Is function

f (x) =

{
x + 1, for x ≤ 1,
x
2 + 3

2 , for x > 1,

continuous at x0 = 1?

Is it differentiable at x0 = 1?

Compute the limit of f at x0 = 1.
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Problem 6.14

Sketch the graphs of the following functions.
Which of these are continuous (on its domain)?

(a) D = R, f (x) = x

(b) D = R, f (x) = 3x + 1

(c) D = R, f (x) = e−x − 1

(d) D = R, f (x) = |x|
(e) D = R+, f (x) = ln(x)

(f) D = R, f (x) = bxc

(g) D = R, f (x) =


1, for x ≤ 0,

x + 1, for 0 < x ≤ 2,

x2, for x > 2.

Remark: bxc is the largest integer less than or equal to x.
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Problem 6.15

Sketch the graph of

f (x) =
1
x

.

Is it continuous?

Josef Leydold – Bridging Course Mathematics – WS 2023/24 6 – Limits – 44 / 47



Problem 6.16

Determine a value for h, such that function

f (x) =

{
x2 + 2hx, for x ≤ 2,

3x− h, for x > 2,

is continuous.
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Limits of Continuous Functions

If function f is known to be continuous, then its limit limx→x0 f (x)
exists for all x0 ∈ D f and we obviously find

lim
x→x0

f (x) = f (x0) .

Polynomials are always continuous. Hence

lim
x→2

3x2 − 4x + 5 = 3 · 22 − 4 · 2 + 5 = 9 .
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Summary

I limit of a sequence
I limit of a function
I convergent and divergent
I Euler’s number
I rules for limits
I l’Hôpital’s rule
I continuous functions
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Chapter 7

Derivatives
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Difference Quotient

Let f : R→ R be some function. Then the ratio

∆ f
∆x

=
f (x0 + ∆x)− f (x0)

∆x
=

f (x)− f (x0)

x− x0

is called difference quotient.

x

f (x)

x0 x

∆x

∆ f

secant

(x0, f (x0))

(x, f (x))
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Differential Quotient

If the limit

lim
∆x→0

f (x0 + ∆x)− f (x0)

∆x
= lim

x→x0

f (x)− f (x0)

x− x0

exists, then function f is called differentiable at x0. This limit is then
called differential quotient or (first) derivative of function f at x0.

We write

f ′(x0) or
d f
dx

∣∣∣∣
x=x0

Function f is called differentiable, if it is differentiable at each point of its
domain.
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Slope of Tangent

I The differential quotient gives the slope of the tangent to the graph
of function f (x) at x0.

x

f (x)

secants

x0

1

f ′(x0)

tangent
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Marginal Function

I Instantaneous change of function f .
I “Marginal function” (as in marginal utility )

x

f (x)

x0
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Existence of Differential Quotient

Function f is differentiable at all points, where we can draw the tangent
(with finite slope) uniquely to the graph.

Function f is not differentiable at all points where this is not possible.

In particular these are
I jump discontinuities
I “kinks” in the graph of the function
I vertical tangents
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Computation of the Differential Quotient

We can compute a differential quotient by determining the limit of the
difference quotient.

Let f (x) = x2. The we find for the first derivative

f ′(x0) = lim
h→0

(x0 + h)2 − x0
2

h

= lim
h→0

x0
2 + 2 x0 h + h2 − x0

2

h

= lim
h→0

2 x0 h + h2

h
= lim

h→0
(2 x0 + h)

= 2 x0
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Problem 7.1

Draw (sketch) the graphs of the following functions.
At which points are these function differentiable?

(a) f (x) = 2x + 2

(b) f (x) = 3

(c) f (x) = |x|

(d) f (x) =
√
|x2 − 1|

(e) f (x) =


− 1

2 x2, for x ≤ −1,
x, for −1 < x ≤ 1,
1
2 x2, for x > 1.

(f) f (x) =

{
2 + x, for x ≤ −1,
x2, for x > −1.
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Derivative of a Function

Function

f ′ : D → R, x 7→ f ′(x) =
d f
dx

∣∣∣∣
x

is called the first derivative of function f .
Its domain D is the set of all points where the differential quotient
(i.e., the limit of the difference quotient) exists.
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Derivatives of Elementary Functions

f (x) f ′(x)

c 0

xα α · xα−1

ex ex

ln(x)
1
x

sin(x) cos(x)

cos(x) − sin(x)
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Computation Rules for Derivatives

I (c · f (x))′ = c · f ′(x)

I ( f (x) + g(x))′ = f ′(x) + g′(x) Summation rule

I ( f (x) · g(x))′ = f ′(x) · g(x) + f (x) · g′(x) Product rule

I ( f (g(x)))′ = f ′(g(x)) · g′(x) Chain rule

I

(
f (x)
g(x)

)′
=

f ′(x) · g(x)− f (x) · g′(x)
(g(x))2 Quotient rule
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Computation Rules for Derivatives

(
3 x3 + 2 x− 4

)′
= 3 · 3 · x2 + 2 · 1− 0 = 9 x2 + 2

(
ex · x2)′ = (ex)′ · x2 + ex ·

(
x2)′ = ex · x2 + ex · 2 x

(
(3 x2 + 1)2)′ = 2 (3 x2 + 1) · 6 x

(√
x
)′
=
(

x
1
2

)′
= 1

2 · x−
1
2 = 1

2
√

x

(ax)′ =
(

eln(a)·x
)′

= eln(a)·x · ln(a) = ax ln(a)

(
1 + x2

1− x3

)′
=

2x · (1− x3)− (1 + x2) · 3x2

(1− x3)2
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Higher Order Derivatives

We can compute derivatives of the derivative of a function.

Thus we obtain the
I second derivative f ′′(x) of function f ,
I third derivative f ′′′(x), etc.,
I n-th derivative f (n)(x).

Other notations:

I f ′′(x) =
d2 f
dx2 (x) =

(
d

dx

)2

f (x)

I f (n)(x) =
dn f
dxn (x) =

(
d

dx

)n

f (x)
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Higher Order Derivatives

The first five derivatives of function

f (x) = x4 + 2x2 + 5x− 3

are

f ′(x) = (x4 + 2x2 + 5x− 3)′ = 4x3 + 4x + 5
f ′′(x) = (4x3 + 4x + 5)′ = 12x2 + 4
f ′′′(x) = (12x2 + 4)′ = 24x
f ıv(x) = (24x)′ = 24
f v(x) = 0
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Problem 7.2

Compute the first and second derivative of the following functions:

(a) f (x) = 4x4 + 3x3 − 2x2 − 1

(b) f (x) = e−
x2
2

(c) f (x) = exp
(
− x2

2

)
(d) f (x) =

x + 1
x− 1
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Problem 7.3

Compute the first and second derivative of the following functions:

(a) f (x) =
1

1 + x2

(b) f (x) =
1

(1 + x)2

(c) f (x) = x ln(x)− x + 1

(d) f (x) = ln(|x|)
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Problem 7.4

Compute the first and second derivative of the following functions:

(a) f (x) = tan(x) =
sin(x)
cos(x)

(b) f (x) = cosh(x) = 1
2 (e

x + e−x)

(c) f (x) = sinh(x) = 1
2 (e

x − e−x)

(d) f (x) = cos(1 + x2)
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Problem 7.5

Derive the quotient rule by means of product rule and chain rule.

Josef Leydold – Bridging Course Mathematics – WS 2023/24 7 – Derivatives – 18 / 56



Marginal Change

We can estimate the derivative f ′(x0) approximately by means of the
difference quotient with small change ∆x:

f ′(x0) = lim
∆x→0

f (x0 + ∆x)− f (x0)

∆x
≈ ∆ f

∆x

Vice verse we can estimate the change ∆ f of f for small changes ∆x
approximately by the first derivative of f :

∆ f = f (x0 + ∆x)− f (x0) ≈ f ′(x0) · ∆x

Beware:
I f ′(x0) · ∆x is a linear function in ∆x.
I It is the best possible approximation of f by a linear function

around x0.
I This approximation is useful only for “small” values of ∆x.
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Differential

Approximation

∆ f = f (x0 + ∆x)− f (x0) ≈ f ′(x0) · ∆x

becomes exact if ∆x (and thus ∆ f ) becomes infinitesimally small.
We then write dx and d f instead of ∆x and ∆ f , resp.

d f = f ′(x0) dx

Symbols d f and dx are called the differentials of function f and the
independent variable x, resp.
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Differential

Differential d f can be seen as a linear function in dx.
We can use it to compute f approximately around x0.

f (x0 + dx) ≈ f (x0) + d f

Let f (x) = ex.

Differential of f at point x0 = 1:
d f = f ′(1) dx = e1 dx

Approximation of f (1.1) by means of this differential:
∆x = (x0 + dx)− x0 = 1.1− 1 = 0.1

f (1.1) ≈ f (1) + d f = e + e · 0.1 ≈ 2.99

Exact value: f (1.1) = 3.004166 . . .
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Problem 7.6

Let f (x) =
ln(x)

x
.

Compute ∆ f = f (3.1)− f (3) approximately by means of the
differential at point x0 = 3.
Compare your approximation to the exact value.
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Elasticity

The first derivative of a function gives absolute rate of change of f at x0.
Hence it depends on the scales used for argument and function values.

However, often relative rates of change are more appropriate.

We obtain scale invariance and relative rate of changes by

change of function value relative to value of function

change of argument relative to value of argument

and thus

lim
∆x→0

f (x+∆x)− f (x)
f (x)
∆x
x

= lim
∆x→0

f (x + ∆x)− f (x)
∆x

· x
f (x)

= f ′(x) · x
f (x)
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Elasticity

The expression

ε f (x) = x · f ′(x)
f (x)

is called the elasticity of f at point x.

Let f (x) = 3 e2x. Then

ε f (x) = x · f ′(x)
f (x)

= x · 6 e2x

3 e2x = 2 x

Let f (x) = β xα. Then

ε f (x) = x · f ′(x)
f (x)

= x · β α xα−1

β xα
= α
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Elasticity II

The relative rate of change of f can be expressed as

ln( f (x))′ =
f ′(x)
f (x)

What happens if we compute the derivative of ln( f (x)) w.r.t. ln(x)?

Let v = ln(x) ⇔ x = ev

Derivation by means of the chain rule yields:

d(ln( f (x)))
d(ln(x))

=
d(ln( f (ev)))

dv
=

f ′(ev)

f (ev)
ev =

f ′(x)
f (x)

x = ε f (x)

ε f (x) =
d(ln( f (x)))

d(ln(x))
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Elasticity II

We can use the chain rule formally in the following way:

Let
I u = ln(y),
I y = f (x),
I x = ev ⇔ v = ln(x)

Then we find

d(ln f )
d(ln x)

=
du
dv

=
du
dy
· dy

dx
· dx

dv
=

1
y
· f ′(x) · ev =

f ′(x)
f (x)

x
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Elastic Functions

A Function f is called

I elastic in x, if
∣∣ ε f (x)

∣∣ > 1
I 1-elastic in x, if

∣∣ ε f (x)
∣∣ = 1

I inelastic in x, if
∣∣ ε f (x)

∣∣ < 1

For elastic functions we then have:
The value of the function changes relatively faster than the value of the
argument.

Function f (x) = 3 e2x is [ ε f (x) = 2 x ]

I 1-elastic, for x = − 1
2 and x = 1

2 ;

I inelastic, for − 1
2 < x < 1

2 ;

I elastic, for x < − 1
2 or x > 1

2 .
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Source of Errors

Beware!
Function f is elastic if the absolute value of the elasticity is greater
than 1.
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Elastic Demand

Let q(p) be an elastic demand function, where p is the price.
We have: p > 0, q > 0, and q′ < 0 (q is decreasing). Hence

εq(p) = p · q′(p)
q(p)

< −1

What happens to the revenue (= price × selling)?

u′(p) = (p · q(p))′ = 1 · q(p) + p · q′(p)

= q(p) · (1 + p · q′(p)
q(p)︸ ︷︷ ︸

=εq<−1

)

< 0

In other words, the revenue decreases if we raise prices.
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Problem 7.7

Compute the regions where the following functions are elastic, 1-elastic
and inelastic, resp.

(a) g(x) = x3 − 2 x2

(b) h(x) = α xβ, α, β 6= 0
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Problem 7.8

Which of the following statements are correct?
Suppose function y = f (x) is elastic in its domain.

(a) If x changes by one unit, then the change of y is greater than one
unit.

(b) If x changes by one percent, then the relative change of y is
greater than one percent.

(c) The relative rate of change of y is larger than the relative rate of
change of x.

(d) The larger x is the larger will be y.
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Partial Derivative

We investigate the rate of change of function f (x1, . . . , xn), when
variable xi changes and the other variables remain fixed.
Limit

∂ f
∂xi

= lim
∆xi→0

f (. . . , xi + ∆xi, . . .)− f (. . . , xi, . . .)
∆xi

is called the (first) partial derivative of f w.r.t. xi.

Other notations for partial derivative ∂ f
∂xi

:

I fxi(x) (derivative w.r.t. variable xi)

I fi(x) (derivative w.r.t. the i-th variable)

I f ′i (x) (i-th component of the gradient)
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Computation of Partial Derivatives

We obtain partial derivatives ∂ f
∂xi

by applying the rules for univariate
functions for variable xi while we treat all other variables as constants.

First partial derivatives of

f (x1, x2) = sin(2 x1) · cos(x2)

fx1 = 2 · cos(2 x1) · cos(x2)︸ ︷︷ ︸
treated as constant

fx2 = sin(2 x1)︸ ︷︷ ︸
treated as constant

·(− sin(x2))
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Higher Order Partial Derivatives

We can compute partial derivatives of partial derivatives analogously to
their univariate counterparts and obtain
higher order partial derivatives:

∂2 f
∂xk∂xi

(x) and
∂2 f
∂x2

i
(x)

Other notations for partial derivative ∂2 f
∂xk∂xi

(x):

I fxixk(x) (derivative w.r.t. variables xi and xk)

I fik(x) (derivative w.r.t. the i-th and k-th variable)

I f ′′ik(x) (component of the Hessian matrix with index ik)
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Higher Order Partial Derivatives

If all second order partial derivatives exists and are continuous, then
the order of differentiation does not matter (Schwarz’s theorem):

∂2 f
∂xk∂xi

(x) =
∂2 f

∂xi∂xk
(x)

Remark: Practically all differentiable functions in economic models have
this property.

Josef Leydold – Bridging Course Mathematics – WS 2023/24 7 – Derivatives – 35 / 56



Higher Order Partial Derivatives

Compute the first and second order partial derivatives of

f (x, y) = x2 + 3 x y

First order partial derivatives:

fx = 2 x + 3 y fy = 0 + 3 x

Second order partial derivatives:

fxx = 2 fxy = 3
fyx = 3 fyy = 0
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Problem 7.9

Compute the first and second order partial derivatives of the following
functions at point (1, 1):

(a) f (x, y) = x + y

(b) f (x, y) = x y

(c) f (x, y) = x2 + y2

(d) f (x, y) = x2 y2

(e) f (x, y) = xα yβ, α, β > 0
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Problem 7.10

Compute the first and second order partial derivatives of

f (x, y) = exp(x2 + y2)

at point (0, 0).
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Problem 7.11

Compute the first and second order partial derivatives of the following
functions at point (1, 1):

(a) f (x, y) =
√

x2 + y2

(b) f (x, y) = (x3 + y3)
1
3

(c) f (x, y) = (xp + yp)
1
p
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Gradient

We collect all first order partial derivatives into a (row) vector which is
called the gradient at point x.

∇ f (x) = ( fx1(x), . . . , fxn(x))

I read: “gradient of f ” or “nabla f ”.

I Other notation: f ′(x)

I Alternatively the gradient can also be a column vector.

I The gradient is the analog of the first derivative of univariate
functions.
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Properties of the Gradient

I The gradient of f always points in the direction of
steepest ascent.

I Its length is equal to the slope at this point.
I The gradient is normal (i.e. in right angle) to the corresponding

contour line (level set).

∇ f
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Gradient

Compute the gradient of

f (x, y) = x2 + 3 x y

at point x = (3, 2).

fx = 2 x + 3 y
fy = 0 + 3 x

∇ f (x) = (2x + 3y, 3x)

∇ f (3, 2) = (12, 9)

Josef Leydold – Bridging Course Mathematics – WS 2023/24 7 – Derivatives – 42 / 56



Problem 7.12

Compute the gradients of the following functions at point (1, 1):

(a) f (x, y) = x + y

(b) f (x, y) = x y

(c) f (x, y) = x2 + y2

(d) f (x, y) = x2 y2

(e) f (x, y) = xα yβ, α, β > 0
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Problem 7.13

Compute the gradients of the following functions at point (1, 1):

(a) f (x, y) =
√

x2 + y2

(b) f (x, y) = (x3 + y3)
1
3

(c) f (x, y) = (xp + yp)
1
p
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Hessian Matrix

Let f (x) = f (x1, . . . , xn) be two times differentiable. Then matrix

H f (x) =


fx1x1(x) fx1x2(x) . . . fx1xn(x)
fx2x1(x) fx2x2(x) . . . fx2xn(x)

...
...

. . .
...

fxnx1(x) fxnx2(x) . . . fxnxn(x)


is called the Hessian matrix of f at x.

I The Hessian matrix is symmetric, i.e., fxixk(x) = fxkxi(x).

I Other notation: f ′′(x)

I The Hessian matrix is the analog of the second derivative of
univariate functions.
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Gradient

Compute the Hessian matrix of

f (x, y) = x2 + 3 x y

at point x = (1, 2).

Second order partial derivatives:

fxx = 2 fxy = 3
fyx = 3 fyy = 0

Hessian matrix:

H f (x, y) =

(
fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

)
=

(
2 3
3 0

)
= H f (1, 2)
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Problem 7.14

Compute the Hessian matrix of the following functions at point (1, 1):

(a) f (x, y) = x + y

(b) f (x, y) = x y

(c) f (x, y) = x2 + y2

(d) f (x, y) = x2 y2

(e) f (x, y) = xα yβ, α, β > 0
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Problem 7.15

Compute the Hessian matrix of the following functions at point (1, 1):

(a) f (x, y) =
√

x2 + y2

(b) f (x, y) = (x3 + y3)
1
3

(c) f (x, y) = (xp + yp)
1
p
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Jacobian Matrix

Let f : Rn → Rm, x 7→ y = f(x) =


f1(x1, . . . , xn)

...

fm(x1, . . . , xn)


The m× n matrix

Df(x0) = f′(x0) =


∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

. . . ∂ fm
∂xn


is called the Jacobian matrix of f at point x0.

It is the generalization of derivatives (and gradients) for vector-valued
functions.
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Jacobian Matrix

I f (x) = f (x1, x2) = exp(−x2
1 − x2

2)

D f (x) =
(

∂ f
∂x1

, ∂ f
∂x2

)
= ∇ f (x)

=
(
−2 x1 exp(−x2

1 − x2
2),−2 x2 exp(−x2

1 − x2
2)
)

I f(x) = f(x1, x2) =

(
f1(x1, x2)

f2(x1, x2)

)
=

(
x2

1 + x2
2

x2
1 − x2

2

)

Df(x) =

( ∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

)
=

(
2 x1 2 x2

2 x1 −2 x2

)

I s(t) =

(
s1(t)
s2(t)

)
=

(
cos(t)
sin(t)

)

Ds(t) =

(
ds1
dt
ds2
dt

)
=

(
− sin(t)
cos(t)

)
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Chain Rule

Let f : Rn → Rm and g : Rm → Rk. Then

(g ◦ f)′(x) = g′(f(x)) · f′(x)

f(x, y) =

(
ex

ey

)
g(x, y) =

(
x2 + y2

x2 − y2

)

f′(x, y) =

(
ex 0
0 ey

)
g′(x, y) =

(
2 x 2 y
2 x −2 y

)

(g ◦ f)′(x) = g′(f(x)) · f′(x) =
(

2 ex 2 ey

2 ex −2 ey

)
·
(

ex 0
0 ey

)

=

(
2 e2x 2 e2y

2 e2x −2 e2y

)
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Example – Indirect Dependency

Let f (x1, x2, t) where x1(t) and x2(t) also depend on t.
What is the total derivative of f w.r.t. t?

Chain rule:

Let x : R→ R3, t 7→

x1(t)
x2(t)

t


d f
dt

= ( f ◦ x)′(t) = f ′(x(t)) · x′(t)

= ∇ f (x(t)) ·

x′1(t)
x′2(t)

1

=( fx1(x(t)), fx2(x(t)), ft(x(t)) ·

x′1(t)
x′2(t)

1


= fx1(x(t)) · x′1(t) + fx2(x(t)) · x′2(t) + ft(x(t))

= fx1(x1, x2, t) · x′1(t) + fx2(x1, x2, t) · x′2(t) + ft(x1, x2, t)
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Problem 7.16

Let

f (x, y) = x2 + y2 and g(t) =

(
g1(t)
g2(t)

)
=

(
t
t2

)
.

Compute the derivative of the composite functions

(a) h = f ◦ g, and

(b) p = g ◦ f

by means of the chain rule.
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Problem 7.17

Let f(x) =

(
x3

1 − x2

x1 − x3
2

)
and g(x) =

(
x2

2

x1

)
.

Compute the derivatives of the composite functions

(a) g ◦ f, and

(b) f ◦ g

by means of the chain rule.
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Problem 7.18

Let Q(K, L, t) be a production function, where L = L(t) and K = K(t)
also depend on time t. Compute the total derivative dQ

dt by means of the
chain rule.
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Summary

I difference quotient and differential quotient
I differential quotient and derivative
I derivatives of elementary functions
I differentiation rules
I higher order derivatives
I total differential
I elasticity
I partial derivatives
I gradient and Hessian matrix
I Jacobian matrix and chain rule
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Chapter 8

Monotone, Convex and
Extrema
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Monotone Functions

Function f is called monotonically increasing, if

x1 ≤ x2 ⇒ f (x1) ≤ f (x2)

It is called strictly monotonically increasing, if

x1 < x2 ⇔ f (x1) < f (x2) x1 x2

f (x1)

f (x2)

Function f is called monotonically decreasing, if

x1 ≤ x2 ⇒ f (x1) ≥ f (x2)

It is called strictly monotonically decreasing, if

x1 < x2 ⇔ f (x1) > f (x2) x1 x2

f (x1)

f (x2)
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Monotone Functions

For differentiable functions we have

f monotonically increasing ⇔ f ′(x) ≥ 0 for all x ∈ D f

f monotonically decreasing ⇔ f ′(x) ≤ 0 for all x ∈ D f

f strictly monotonically increasing ⇐ f ′(x) > 0 for all x ∈ D f

f strictly monotonically decreasing ⇐ f ′(x) < 0 for all x ∈ D f

Function f : (0, ∞), x 7→ ln(x) is strictly monotonically increasing, as

f ′(x) = (ln(x))′ =
1
x
> 0 for all x > 0
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Locally Monotone Functions

A function f can be monotonically increasing in some interval and
decreasing in some other interval.

For continuously differentiable functions (i.e., when f ′(x) is continuous)
we can use the following procedure:

1. Compute first derivative f ′(x).

2. Determine all roots of f ′(x).

3. We thus obtain intervals where f ′(x) does not change sign.

4. Select appropriate points xi in each interval and determine the
sign of f ′(xi).
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Locally Monotone Functions

In which region is function f (x) = 2 x3 − 12 x2 + 18 x− 1
monotonically increasing?

We have to solve inequality f ′(x) ≥ 0:

1. f ′(x) = 6 x2 − 24 x + 18

2. Roots: x2 − 4 x + 3 = 0 ⇒ x1 = 1, x2 = 3

3. Obtain 3 intervals: (−∞, 1], [1, 3], and [3, ∞)

4. Sign of f ′(x) at appropriate points in each interval:
f ′(0) = 3 > 0, f ′(2) = −1 < 0, and f ′(4) = 3 > 0.

5. f ′(x) cannot change sign in each interval:
f ′(x) ≥ 0 in (−∞, 1] and [3, ∞).

Function f (x) is monotonically increasing in (−∞, 1] and in [3, ∞).
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Monotone and Inverse Function

If f is strictly monotonically increasing, then

x1 < x2 ⇔ f (x1) < f (x2)

immediately implies

x1 6= x2 ⇔ f (x1) 6= f (x2)

That is, f is one-to-one.

So if f is onto and strictly monotonically increasing (or decreasing),
then f is invertible.
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Convex and Concave Functions

Function f is called convex, if its domain D f is an interval and

f ((1− h) x1 + h x2) ≤ (1− h) f (x1) + h f (x2)

for all x1, x2 ∈ D f and all h ∈ [0, 1]. It is called concave, if

f ((1− h) x1 + h x2) ≥ (1− h) f (x1) + h f (x2)

x1 x2 x1 x2

convex concave
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Concave Function

f
(
(1− h) x1 + h x2

)
≥ (1− h) f (x1) + h f (x2)

x1 x2
(1− h) x1 + h x2

f
(
(1− h) x1 + h x2

)

(1− h) f (x1) + h f (x2)

Secant below graph of function
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Convex and Concave Functions

For two times differentiable functions we have

f convex ⇔ f ′′(x) ≥ 0 for all x ∈ D f

f concave ⇔ f ′′(x) ≤ 0 for all x ∈ D f

f ′(x) is
monotonically decreasing,

thus f ′′(x) ≤ 0
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Strictly Convex and Concave Functions

Function f is called strictly convex, if its domain D f is an interval and

f ((1− h) x1 + h x2) < (1− h) f (x1) + h f (x2)

for all x1, x2 ∈ D f , x1 6= x2 and all h ∈ (0, 1).

It is called strictly concave, if its domain D f is an interval and

f ((1− h) x1 + h x2) > (1− h) f (x1) + h f (x2)

For two times differentiable functions we have

f strictly convex ⇐ f ′′(x) > 0 for all x ∈ D f

f strictly concave ⇐ f ′′(x) < 0 for all x ∈ D f
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Convex Function

Exponential function:

f (x) = ex

f ′(x) = ex

f ′′(x) = ex > 0 for all x ∈ R

exp(x) is (strictly) convex.

1

1

e
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Concave Function

Logarithm function: (x > 0)

f (x) = ln(x)
f ′(x) = 1

x

f ′′(x) = − 1
x2 < 0 for all x > 0

ln(x) is (strictly) concave.

1

1

e
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Locally Convex Functions

A function f can be convex in some interval and concave in some other
interval.

For two times continuously differentiable functions (i.e., when f ′′(x) is
continuous) we can use the following procedure:

1. Compute second derivative f ′′(x).

2. Determine all roots of f ′′(x).

3. We thus obtain intervals where f ′′(x) does not change sign.

4. Select appropriate points xi in each interval and determine the
sign of f ′′(xi).
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Locally Concave Function

In which region is f (x) = 2 x3 − 12 x2 + 18 x− 1 concave?

We have to solve inequality f ′′(x) ≤ 0.

1. f ′′(x) = 12 x− 24

2. Roots: 12 x− 24 = 0 ⇒ x = 2

3. Obtain 2 intervals: (−∞, 2] and [2, ∞)

4. Sign of f ′′(x) at appropriate points in each interval:
f ′′(0) = −24 < 0 and f ′′(4) = 24 > 0.

5. f ′′(x) cannot change sign in each interval: f ′′(x) ≤ 0 in (−∞, 2]

Function f (x) is concave in (−∞, 2].
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Problem 8.1

Determine whether the following functions are concave or convex (or
neither).

(a) exp(x)

(b) ln(x)

(c) log10(x)

(d) xα for x > 0 for an α ∈ R.
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Problem 8.2

In which region is function

f (x) = x3 − 3x2 − 9x + 19

monotonically increasing or decreasing?
In which region is it convex or concave?
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Problem 8.3

In which region the following functions monotonically increasing or
decreasing?
In which region is it convex or concave?

(a) f (x) = x ex2

(b) f (x) = e−x2

(c) f (x) =
1

x2 + 1
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Problem 8.4

Function

f (x) = b x1−a , 0 < a < 1, b > 0, x ≥ 0

is an example of a production function.
Production functions usually have the following properties:

(1) f (0) = 0, lim
x→∞

f (x) = ∞

(2) f ′(x) > 0, lim
x→∞

f ′(x) = 0

(3) f ′′(x) < 0

(a) Verify these properties for the given function.

(b) Draw (sketch) the graphs of f (x), f ′(x), and f ′(x).
(Use appropriate values for a and b.)

(c) What is the economic interpretation of these properties?
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Problem 8.5

Function
f (x) = b ln(ax + 1) , a, b > 0, x ≥ 0

is an example of a utility function.
Utility functions have the same properties as production functions.

(a) Verify the properties from Problem 8.4.

(b) Draw (sketch) the graphs of f (x), f ′(x), and f ′(x).
(Use appropriate values for a and b.)

(c) What is the economic interpretation of these properties?
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Problem 8.6

Use the definition of convexity and show that f (x) = x2 is strictly
convex.

Hint: Show that inequality
( 1

2 x + 1
2 y
)2 −

( 1
2 x2 + 1

2 y2) < 0 holds for all
x 6= y.
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Problem 8.7

Show:

If f (x) is a two times differentiable concave function, then
g(x) = − f (x) convex.
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Problem 8.8

Show:

If f (x) is a concave function, then g(x) = − f (x) convex.
You may not assume that f is differentiable.
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Problem 8.9

Let f (x) and g(x) be two differentiable concave functions.
Show that

h(x) = α f (x) + β g(x) , for α, β > 0,

is a concave function.

What happens, if α > 0 and β < 0?
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Problem 8.10

Sketch the graph of a function f : [0, 2]→ R with the properties:
I continuous,
I monotonically decreasing,
I strictly concave,
I f (0) = 1 and f (1) = 0.

In addition find a particular term for such a function.
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Problem 8.11

Suppose we relax the condition strict concave into concave in
Problem 8.10.
Can you find a much simpler example?
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Global Extremum (Optimum)

A point x∗ is called global maximum (absolute maximum) of f ,
if for all x ∈ D f ,

f (x∗) ≥ f (x) .

A point x∗ is called global minimum (absolute minimum) of f ,
if for all x ∈ D f ,

f (x∗) ≤ f (x) .

global maximum

no global minimum
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Local Extremum (Optimum)

A point x0 is called local maximum (relative maximum) of f ,
if for all x in some neighborhood of x0,

f (x0) ≥ f (x) .

A point x0 is called local minimum (relative minimum) of f ,
if for all x in some neighborhood of x0,

f (x0) ≤ f (x) .

local maximum
= global maximumlocal maximum

local minimum
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Minima and Maxima

Notice!
Every minimization problem can be transformed into a maximization
problem (and vice versa).

Point x0 is a minimum of f (x),
if and only if x0 is
a maximum of − f (x).

x0

f (x)

− f (x)
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Critical Point

At a (local) maximum or minimum the first derivative of the function
must vanish (i.e., must be equal 0).

A point x0 is called a critical point (or stationary point) of function
f , if

f ′(x0) = 0

Necessary condition for differentiable functions:

Each extremum of f is a critical point of f .
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Global Extremum

Sufficient condition:

Let x0 be a critical point of f .
If f is concave then x0 is a global maximum of f .
If f is convex then x0 is a global minimum of f .

If f is strictly concave (or convex), then the extremum is unique.
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Global Extremum

Let f (x) = ex − 2 x.

Function f is strictly convex:

f ′(x) = ex − 2
f ′′(x) = ex > 0 for all x ∈ R

Critical point:

f ′(x) = ex − 2 = 0 ⇒ x0 = ln 2

x0 = ln 2 is the (unique) global minimum of f .
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Local Extremum

A point x0 is a local maximum (or local minimum) of f , if
I x0 is a critical point of f ,
I f is locally concave (and locally convex, resp.) around x0.
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Local Extremum

Sufficient condition for two times differentiable functions:

Let x0 be a critical point of f . Then

I f ′′(x0) < 0 ⇒ x0 is local maximum

I f ′′(x0) > 0 ⇒ x0 is local minimum

It is sufficient to evaluate f ′′(x) at the critical point x0.
(In opposition to the condition for global extrema.)
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Necessary and Sufficient

We want to explain two important concepts using the example of local
minima.

Condition “ f ′(x0) = 0” is necessary for a local minimum:

Every local minimum must have this properties.
However, not every point with such a property is a local minimum
(e.g. x0 = 0 in f (x) = x3).
Stationary points are candidates for local extrema.

Condition “ f ′(x0) = 0 and f ′′(x0) > 0” is sufficient for a local
minimum.

If it is satisfied, then x0 is a local minimum.
However, there are local minima where this condition is not satisfied
(e.g. x0 = 0 in f (x) = x4).
If it is not satisfied, we cannot draw any conclusion.
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Procedure for Local Extrema

Sufficient condition
for local extrema of a differentiable function in one variable:

1. Compute f ′(x) and f ′′(x).

2. Find all roots xi of f ′(xi) = 0 (critical points).

3. If f ′′(xi) < 0 ⇒ xi is a local maximum.

If f ′′(xi) > 0 ⇒ xi is a local minimum.

If f ′′(xi) = 0 ⇒ no conclusion possible!
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Local Extrema

Find all local extrema of

f (x) =
1
12

x3 − x2 + 3 x + 1

x1 x2

1. f ′(x) = 1
4 x2 − 2 x + 3,

f ′′(x) = 1
2 x− 2.

2. 1
4 x2 − 2 x + 3 = 0
has roots

x1 = 2 and x2 = 6.

3. f ′′(2) = −1 ⇒ x1 is a local maximum.

f ′′(6) = 1 ⇒ x2 is a local minimum.
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Sources of Errors

Find all global minima of f (x) =
x3 + 2

3x
.

x0

1. f ′(x) = 2(x3−1)
3x2 ,

f ′′(x) = 2x3+4
3x3 .

2. critical point at x0 = 1.

3. f ′′(1) = 2 > 0
⇒ global minimum ???

However, looking just at f ′′(1) is not sufficient as we are looking for
global minima!

Beware! We have to look at f ′′(x) at all x ∈ D f .
However, f ′′(−1) = − 2

3 < 0.
Moreover, domain D = R \ {0} is not an interval.
So f is not convex and we cannot apply our theorem.
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Sources of Errors

Find all global maxima of f (x) = exp(−x2/2) .

x0

1. f ′(x) = x exp(−x2),

f ′′(x) = (x2 − 1) exp(−x2).

2. critical point at x0 = 0.

3. However,
f ′′(0) = −1 < 0 but f ′′(2) = 2e−2 > 0.
So f is not concave and thus there cannot be a global maximum.
Really ???

Beware! We are checking a sufficient condition.
Since an assumption does not hold ( f is not concave),
we simply cannot apply the theorem.
We cannot conclude that f does not have a global maximum.
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Global Extrema in [a, b]

Extrema of f (x) in closed interval [a, b].

Procedure for differentiable functions:

(1) Compute f ′(x).

(2) Find all stationary points xi (i.e., f ′(xi) = 0).

(3) Evaluate f (x) for all candidates:
I all stationary points xi,
I boundary points a and b.

(4) Largest of these values is global maximum,
smallest of these values is global minimum.

It is not necessary to compute f ′′(xi).
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Global Extrema in [a, b]

Find all global extrema of function

f : [0,5; 8,5]→ R, x 7→ 1
12

x3 − x2 + 3 x + 1

(1) f ′(x) = 1
4 x2 − 2 x + 3.

(2) 1
4 x2 − 2 x + 3 = 0 has roots x1 = 2 and x2 = 6.

(3) f (0.5) = 2.260
f (2) = 3.667
f (6) = 1.000 ⇒ global minimum

f (8.5) = 5.427 ⇒ global maximum

(4) x2 = 6 is the global minimum and
b = 8.5 is the global maximum of f .
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Global Extrema in (a, b)

Extrema of f (x) in open interval (a, b) (or (−∞, ∞)).

Procedure for differentiable functions:

(1) Compute f ′(x).

(2) Find all stationary points xi (i.e., f ′(xi) = 0).

(3) Evaluate f (x) for all stationary points xi.

(4) Determine limx→a f (x) and limx→b f (x).

(5) Largest of these values is global maximum,
smallest of these values is global minimum.

(6) A global extremum exists only if the largest (smallest) value
is obtained in a stationary point !
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Global Extrema in (a, b)

Compute all global extrema of

f : R→ R, x 7→ e−x2

(1) f ′(x) = −2x e−x2
.

(2) f ′(x) = −2x e−x2
= 0 has unique root x1 = 0.

(3) f (0) = 1 ⇒ global maximum

limx→−∞ f (x) = 0 ⇒ no global minimum

limx→∞ f (x) = 0

(4) The function has a global maximum in x1 = 0,
but no global minimum.
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Existence and Uniqueness

I A function need not have maxima or minima:

f : (0, 1)→ R, x 7→ x

(Points 1 and −1 are not in domain (0, 1).)

I (Global) maxima need not be unique:

f : R→ R, x 7→ x4 − 2 x2

has two global minima at −1 and 1.
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Problem 8.12

Find all local extrema of the following functions.

(a) f (x) = e−x2

(b) g(x) = x2+1
x

(c) h(x) = (x− 3)6
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Problem 8.13

Find all global extrema of the following functions.

(a) f : (0, ∞)→ R, x 7→ 1
x + x

(b) f : [0, ∞)→ R, x 7→
√

x− x

(c) f : R→ R, x 7→ e−2x + 2x

(d) f : (0, ∞)→ R, x 7→ x− ln(x)

(e) f : R→ R, x 7→ e−x2
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Problem 8.14

Compute all global maxima and minima of the following functions.

(a) f (x) =
x3

12
− 5

4
x2 + 4x− 1

2
in interval [1, 12]

(b) f (x) =
2
3

x3 − 5
2

x2 − 3x + 2 in interval [−2, 6]

(c) f (x) = x4 − 2 x2 in interval [−2, 2]
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Summary

I monotonically increasing and decreasing
I convex and concave
I global and local extrema
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Chapter 9

Integration
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Antiderivative

A function F(x) is called an antiderivative (or primitive) of function
f (x), if

F′(x) = f (x)

Computation:

Guess and verify

Example: We want the antiderivative of f (x) = ln(x).
Guess: F(x) = x (ln(x)− 1)
Verify: F′(x) = (x (ln(x)− 1)′ =

= 1 · (ln(x)− 1) + x · 1
x = ln(x)

But also: F(x) = x (ln(x)− 1) + 5
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Antiderivative

The antiderivative is denoted by symbol∫
f (x) dx + c

and is also called the indefinite integral of function f . Number c is
called integration constant.

Unfortunately, there are no “recipes” for computing antiderivatives
(but tools one can try and which may help).

There are functions where antiderivatives cannot be expressed by
means of elementary functions.

E.g., the antiderivative of exp(− 1
2 x2).
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Basic Integrals

Integrals of some elementary functions:

f (x)
∫

f (x) dx

0 c

xa 1
a+1 · xa+1 + c

ex ex + c
1
x ln |x|+ c

cos(x) sin(x) + c

sin(x) − cos(x) + c

(Table is created by exchanging the columns in our list of derivatives.)
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Integration Rules

I Summation rule∫
α f (x) + βg(x) dx = α

∫
f (x) dx + β

∫
g(x) dx

I Integration by parts∫
f · g′ dx = f · g−

∫
f ′ · g dx

I Integration by substitution∫
f (g(x)) · g′(x) dx =

∫
f (z) dz

with z = g(x) and dz = g′(x) dx
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Example – Summation Rule

Antiderivative of f (x) = 4 x3 − x2 + 3 x− 5.

∫
f (x) dx =

∫
4 x3 − x2 + 3 x− 5 dx

= 4
∫

x3 dx−
∫

x2 dx + 3
∫

x dx− 5
∫

dx

= 4
1
4

x4 − 1
3

x3 + 3
1
2

x2 − 5x + c

= x4 − 1
3

x3 +
3
2

x2 − 5x + c
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Example – Integration by Parts

Antiderivative of f (x) = x · ex.

∫
x︸︷︷︸
f

· ex︸︷︷︸
g′

dx = x︸︷︷︸
f

· ex︸︷︷︸
g

−
∫

1︸︷︷︸
f ′

· ex︸︷︷︸
g

dx = x · ex − ex + c

f = x ⇒ f ′ = 1
g′ = ex ⇒ g = ex
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Example – Integration by Parts

Antiderivative of f (x) = x2 cos(x).∫
x2︸︷︷︸
f

· cos(x)︸ ︷︷ ︸
g′

dx = x2︸︷︷︸
f

· sin(x)︸ ︷︷ ︸
g

−
∫

2x︸︷︷︸
f ′

· sin(x)︸ ︷︷ ︸
g

dx

Integration by parts of the second terms yields:∫
2x︸︷︷︸

f

· sin(x)︸ ︷︷ ︸
g′

dx = 2x︸︷︷︸
f

· (− cos(x))︸ ︷︷ ︸
g

−
∫

2︸︷︷︸
f ′

· (− cos(x))︸ ︷︷ ︸
g

dx

= −2x · cos(x)− 2 · (− sin(x)) + c

Thus the antiderivative of f is given by∫
x2 cos(x) dx = x2 sin(x) + 2x cos(x)− 2 sin(x) + c
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Example – Integration by Substitution

Antiderivative of f (x) = 2x · ex2
.

∫
exp( x2︸︷︷︸

g(x)

) · 2x︸︷︷︸
g′(x)

dx =
∫

exp(z) dz = ez + c = ex2
+ c

z = g(x) = x2 ⇒ dz = g′(x) dx = 2x dx
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Integration Rules – Derivation

Integration by parts follows from the product rule for derivatives:

f (x) · g(x) =
∫

( f (x) · g(x))′ dx =
∫ (

f ′(x) g(x) + f (x) g′(x)
)

dx

=
∫

f ′(x) g(x) dx +
∫

f (x) g′(x) dx

Integration by substitution follows from the chain rule:
Let F be an antiderivative of f and let z = g(x). Then∫

f (z) dz = F(z) = F(g(x)) =
∫
(F(g(x)))′ dx

=
∫

F′(g(x)) g′(x) dx =
∫

f (g(x)) g′(x) dx
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Problem 9.1

Compute the antiderivatives of the following functions by means of
integration by parts.

(a) f (x) = 2x ex

(b) f (x) = x2 e−x

(c) f (x) = x ln(x)

(d) f (x) = x3 ln x

(e) f (x) = x (ln(x))2

(f) f (x) = x2 sin(x)
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Problem 9.2

Compute the antiderivatives of the following functions by means of
integration by substitution.

(a)
∫

x ex2
dx

(b)
∫

2 x
√

x2 + 6 dx

(c)
∫ x

3 x2 + 4
dx

(d)
∫

x
√

x + 1 dx

(e)
∫ ln(x)

x
dx
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Problem 9.3

Compute the antiderivatives of the following functions by means of
integration by substitution.

(a)
∫ 1

x ln x
dx

(b)
∫ √

x3 + 1 x2 dx

(c)
∫ x√

5− x2
dx

(d)
∫ x2 − x + 1

x− 3
dx

(e)
∫

x(x− 8)
1
2 dx
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Area

Compute the areas of the given regions.

1

1

f (x) = 1

Area: A = 1

1

1

f (x) = 1
1+x2

Approximation
by step function
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Riemann Sum

x0 ξ1 x1 ξ2 x2

f (ξ1)

f (ξ2)

ξi =
1
2 (xi−1 + xi)

in general: ξi ∈ (xi, xi−1)

A =
∫ b

a
f (x) dx ≈

n

∑
i=1

f (ξi) · (xi − xi−1)
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Riemann Integral

In =
n

∑
i=1

f (ξi) · (xi − xi−1)

is called a Riemann sum of f .

It can be shown that in many cases these Riemann sums converge
when the length of the longest interval tends to 0.
This limit then is called the Riemann integral (or integral for short) of f .
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Riemann Integral – Properties

∫ b

a
(α f (x) + βg(x)) dx = α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx

∫ b

a
f (x) dx = −

∫ a

b
f (x) dx

∫ a

a
f (x) dx = 0

∫ c

a
f (x) dx =

∫ b

a
f (x) dx +

∫ c

b
f (x) dx

∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx if f (x) ≤ g(x) for all x ∈ [a, b]
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Fundamental Theorem of Calculus

Let F(x) be an antiderivative of a continuous function f (x),
then we find ∫ b

a
f (x) dx = F(x)

∣∣∣b
a
= F(b)− F(a)

By this theorem we can compute Riemann integrals by means of
antiderivatives!

For that reason
∫ b

a
f (x) dx is called a definite integral of f .

Example:
Compute the integral of f (x) = x2 over interval [ 0, 1 ].∫ 1

0
x2 dx = 1

3 x3
∣∣∣1
0
= 1

3 · 1
3 − 1

3 · 0
3 =

1
3
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Integration Rules / (Definite Integrals)

I Summation rule∫ b

a
α f (x) + βg(x) dx = α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx

I Integration by parts∫ b

a
f · g′ dx = f · g

∣∣∣b
a
−
∫ b

a
f ′ · g dx

I Integration by Substitution∫ b

a
f (g(x)) · g′(x) dx =

∫ g(b)

g(a)
f (z) dz

with z = g(x) and dz = g′(x) dx
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Example – Integration by Parts

Compute the definite integral
∫ 2

0
x · ex dx.

∫ 2

0
x︸︷︷︸
f

· ex︸︷︷︸
g′

dx = x︸︷︷︸
f

· ex︸︷︷︸
g

∣∣∣2
0
−
∫ 2

0
1︸︷︷︸
f ′

· ex︸︷︷︸
g

dx

= x · ex
∣∣∣2
0
− ex

∣∣∣2
0
= (2 · e2 − 0 · e0)− (e2 − e0)

= e2 + 1

Note: we also could use our indefinite integral from above,∫ 2

0
x · ex dx = (x · ex − ex)

∣∣∣2
0
= (2 · e2 − e2)− (0 · e0 − e0) = e2 + 1
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Example – Integration by Substitution

Compute the definite integral
∫ 10

e

1
ln(x)

· 1
x

dx.

∫ 10

e

1
ln(x)

· 1
x

dx =
∫ ln(10)

1

1
z

dz =

z = ln(x) ⇒ dz =
1
x

dx

= ln(z)
∣∣∣ln(10)

1
=

= ln(ln(10))− ln(1) ≈ 0.834
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Example

Compute
∫ 2

−2
f (x) dx for function

f (x) =


1 + x, for −1 ≤ x < 0,
1− x, for 0 ≤ x < 1,
0, for x < −1 and x ≥ 1. −1 0 1

We have∫ 2

−2
f (x) dx =

∫ −1

−2
f (x) dx +

∫ 0

−1
f (x) dx +

∫ 1

0
f (x) dx +

∫ 2

1
f (x) dx

=
∫ −1

−2
0 dx +

∫ 0

−1
(1 + x) dx +

∫ 1

0
(1− x) dx +

∫ 2

1
0 dx

= (x + 1
2 x2)

∣∣∣0
−1

+ (x− 1
2 x2)

∣∣∣1
0

= 1
2 +

1
2 = 1
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Problem 9.4

Compute the following definite integrals:

(a)
∫ 4

1
2x2 − 1 dx

(b)
∫ 2

0
3ex dx

(c)
∫ 4

1
3x2 + 4x dx

(d)
∫ π

3

0

− sin(x)
3

dx

(e)
∫ 1

0

3 x + 2
3 x2 + 4 x + 1

dx
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Problem 9.5

Compute the following definite integrals by means of antiderivatives:

(a)
∫ e

1

ln x
x

dx

(b)
∫ 1

0
x (x2 + 3)4 dx

(c)
∫ 2

0
x
√

4− x2 dx

(d)
∫ 2

1

x
x2 + 1

dx
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Problem 9.6

Compute the following definite integrals by means of antiderivatives:

(a)
∫ 2

0
x exp

(
− x2

2

)
dx

(b)
∫ 3

0
(x− 1)2 x dx

(c)
∫ 1

0
x exp(x) dx

(d)
∫ 2

0
x2 exp(x) dx

(e)
∫ 2

1
x2 ln x dx
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Problem 9.7

Compute
∫ 2

−2
x2 f (x) dx for function

f (x) =


1 + x, for −1 ≤ x < 0,
1− x, for 0 ≤ x < 1,
0, for x < −1 and x ≥ 1.
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Problem 9.8

Compute F(x) =
∫ x

−2
f (t) dt for function

f (x) =


1 + x, for −1 ≤ x < 0,
1− x, for 0 ≤ x < 1,
0, for x < −1 and x ≥ 1.
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Summary

I antiderivate
I Riemann sum and Riemann integral
I indefinite and definite integral
I Fundamental Theorem of Calculus
I integration rules
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