Chapter 7 Derivatives	Difference Quotient Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be some function. Then the ratio $\frac{\Delta f}{\Delta x}=\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ is called difference quotient.
Joseft Leydold - Bridging Course Martemaics - ws 202324 7- Derivatives - $1 / 56$	Joseft Leydold - Bridging Course Mathemaics - Ws 202324 7 - Derivatives - $2 / 56$
Differential Quotient If the limit $\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ exists, then function f is called differentiable at x_{0}. This limit is then called differential quotient or (first) derivative of function f at x_{0}. We write Function f is called differentiable, if it is differentiable at each point of its domain.	Slope of Tangent The differential quotient gives the slope of the tangent to the graph of function $f(x)$ at x_{0}.
Josef Leydold - Bridging Course Mathemaics - ws 202324 7- Derivatives - 3/56	Joseft Leydold - Bridging Course Matemaics - ws 202324 7 - Derivatives - 4/56
Marginal Function - Instantaneous change of function f. - "Marginal function" (as in marginal utility)	Existence of Differential Quotient Function f is differentiable at all points, where we can draw the tangent (with finite slope) uniquely to the graph. Function f is not differentiable at all points where this is not possible. In particular these are jump discontinuities "kinks" in the graph of the function vertical tangents
Joseft Leydold - Bridging Course Martemaics - ws 202324 7- Derivatives - $5 / 56$	Josef Leydold - Bridging Course Mathemaics - ws 202324 $\quad 7$ - Derivatives - $6 / 56$
Computation of the Differential Quotient We can compute a differential quotient by determining the limit of the difference quotient. Let $f(x)=x^{2}$. The we find for the first derivative $\begin{aligned} f^{\prime}\left(x_{0}\right) & =\lim _{h \rightarrow 0} \frac{\left(x_{0}+h\right)^{2}-x_{0}^{2}}{h} \\ & =\lim _{h \rightarrow 0} \frac{x_{0}^{2}+2 x_{0} h+h^{2}-x_{0}^{2}}{h} \\ & =\lim _{h \rightarrow 0} \frac{2 x_{0} h+h^{2}}{h}=\lim _{h \rightarrow 0}\left(2 x_{0}+h\right) \\ & =2 x_{0} \end{aligned}$	Problem 7.1 Draw (sketch) the graphs of the following functions. At which points are these function differentiable? (a) $f(x)=2 x+2$ (b) $f(x)=3$ (c) $f(x)=\|x\|$ (d) $f(x)=\sqrt{\left\|x^{2}-1\right\|}$ (e) $f(x)= \begin{cases}-\frac{1}{2} x^{2}, & \text { for } x \leq-1, \\ x, & \text { for }-1<x \leq 1, \\ \frac{1}{2} x^{2}, & \text { for } x>1\end{cases}$ (f) $f(x)= \begin{cases}2+x, & \text { for } x \leq-1, \\ x^{2}, & \text { for } x>-1\end{cases}$
Josef Leydold - Bridging Course Mathematics - WS 202324 7- Derivatives - 7/56	Josef Leydold - Bridging Course Mathematics - ws 202324 7 - Derivatives -8/56

Derivative of a Function
Function

$$
f^{\prime}: D \rightarrow \mathbb{R}, x \mapsto f^{\prime}(x)=\left.\frac{d f}{d x}\right|_{x}
$$

is called the first derivative of function f.
Its domain D is the set of all points where the differential quotient (i.e., the limit of the difference quotient) exists.

Derivatives of Elementary Functions

$f(x)$	$f^{\prime}(x)$
c	0
x^{α}	$\alpha \cdot x^{\alpha-1}$
e^{x}	e^{x}
$\ln (x)$	$\frac{1}{x}$
$\sin (x)$	$\cos (x)$
$\cos (x)$	$-\sin (x)$

Josef Leydold - Bridging Course Mathemaics - ws 202324		7 - Derivatives
Computation Rules for Derivatives		
	$\bullet(c \cdot f(x))^{\prime}=c \cdot f^{\prime}(x)$	
	$\bullet(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$	Summation rule
	$\bullet(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$	Product rule
	$\bullet(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$	Chain rule
	$\bullet\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}}$	Quotient rule

Computation Rules for Derivatives

$$
\begin{aligned}
& \left(3 x^{3}+2 x-4\right)^{\prime}=3 \cdot 3 \cdot x^{2}+2 \cdot 1-0=9 x^{2}+2 \\
& \left(e^{x} \cdot x^{2}\right)^{\prime}=\left(e^{x}\right)^{\prime} \cdot x^{2}+e^{x} \cdot\left(x^{2}\right)^{\prime}=e^{x} \cdot x^{2}+e^{x} \cdot 2 x \\
& \left(\left(3 x^{2}+1\right)^{2}\right)^{\prime}=2\left(3 x^{2}+1\right) \cdot 6 x \\
& (\sqrt{x})^{\prime}=\left(x^{\frac{1}{2}}\right)^{\prime}=\frac{1}{2} \cdot x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \\
& \left(a^{x}\right)^{\prime}=\left(e^{\ln (a) \cdot x}\right)^{\prime}=e^{\ln (a) \cdot x} \cdot \ln (a)=a^{x} \ln (a) \\
& \left(\frac{1+x^{2}}{1-x^{3}}\right)^{\prime}=\frac{2 x \cdot\left(1-x^{3}\right)-\left(1+x^{2}\right) \cdot 3 x^{2}}{\left(1-x^{3}\right)^{2}}
\end{aligned}
$$

Josef Leydold - Bridging Course Mathematics - WS 2023/24	7-Derivatives - 11/56

Higher Order Derivatives

We can compute derivatives of the derivative of a function.
Thus we obtain the

- second derivative $f^{\prime \prime}(x)$ of function f,
- third derivative $f^{\prime \prime \prime}(x)$, etc.,
- n-th derivative $f^{(n)}(x)$.

Other notations:

- $f^{\prime \prime}(x)=\frac{d^{2} f}{d x^{2}}(x)=\left(\frac{d}{d x}\right)^{2} f(x)$
- $f^{(n)}(x)=\frac{d^{n} f}{d x^{n}}(x)=\left(\frac{d}{d x}\right)^{n} f(x)$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Problem 7.2

Compute the first and second derivative of the following functions:
(a) $f(x)=4 x^{4}+3 x^{3}-2 x^{2}-1$
(b) $f(x)=e^{-\frac{x^{2}}{2}}$
(c) $f(x)=\exp \left(-\frac{x^{2}}{2}\right)$
(d) $f(x)=\frac{x+1}{x-1}$

Higher Order Derivatives

The first five derivatives of function

$$
f(x)=x^{4}+2 x^{2}+5 x-3
$$

are

$$
\begin{aligned}
& f^{\prime}(x)=\left(x^{4}+2 x^{2}+5 x-3\right)^{\prime}=4 x^{3}+4 x+5 \\
& f^{\prime \prime}(x)=\left(4 x^{3}+4 x+5\right)^{\prime}=12 x^{2}+4 \\
& f^{\prime \prime \prime}(x)=\left(12 x^{2}+4\right)^{\prime}=24 x \\
& f^{\text {IV }}(x)=(24 x)^{\prime}=24 \\
& f^{v}(x)=0
\end{aligned}
$$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Problem 7.3

Compute the first and second derivative of the following functions:
(a) $f(x)=\frac{1}{1+x^{2}}$
(b) $f(x)=\frac{1}{(1+x)^{2}}$
(c) $f(x)=x \ln (x)-x+1$
(d) $f(x)=\ln (|x|)$

Problem 7.4

Compute the first and second derivative of the following functions:
(a) $f(x)=\tan (x)=\frac{\sin (x)}{\cos (x)}$
(b) $f(x)=\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
(c) $f(x)=\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$
(d) $f(x)=\cos \left(1+x^{2}\right)$

Problem 7.5

Derive the quotient rule by means of product rule and chain rule.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Marginal Change

We can estimate the derivative $f^{\prime}\left(x_{0}\right)$ approximately by means of the difference quotient with small change Δx :

$$
f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} \approx \frac{\Delta f}{\Delta x}
$$

Vice verse we can estimate the change Δf of f for small changes Δx approximately by the first derivative of f :

$$
\Delta f=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right) \approx f^{\prime}\left(x_{0}\right) \cdot \Delta x
$$

Beware:

- $f^{\prime}\left(x_{0}\right) \cdot \Delta x$ is a linear function in Δx.
- It is the best possible approximation of f by a linear function around x_{0}.
- This approximation is useful only for "small" values of Δx.

Differential

Approximation

$$
\Delta f=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right) \approx f^{\prime}\left(x_{0}\right) \cdot \Delta x
$$

becomes exact if Δx (and thus Δf) becomes infinitesimally small. We then write $d x$ and $d f$ instead of Δx and Δf, resp.

$$
d f=f^{\prime}\left(x_{0}\right) d x
$$

Symbols $d f$ and $d x$ are called the differentials of function f and the independent variable x, resp.

Differential

Differential $d f$ can be seen as a linear function in $d x$.
We can use it to compute f approximately around x_{0}.

$$
f\left(x_{0}+d x\right) \approx f\left(x_{0}\right)+d f
$$

Let $f(x)=e^{x}$.
Differential of f at point $x_{0}=1$:

$$
d f=f^{\prime}(1) d x=e^{1} d x
$$

Approximation of $f(1.1)$ by means of this differential:
$\Delta x=\left(x_{0}+d x\right)-x_{0}=1.1-1=0.1$
$f(1.1) \approx f(1)+d f=e+e \cdot 0.1 \approx 2.99$
Exact value: $f(1.1)=3.004166 \ldots$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Elasticity

The first derivative of a function gives absolute rate of change of f at x_{0}. Hence it depends on the scales used for argument and function values.

However, often relative rates of change are more appropriate.
We obtain scale invariance and relative rate of changes by

$$
\frac{\text { change of function value relative to value of function }}{\text { change of argument relative to value of argument }}
$$

and thus

$$
\lim _{\Delta x \rightarrow 0} \frac{\frac{f(x+\Delta x)-f(x)}{f(x)}}{\frac{\Delta x}{x}}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \cdot \frac{x}{f(x)}=f^{\prime}(x) \cdot \frac{x}{f(x)}
$$

Josef Leydold - Bridging Course Mathematics - wS 2023/24 $\quad 7$ - Derivatives $-22 / 56$

Elasticity

The expression

$$
\varepsilon_{f}(x)=x \cdot \frac{f^{\prime}(x)}{f(x)}
$$

is called the elasticity of f at point x.
Let $f(x)=3 e^{2 x}$. Then

$$
\varepsilon_{f}(x)=x \cdot \frac{f^{\prime}(x)}{f(x)}=x \cdot \frac{6 e^{2 x}}{3 e^{2 x}}=2 x
$$

Let $f(x)=\beta x^{\alpha}$. Then

$$
\varepsilon_{f}(x)=x \cdot \frac{f^{\prime}(x)}{f(x)}=x \cdot \frac{\beta \alpha x^{\alpha-1}}{\beta x^{\alpha}}=\alpha
$$

Elasticity II

The relative rate of change of f can be expressed as

$$
\ln (f(x))^{\prime}=\frac{f^{\prime}(x)}{f(x)}
$$

What happens if we compute the derivative of $\ln (f(x))$ w.r.t. $\ln (x)$?
Let $\quad v=\ln (x) \quad \Leftrightarrow \quad x=e^{v}$
Derivation by means of the chain rule yields:

$$
\frac{d(\ln (f(x)))}{d(\ln (x))}=\frac{d\left(\ln \left(f\left(e^{v}\right)\right)\right)}{d v}=\frac{f^{\prime}\left(e^{v}\right)}{f\left(e^{v}\right)} e^{v}=\frac{f^{\prime}(x)}{f(x)} x=\varepsilon_{f}(x)
$$

$$
\varepsilon_{f}(x)=\frac{d(\ln (f(x)))}{d(\ln (x))}
$$

Elasticity II

We can use the chain rule formally in the following way:
Let

- $u=\ln (y)$,
- $y=f(x)$,
- $x=e^{v} \quad \Leftrightarrow \quad v=\ln (x)$

Then we find

$$
\frac{d(\ln f)}{d(\ln x)}=\frac{d u}{d v}=\frac{d u}{d y} \cdot \frac{d y}{d x} \cdot \frac{d x}{d v}=\frac{1}{y} \cdot f^{\prime}(x) \cdot e^{v}=\frac{f^{\prime}(x)}{f(x)} x
$$

Function f is elastic if the absolute value of the elasticity is greater

- elastic in x, \quad if $\left|\varepsilon_{f}(x)\right|>1$
- 1-elastic in x, if $\left|\varepsilon_{f}(x)\right|=1$
- inelastic in x, \quad if $\left|\varepsilon_{f}(x)\right|<1$

For elastic functions we then have:
The value of the function changes relatively faster than the value of the argument.

Function $f(x)=3 e^{2 x}$ is

$$
\left[\varepsilon_{f}(x)=2 x\right]
$$

- 1-elastic, for $x=-\frac{1}{2}$ and $x=\frac{1}{2}$;
- inelastic, for $-\frac{1}{2}<x<\frac{1}{2}$;
- elastic, for $x<-\frac{1}{2}$ or $x>\frac{1}{2}$.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Source of Errors

Beware!

than 1.		
Josef Leydold - Bridging Course Mathematics - WS 2023/24	7 - Derivatives $-27 / 56$	

Elastic Demand

Let $q(p)$ be an elastic demand function, where p is the price.
We have: $p>0, q>0$, and $q^{\prime}<0$ (q is decreasing). Hence

$$
\varepsilon_{q}(p)=p \cdot \frac{q^{\prime}(p)}{q(p)}<-1
$$

What happens to the revenue ($=$ price \times selling) ?

$$
\begin{aligned}
u^{\prime}(p) & =(p \cdot q(p))^{\prime}=1 \cdot q(p)+p \cdot q^{\prime}(p) \\
& =q(p) \cdot(1+\underbrace{p \cdot \frac{q^{\prime}(p)}{q(p)}}_{=\varepsilon_{q}<-1}) \\
& <0
\end{aligned}
$$

In other words, the revenue decreases if we raise prices.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

7 - Derivatives - $29 / 56$

Problem 7.8

Which of the following statements are correct?
Suppose function $y=f(x)$ is elastic in its domain.
(a) If x changes by one unit, then the change of y is greater than one unit.
(b) If x changes by one percent, then the relative change of y is greater than one percent.
(c) The relative rate of change of y is larger than the relative rate of change of x.
(d) The larger x is the larger will be y.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Partial Derivative

We investigate the rate of change of function $f\left(x_{1}, \ldots, x_{n}\right)$, when variable x_{i} changes and the other variables remain fixed.
Limit

$$
\frac{\partial f}{\partial x_{i}}=\lim _{\Delta x_{i} \rightarrow 0} \frac{f\left(\ldots, x_{i}+\Delta x_{i}, \ldots\right)-f\left(\ldots, x_{i}, \ldots\right)}{\Delta x_{i}}
$$

is called the (first) partial derivative of f w.r.t. x_{i}.
Other notations for partial derivative $\frac{\partial f}{\partial x_{i}}$:

- $f_{x_{i}}(\mathbf{x})$ (derivative w.r.t. variable x_{i})
- $f_{i}(\mathbf{x})$ (derivative w.r.t. the i-th variable)
- $f_{i}^{\prime}(\mathbf{x}) \quad(i$-th component of the gradient)

Computation of Partial Derivatives

We obtain partial derivatives $\frac{\partial f}{\partial x_{i}}$ by applying the rules for univariate functions for variable x_{i} while we treat all other variables as constants.

First partial derivatives of

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =\sin \left(2 x_{1}\right) \cdot \cos \left(x_{2}\right) \\
f_{x_{1}} & =2 \cdot \cos \left(2 x_{1}\right) \cdot \underbrace{\cos \left(x_{2}\right)}_{\text {treated as constant }} \\
f_{x_{2}} & =\underbrace{\sin \left(2 x_{1}\right)}_{\text {treated as constant }} \cdot\left(-\sin \left(x_{2}\right)\right)
\end{aligned}
$$

Higher Order Partial Derivatives

We can compute partial derivatives of partial derivatives analogously to their univariate counterparts and obtain
higher order partial derivatives:

$$
\frac{\partial^{2} f}{\partial x_{k} \partial x_{i}}(\mathbf{x}) \quad \text { and } \quad \frac{\partial^{2} f}{\partial x_{i}^{2}}(\mathbf{x})
$$

Other notations for partial derivative $\frac{\partial^{2} f}{\partial x_{k} \partial x_{i}}(\mathbf{x})$:

- $f_{x_{i} x_{k}}(\mathbf{x}) \quad$ (derivative w.r.t. variables x_{i} and x_{k})
- $f_{i k}(\mathbf{x}) \quad$ (derivative w.r.t. the i-th and k-th variable)
- $f_{i k}^{\prime \prime}(\mathbf{x}) \quad$ (component of the Hessian matrix with index $i k$)

Josef Leydold - Bridging Course Mathematics - ws 2023/24	7 - Derivatives - 33/56
Higher Order Partial Derivatives	

If all second order partial derivatives exists and are continuous, then the order of differentiation does not matter (Schwarz's theorem):

$$
\frac{\partial^{2} f}{\partial x_{k} \partial x_{i}}(\mathbf{x})=\frac{\partial^{2} f}{\partial x_{i} \partial x_{k}}(\mathbf{x})
$$

Remark: Practically all differentiable functions in economic models have this property.
Josef Levolold - Birdging Couse Mathenaics - Ws 202324 $\quad 7$ - Deiviaives - $-35 / 56$

Compute the first and second order partial derivatives of the following functions at point $(1,1)$:
(a) $f(x, y)=x+y$
(b) $f(x, y)=x y$
(c) $f(x, y)=x^{2}+y^{2}$
(d) $f(x, y)=x^{2} y^{2}$
(e) $f(x, y)=x^{\alpha} y^{\beta}, \quad \alpha, \beta>0$
Josef Leydold - Bridging Course Mathematics - ws 2023/24 7 - Derivatives - $37 / 56$

Problem 7.11

Compute the first and second order partial derivatives of the following functions at point $(1,1)$:
(a) $f(x, y)=\sqrt{x^{2}+y^{2}}$
(b) $f(x, y)=\left(x^{3}+y^{3}\right)^{\frac{1}{3}}$
(c) $f(x, y)=\left(x^{p}+y^{p}\right)^{\frac{1}{p}}$

Higher Order Partial Derivatives

Compute the first and second order partial derivatives of

$$
f(x, y)=x^{2}+3 x y
$$

First order partial derivatives:

$$
f_{x}=2 x+3 y \quad f_{y}=0+3 x
$$

Second order partial derivatives:

$$
\begin{array}{ll}
f_{x x}=2 & f_{x y}=3 \\
f_{y x}=3 & f_{y y}=0
\end{array}
$$

Problem 7.10

Compute the first and second order partial derivatives of

$$
f(x, y)=\exp \left(x^{2}+y^{2}\right)
$$

at point $(0,0)$.
Josef Leydold - Bridging Course Mathematics - ws 2023/24 $\quad 7$ - Derivatives $-38 / 56$

Gradient

We collect all first order partial derivatives into a (row) vector which is called the gradient at point \mathbf{x}.

$$
\nabla f(\mathbf{x})=\left(f_{x_{1}}(\mathbf{x}), \ldots, f_{x_{n}}(\mathbf{x})\right)
$$

- read: "gradient of f " or "nabla f ".
- Other notation: $f^{\prime}(\mathbf{x})$
- Alternatively the gradient can also be a column vector.
- The gradient is the analog of the first derivative of univariate functions.

Properties of the Gradient

- The gradient of f always points in the direction of steepest ascent.
- Its length is equal to the slope at this point.
- The gradient is normal (i.e. in right angle) to the corresponding contour line (level set).

Josef Leydold - Bridging Course Mathematics - WS 2023/24

7 - Derivatives $-42 / 56$

Compute the gradients of the following functions at point $(1,1)$:
(a) $f(x, y)=\sqrt{x^{2}+y^{2}}$
(b) $f(x, y)=\left(x^{3}+y^{3}\right)^{\frac{1}{3}}$
(c) $f(x, y)=\left(x^{p}+y^{p}\right)^{\frac{1}{p}}$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Problem 7.13

Gradient

Compute the gradient of

$$
f(x, y)=x^{2}+3 x y
$$

at point $\mathbf{x}=(3,2)$.

$$
\begin{aligned}
f_{x} & =2 x+3 y \\
f_{y} & =0+3 x \\
\nabla f(\mathbf{x}) & =(2 x+3 y, 3 x) \\
\nabla f(3,2) & =(12,9)
\end{aligned}
$$

(d) $f(x, y)=x^{2} y^{2}$
(e) $f(x, y)=x^{\alpha} y^{\beta}, \quad \alpha, \beta>0$
Josef Leydold - Bridging Course Mathematics - WS 2023/24 7- Derivatives - $43 / 56$

Hessian Matrix

Let $f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)$ be two times differentiable. Then matrix

$$
\mathbf{H}_{f}(\mathbf{x})=\left(\begin{array}{cccc}
f_{x_{1} x_{1}}(\mathbf{x}) & f_{x_{1} x_{2}}(\mathbf{x}) & \ldots & f_{x_{1} x_{n}}(\mathbf{x}) \\
f_{x_{2} x_{1}}(\mathbf{x}) & f_{x_{2} x_{2}}(\mathbf{x}) & \ldots & f_{x_{2} x_{n}}(\mathbf{x}) \\
\vdots & \vdots & \ddots & \vdots \\
f_{x_{n} x_{1}}(\mathbf{x}) & f_{x_{n} x_{2}}(\mathbf{x}) & \ldots & f_{x_{n} x_{n}}(\mathbf{x})
\end{array}\right)
$$

is called the Hessian matrix of f at \mathbf{x}.

- The Hessian matrix is symmetric, i.e., $f_{x_{i} x_{k}}(\mathbf{x})=f_{x_{k} x_{i}}(\mathbf{x})$.
- Other notation: $f^{\prime \prime}(\mathbf{x})$
- The Hessian matrix is the analog of the second derivative of univariate functions.

Problem 7.14

Compute the Hessian matrix of the following functions at point $(1,1)$:
(a) $f(x, y)=x+y$
(b) $f(x, y)=x y$
(c) $f(x, y)=x^{2}+y^{2}$
(d) $f(x, y)=x^{2} y^{2}$
(e) $f(x, y)=x^{\alpha} y^{\beta}, \quad \alpha, \beta>0$

Jacobian Matrix

Let $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{x} \mapsto \mathbf{y}=\mathbf{f}(\mathbf{x})=\left(\begin{array}{c}f_{1}\left(x_{1}, \ldots, x_{n}\right) \\ \vdots \\ f_{m}\left(x_{1}, \ldots, x_{n}\right)\end{array}\right)$
The $m \times n$ matrix

$$
D \mathbf{f}\left(\mathbf{x}_{0}\right)=\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)
$$

is called the Jacobian matrix of \mathbf{f} at point \mathbf{x}_{0}.
It is the generalization of derivatives (and gradients) for vector-valued functions.

Jacobian Matrix

- $f(\mathbf{x})=f\left(x_{1}, x_{2}\right)=\exp \left(-x_{1}^{2}-x_{2}^{2}\right)$
$D f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}\right)=\nabla f(\mathbf{x})$

$$
=\left(-2 x_{1} \exp \left(-x_{1}^{2}-x_{2}^{2}\right),-2 x_{2} \exp \left(-x_{1}^{2}-x_{2}^{2}\right)\right)
$$

- $\mathbf{f}(\mathbf{x})=\mathbf{f}\left(x_{1}, x_{2}\right)=\binom{f_{1}\left(x_{1}, x_{2}\right)}{f_{2}\left(x_{1}, x_{2}\right)}=\binom{x_{1}^{2}+x_{2}^{2}}{x_{1}^{2}-x_{2}^{2}}$

$$
D \mathbf{f}(\mathbf{x})=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{1}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)=\left(\begin{array}{cc}
2 x_{1} & 2 x_{2} \\
2 x_{1} & -2 x_{2}
\end{array}\right)
$$

- $\mathbf{s}(t)=\binom{s_{1}(t)}{s_{2}(t)}=\binom{\cos (t)}{\sin (t)}$

$$
D \mathbf{s}(t)=\binom{\frac{d s_{1}}{d t}}{\frac{d s_{2}}{d t}}=\binom{-\sin (t)}{\cos (t)}
$$

Josef Leydold - Bridging Course Mathematics - WS 2023/24 $\quad 7$ - Derivatives - $49 / 56$

Chain Rule

Let $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $\mathbf{g}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$. Then

$$
(\mathbf{g} \circ \mathbf{f})^{\prime}(\mathbf{x})=\mathbf{g}^{\prime}(\mathbf{f}(\mathbf{x})) \cdot \mathbf{f}^{\prime}(\mathbf{x})
$$

$$
\begin{aligned}
& \mathbf{f}(x, y)=\binom{e^{x}}{e^{y}} \quad \mathbf{g}(x, y)=\binom{x^{2}+y^{2}}{x^{2}-y^{2}} \\
& \mathbf{f}^{\prime}(x, y)=\left(\begin{array}{cc}
e^{x} & 0 \\
0 & e^{y}
\end{array}\right) \quad \mathbf{g}^{\prime}(x, y)=\left(\begin{array}{cc}
2 x & 2 y \\
2 x & -2 y
\end{array}\right) \\
& (\mathbf{g} \circ \mathbf{f})^{\prime}(\mathbf{x})=\mathbf{g}^{\prime}(\mathbf{f}(\mathbf{x})) \cdot \mathbf{f}^{\prime}(\mathbf{x})=\left(\begin{array}{cc}
2 e^{x} & 2 e^{y} \\
2 e^{x} & -2 e^{y}
\end{array}\right) \cdot\left(\begin{array}{cc}
e^{x} & 0 \\
0 & e^{y}
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 e^{2 x} & 2 e^{2 y} \\
2 e^{2 x} & -2 e^{2 y}
\end{array}\right)
\end{aligned}
$$

Example - Indirect Dependency

Let $f\left(x_{1}, x_{2}, t\right)$ where $x_{1}(t)$ and $x_{2}(t)$ also depend on t.
What is the total derivative of f w.r.t. t ?
Chain rule:
Let $\mathbf{x}: \mathbb{R} \rightarrow \mathbb{R}^{3}, t \mapsto\left(\begin{array}{c}x_{1}(t) \\ x_{2}(t) \\ t\end{array}\right)$
$\frac{d f}{d t}=(f \circ \mathbf{x})^{\prime}(t)=f^{\prime}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t)$
$=\nabla f(\mathbf{x}(t)) \cdot\left(\begin{array}{c}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t) \\ 1\end{array}\right)=\left(f_{x_{1}}(\mathbf{x}(t)), f_{x_{2}}(\mathbf{x}(t)), f_{t}(\mathbf{x}(t)) \cdot\left(\begin{array}{c}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t) \\ 1\end{array}\right)\right.$
$=f_{x_{1}}(\mathbf{x}(t)) \cdot x_{1}^{\prime}(t)+f_{x_{2}}(\mathbf{x}(t)) \cdot x_{2}^{\prime}(t)+f_{t}(\mathbf{x}(t))$
$=f_{x_{1}}\left(x_{1}, x_{2}, t\right) \cdot x_{1}^{\prime}(t)+f_{x_{2}}\left(x_{1}, x_{2}, t\right) \cdot x_{2}^{\prime}(t)+f_{t}\left(x_{1}, x_{2}, t\right)$
Josef Leydold - Bridging Course Mathematics - WS 2023/24 7- Derivatives - $51 / 56$

Problem 7.16

Let

$$
f(x, y)=x^{2}+y^{2} \quad \text { and } \quad \mathbf{g}(t)=\binom{g_{1}(t)}{g_{2}(t)}=\binom{t}{t^{2}} .
$$

Compute the derivative of the composite functions
(a) $h=f \circ \mathbf{g}$, and
(b) $\mathbf{p}=\mathbf{g} \circ f$
by means of the chain rule.

Problem 7.17

Let $\mathbf{f}(\mathbf{x})=\binom{x_{1}^{3}-x_{2}}{x_{1}-x_{2}^{3}}$ and $\mathbf{g}(\mathbf{x})=\binom{x_{2}^{2}}{x_{1}}$.
Compute the derivatives of the composite functions
(a) $\mathbf{g} \circ f$, and
(b) $f \circ g$
by means of the chain rule.

Problem 7.18

Let $Q(K, L, t)$ be a production function, where $L=L(t)$ and $K=K(t)$ also depend on time t. Compute the total derivative $\frac{d Q}{d t}$ by means of the chain rule.

bef teydald - Bridging Course Mathematics - WS 2023/2

Summary

- difference quotient and differential quotient
- differential quotient and derivative
- derivatives of elementary functions
- differentiation rules
- higher order derivatives
- total differential
- elasticity
- partial derivatives
- gradient and Hessian matrix
- Jacobian matrix and chain rule

