Chapter 8

Monotone, Convex and Extrema

Monotone Functions

Function f is called monotonically increasing, if

$$
x_{1} \leq x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)
$$

It is called strictly monotonically increasing, if

$$
x_{1}<x_{2} \Leftrightarrow f\left(x_{1}\right)<f\left(x_{2}\right)
$$

Function f is called monotonically decreasing, if

$$
x_{1} \leq x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)
$$

It is called strictly monotonically decreasing, if

$$
x_{1}<x_{2} \Leftrightarrow f\left(x_{1}\right)>f\left(x_{2}\right)
$$

Monotone Functions

For differentiable functions we have

$$
\begin{array}{lll}
f \text { monotonically increasing } & \Leftrightarrow & f^{\prime}(x) \geq 0 \\
f \text { for all } x \in D_{f} \\
f \text { monotonically decreasing } & \Leftrightarrow & f^{\prime}(x) \leq 0
\end{array} \quad \text { for all } x \in D_{f}
$$

$$
\begin{aligned}
& f \text { strictly monotonically increasing } \Leftarrow f^{\prime}(x)>0 \text { for all } x \in D_{f} \\
& f \text { strictly monotonically decreasing } \Leftarrow f^{\prime}(x)<0 \text { for all } x \in D_{f}
\end{aligned}
$$

Function $f:(0, \infty), x \mapsto \ln (x)$ is strictly monotonically increasing, as

$$
f^{\prime}(x)=(\ln (x))^{\prime}=\frac{1}{x}>0 \quad \text { for all } x>0
$$

Locally Monotone Functions

A function f can be monotonically increasing in some interval and decreasing in some other interval.

For continuously differentiable functions (i.e., when $f^{\prime}(x)$ is continuous) we can use the following procedure:

1. Compute first derivative $f^{\prime}(x)$.
2. Determine all roots of $f^{\prime}(x)$.
3. We thus obtain intervals where $f^{\prime}(x)$ does not change sign.
4. Select appropriate points x_{i} in each interval and determine the sign of $f^{\prime}\left(x_{i}\right)$.

Locally Monotone Functions

In which region is function $f(x)=2 x^{3}-12 x^{2}+18 x-1$ monotonically increasing?
We have to solve inequality $f^{\prime}(x) \geq 0$:

1. $f^{\prime}(x)=6 x^{2}-24 x+18$
2. Roots: $x^{2}-4 x+3=0 \quad \Rightarrow \quad x_{1}=1, x_{2}=3$
3. Obtain 3 intervals: $(-\infty, 1],[1,3]$, and $[3, \infty)$
4. Sign of $f^{\prime}(x)$ at appropriate points in each interval:

$$
f^{\prime}(0)=3>0, f^{\prime}(2)=-1<0, \text { and } f^{\prime}(4)=3>0
$$

5. $f^{\prime}(x)$ cannot change sign in each interval:

$$
f^{\prime}(x) \geq 0 \text { in }(-\infty, 1] \text { and }[3, \infty)
$$

Function $f(x)$ is monotonically increasing in $(-\infty, 1]$ and in $[3, \infty)$.

Monotone and Inverse Function

If f is strictly monotonically increasing, then

$$
x_{1}<x_{2} \Leftrightarrow f\left(x_{1}\right)<f\left(x_{2}\right)
$$

immediately implies

$$
x_{1} \neq x_{2} \Leftrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

That is, f is one-to-one.
So if f is onto and strictly monotonically increasing (or decreasing), then f is invertible.

Convex and Concave Functions

Function f is called convex, if its domain D_{f} is an interval and

$$
f\left((1-h) x_{1}+h x_{2}\right) \leq(1-h) f\left(x_{1}\right)+h f\left(x_{2}\right)
$$

for all $x_{1}, x_{2} \in D_{f}$ and all $h \in[0,1]$. It is called concave, if

$$
f\left((1-h) x_{1}+h x_{2}\right) \geq(1-h) f\left(x_{1}\right)+h f\left(x_{2}\right)
$$

Josef Leydold - Bridging Course Mathematics - WS 2023/24
Concave Function

$$
f\left((1-h) x_{1}+h x_{2}\right) \geq(1-h) f\left(x_{1}\right)+h f\left(x_{2}\right)
$$

Secant below graph of function

Convex and Concave Functions

For two times differentiable functions we have

$$
\begin{array}{lll}
f \text { convex } & \Leftrightarrow & f^{\prime \prime}(x) \geq 0
\end{array} \quad \text { for all } x \in D_{f}
$$

$f^{\prime}(x)$ is monotonically decreasing, thus $f^{\prime \prime}(x) \leq 0$

Strictly Convex and Concave Functions

Function f is called strictly convex, if its domain D_{f} is an interval and

$$
f\left((1-h) x_{1}+h x_{2}\right)<(1-h) f\left(x_{1}\right)+h f\left(x_{2}\right)
$$

for all $x_{1}, x_{2} \in D_{f}, x_{1} \neq x_{2}$ and all $h \in(0,1)$.
It is called strictly concave, if its domain D_{f} is an interval and

$$
f\left((1-h) x_{1}+h x_{2}\right)>(1-h) f\left(x_{1}\right)+h f\left(x_{2}\right)
$$

For two times differentiable functions we have

$$
\begin{array}{ll}
f \text { strictly convex } & \Leftarrow f^{\prime \prime}(x)>0 \\
f \text { for all } x \in D_{f} \\
f \text { strictly concave } & \Leftarrow f^{\prime \prime}(x)<0
\end{array} \quad \text { for all } x \in D_{f}
$$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Convex Function

Exponential function:

$$
\begin{aligned}
& f(x)=e^{x} \\
& f^{\prime}(x)=e^{x} \\
& f^{\prime \prime}(x)=e^{x}>0 \quad \text { for all } x \in \mathbb{R}
\end{aligned}
$$

$\exp (x)$ is (strictly) convex.

Concave Function

Logarithm function: $\quad(x>0)$

$$
\begin{aligned}
& f(x)=\ln (x) \\
& f^{\prime}(x)=\frac{1}{x} \\
& f^{\prime \prime}(x)=-\frac{1}{x^{2}}<0 \quad \text { for all } x>0
\end{aligned}
$$

$\ln (x)$ is (strictly) concave.

Locally Convex Functions

A function f can be convex in some interval and concave in some other interval.

For two times continuously differentiable functions (i.e., when $f^{\prime \prime}(x)$ is continuous) we can use the following procedure:

1. Compute second derivative $f^{\prime \prime}(x)$.
2. Determine all roots of $f^{\prime \prime}(x)$.
3. We thus obtain intervals where $f^{\prime \prime}(x)$ does not change sign.
4. Select appropriate points x_{i} in each interval and determine the sign of $f^{\prime \prime}\left(x_{i}\right)$.

Locally Concave Function

In which region is $f(x)=2 x^{3}-12 x^{2}+18 x-1$ concave?
We have to solve inequality $f^{\prime \prime}(x) \leq 0$.

1. $f^{\prime \prime}(x)=12 x-24$
2. Roots: $12 x-24=0 \quad \Rightarrow \quad x=2$
3. Obtain 2 intervals: $(-\infty, 2]$ and $[2, \infty)$
4. Sign of $f^{\prime \prime}(x)$ at appropriate points in each interval:

$$
f^{\prime \prime}(0)=-24<0 \text { and } f^{\prime \prime}(4)=24>0
$$

5. $f^{\prime \prime}(x)$ cannot change sign in each interval: $f^{\prime \prime}(x) \leq 0$ in $(-\infty, 2]$

Function $f(x)$ is concave in $(-\infty, 2]$.

Problem 8.1

Determine whether the following functions are concave or convex (or neither).
(a) $\exp (x)$
(b) $\ln (x)$
(c) $\log _{10}(x)$
(d) x^{α} for $x>0$ for an $\alpha \in \mathbb{R}$.

Problem 8.2

In which region is function

$$
f(x)=x^{3}-3 x^{2}-9 x+19
$$

monotonically increasing or decreasing?
In which region is it convex or concave?

Problem 8.3

In which region the following functions monotonically increasing or decreasing?
In which region is it convex or concave?
(a) $f(x)=x e^{x^{2}}$
(b) $f(x)=e^{-x^{2}}$
(c) $f(x)=\frac{1}{x^{2}+1}$

Problem 8.4

Function

$$
f(x)=b x^{1-a}, \quad 0<a<1, b>0, x \geq 0
$$

is an example of a production function.
Production functions usually have the following properties:
(1) $f(0)=0, \quad \lim _{x \rightarrow \infty} f(x)=\infty$
(2) $f^{\prime}(x)>0, \quad \lim _{x \rightarrow \infty} f^{\prime}(x)=0$
(3) $f^{\prime \prime}(x)<0$
(a) Verify these properties for the given function.
(b) Draw (sketch) the graphs of $f(x), f^{\prime}(x)$, and $f^{\prime}(x)$. (Use appropriate values for a and b.)
(c) What is the economic interpretation of these properties?

Problem 8.5

Function

$$
f(x)=b \ln (a x+1), \quad a, b>0, x \geq 0
$$

is an example of a utility function.
Utility functions have the same properties as production functions.
(a) Verify the properties from Problem 8.4.
(b) Draw (sketch) the graphs of $f(x), f^{\prime}(x)$, and $f^{\prime}(x)$. (Use appropriate values for a and b.)
(c) What is the economic interpretation of these properties?

Problem 8.6

Use the definition of convexity and show that $f(x)=x^{2}$ is strictly convex.
Hint: Show that inequality $\left(\frac{1}{2} x+\frac{1}{2} y\right)^{2}-\left(\frac{1}{2} x^{2}+\frac{1}{2} y^{2}\right)<0$ holds for all $x \neq y$.

Problem 8.7

Show:
If $f(x)$ is a two times differentiable concave function, then $g(x)=-f(x)$ convex.

Problem 8.8

Show:
If $f(x)$ is a concave function, then $g(x)=-f(x)$ convex.
You may not assume that f is differentiable.

Problem 8.9

Let $f(x)$ and $g(x)$ be two differentiable concave functions.
Show that

$$
h(x)=\alpha f(x)+\beta g(x), \quad \text { for } \alpha, \beta>0
$$

is a concave function.
What happens, if $\alpha>0$ and $\beta<0$?

Problem 8.10

Sketch the graph of a function $f:[0,2] \rightarrow \mathbb{R}$ with the properties:

- continuous,
- monotonically decreasing,
- strictly concave,
- $f(0)=1$ and $f(1)=0$.

In addition find a particular term for such a function.

Problem 8.11

Suppose we relax the condition strict concave into concave in Problem 8.10.
Can you find a much simpler example?

Global Extremum (Optimum)

A point x^{*} is called global maximum (absolute maximum) of f, if for all $x \in D_{f}$,

$$
f\left(x^{*}\right) \geq f(x) .
$$

A point x^{*} is called global minimum (absolute minimum) of f, if for all $x \in D_{f}$,

$$
f\left(x^{*}\right) \leq f(x) .
$$

Local Extremum (Optimum)

A point x_{0} is called local maximum (relative maximum) of f, if for all x in some neighborhood of x_{0},

$$
f\left(x_{0}\right) \geq f(x)
$$

A point x_{0} is called local minimum (relative minimum) of f, if for all x in some neighborhood of x_{0},

$$
f\left(x_{0}\right) \leq f(x)
$$

Minima and Maxima

Notice!

Every minimization problem can be transformed into a maximization problem (and vice versa).

Point x_{0} is a minimum of $f(x)$, if and only if x_{0} is a maximum of $-f(x)$.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Critical Point

At a (local) maximum or minimum the first derivative of the function must vanish (i.e., must be equal 0).

A point x_{0} is called a critical point (or stationary point) of function f, if

$$
f^{\prime}\left(x_{0}\right)=0
$$

Necessary condition for differentiable functions:
Each extremum of f is a critical point of f.

Global Extremum

Sufficient condition:

Let x_{0} be a critical point of f.
If f is concave then x_{0} is a global maximum of f.
If f is convex then x_{0} is a global minimum of f.

If f is strictly concave (or convex), then the extremum is unique.

Global Extremum

Let $f(x)=e^{x}-2 x$.
Function f is strictly convex:

$$
\begin{aligned}
& f^{\prime}(x)=e^{x}-2 \\
& f^{\prime \prime}(x)=e^{x} \quad>0 \quad \text { for all } x \in \mathbb{R}
\end{aligned}
$$

Critical point:

$$
f^{\prime}(x)=e^{x}-2=0 \quad \Rightarrow \quad x_{0}=\ln 2
$$

$x_{0}=\ln 2$ is the (unique) global minimum of f.

Local Extremum

A point x_{0} is a local maximum (or local minimum) of f, if
x_{0} is a critical point of f,

- f is locally concave (and locally convex, resp.) around x_{0}.

Local Extremum

Sufficient condition for two times differentiable functions:

Let x_{0} be a critical point of f. Then

- $f^{\prime \prime}\left(x_{0}\right)<0 \Rightarrow x_{0}$ is local maximum
- $f^{\prime \prime}\left(x_{0}\right)>0 \Rightarrow x_{0}$ is local minimum

It is sufficient to evaluate $f^{\prime \prime}(x)$ at the critical point x_{0}. (In opposition to the condition for global extrema.)

Necessary and Sufficient

We want to explain two important concepts using the example of local minima.

Condition " $f^{\prime}\left(x_{0}\right)=0$ " is necessary for a local minimum:
Every local minimum must have this properties.
However, not every point with such a property is a local minimum
(e.g. $x_{0}=0$ in $f(x)=x^{3}$).

Stationary points are candidates for local extrema.
Condition " $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$ " is sufficient for a local minimum.

If it is satisfied, then x_{0} is a local minimum.
However, there are local minima where this condition is not satisfied
(e.g. $x_{0}=0$ in $f(x)=x^{4}$).

If it is not satisfied, we cannot draw any conclusion.

Josef Leydold - Bridging Course Mathematics - WS 2023/2

Procedure for Local Extrema

Sufficient condition

for local extrema of a differentiable function in one variable:

1. Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
2. Find all roots x_{i} of $f^{\prime}\left(x_{i}\right)=0 \quad$ (critical points).
3. If $f^{\prime \prime}\left(x_{i}\right)<0 \Rightarrow x_{i}$ is a local maximum.

If $f^{\prime \prime}\left(x_{i}\right)>0 \Rightarrow x_{i}$ is a local minimum.
If $f^{\prime \prime}\left(x_{i}\right)=0 \Rightarrow$ no conclusion possible!

Local Extrema

Find all local extrema of

$$
f(x)=\frac{1}{12} x^{3}-x^{2}+3 x+1
$$

1. $f^{\prime}(x)=\frac{1}{4} x^{2}-2 x+3$, $f^{\prime \prime}(x)=\frac{1}{2} x-2$.
2. $\frac{1}{4} x^{2}-2 x+3=0$ has roots

$$
x_{1}=2 \text { and } x_{2}=6 .
$$

3. $f^{\prime \prime}(2)=-1 \Rightarrow x_{1}$ is a local maximum.
$f^{\prime \prime}(6)=1 \quad \Rightarrow \quad x_{2}$ is a local minimum.

Sources of Errors

Find all global minima of $f(x)=\frac{x^{3}+2}{3 x}$.

1. $f^{\prime}(x)=\frac{2\left(x^{3}-1\right)}{3 x^{2}}$,
$f^{\prime \prime}(x)=\frac{2 x^{3}+4}{3 x^{3}}$.
2. critical point at $x_{0}=1$.
3. $f^{\prime \prime}(1)=2>0$
\Rightarrow global minimum ???

However, looking just at $f^{\prime \prime}(\mathbf{1})$ is not sufficient as we are looking for global minima!

Beware! We have to look at $f^{\prime \prime}(x)$ at all $x \in D_{f}$.
However, $f^{\prime \prime}(-1)=-\frac{2}{3}<0$.
Moreover, domain $D=\mathbb{R} \backslash\{0\}$ is not an interval.
So f is not convex and we cannot apply our theorem.

Sources of Errors

Find all global maxima of $f(x)=\exp \left(-x^{2} / 2\right)$.

1. $f^{\prime}(x)=x \exp \left(-x^{2}\right)$,
$f^{\prime \prime}(x)=\left(x^{2}-1\right) \exp \left(-x^{2}\right)$.
2. critical point at $x_{0}=0$.

3. However,
$f^{\prime \prime}(0)=-1<0$ but $f^{\prime \prime}(2)=2 e^{-2}>0$.
So f is not concave and thus there cannot be a global maximum.
Really ???
Beware! We are checking a sufficient condition.
Since an assumption does not hold (f is not concave),
we simply cannot apply the theorem.
We cannot conclude that f does not have a global maximum.

Global Extrema in $[a, b]$

Extrema of $f(x)$ in closed interval $[a, b]$.
Procedure for differentiable functions:
(1) Compute $f^{\prime}(x)$.
(2) Find all stationary points x_{i} (i.e., $f^{\prime}\left(x_{i}\right)=0$).
(3) Evaluate $f(x)$ for all candidates:

- all stationary points x_{i},
- boundary points a and b.
(4) Largest of these values is global maximum, smallest of these values is global minimum.

It is not necessary to compute $f^{\prime \prime}\left(x_{i}\right)$.

Global Extrema in $[a, b]$

Find all global extrema of function

$$
f:[0,5 ; 8,5] \rightarrow \mathbb{R}, x \mapsto \frac{1}{12} x^{3}-x^{2}+3 x+1
$$

(1) $f^{\prime}(x)=\frac{1}{4} x^{2}-2 x+3$.
(2) $\frac{1}{4} x^{2}-2 x+3=0$ has roots $x_{1}=2$ and $x_{2}=6$.
(3) $f(0.5)=2.260$
$f(2)=3.667$
$f(6)=1.000 \Rightarrow$ global minimum
$f(8.5)=5.427 \quad \Rightarrow \quad$ global maximum
(4) $x_{2}=6$ is the global minimum and
$b=8.5$ is the global maximum of f.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Global Extrema in (a, b)

Extrema of $f(x)$ in open interval $(a, b) \quad$ (or $(-\infty, \infty)$).
Procedure for differentiable functions:
(1) Compute $f^{\prime}(x)$.
(2) Find all stationary points x_{i} (i.e., $f^{\prime}\left(x_{i}\right)=0$).
(3) Evaluate $f(x)$ for all stationary points x_{i}.
(4) Determine $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow b} f(x)$.
(5) Largest of these values is global maximum, smallest of these values is global minimum
(6) A global extremum exists only if the largest (smallest) value is obtained in a stationary point!

Global Extrema in (a, b)

Compute all global extrema of

$$
f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^{2}}
$$

(1) $f^{\prime}(x)=-2 x e^{-x^{2}}$.
(2) $f^{\prime}(x)=-2 x e^{-x^{2}}=0$ has unique root $x_{1}=0$.
(3) $\quad f(0)=1 \Rightarrow$ global maximum $\lim _{x \rightarrow-\infty} f(x)=0 \quad \Rightarrow \quad$ no global minimum $\lim _{x \rightarrow \infty} f(x)=0$
(4) The function has a global maximum in $x_{1}=0$, but no global minimum.

Existence and Uniqueness

- A function need not have maxima or minima:

$$
f:(0,1) \rightarrow \mathbb{R}, x \mapsto x
$$

(Points 1 and -1 are not in domain $(0,1)$.)

- (Global) maxima need not be unique:

$$
f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{4}-2 x^{2}
$$

has two global minima at -1 and 1 .

Problem 8.12

Find all local extrema of the following functions.
(a) $f(x)=e^{-x^{2}}$
(b) $g(x)=\frac{x^{2}+1}{x}$
(c) $h(x)=(x-3)^{6}$

Problem 8.13

Find all global extrema of the following functions.
(a) $f:(0, \infty) \rightarrow \mathbb{R}, x \mapsto \frac{1}{x}+x$
(b) $f:[0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x}-x$
(c) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-2 x}+2 x$
(d) $f:(0, \infty) \rightarrow \mathbb{R}, x \mapsto x-\ln (x)$
(e) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^{2}}$

Problem 8.14

Compute all global maxima and minima of the following functions.
(a) $f(x)=\frac{x^{3}}{12}-\frac{5}{4} x^{2}+4 x-\frac{1}{2}$ in interval $[1,12]$
(b) $f(x)=\frac{2}{3} x^{3}-\frac{5}{2} x^{2}-3 x+2$ in interval $[-2,6]$
(c) $f(x)=x^{4}-2 x^{2}$ in interval $[-2,2]$

Summary

- monotonically increasing and decreasing
- convex and concave
- global and local extrema

