

| Derivative of a Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Derivatives of Elementary Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function<br>$f': D \to \mathbb{R}, x \mapsto f'(x) = \frac{df}{dx}\Big _x$ is called the <b>first derivative</b> of function <i>f</i> .<br>Its domain <i>D</i> is the set of all points where the differential quotient<br>(i.e., the limit of the difference quotient) exists.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $f(x)$ $f'(x)$ $c$ $0$ $x^{\alpha}$ $\alpha \cdot x^{\alpha-1}$ $e^{x}$ $e^{x}$ $\ln(x)$ $\frac{1}{x}$ $\sin(x)$ $\cos(x)$ $\cos(x)$ $-\sin(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Josef Leydold – Bridging Course Mathematics – WS 2023/24 7 – Derivatives – 9 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 10 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Computation Rules for Derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Computation Rules for Derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • $(c \cdot f(x))' = c \cdot f'(x)$<br>• $(f(x) + g(x))' = f'(x) + g'(x)$ Summation rule<br>• $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ Product rule<br>• $(f(g(x)))' = f'(g(x)) \cdot g'(x)$ Chain rule<br>• $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$ Quotient rule<br>UserLeydod - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 11/56<br>Higher Order Derivatives<br>We can compute derivatives of the derivative of a function.<br>Thus we obtain the<br>• second derivative $f''(x)$ of function $f$ ,<br>• third derivative $f'''(x)$ , etc.,<br>• <i>n</i> -th derivative $f''(x)$ .<br>Other notations:<br>• $f''(x) = \frac{d^2f}{dx^2}(x) = \left(\frac{d}{dx}\right)^2 f(x)$ | $(3x^{3} + 2x - 4)' = 3 \cdot 3 \cdot x^{2} + 2 \cdot 1 - 0 = 9x^{2} + 2$ $(e^{x} \cdot x^{2})' = (e^{x})' \cdot x^{2} + e^{x} \cdot (x^{2})' = e^{x} \cdot x^{2} + e^{x} \cdot 2x$ $((3x^{2} + 1)^{2})' = 2(3x^{2} + 1) \cdot 6x$ $(\sqrt{x})' = (x^{\frac{1}{2}})' = \frac{1}{2} \cdot x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$ $(a^{x})' = (e^{\ln(a) \cdot x})' = e^{\ln(a) \cdot x} \cdot \ln(a) = a^{x} \ln(a)$ $(\frac{1 + x^{2}}{1 - x^{3}})' = \frac{2x \cdot (1 - x^{3}) - (1 + x^{2}) \cdot 3x^{2}}{(1 - x^{3})^{2}}$ $(a^{x})' = (e^{\ln(a) \cdot x}) = \frac{2x \cdot (1 - x^{3}) - (1 + x^{2}) \cdot 3x^{2}}{(1 - x^{3})^{2}}$ $(a^{x})' = (x^{4} + 2x^{2} + 5x - 3)$ $are$ $f'(x) = (x^{4} + 2x^{2} + 5x - 3)' = 4x^{3} + 4x + 5$ $f''(x) = (4x^{3} + 4x + 5)' = 12x^{2} + 4$ $f'''(x) = (12x^{2} + 4)' = 24x$ $f''(x) = 0$ |
| $\mathbf{F}_{n}^{(n)}(x) = \frac{d^{n}f}{dx^{n}}(x) = \left(\frac{d}{dx}\right)^{n} f(x)$ Josef Leydold – Bridging Course Mathematics – WS 2023/24 7 – Derivatives – 13/56 Problem 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f^{v}(x) = 0$<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 14/56<br><b>Problem 7.3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Problem 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Problem 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compute the first and second derivative of the following functions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Derive the quotient rule by means of product rule and chain rule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (a) $f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>(b)</b> $f(x) = \cosh(x) = \frac{1}{2}(e^x + e^{-x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (c) $f(x) = \sinh(x) = \frac{1}{2}(e^x - e^{-x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (d) $f(x) = \cos(1 + x^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(\mathbf{x}) = \cos(\mathbf{x} + \mathbf{x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 17/56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 18 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Marginal Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| We can estimate the derivative $f'(x_0)$ approximately by means of the difference quotient with small change $\Delta x$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Approximation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $f(x_0 + \Delta x) - f(x_0) = \Delta f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Delta f = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \cdot \Delta x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \approx \frac{\Delta f}{\Delta x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | becomes exact if $\Delta x$ (and thus $\Delta f$ ) becomes <i>infinitesimally small</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vice verse we can estimate the change $\Delta f$ of $f$ for <i>small</i> changes $\Delta x$ approximately by the first derivative of $f$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | We then write $dx$ and $df$ instead of $\Delta x$ and $\Delta f$ , resp.<br>$df = f'(x_0) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Delta f = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \cdot \Delta x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Symbols $df$ and $dx$ are called the <b>differentials</b> of function $f$ and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Beware:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | independent variable x, resp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li><i>f</i>'(x<sub>0</sub>) · Δx is a <i>linear function</i> in Δx.</li> <li>It is the <i>best possible</i> approximation of <i>f</i> by a linear function</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| around x <sub>0</sub> .<br>► This approximation is useful only for "small" values of ∆ r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 19/56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 20 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Problem 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Differential $df$ can be seen as a linear function in $dx$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Let $f(x) = \frac{\ln(x)}{x}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $f(x_0 + dx) \approx f(x_0) + df$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Compute $\Delta f = f(3.1) - f(3)$ approximately by means of the differential at point $x_0 = 3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Let $f(x) = x^{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Differential of f at point $x_0 = 1$ :<br>$df = f'(1) dx = e^1 dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Approximation of $f(1.1)$ by means of this differential:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Delta r = (r_0 + dr) - r_0 = 11 - 1 = 01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$<br>f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$<br>$f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$<br>Exact value: $f(1.1) = 3.004166$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$ $f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$ Exact value: $f(1.1) = 3.004166$ Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 21/56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 22 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$ $f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$ Exact value: $f(1.1) = 3.004166$ Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 21/56 Elasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 22 / 56 Elasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$ $f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$ Exact value: $f(1.1) = 3.004166$ Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 21/56 Elasticity The first derivative of a function gives <i>absolute</i> rate of change of <i>f</i> at $x_0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 22 / 56 Elasticity The expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$ $f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$ Exact value: $f(1.1) = 3.004166$ Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 21/56 Elasticity The first derivative of a function gives <i>absolute</i> rate of change of <i>f</i> at $x_0$ . Hence it depends on the scales used for argument and function values. However, often <i>relative</i> rates of change are more appropriate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Josef Leydold – Bridging Course Mathematics – WS 2023/24 7 – Derivatives – 22 / 56 $Elasticity$ The expression $\varepsilon_{f}(x) = x \cdot \frac{f'(x)}{f(x)}$                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$ $f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$ Exact value: $f(1.1) = 3.004166$ Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 21/56 Elasticity The first derivative of a function gives <i>absolute</i> rate of change of <i>f</i> at $x_0$ . Hence it depends on the scales used for argument and function values. However, often <i>relative</i> rates of change are more appropriate. We obtain <i>scale invariance</i> and <i>relative</i> rate of changes by                                                                                                                                                                                                                                                                                                                                                                                              | Josef Leydold – Bridging Course Mathematics – WS 2023/24 7 – Derivatives – 22/56<br><b>Elasticity</b><br>The expression $\varepsilon_f(x) = x \cdot \frac{f'(x)}{f(x)}$ is called the electricity of f at point x                                                                                                                                                                                                                                                                                                                                                                             |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$ $f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$ Exact value: $f(1.1) = 3.004166$ Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 21/56 Elasticity The first derivative of a function gives <i>absolute</i> rate of change of <i>f</i> at $x_0$ . Hence it depends on the scales used for argument and function values. However, often <i>relative</i> rates of change are more appropriate. We obtain <i>scale invariance</i> and <i>relative</i> rate of changes by change of function value relative to value of function                                                                                                                                                                                                                                                                                                                                       | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 22/56<br><b>Elasticity</b><br>The expression<br>$\epsilon_f(x) = x \cdot \frac{f'(x)}{f(x)}$<br>is called the <b>elasticity</b> of $f$ at point $x$ .                                                                                                                                                                                                                                                                                                                                                              |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$ $f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$ Exact value: $f(1.1) = 3.004166$<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 21/56<br><b>Elasticity</b><br>The first derivative of a function gives <i>absolute</i> rate of change of <i>f</i> at $x_0$ . Hence it depends on the scales used for argument and function values. However, often <i>relative</i> rates of change are more appropriate. We obtain <i>scale invariance</i> and <i>relative</i> rate of changes by<br><u>change of function value relative to value of function</u><br><u>change of argument relative to value of argument</u>                                                                                                                                                                                                                                                  | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 22/56<br><b>Elasticity</b><br>The expression<br>$\epsilon_f(x) = x \cdot \frac{f'(x)}{f(x)}$<br>is called the <b>elasticity</b> of <i>f</i> at point <i>x</i> .<br>Let $f(x) = 3e^{2x}$ . Then                                                                                                                                                                                                                                                                                                                     |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$ $f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$ Exact value: $f(1.1) = 3.004166$<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 21/56<br><b>Elasticity</b><br>The first derivative of a function gives <i>absolute</i> rate of change of <i>f</i> at $x_0$ . Hence it depends on the scales used for argument and function values. However, often <i>relative</i> rates of change are more appropriate.<br>We obtain <i>scale invariance</i> and <i>relative</i> rate of changes by<br><u>change of function value relative</u> to value of function<br><u>change of argument relative</u> to value of argument<br>and thus<br>$f(x_1, b_2)$                                                                                                                                                                                                                  | Josef Laydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 22/56<br><b>Elasticity</b><br>The expression<br>$\epsilon_f(x) = x \cdot \frac{f'(x)}{f(x)}$<br>is called the <b>elasticity</b> of $f$ at point $x$ .<br>Let $f(x) = 3e^{2x}$ . Then<br>$\epsilon_f(x) = x \cdot \frac{f'(x)}{f(x)} = x \cdot \frac{6e^{2x}}{3e^{2x}} = 2x$                                                                                                                                                                                                                                        |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$ $f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$ Exact value: $f(1.1) = 3.004166$<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 21/56<br><b>Elasticity</b><br>The first derivative of a function gives <i>absolute</i> rate of change of <i>f</i> at $x_0$ . Hence it depends on the scales used for argument and function values. However, often <i>relative</i> rates of change are more appropriate.<br>We obtain <i>scale invariance</i> and <i>relative</i> rate of changes by<br><u>change of function value relative to value of function</u><br>change of argument relative to value of argument<br>and thus<br>$\lim_{n \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{n \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \cdot \frac{x}{f(x)} = f'(x) \cdot \frac{x}{f(x)}$                                                                   | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 22/56<br><b>Elasticity</b><br>The expression<br>$\boxed{\varepsilon_f(x) = x \cdot \frac{f'(x)}{f(x)}}$ is called the <b>elasticity</b> of <i>f</i> at point <i>x</i> .<br>Let $f(x) = 3e^{2x}$ . Then<br>$\varepsilon_f(x) = x \cdot \frac{f'(x)}{f(x)} = x \cdot \frac{6e^{2x}}{3e^{2x}} = 2x$<br>Let $f(x) = \beta x^{\alpha}$ . Then                                                                                                                                                                           |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$ $f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$ Exact value: $f(1.1) = 3.004166$<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 21/56<br><b>Elasticity</b><br>The first derivative of a function gives <i>absolute</i> rate of change of $f$ at $x_0$ . Hence it depends on the scales used for argument and function values. However, often <i>relative</i> rates of change are more appropriate.<br>We obtain <i>scale invariance</i> and <i>relative</i> rate of changes by<br><u>change of function value relative to value of function</u><br>change of argument relative to value of argument<br>and thus<br>$\lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\frac{\Delta x}{x}}}{\frac{\Delta x}{x}} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \cdot \frac{x}{f(x)} = f'(x) \cdot \frac{x}{f(x)}$                     | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 22/56<br><b>Elasticity</b><br>The expression<br>$\boxed{\varepsilon_f(x) = x \cdot \frac{f'(x)}{f(x)}}$ is called the <b>elasticity</b> of <i>f</i> at point <i>x</i> .<br>Let $f(x) = 3 e^{2x}$ . Then<br>$\varepsilon_f(x) = x \cdot \frac{f'(x)}{f(x)} = x \cdot \frac{6 e^{2x}}{3 e^{2x}} = 2x$<br>Let $f(x) = \beta x^{\alpha}$ . Then<br>$\varepsilon_f(x) = x \cdot \frac{f'(x)}{f(x)} = x \cdot \frac{\beta \alpha x^{\alpha-1}}{\beta x^{\alpha}} = \alpha$                                               |
| $\Delta x = (x_0 + dx) - x_0 = 1.1 - 1 = 0.1$<br>$f(1.1) \approx f(1) + df = e + e \cdot 0.1 \approx 2.99$<br>Exact value: $f(1.1) = 3.004166$<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 21/56<br><b>Elasticity</b><br>The first derivative of a function gives <i>absolute</i> rate of change of <i>f</i> at $x_0$ .<br>Hence it depends on the scales used for argument and function values.<br>However, often <i>relative</i> rates of change are more appropriate.<br>We obtain <i>scale invariance</i> and <i>relative</i> rate of changes by<br><u>change of function value relative to value of function</u><br><u>change of argument relative to value of argument</u><br>and thus<br>$\lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{\frac{f(x)}{x}}}{\frac{\Delta x}{x}} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \cdot \frac{x}{f(x)} = f'(x) \cdot \frac{x}{f(x)}$ | Josef Laydold - Bridging Course Mathematics - WS 2023/24<br>7 - Derivatives - 22/56<br><b>Elasticity</b><br>The expression $ \begin{aligned} \varepsilon_f(x) &= x \cdot \frac{f'(x)}{f(x)} \\ \text{is called the elasticity of } f \text{ at point } x. \\ \text{Let } f(x) &= 3e^{2x}. \text{ Then} \\ \varepsilon_f(x) &= x \cdot \frac{f'(x)}{f(x)} = x \cdot \frac{6e^{2x}}{3e^{2x}} = 2x \\ \text{Let } f(x) &= \beta x^{\alpha}. \text{ Then} \\ \varepsilon_f(x) &= x \cdot \frac{f'(x)}{f(x)} = x \cdot \frac{\beta \alpha x^{\alpha-1}}{\beta x^{\alpha}} = \alpha \end{aligned} $ |

| Elasticity II                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Elasticity II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The relative rate of change of $f$ can be expressed as<br>$\ln(f(x))' = \frac{f'(x)}{f(x)}$ What happens if we compute the derivative of $\ln(f(x))$ w.r.t. $\ln(x)$ ?<br>Let $v = \ln(x) \iff x = e^v$<br>Derivation by means of the chain rule yields:<br>$\frac{d(\ln(f(x)))}{d(\ln(x))} = \frac{d(\ln(f(e^v)))}{dv} = \frac{f'(e^v)}{f(e^v)}e^v = \frac{f'(x)}{f(x)}x = \varepsilon_f(x)$                                                                           | We can use the chain rule <i>formally</i> in the following way:<br>Let<br>• $u = \ln(y)$ ,<br>• $y = f(x)$ ,<br>• $x = e^v \iff v = \ln(x)$<br>Then we find<br>$\frac{d(\ln f)}{d(\ln x)} = \frac{du}{dv} = \frac{du}{dy} \cdot \frac{dy}{dx} \cdot \frac{dx}{dv} = \frac{1}{y} \cdot f'(x) \cdot e^v = \frac{f'(x)}{f(x)} x$                                                                                                                                                                                                                                                                                                                    |
| $\varepsilon_f(x) = \frac{d(\ln(f(x)))}{d(\ln(x))}$                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 25 / 56                                                                                                                                                                                                                                                                                                                                                                                      | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 26 / 56 Sourco of Errore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A Function <i>f</i> is called<br>• elastic in <i>x</i> , if $ \varepsilon_f(x)  > 1$<br>• 1-elastic in <i>x</i> , if $ \varepsilon_f(x)  = 1$<br>• inelastic in <i>x</i> , if $ \varepsilon_f(x)  < 1$<br>For elastic functions we then have:<br>The value of the function changes <i>relatively</i> faster than the value of the argument.<br>Function $f(x) = 3e^{2x}$ is $[\varepsilon_f(x) = 2x]$                                                                   | Beware!<br>Function <i>f</i> is elastic if the <b>absolute value</b> of the <i>elasticity</i> is greater than 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ▶ 1-elastic, for $x = -\frac{1}{2}$ and $x = \frac{1}{2}$ ;<br>▶ inelastic, for $-\frac{1}{2} < x < \frac{1}{2}$ ;<br>▶ elastic, for $x < -\frac{1}{2}$ or $x > \frac{1}{2}$ .                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Josef Leydold – Bridging Course Mathematics – WS 2023/24 7 – Derivatives – 27 / 56                                                                                                                                                                                                                                                                                                                                                                                      | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 28 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Let $q(p)$ be an <i>elastic</i> demand function, where $p$ is the price.<br>We have: $p > 0$ , $q > 0$ , and $q' < 0$ ( $q$ is decreasing). Hence<br>$\varepsilon_q(p) = p \cdot \frac{q'(p)}{q(p)} < -1$<br>What happens to the revenue (= price × selling)?<br>$u'(p) = (p \cdot q(p))' = 1 \cdot q(p) + p \cdot q'(p)$<br>$= q(p) \cdot (1 + p \cdot \frac{q'(p)}{q(p)})$<br>< 0<br>In other words, the revenue decreases if we raise prices.                        | Compute the regions where the following functions are elastic, 1-elastic<br>and inelastic, resp.<br>(a) $g(x) = x^3 - 2x^2$<br>(b) $h(x) = \alpha x^{\beta}$ , $\alpha, \beta \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 29 / 56                                                                                                                                                                                                                                                                                                                                                                                      | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 30 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Which of the following statements are correct?<br/>Suppose function y = f(x) is elastic in its domain.</li> <li>(a) If x changes by one unit, then the change of y is greater than one unit.</li> <li>(b) If x changes by one percent, then the relative change of y is greater than one percent.</li> <li>(c) The relative rate of change of y is larger than the relative rate of change of x.</li> <li>(d) The larger x is the larger will be y.</li> </ul> | Fairal Derivative<br>We investigate the rate of change of function $f(x_1,, x_n)$ , when<br>variable $x_i$ changes and the other variables remain fixed.<br>Limit<br>$\frac{\partial f}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{f(, x_i + \Delta x_i,) - f(, x_i,)}{\Delta x_i}$ is called the (first) <b>partial derivative</b> of $f$ w.r.t. $x_i$ .<br>Other notations for partial derivative $\frac{\partial f}{\partial x_i}$ :<br>• $f_{x_i}(\mathbf{x})$ (derivative w.r.t. variable $x_i$ )<br>• $f_i(\mathbf{x})$ (derivative w.r.t. the <i>i</i> -th variable)<br>• $f'_i(\mathbf{x})$ ( <i>i</i> -th component of the gradient) |
| Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 31 / 56                                                                                                                                                                                                                                                                                                                                                                                      | Josef Leydold – Bridging Course Mathematics – WS 2023/24 7 – Derivatives – 32 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Computation of Partial Derivatives                                                                                                                                                                       | Higher Order Partial Derivatives                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| We obtain partial derivatives $\frac{\partial f}{\partial x_i}$ by applying the rules for <i>univariate</i> functions for variable $x_i$ while we treat <i>all other</i> variables <i>as constants</i> . | We can compute partial derivatives of partial derivatives analogously to their univariate counterparts and obtain higher order partial derivatives:                                             |
| First partial derivatives of                                                                                                                                                                             | $\partial^2 f$ $\partial^2 f$                                                                                                                                                                   |
| $f(x_1, x_2) = \sin(2x_1) \cdot \cos(x_2)$                                                                                                                                                               | $\frac{\partial f}{\partial x_k \partial x_i}(\mathbf{x})$ and $\frac{\partial f}{\partial x_i^2}(\mathbf{x})$                                                                                  |
| $f_{x_1} = 2 \cdot \cos(2x_1) \cdot \cos(x_2)$                                                                                                                                                           | $\partial^2 f(\zeta)$                                                                                                                                                                           |
| treated as constant<br>$f_{1} = -\sin(2x) - (-\sin(x))$                                                                                                                                                  | Other notations for partial derivative $\frac{\partial}{\partial x_k \partial x_i}(\mathbf{x})$ :                                                                                               |
| $\int x_2 - \underbrace{\operatorname{SIII}(2X_1)}_{\text{treated as constant}} \cdot (-\operatorname{SIII}(X_2))$                                                                                       | ► $f_{x_ix_k}(\mathbf{x})$ (derivative w.r.t. variables $x_i$ and $x_k$ )<br>► $f_{ik}(\mathbf{x})$ (derivative w.r.t. the <i>i</i> -th and <i>k</i> -th variable)                              |
|                                                                                                                                                                                                          | • $f_{ik}^{\prime\prime\prime}(\mathbf{x})$ (component of the Hessian matrix with index <i>ik</i> )                                                                                             |
|                                                                                                                                                                                                          |                                                                                                                                                                                                 |
| Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 33 / 56                                                                                                                       | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 34 / 56                                                                                                              |
| Higher Order Partial Derivatives                                                                                                                                                                         | Higher Order Partial Derivatives                                                                                                                                                                |
| If all second order partial derivatives exists and are <i>continuous</i> , then the order of differentiation does not matter (Schwarz's theorem):                                                        | Compute the first and second order partial derivatives of                                                                                                                                       |
| $2^2 \epsilon$ $2^2 \epsilon$                                                                                                                                                                            | $f(x,y) = x^2 + 3xy$                                                                                                                                                                            |
| $\frac{\partial f}{\partial x_k \partial x_i}(\mathbf{x}) = \frac{\partial f}{\partial x_i \partial x_k}(\mathbf{x})$                                                                                    | First order partial derivatives:                                                                                                                                                                |
|                                                                                                                                                                                                          | $f_x = 2x + 3y$ $f_y = 0 + 3x$                                                                                                                                                                  |
| Remark: Practically all differentiable functions in economic models have                                                                                                                                 | Second order partial derivatives:                                                                                                                                                               |
| this property.                                                                                                                                                                                           |                                                                                                                                                                                                 |
|                                                                                                                                                                                                          | $\begin{aligned} f_{xx} &= 2 \\ f_{yy} &= 3 \\ f_{yy} &= 3 \end{aligned} \qquad f_{yy} = 0 \end{aligned}$                                                                                       |
|                                                                                                                                                                                                          |                                                                                                                                                                                                 |
|                                                                                                                                                                                                          |                                                                                                                                                                                                 |
| Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 35 / 56                                                                                                                       | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 36 / 56                                                                                                              |
| Problem 7.9                                                                                                                                                                                              |                                                                                                                                                                                                 |
| Compute the first and second order partial derivatives of the following functions at point $(1,1)$ :                                                                                                     | Compute the first and second order partial derivatives of                                                                                                                                       |
| (a) $f(x,y) = x + y$                                                                                                                                                                                     | $f(x,y) = \exp(x^2 + y^2)$                                                                                                                                                                      |
| <b>(b)</b> $f(x,y) = x y$                                                                                                                                                                                | at point $(0,0)$ .                                                                                                                                                                              |
| (c) $f(x,y) = x^2 + y^2$                                                                                                                                                                                 |                                                                                                                                                                                                 |
| (d) $f(x,y) = x^2 y^2$                                                                                                                                                                                   |                                                                                                                                                                                                 |
| (e) $f(x,y) = x^{\alpha} y^{\beta},  \alpha, \beta > 0$                                                                                                                                                  |                                                                                                                                                                                                 |
|                                                                                                                                                                                                          |                                                                                                                                                                                                 |
|                                                                                                                                                                                                          |                                                                                                                                                                                                 |
|                                                                                                                                                                                                          |                                                                                                                                                                                                 |
| Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 37 / 56                                                                                                                       | Josef Leydold – Bridging Course Mathematics – WS 2023/24 7 – Derivatives – 38 / 56                                                                                                              |
| Problem 7.11                                                                                                                                                                                             | Gradient                                                                                                                                                                                        |
| Compute the first and second order partial derivatives of the following functions at point $(1,1)$ :                                                                                                     | We collect all <i>first order partial derivatives</i> into a (row) vector which is called the <b>gradient</b> at point <b>x</b> .                                                               |
| (a) $f(x,y) = \sqrt{x^2 + y^2}$                                                                                                                                                                          | $ abla f(\mathbf{x}) = (f_{x_1}(\mathbf{x}), \dots, f_{x_n}(\mathbf{x}))$                                                                                                                       |
| <b>(b)</b> $f(x,y) = (x^3 + y^3)^{\frac{1}{3}}$                                                                                                                                                          | ▶ read: "gradient of f" or "gable f"                                                                                                                                                            |
| (c) $f(x,y) = (x^p + y^p)^{\frac{1}{p}}$                                                                                                                                                                 | - reau. graulent or j ur habla j .                                                                                                                                                              |
|                                                                                                                                                                                                          | • Other notation: $f'(\mathbf{x})$                                                                                                                                                              |
|                                                                                                                                                                                                          | <ul> <li>Other notation: f'(x)</li> <li>Alternatively the gradient can also be a column vector.</li> </ul>                                                                                      |
|                                                                                                                                                                                                          | <ul> <li>Other notation: f'(x)</li> <li>Alternatively the gradient can also be a column vector.</li> <li>The gradient is the analog of the first derivative of univariate functions.</li> </ul> |
|                                                                                                                                                                                                          | <ul> <li>Other notation: f'(x)</li> <li>Alternatively the gradient can also be a column vector.</li> <li>The gradient is the analog of the first derivative of univariate functions.</li> </ul> |

Г

| Properties of the Gradient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gradient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The gradient of f always points in the direction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Compute the gradient of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| steepest ascent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $f(x,y) = x^2 + 3xy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Its length is equal to the slope at this point.</li> <li>The gradient is normal (i.e. in right angle) to the corresponding</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <i>contour line</i> (level set).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | at point $\mathbf{x} = (3, 2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f_x = 2x + 3y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f_x = 2x + 3y$ $f_y = 0 + 3x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\nabla f(\mathbf{x}) = (2\mathbf{x} + 2\mathbf{x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\nabla f(\mathbf{x}) = (2x + 3y, 5x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\nabla f(3,2) = (12,9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 41 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 42 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Problem 7.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Problem 7.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Compute the gradients of the following functions at point $(1,1)$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Compute the gradients of the following functions at point $(1,1)$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (a) $f(x,y) - x + y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) $f(x,y) = \sqrt{x^2 + y^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (a) $f(x,y) = x + y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\mathbf{a}) f(x,y) = \sqrt{x + y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>(b)</b> $f(x,y) = xy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>(b)</b> $f(x,y) = (x^3 + y^3)^{\frac{3}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (c) $f(x,y) = x^2 + y^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (c) $f(x,y) = (x^p + y^p)^{\frac{1}{p}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (d) $f(x,y) = x^2 y^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (e) $f(x,y) = x^{\alpha} y^{\beta},  \alpha, \beta > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Josef Levdold – Bridging Course Mathematics – WS 2023/24 7 – Derivatives – 43 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Josef Leveloid - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 44 / 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hessian Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gradient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gradient<br>Compute the Hessian matrix of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Hessian Matrix</b><br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x, y) = x^2 + 3xy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix $\begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \dots & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \dots & f_{x_nx_n}(\mathbf{x}) \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1, 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1, \dots, x_n)$ be two times differentiable. Then matrix<br>$\mathbf{H}_f(\mathbf{x}) = \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \dots & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & \dots & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Gradient</b><br>Compute the Hessian matrix of $f(x,y) = x^2 + 3xy$ at point $\mathbf{x} = (1,2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1, \dots, x_n)$ be two times differentiable. Then matrix<br>$\mathbf{H}_f(\mathbf{x}) = \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \dots & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & \dots & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & \dots & f_{x_nx_n}(\mathbf{x}) \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$\mathbf{H}_f(\mathbf{x}) = \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \dots & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & \dots & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & \dots & f_{x_nx_n}(\mathbf{x}) \end{pmatrix}$ is called the Hessian matrix of $f$ at $\mathbf{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x, y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1, 2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$\mathbf{H}_f(\mathbf{x}) = \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & & f_{x_nx_n}(\mathbf{x}) \end{pmatrix}$ is called the Hessian matrix of $f$ at $\mathbf{x}$ .<br>The Hessian matrix is symmetric, i.e., $f_{x,x_1}(\mathbf{x}) = f_{x,x_1}(\mathbf{x})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$\mathbf{H}_f(\mathbf{x}) = \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \dots & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & \dots & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & \dots & f_{x_nx_n}(\mathbf{x}) \end{pmatrix}$ is called the Hessian matrix of $f$ at $\mathbf{x}$ .<br>The Hessian matrix is symmetric, i.e., $f_{x_ix_k}(\mathbf{x}) = f_{x_kx_i}(\mathbf{x})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$<br>Hessian matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$ \begin{aligned} \mathbf{H}_f(\mathbf{x}) &= \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \dots & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & \dots & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & \dots & f_{x_nx_n}(\mathbf{x}) \end{pmatrix} \end{aligned} $ is called the Hessian matrix of $f$ at $\mathbf{x}$ .<br>$\blacktriangleright$ The Hessian matrix is symmetric, i.e., $f_{x_ix_k}(\mathbf{x}) = f_{x_kx_i}(\mathbf{x})$ .<br>$\blacktriangleright$ Other notation: $f''(\mathbf{x})$<br>$\blacktriangleright$ The Hessian matrix is the analog of the second derivative of                                                                                                                                                                                                                                                                                                                                                                                    | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x, y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1, 2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yyy} = 0$<br>Hessian matrix:<br>$\mathbf{H}_f(x, y) = \begin{pmatrix} f_{xx}(x, y) & f_{xy}(x, y) \\ & & & \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ & & \end{pmatrix} = \mathbf{H}_f(1, 2)$                                                                                                                                                                                                                                                                                                                                   |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$\mathbf{H}_f(\mathbf{x}) = \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & & f_{x_nx_n}(\mathbf{x}) \end{pmatrix}$ is called the Hessian matrix of $f$ at $\mathbf{x}$ .<br>• The Hessian matrix is symmetric, i.e., $f_{x_ix_k}(\mathbf{x}) = f_{x_kx_i}(\mathbf{x})$ .<br>• Other notation: $f''(\mathbf{x})$<br>• The Hessian matrix is the analog of the second derivative of univariate functions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x, y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1, 2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$<br>Hessian matrix:<br>$\mathbf{H}_f(x, y) = \begin{pmatrix} f_{xx}(x, y) & f_{xy}(x, y) \\ f_{yx}(x, y) & f_{yy}(x, y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_f(1, 2)$                                                                                                                                                                                                                                                                                                            |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$ \begin{aligned} \mathbf{H}_f(\mathbf{x}) &= \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & & f_{x_nx_n}(\mathbf{x}) \end{pmatrix} \end{aligned} $ is called the Hessian matrix of $f$ at $\mathbf{x}$ .<br>• The Hessian matrix is symmetric, i.e., $f_{x_ix_k}(\mathbf{x}) = f_{x_kx_i}(\mathbf{x})$ .<br>• Other notation: $f''(\mathbf{x})$<br>• The Hessian matrix is the analog of the second derivative of univariate functions.                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yyy} = 0$<br>Hessian matrix:<br>$\mathbf{H}_f(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_f(1,2)$                                                                                                                                                                                                                                                                                                                   |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$\mathbf{H}_f(\mathbf{x}) = \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & & f_{x_nx_n}(\mathbf{x}) \end{pmatrix}$ is called the Hessian matrix of $f$ at $\mathbf{x}$ .<br>• The Hessian matrix is symmetric, i.e., $f_{x_ix_k}(\mathbf{x}) = f_{x_kx_i}(\mathbf{x})$ .<br>• Other notation: $f''(\mathbf{x})$<br>• The Hessian matrix is the analog of the second derivative of univariate functions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$<br>Hessian matrix:<br>$\mathbf{H}_f(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_f(1,2)$<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 46/56                                                                                                                                                                                                                                |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$\begin{aligned} \mathbf{H}_f(\mathbf{x}) &= \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & & f_{x_nx_n}(\mathbf{x}) \end{pmatrix} \end{aligned}$ is called the Hessian matrix of $f$ at $\mathbf{x}$ .<br>$\blacktriangleright$ The Hessian matrix is symmetric, i.e., $f_{x_ix_k}(\mathbf{x}) = f_{x_kx_i}(\mathbf{x})$ .<br>$\blacktriangleright$ Other notation: $f''(\mathbf{x})$<br>$\blacktriangleright$ The Hessian matrix is the analog of the second derivative of univariate functions.<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 45/56<br>Problem 7.14                                                                                                                                                                                                                                                                              | Gradient<br>Gradient<br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$<br>Hessian matrix:<br>$\mathbf{H}_f(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_f(1,2)$<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 46 / 56<br><b>Problem 7.15</b>                                                                                                                                                                                                  |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$<br>Hessian matrix:<br>$\mathbf{H}_f(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_f(1,2)$<br>Josef Leydol - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 46/56<br><b>Problem 7.15</b><br>Compute the Hessian matrix of the following functions at point $(1, 1)$ :                                                                                                                             |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$ \begin{aligned} \mathbf{H}_f(\mathbf{x}) &= \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & & f_{x_nx_n}(\mathbf{x}) \end{pmatrix} \end{aligned} $ is called the Hessian matrix of $f$ at $\mathbf{x}$ .<br>$\blacktriangleright$ The Hessian matrix is symmetric, i.e., $f_{x_ix_k}(\mathbf{x}) = f_{x_kx_i}(\mathbf{x})$ .<br>$\blacktriangleright$ Other notation: $f''(\mathbf{x})$<br>$\flat$ The Hessian matrix is the analog of the second derivative of univariate functions.<br>$dest Leydeld - Bridging Course Mathematics - WS 2023/24 \qquad 7 - Derivatives - 45/56 \\ Problem 7.14 \\ Compute the Hessian matrix of the following functions at point (1, 1):(a) f(x, y) = x + y$                                                                                                                                                                                     | Gradient<br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$<br>Hessian matrix:<br>$\mathbf{H}_f(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_f(1,2)$<br>Josef Leydold - Birlight Course Mathematics - WS 2023/24 7 - Derivatives - 46/56<br><b>Problem 7.15</b><br>Compute the Hessian matrix of the following functions at point (1, 1):<br>(a) $f(x,y) = \sqrt{x^2 + y^2}$                                                                                                   |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$ \begin{aligned} \mathbf{H}_f(\mathbf{x}) &= \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & & f_{x_nx_n}(\mathbf{x}) \end{pmatrix} \end{aligned} $ is called the Hessian matrix of $f$ at $\mathbf{x}$ .<br>• The Hessian matrix is symmetric, i.e., $f_{x_ix_k}(\mathbf{x}) = f_{x_kx_i}(\mathbf{x})$ .<br>• Other notation: $f''(\mathbf{x})$<br>• The Hessian matrix is the analog of the second derivative of univariate functions.<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 45/56 <b>Problem 7.14</b><br>Compute the Hessian matrix of the following functions at point (1, 1):<br>(a) $f(x, y) = x + y$<br>(b) $f(x, y) = xy$                                                                                                                                                                                                           | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $x = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$<br>Hessian matrix:<br>$\mathbf{H}_f(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_f(1,2)$<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 46/56<br><b>Problem 7.15</b><br>Compute the Hessian matrix of the following functions at point (1, 1):<br>(a) $f(x,y) = \sqrt{x^2 + y^2}$<br>(b) $f(x,y) = (x^3 + y^3)^{\frac{1}{3}}$                                                         |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$\begin{aligned} \mathbf{H}_f(\mathbf{x}) &= \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \cdots & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & \cdots & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & \cdots & f_{x_nx_n}(\mathbf{x}) \end{pmatrix} \end{aligned}$ is called the Hessian matrix of $f$ at $\mathbf{x}$ .<br>$\blacktriangleright$ The Hessian matrix is symmetric, i.e., $f_{x_ix_k}(\mathbf{x}) = f_{x_kx_i}(\mathbf{x})$ .<br>$\triangleright$ Other notation: $f''(\mathbf{x})$<br>$\flat$ The Hessian matrix is the analog of the second derivative of univariate functions.<br>Josef Leydol - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 45/56<br><b>Problem 7.14</b><br>Compute the Hessian matrix of the following functions at point (1, 1):<br>(a) $f(x, y) = x + y$<br>(b) $f(x, y) = x^2 + y^2$                                                                                                                                      | Gradient<br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$<br>Hessian matrix:<br>$\mathbf{H}_f(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_f(1,2)$<br>Josef Leydold - Bridging Course Mathematics - WS 2023/2<br><b>Problem 7.15</b><br>Compute the Hessian matrix of the following functions at point $(1,1)$ :<br>(a) $f(x,y) = \sqrt{x^2 + y^2}$<br>(b) $f(x,y) = (x^3 + y^3)^{\frac{1}{3}}$<br>(c) $f(x,y) = (x^p + y^p)^{\frac{1}{p}}$                                  |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$\begin{aligned} \mathbf{H}_f(\mathbf{x}) &= \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \cdots & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & \cdots & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & \cdots & f_{x_nx_n}(\mathbf{x}) \end{pmatrix} \end{aligned}$ is called the <b>Hessian matrix</b> of $f$ at $\mathbf{x}$ .<br>• The Hessian matrix is symmetric, i.e., $f_{x_ix_k}(\mathbf{x}) = f_{x_kx_i}(\mathbf{x})$ .<br>• Other notation: $f''(\mathbf{x})$<br>• The Hessian matrix is the analog of the second derivative of univariate functions.<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 45/56<br><b>Problem 7.14</b><br>Compute the Hessian matrix of the following functions at point $(1, 1)$ :<br>(a) $f(x, y) = x + y$<br>(b) $f(x, y) = x^2 + y^2$<br>(c) $f(x, y) = x^2 + y^2$                                                                                                                                       | Gradient<br>Compute the Hessian matrix of<br>$f(x,y) = x^{2} + 3 x y$ at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2 \qquad f_{xy} = 3$ $f_{yx} = 3 \qquad f_{yy} = 0$ Hessian matrix:<br>$\mathbf{H}_{f}(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_{f}(1,2)$ Josef Leydold - Bridging Course Mathematics - WS 2023/2<br><b>Problem 7.15</b><br>Compute the Hessian matrix of the following functions at point (1, 1):<br>(a) $f(x,y) = \sqrt{x^{2} + y^{2}}$<br>(b) $f(x,y) = (x^{3} + y^{3})^{\frac{1}{3}}$<br>(c) $f(x,y) = (x^{p} + y^{p})^{\frac{1}{p}}$                  |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$ \begin{aligned} \mathbf{H}_f(\mathbf{x}) &= \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \cdots & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & \cdots & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & \cdots & f_{x_nx_n}(\mathbf{x}) \end{pmatrix} \end{aligned} $ is called the <b>Hessian matrix</b> of $f$ at $\mathbf{x}$ .<br>$\blacktriangleright$ The Hessian matrix is symmetric, i.e., $f_{x_1x_k}(\mathbf{x}) = f_{x_kx_l}(\mathbf{x})$ .<br>$\blacktriangleright$ Other notation: $f''(\mathbf{x})$<br>$\flat$ The Hessian matrix is the analog of the second derivative of univariate functions.<br>$\blacksquare$ Josef Leydold - Bridging Course Mathematics - WS 202324 7 - Derivatives - 45/56 <b>Problem 7.14</b><br>Compute the Hessian matrix of the following functions at point $(1, 1)$ :<br>(a) $f(x, y) = x + y$<br>(b) $f(x, y) = x^2 + y^2$<br>(c) $f(x, y) = x^2 + y^2$<br>(d) $f(x, y) = x^2 y^2$<br>(e) $f(x, y) = x^2 y^2$                      | <b>Gradient</b><br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$<br>Hessian matrix:<br>$\mathbf{H}_f(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_f(1,2)$<br>Josef Leydold - Bridging Course Mathematics - WS 202324 7 - Derivatives - 46/56<br><b>Problem 7.15</b><br>Compute the Hessian matrix of the following functions at point (1,1):<br>(a) $f(x,y) = \sqrt{x^2 + y^2}$<br>(b) $f(x,y) = (x^3 + y^3)^{\frac{1}{3}}$<br>(c) $f(x,y) = (x^p + y^p)^{\frac{1}{p}}$      |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$ \begin{aligned} \mathbf{H}_f(\mathbf{x}) &= \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \cdots & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & \cdots & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & \cdots & f_{x_nx_n}(\mathbf{x}) \end{pmatrix} \end{aligned} $ is called the Hessian matrix of $f$ at $\mathbf{x}$ .<br>$\triangleright$ The Hessian matrix is symmetric, i.e., $f_{x_ix_k}(\mathbf{x}) = f_{x_kx_i}(\mathbf{x})$ .<br>$\triangleright$ Other notation: $f''(\mathbf{x})$<br>$\triangleright$ The Hessian matrix is the analog of the second derivative of univariate functions.<br>$doerLeydold - Bridging Course Mathematics - VKS 2023/24 \qquad 7 - Derivatives - 45/56 \\ \hline \mathbf{Problem 7.14}$ Compute the Hessian matrix of the following functions at point $(1, 1)$ :<br>(a) $f(x, y) = x + y$<br>(b) $f(x, y) = x^2 + y^2$<br>(c) $f(x, y) = x^2 + y^2$<br>(d) $f(x, y) = x^2 y^2$<br>(e) $f(x, y) = x^a y^\beta$ , $\alpha, \beta > 0$ | Gradient<br>Compute the Hessian matrix of<br>$f(x,y) = x^{2} + 3xy$ at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2 \qquad f_{xy} = 3$ $f_{yx} = 3 \qquad f_{yy} = 0$ Hessian matrix:<br>$\mathbf{H}_{f}(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_{f}(1,2)$ Josef Leydold - Bridging Course Mathematics - WS 2020/2<br><b>Problem 7.15</b><br>Compute the Hessian matrix of the following functions at point (1, 1):<br>(a) $f(x,y) = \sqrt{x^{2} + y^{2}}$<br>(b) $f(x,y) = (x^{3} + y^{3})^{\frac{1}{3}}$<br>(c) $f(x,y) = (x^{p} + y^{p})^{\frac{1}{p}}$                    |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$\begin{aligned}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gradient<br>Compute the Hessian matrix of<br>$f(x,y) = x^{2} + 3xy$ at point $x = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2 \qquad f_{xy} = 3$ $f_{yx} = 3 \qquad f_{yy} = 0$ Hessian matrix:<br>$H_{f}(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = H_{f}(1,2)$ Josef Leydol - Bridging Course Mathematics - WS 202324<br>7 - Derivatives - 46/56<br><b>Problem 7.15</b><br>Compute the Hessian matrix of the following functions at point (1, 1):<br>(a) $f(x,y) = \sqrt{x^{2} + y^{2}}$<br>(b) $f(x,y) = (x^{2} + y^{2})^{\frac{1}{p}}$<br>(c) $f(x,y) = (x^{p} + y^{p})^{\frac{1}{p}}$                     |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$\begin{aligned}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gradient<br>Gradient<br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $x = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$<br>Hessian matrix:<br>$H_f(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = H_f(1,2)$<br>Josef Leydold - Bridging Course Mathematics - WS 202324<br><b>Problem 7.15</b><br>Compute the Hessian matrix of the following functions at point $(1,1)$ :<br>(a) $f(x,y) = \sqrt{x^2 + y^2}$<br>(b) $f(x,y) = (x^2 + y^3)^{\frac{1}{2}}$<br>(c) $f(x,y) = (x^p + y^p)^{\frac{1}{p}}$                                                 |
| Hessian Matrix<br>Let $f(\mathbf{x}) = f(x_1,, x_n)$ be two times differentiable. Then matrix<br>$\begin{aligned}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gradient<br>Compute the Hessian matrix of<br>$f(x,y) = x^2 + 3xy$<br>at point $\mathbf{x} = (1,2)$ .<br>Second order partial derivatives:<br>$f_{xx} = 2$ $f_{xy} = 3$<br>$f_{yx} = 3$ $f_{yy} = 0$<br>Hessian matrix:<br>$\mathbf{H}_f(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix} = \mathbf{H}_f(1,2)$<br>Josef Leydol - Bridging Course Mathematics - WS 202324<br><b>7 - Derivatives - 46/56</b><br><b>Problem 7.15</b><br>Compute the Hessian matrix of the following functions at point $(1,1)$ :<br>(a) $f(x,y) = \sqrt{x^2 + y^2}$<br>(b) $f(x,y) = (x^3 + y^3)^{\frac{1}{3}}$<br>(c) $f(x,y) = (x^p + y^p)^{\frac{1}{p}}$ |

| Jacobian Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jacobian Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Let $f: \mathbb{R}^n \to \mathbb{R}^m$ , $\mathbf{x} \mapsto \mathbf{y} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{pmatrix}$<br>The $m \times n$ matrix<br>$D\mathbf{f}(\mathbf{x}_0) = \mathbf{f}'(\mathbf{x}_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$ is called the <b>Jacobian matrix</b> of $f$ at point $\mathbf{x}_0$ .<br>It is the generalization of <i>derivatives</i> (and gradients) for vector-valued functions.<br>Josef Leydold - Bridging Course Mathematics - WS 202324 7 - Derivatives - 49/56<br><b>Chain Rule</b><br>Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^k$ . Then | ► $f(\mathbf{x}) = f(x_1, x_2) = \exp(-x_1^2 - x_2^2)$<br>$Df(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right) = \nabla f(\mathbf{x})$<br>$= (-2x_1 \exp(-x_1^2 - x_2^2), -2x_2 \exp(-x_1^2 - x_2^2))$<br>► $\mathbf{f}(\mathbf{x}) = \mathbf{f}(x_1, x_2) = \begin{pmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{pmatrix} = \begin{pmatrix} x_1^2 + x_2^2 \\ x_1^2 - x_2^2 \end{pmatrix}$<br>$D\mathbf{f}(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}, \frac{\partial f_2}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1}, \frac{\partial f_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 2x_1 & 2x_2 \\ 2x_1 & -2x_2 \end{pmatrix}$<br>► $\mathbf{s}(t) = \begin{pmatrix} s_1(t) \\ s_2(t) \end{pmatrix} = \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$<br>$D\mathbf{s}(t) = \begin{pmatrix} \frac{ds_1}{dt} \\ \frac{ds_2}{dt} \end{pmatrix} = \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix}$<br>Josef Leydold - Bridging Course Mathematics - WS 2023/24 7 - Derivatives - 50/56<br>Example - Indirect Dependency<br>Let $f(x_1, x_2, t)$ where $x_1(t)$ and $x_2(t)$ also depend on $t$ . |
| $(\mathbf{g} \circ \mathbf{f})'(\mathbf{x}) = \mathbf{g}'(\mathbf{f}(\mathbf{x})) \cdot \mathbf{f}'(\mathbf{x})$ $\mathbf{f}(x, y) = \begin{pmatrix} e^{x} \\ e^{y} \end{pmatrix} \qquad \mathbf{g}(x, y) = \begin{pmatrix} x^{2} + y^{2} \\ x^{2} - y^{2} \end{pmatrix}$ $\mathbf{f}'(x, y) = \begin{pmatrix} e^{x} & 0 \\ 0 & e^{y} \end{pmatrix} \qquad \mathbf{g}'(x, y) = \begin{pmatrix} 2x & 2y \\ 2x & -2y \end{pmatrix}$ $(\mathbf{g} \circ \mathbf{f})'(\mathbf{x}) = \mathbf{g}'(\mathbf{f}(\mathbf{x})) \cdot \mathbf{f}'(\mathbf{x}) = \begin{pmatrix} 2e^{x} & 2e^{y} \\ 2e^{x} & -2e^{y} \end{pmatrix} \cdot \begin{pmatrix} e^{x} & 0 \\ 0 & e^{y} \end{pmatrix}$ $= \begin{pmatrix} 2e^{2x} & 2e^{2y} \\ 2e^{2x} & -2e^{2y} \end{pmatrix}$ Josef Leydold - Bridging Course Mathematics - WS 2023/24<br><b>Problem 7.16</b>                                      | What is the total derivative of $f$ w.r.t. $t$ ?<br>Chain rule:<br>Let $\mathbf{x} : \mathbb{R} \to \mathbb{R}^3$ , $t \mapsto \begin{pmatrix} x_1(t) \\ x_2(t) \\ t \end{pmatrix}$<br>$\frac{df}{dt} = (f \circ \mathbf{x})'(t) = f'(\mathbf{x}(t)) \cdot \mathbf{x}'(t)$ $= \nabla f(\mathbf{x}(t)) \cdot \begin{pmatrix} x_1'(t) \\ x_2'(t) \\ 1 \end{pmatrix} = (f_{x_1}(\mathbf{x}(t)), f_{x_2}(\mathbf{x}(t)), f_t(\mathbf{x}(t)) \cdot \begin{pmatrix} x_1'(t) \\ x_2'(t) \\ 1 \end{pmatrix}$ $= f_{x_1}(\mathbf{x}(t)) \cdot x_1'(t) + f_{x_2}(\mathbf{x}(t)) \cdot x_2'(t) + f_t(\mathbf{x}(t))$ $= f_{x_1}(x_1, x_2, t) \cdot x_1'(t) + f_{x_2}(x_1, x_2, t) \cdot x_2'(t) + f_t(x_1, x_2, t)$ Josef Leydol - Bridging Course Mathematics - WS 2023/4 7 - Derivatives - 52/56<br><b>Problem 7.17</b> Let $f(\mathbf{x}) = \begin{pmatrix} x_1^3 - x_2 \\ x_1^3 - x_2 \end{pmatrix}$ and $\mathbf{g}(\mathbf{x}) = \begin{pmatrix} x_2^2 \\ x_2^2 \end{pmatrix}$ .                                                                                                                                                                                                  |
| $f(x,y) = x^2 + y^2 \text{ and } \mathbf{g}(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \end{pmatrix} = \begin{pmatrix} t \\ t^2 \end{pmatrix}.$<br>Compute the derivative of the composite functions<br>(a) $h = f \circ \mathbf{g}$ , and<br>(b) $\mathbf{p} = \mathbf{g} \circ f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Compute the derivatives of the composite functions<br>(a) $\mathbf{g} \circ \mathbf{f}$ , and<br>(b) $\mathbf{f} \circ \mathbf{g}$<br>by means of the chain rule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Let $f(x,y) = x^2 + y^2$ and $g(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \end{pmatrix} = \begin{pmatrix} t \\ t^2 \end{pmatrix}$ .<br>Compute the derivative of the composite functions<br>(a) $h = f \circ g$ , and<br>(b) $\mathbf{p} = \mathbf{g} \circ f$<br>by means of the chain rule.<br>Josef Leydold - Bridging Course Mathematics - WS 202324 7 - Derivatives - 53 / 56<br><b>Problem 7.18</b><br>Let $Q(K, L, t)$ be a production function, where $L = L(t)$ and $K = K(t)$<br>also depend on time $t$ . Compute the total derivative $\frac{dQ}{dt}$ by means of the chain rule.                                                                                                                                                                                                                                                                                        | $\begin{aligned} & \text{Let}(s) = \binom{x_1 - x_2^2}{x_1 - x_2^2} \text{ let } g(s) = \binom{x_1}{x_1}^2 \\ & \text{Compute the derivatives of the composite functions} \\ & \text{(a) } g \circ f, \text{ and} \\ & \text{(b) } f \circ g \\ & \text{by means of the chain rule.} \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |