

Problem 8.3	Problem 8.4
In which region the following functions monotonically increasing or	Function
decreasing? In which region is it convex or concave?	$f(x) = b x^{1-a}$, $0 < a < 1, b > 0, x \ge 0$
(a) $f(x) = xe^{x^2}$	is an example of a <i>production function</i> .
(b) $f(x) - e^{-x^2}$	Production functions usually have the following properties:
$(\mathbf{b}) f(\mathbf{x}) = \mathbf{e}$	(1) $f(0) = 0$, $\lim_{x \to \infty} f(x) = \infty$
(c) $f(x) = \frac{1}{x^2 + 1}$	(2) $f'(x) > 0$, $\lim_{x \to \infty} f'(x) = 0$ (2) $f''(x) < 0$
	(3) $f(x) < 0$
	(a) Verify these properties for the given function. (b) Draw (sketch) the graphs of $f(x)$, $f'(x)$ and $f'(x)$
	(Use appropriate values for a and b .)
	(c) What is the economic interpretation of these properties?
Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - 17 / 47	Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - 18 / 47
Problem 8.5	Problem 8.6
Function	Use the definition of convexity and show that $f(x) = x^2$ is strictly
$f(x) = b \ln(ax+1)$, $a, b > 0, x \ge 0$	convex.
is an example of a utility function. Utility functions have the same properties as production functions.	Hint: Show that inequality $(\frac{1}{2}x + \frac{1}{2}y)^2 - (\frac{1}{2}x^2 + \frac{1}{2}y^2) < 0$ holds for all $x \neq y$.
(a) Verify the properties from Problem 8.4.	
(b) Draw (sketch) the graphs of $f(x)$, $f'(x)$, and $f'(x)$. (Use appropriate values for <i>a</i> and <i>b</i> .)	
(c) What is the economic interpretation of these properties?	
Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - 19 / 47	Josef Leydold – Bridging Course Mathematics – WS 2023/24 8 – Monotone, Convex and Extrema – 20 / 47
Problem 8.7	Problem 8.8
Show.	Show:
If $f(x)$ is a two times differentiable concave function, then	If $f(x)$ is a concave function, then $g(x) = -f(x)$ convex.
g(x) = -f(x) convex.	You may not assume that f is differentiable.
Josef Leydold – Bridging Course Mathematics – WS 2023/24 8 – Monotone, Convex and Extrema – 21 / 47	Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - 22 / 47
Problem 8.9	Problem 8.10
Let $f(x)$ and $g(x)$ be two differentiable concave functions.	Sketch the graph of a function $f \colon [0,2] o \mathbb{R}$ with the properties:
Let $f(x)$ and $g(x)$ be two differentiable concave functions. Show that	Sketch the graph of a function $f: [0, 2] \to \mathbb{R}$ with the properties: • continuous,
Let $f(x)$ and $g(x)$ be two differentiable concave functions. Show that $h(x) = \alpha f(x) + \beta g(x)$, for $\alpha, \beta > 0$,	 Sketch the graph of a function f: [0,2] → ℝ with the properties: continuous, monotonically decreasing, strictly concave
Let $f(x)$ and $g(x)$ be two differentiable concave functions. Show that $h(x) = \alpha f(x) + \beta g(x)$, for $\alpha, \beta > 0$, is a concave function.	Sketch the graph of a function $f: [0,2] \rightarrow \mathbb{R}$ with the properties: • continuous, • monotonically decreasing, • strictly concave, • $f(0) = 1$ and $f(1) = 0$.
Let $f(x)$ and $g(x)$ be two differentiable concave functions. Show that $h(x) = \alpha f(x) + \beta g(x) , \qquad \text{for } \alpha, \beta > 0,$ is a concave function. What happens, if $\alpha > 0$ and $\beta < 0$?	Sketch the graph of a function $f: [0, 2] \to \mathbb{R}$ with the properties: • continuous, • monotonically decreasing, • strictly concave, • $f(0) = 1$ and $f(1) = 0$. In addition find a particular term for such a function.
Let $f(x)$ and $g(x)$ be two differentiable concave functions. Show that $h(x) = \alpha f(x) + \beta g(x) , \qquad \text{for } \alpha, \beta > 0,$ is a concave function. What happens, if $\alpha > 0$ and $\beta < 0$?	Sketch the graph of a function $f: [0, 2] \rightarrow \mathbb{R}$ with the properties: • continuous, • monotonically decreasing, • strictly concave, • $f(0) = 1$ and $f(1) = 0$. In addition find a particular term for such a function.
Let $f(x)$ and $g(x)$ be two differentiable concave functions. Show that $h(x) = \alpha f(x) + \beta g(x) , \text{ for } \alpha, \beta > 0,$ is a concave function. What happens, if $\alpha > 0$ and $\beta < 0$?	Sketch the graph of a function $f: [0, 2] \rightarrow \mathbb{R}$ with the properties: • continuous, • monotonically decreasing, • strictly concave, • $f(0) = 1$ and $f(1) = 0$. In addition find a particular term for such a function.
Let $f(x)$ and $g(x)$ be two differentiable concave functions. Show that $h(x) = \alpha f(x) + \beta g(x) , \qquad \text{for } \alpha, \beta > 0,$ is a concave function. What happens, if $\alpha > 0$ and $\beta < 0$?	Sketch the graph of a function $f : [0, 2] \rightarrow \mathbb{R}$ with the properties: • continuous, • monotonically decreasing, • strictly concave, • $f(0) = 1$ and $f(1) = 0$. In addition find a particular term for such a function.
Let $f(x)$ and $g(x)$ be two differentiable concave functions. Show that $h(x) = \alpha f(x) + \beta g(x) , \text{ for } \alpha, \beta > 0,$ is a concave function. What happens, if $\alpha > 0$ and $\beta < 0$?	 Sketch the graph of a function f: [0, 2] → ℝ with the properties: continuous, monotonically decreasing, strictly concave, f(0) = 1 and f(1) = 0. In addition find a particular term for such a function.
Let $f(x)$ and $g(x)$ be two differentiable concave functions. Show that $h(x) = \alpha f(x) + \beta g(x) , \text{ for } \alpha, \beta > 0,$ is a concave function. What happens, if $\alpha > 0$ and $\beta < 0$?	Sketch the graph of a function $f : [0, 2] \rightarrow \mathbb{R}$ with the properties: • continuous, • monotonically decreasing, • strictly concave, • $f(0) = 1$ and $f(1) = 0$. In addition find a particular term for such a function.

Local Extremum	Necessary and Sufficient
Sufficient condition for two times differentiable functions:	We want to explain two important concepts using the example of local minima.
Let x_0 be a critical point of f . Then • $f''(x_0) < 0 \Rightarrow x_0$ is local maximum • $f''(x_0) > 0 \Rightarrow x_0$ is local minimum It is sufficient to evaluate $f''(x)$ at the critical point x_0 . (In opposition to the condition for global extrema.)	Condition " $f'(x_0) = 0$ " is necessary for a local minimum: Every local minimum must have this properties. However, not every point with such a property is a local minimum (e.g. $x_0 = 0$ in $f(x) = x^3$). Stationary points are <i>candidates</i> for local extrema. Condition " $f'(x_0) = 0$ and $f''(x_0) > 0$ " is sufficient for a local minimum. If it is satisfied, then x_0 is a local minimum. However, there are local minima where this condition is not satisfied (e.g. $x_0 = 0$ in $f(x) = x^4$). If it is <i>not</i> satisfied, we cannot draw <i>any conclusion</i> .
Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - 33 / 47	Josef Leydold – Bridging Course Mathematics – WS 2023/24 8 – Monotone, Convex and Extrema – 34 / 47
Procedure for Local Extrema	Local Extrema
Sufficient condition for local extrema of a differentiable function in <i>one</i> variable: 1. Compute $f'(x)$ and $f''(x)$. 2. Find all roots x_i of $f'(x_i) = 0$ (critical points). 3. If $f''(x_i) < 0 \Rightarrow x_i$ is a <i>local maximum</i> . If $f''(x_i) > 0 \Rightarrow x_i$ is a <i>local minimum</i> . If $f''(x_i) = 0 \Rightarrow$ no conclusion possible!	Find all local extrema of $f(x) = \frac{1}{12}x^3 - x^2 + 3x + 1$ 1. $f'(x) = \frac{1}{4}x^2 - 2x + 3$, $f''(x) = \frac{1}{2}x - 2$. 2. $\frac{1}{4}x^2 - 2x + 3 = 0$ has roots $x_1 = 2$ and $x_2 = 6$.
Josef Leydold – Bridging Course Mathematics – WS 2023/24 8 – Monotone, Convex and Extrema – 35 / 47	3. $f''(2) = -1 \Rightarrow x_1$ is a local maximum. $f''(6) = 1 \Rightarrow x_2$ is a local minimum.
Sources of Errors	Sources of Errors
Sources of Errors Find all global minima of $f(x) = \frac{x^3 + 2}{3x}$. 1. $f'(x) = \frac{2(x^3-1)}{3x^2}$, $f''(x) = \frac{2x^3+4}{3x^3}$. 2. critical point at $x_0 = 1$. 3. $f''(1) = 2 > 0$ \Rightarrow global minimum ??? <i>However</i> , looking <i>just</i> at $f''(1)$ is not sufficient as we are looking for <i>global</i> minima! Beware! We have to look at $f''(x)$ at all $x \in D_f$.	Sources of Errors Find all global maxima of $f(x) = \exp(-x^2/2)$. 1. $f'(x) = x \exp(-x^2)$, $f''(x) = (x^2 - 1) \exp(-x^2)$. 2. critical point at $x_0 = 0$. 3. However, $f''(0) = -1 < 0$ but $f''(2) = 2e^{-2} > 0$. So <i>f</i> is not concave and thus there cannot be a global maximum. Really ??? Beware! We are checking a <i>sufficient</i> condition. Since an assumption does not hold (<i>f</i> is not concave)
Sources of Errors Find all global minima of $f(x) = \frac{x^3 + 2}{3x}$. 1. $f'(x) = \frac{2(x^3-1)}{3x^2}$, $f''(x) = \frac{2x^3+4}{3x^3}$. 2. critical point at $x_0 = 1$. 3. $f''(1) = 2 > 0$ \Rightarrow global minimum ??? However, looking just at $f''(1)$ is not sufficient as we are looking for global minima! Beware! We have to look at $f''(x)$ at all $x \in D_f$. However, $f''(-1) = -\frac{2}{3} < 0$. Moreover, domain $D = \mathbb{R} \setminus \{0\}$ is not an interval. So f is not convex and we cannot apply our theorem.	Sources of Errors Find all global maxima of $f(x) = \exp(-x^2/2)$. 1. $f'(x) = x \exp(-x^2)$, $f''(x) = (x^2 - 1) \exp(-x^2)$. 2. critical point at $x_0 = 0$. 3. However, $f''(0) = -1 < 0$ but $f''(2) = 2e^{-2} > 0$. So f is not concave and thus there cannot be a global maximum. Really ??? Beware! We are checking a <i>sufficient</i> condition. Since an assumption does not hold (f is not concave), we simply cannot apply the theorem. We <i>cannot</i> conclude that f does not have a global maximum.
Sources of Errors Find all global minima of $f(x) = \frac{x^3 + 2}{3x}$. 1. $f'(x) = \frac{2(x^3-1)}{3x^2}$, $f''(x) = \frac{2x^3+4}{3x^3}$. 2. critical point at $x_0 = 1$. 3. $f''(1) = 2 > 0$ \Rightarrow global minimum ??? However, looking just at $f''(1)$ is not sufficient as we are looking for global minima! Beware! We have to look at $f''(x)$ at all $x \in D_f$. However, $f''(-1) = -\frac{2}{3} < 0$. Moreover, domain $D = \mathbb{R} \setminus \{0\}$ is not an interval. So f is not convex and we cannot apply our theorem. Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - $37/47$ Global Extrema in $[a, b]$	Sources of Errors Find all global maxima of $f(x) = \exp(-x^2/2)$. 1. $f'(x) = x \exp(-x^2)$, $f''(x) = (x^2 - 1) \exp(-x^2)$. 2. critical point at $x_0 = 0$. 3. However, $f''(0) = -1 < 0$ but $f''(2) = 2e^{-2} > 0$. So f is not concave and thus there cannot be a global maximum. Really ??? Beware! We are checking a <i>sufficient</i> condition. Since an assumption does not hold (f is not concave), we simply cannot apply the theorem. We cannot conclude that f does not have a global maximum. Josef Leydeld - Bridging Course Mathematics - WS 2023/2 8 - Monotone, Convex and Extrema - 38/47 Global Extrema in $[a, b]$
Sources of Errors Find all global minima of $f(x) = \frac{x^3 + 2}{3x}$. 1. $f'(x) = \frac{2(x^3-1)}{3x^2}$, $f''(x) = \frac{2x^3+4}{3x^3}$. 2. critical point at $x_0 = 1$. 3. $f''(1) = 2 > 0$ \Rightarrow global minimum ??? However, looking just at $f''(1)$ is not sufficient as we are looking for global minima! Beware! We have to look at $f''(x)$ at all $x \in D_f$. However, $f''(-1) = -\frac{2}{3} < 0$. Moreover, domain $D = \mathbb{R} \setminus \{0\}$ is not an interval. So f is not convex and we cannot apply our theorem. Josef Leydold - Bridging Course Mathematics - WS 202324 B - Monotone, Convex and Externa - 37/47 Global Extrema in $[a, b]$ Extrema of $f(x)$ in closed interval $[a, b]$. Procedure for differentiable functions: (1) Compute $f'(x)$. (2) Find all stationary points x_i (i.e., $f'(x_i) = 0$). (3) Evaluate $f(x)$ for all candidates: \models all stationary points x_i . \models boundary points a and b . (4) Largest of these values is global maximum, smallest of these values is global minimum.	Sources of Errors Find all global maxima of $f(x) = \exp(-x^2/2)$. 1. $f'(x) = x \exp(-x^2)$, $f''(x) = (x^2 - 1) \exp(-x^2)$. 2. critical point at $x_0 = 0$. 3. However, $f''(0) = -1 < 0$ but $f''(2) = 2e^{-2} > 0$. So f is not concave and thus there cannot be a global maximum. Really ??? Beware! We are checking a <i>sufficient</i> condition. Since an assumption does not hold (f is not concave), we simply cannot apply the theorem. We cannot conclude that f does not have a global maximum. Identication $f: [0,5; 8,5] \rightarrow \mathbb{R}, x \mapsto \frac{1}{12}x^3 - x^2 + 3x + 1$ (1) $f'(x) = \frac{1}{4}x^2 - 2x + 3$. (2) $\frac{1}{4}x^2 - 2x + 3 = 0$ has roots $x_1 = 2$ and $x_2 = 6$. (3) $f(0.5) = 2.260$ f(2) = 3.667 $f(6) = 1.000 \Rightarrow$ global minimum
Sources of Errors Find all global minima of $f(x) = \frac{x^3 + 2}{3x}$. 1. $f'(x) = \frac{2(x^3 - 1)}{3x^2}$, $f''(x) = \frac{2(x^3 + 4)}{3x^3}$. 2. critical point at $x_0 = 1$. 3. $f''(1) = 2 > 0$ \Rightarrow global minimum ??? However, looking just at $f''(1)$ is not sufficient as we are looking for global minima! Beware! We have to look at $f''(x)$ at all $x \in D_f$. However, $f''(-1) = -\frac{2}{3} < 0$. Moreover, domain $D = \mathbb{R} \setminus \{0\}$ is not an interval. So f is not convex and we cannot apply our theorem. Josef Leydod - Bridging Course Mathematics - VIB 20234 Extrema of $f(x)$ in closed interval $[a, b]$. Procedure for differentiable functions: (1) Compute $f'(x)$. (2) Find all stationary points x_i (i.e., $f'(x_i) = 0$). (3) Evaluate $f(x)$ for all candidates: h all stationary points x_i , h boundary points a and b . (4) Largest of these values is global maximum, smallest of these values is global minimum.	Sources of Errors Find all global maxima of $f(x) = \exp(-x^2/2)$. 1. $f'(x) = x \exp(-x^2)$, $f''(x) = (x^2 - 1) \exp(-x^2)$. 2. critical point at $x_0 = 0$. 3. However, $f''(0) = -1 < 0$ but $f''(2) = 2e^{-2} > 0$. So <i>f</i> is not concave and thus there cannot be a global maximum. Really ??? Beware! We are checking a <i>sufficient</i> condition. Since an assumption does not hold (<i>f</i> is not concave), we simply cannot apply the theorem. We cannot conclude that <i>f</i> does not have a global maximum. doet Leydod - Birdging Course Mathematica - VIS 20294 0 - Monotone, Convex and Extrema - 38/47 Global Extrema in $[a, b]$ Find all global extrema of function $f: [0,5; 8,5] \rightarrow \mathbb{R}, x \mapsto \frac{1}{12}x^3 - x^2 + 3x + 1$ (1) $f'(x) = \frac{1}{4}x^2 - 2x + 3$. (2) $\frac{1}{4}x^2 - 2x + 3 = 0$ has roots $x_1 = 2$ and $x_2 = 6$. (3) $f(0.5) = 2.260$ f(2) = 3.667 $f(6) = 1.000 \Rightarrow$ global minimum $f(8.5) = 5.427 \Rightarrow$ global maximum (4) $x_2 = 6$ is the global minimum and b = 8.5 is the global maximum of <i>f</i> .

Global Extrema in (a, b)	Global Extrema in (<i>a</i> , <i>b</i>)
Extrema of $f(x)$ in open interval (a, b) (or $(-\infty, \infty)$).	Compute all global extrema of
Procedure for differentiable functions:	$f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x^2}$
(1) Compute $f'(x)$.	,
(2) Find all stationary points x_i (i.e., $f'(x_i) = 0$).	(1) $f'(x) = -2x e^{-x^2}$.
(3) Evaluate $f(x)$ for all <i>stationary</i> points x_i .	(2) $f'(x) = -2x e^{-x^2} = 0$ has unique root $x_1 = 0$.
(4) Determine $\lim_{x\to a} f(x)$ and $\lim_{x\to b} f(x)$.	(3) $f(0) = 1 \Rightarrow$ global maximum
(5) Largest of these values is global maximum,	$\lim_{x \to -\infty} f(x) = 0 \Rightarrow \text{no global minimum}$ $\lim_{x \to -\infty} f(x) = 0$
smallest of these values is global minimum .	(4) The function has a global maximum in $x_1 = 0$.
is obtained in a <i>stationary point</i> !	but no global minimum.
Josef Leydold – Bridging Course Mathematics – WS 2023/24 8 – Monotone, Convex and Extrema – 41 / 47	Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - 42/47
Existence and Uniqueness	Problem 8.12
A function need not have maxima or minima:	Find all local extrema of the following functions.
$f: (0,1) \to \mathbb{R}, x \mapsto x$	(a) $f(x) = e^{-x^2}$
(Pointe 1 and 1 are not in demain $(0, 1)$)	(b) $g(x) = \frac{x^2 + 1}{x}$
(Founds 1 and -1 are not in domain $(0, 1)$.)	(c) $h(x) = (x-3)^6$
 (Global) maxima need not be unique: 	
$f \colon \mathbb{R} \to \mathbb{R}, x \mapsto x^4 - 2 x^2$	
has two global minima at -1 and 1 .	
Josef Leydold – Bridging Course Mathematics – WS 2023/24 8 – Monotone, Convex and Extrema – 43 / 47	Josef Leydold – Bridging Course Mathematics – WS 2023/24 8 – Monotone, Convex and Extrema – 44 / 47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \to \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \to \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \to \mathbb{R}, x \mapsto x - \ln(x)$	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6]
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \to \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \to \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \to \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x^2}$	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2]
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \to \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \to \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \to \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x^2}$	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2]
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \to \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \to \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \to \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x^2}$	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2]
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \to \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \to \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \to \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x^2}$ Automatic set of the set	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2] Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Externa - 46/47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \to \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \to \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \to \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x^2}$ Josef Leydold - Bridging Course Mathematics - WS 2020/24 8 - Monotone, Convex and Extrema - 45/47 Summary monotonically increasing and decreasing 	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2] Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - 46/47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \to \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \to \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \to \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x^2}$ Josef Leydold - Bridging Course Mathematics - WS 2023/2 8 - Monotone, Convex and Extrema - 45/47 Summary • monotonically increasing and decreasing • convex and concave • clobal and logal extreme	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2] Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - 46/47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^2}$ Bendentation - WS 2023/24 Josef Leydold - Bridging Course Mathematics - WS 2023/24 A - Monotone, Convex and Extrema - 45/47 Summary > monotonically increasing and decreasing > convex and concave > global and local extrema	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2] Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - 46/47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^2}$ Bendet Leydold - Bridging Course Mathematics - WS 2023/2 Josef Leydold - Bridging Course Mathematics - WS 2023/2 Bendet on convex and Extrema - 45/47 Summary monotonically increasing and decreasing convex and concave global and local extrema 	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2] Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - 46/47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^2}$ Advect Leydold - Bridging Course Mathematics - WS 202324 B - Monotone, Convex and Extrema - 45/47 Summary monotonically increasing and decreasing convex and concave global and local extrema 	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2] Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone, Convex and Extrema - 46/47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^2}$ Josef Leydod - Bridging Course Mathematics - WS 2023/2 8 - Monotone, Convex and Externa - 45/47 Summary > monotonically increasing and decreasing > convex and concave > global and local extrema	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1,12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2,6] (c) $f(x) = x^4 - 2x^2$ in interval [-2,2] Josef Leydold - Bridging Course Mathematics - WS 2023/24 8 - Monotone. Convex and Extrema - 46/47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^2}$ Note: Leydoid - Bridging Course Mathematics - WS 2023/24 Josef Leydoid - Bridging Course Mathematics - WS 2023/24 B - Monotone, Convex and Extrema - 45/47 Summary monotonically increasing and decreasing convex and concave global and local extrema 	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2] Josef Leydold – Bridging Course Mathematica – WS 2023/24 8 – Monotone, Convex and Extrema – 46/47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^2}$ Monotone, Convex and Externa - 45/47 Summary • monotonically increasing and decreasing • convex and concave • global and local extrema	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2] Josef Leydold – Bridging Course Mathematics – WS 202324 8 – Monotone, Convex and Extrema – 46/47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^2}$ sent Leydod - Bridging Course Mathematics - WS 202324 sent Leydod - Bridging Course Mathematics - WS 202324 b monotonically increasing and decreasing Convex and concave global and local extrema	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2] Josef Leydold - Bridging Course Mathematics - WS 202324 8 - Monotone, Correct and Extrema - 46/47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^2}$ UseetLeydoid - Bridging Course Mathematics - WS 2023/4 8 - Monotone, Convex and Extrema - 45/47 Summary • monotonically increasing and decreasing • convex and concave • global and local extrema	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2] Josef Leydold – Bridging Course Mathematica – WS 202324 8 – Monotone, Convex and Extrema – 46/47
Problem 8.13 Find all global extrema of the following functions. (a) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto \frac{1}{x} + x$ (b) $f: [0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x} - x$ (c) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-2x} + 2x$ (d) $f: (0, \infty) \rightarrow \mathbb{R}, x \mapsto x - \ln(x)$ (e) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^2}$ A tendent convex and Externa - 45/47 Summary • monotonically increasing and decreasing • convex and concave • global and local extrema	Problem 8.14 Compute all global maxima and minima of the following functions. (a) $f(x) = \frac{x^3}{12} - \frac{5}{4}x^2 + 4x - \frac{1}{2}$ in interval [1, 12] (b) $f(x) = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x + 2$ in interval [-2, 6] (c) $f(x) = x^4 - 2x^2$ in interval [-2, 2] Josef Leydold - Bridging Course Mathematics - WS 202324 8 - Monotone, Convex and Extrema - 46/47