Chapter 6

Limits

Limit of a Sequence

Consider the following sequence of numbers

$$
\left(a_{n}\right)_{n=1}^{\infty}=\left((-1)^{n} \frac{1}{n}\right)_{n=1}^{\infty}=\left(-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \frac{1}{6}, \ldots\right)
$$

The terms of this sequence tend to 0 with increasing n.
We say that sequence $\left(a_{n}\right)$ converges to 0 .
We write

$$
\left(a_{n}\right) \rightarrow 0 \quad \text { or } \quad \lim _{n \rightarrow \infty} a_{n}=0
$$

(read: "limit of a_{n} for n tends to ∞ ")

Limit of a Sequence / Definition

Definition:

A number $a \in \mathbb{R}$ is a limit of sequence $\left(a_{n}\right)$, if there exists an N for every interval ($a-\varepsilon, a+\varepsilon$) such that $a_{n} \in(a-\varepsilon, a+\varepsilon)$ for all $n \geq N$; i.e., all terms following a_{N} are contained in this interval.

Equivalent Definition: A sequence $\left(a_{n}\right)$ converges to limit $a \in \mathbb{R}$ if there exists an N for every $\varepsilon>0$ such that $\left|a_{n}-a\right|<\varepsilon$ for all $n \geq N$.
[Mathematicians like to use ε for a very small positive number.]
A sequence that has a limit is called convergent.
It converges to its limit.
It can be shown that a limit of a sequence is uniquely defined (if it exists).

A sequence without a limit is called divergent.

Limit of a Sequence / Example

Sequence

$$
\left(a_{n}\right)_{n=1}^{\infty}=\left((-1)^{n} \frac{1}{n}\right)_{n=1}^{\infty}=\left(-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \frac{1}{6}, \ldots\right)
$$

has limit $a=0$.
For example, if we set $\varepsilon=0.3$, then all terms following a_{4} are contained in interval $(a-\varepsilon, a+\varepsilon)$.
If we set $\varepsilon=\frac{1}{1000000}$, then all terms starting with the 1000001 -st term are contained in the interval.

Thus

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0
$$

Limit of a Sequence / Example

Sequence $\left(a_{n}\right)_{n=1}^{\infty}=\left(\frac{1}{2^{n}}\right)_{n=1}^{\infty}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right)$ converges to 0 :

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

Sequence $\left(b_{n}\right)_{n=1}^{\infty}=\left(\frac{n-1}{n+1}\right)_{n=1}^{\infty}=\left(0, \frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \frac{4}{6}, \frac{5}{7}, \ldots\right)$ is convergent:
$\lim _{n \rightarrow \infty} b_{n}=1$

Sequence $\left(c_{n}\right)_{n=1}^{\infty}=\left((-1)^{n}\right)_{n=1}^{\infty}=(-1,1,-1,1,-1,1, \ldots)$ is divergent.

Sequence $\left(d_{n}\right)_{n=1}^{\infty}=\left(2^{n}\right)_{n=1}^{\infty}=(2,4,8,16,32, \ldots)$ is divergent, but tends to ∞. By abuse of notation we write:

$$
\lim _{n \rightarrow \infty} d_{n}=\infty
$$

Limits of Important Sequences

$$
\lim _{n \rightarrow \infty} n^{a}= \begin{cases}0 & \text { for } a<0 \\ 1 & \text { for } a=0 \\ \infty & \text { for } a>0\end{cases}
$$

$$
\lim _{n \rightarrow \infty} q^{n}= \begin{cases}0 & \text { for }|q|<1 \\ 1 & \text { for } q=1 \\ \infty & \text { for } q>1 \\ \nexists & \text { for } q \leq-1\end{cases}
$$

$$
\lim _{n \rightarrow \infty} \frac{n^{a}}{q^{n}}=\left\{\begin{array}{ll}
0 & \text { for }|q|>1 \\
\infty & \text { for } 0<q<1 \\
\nexists & \text { for }-1<q<0
\end{array} \quad(|q| \notin\{0,1\})\right.
$$

Rules for Limits

Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be convergent sequences with $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, resp., and let $\left(c_{n}\right)_{n=1}^{\infty}$ be a bounded sequence.
Then
(1) $\lim _{n \rightarrow \infty}\left(k \cdot a_{n}+d\right)=k \cdot a+d$
(2) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+b$
(3) $\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=a \cdot b$
(4) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b} \quad$ for $b \neq 0$
(5) $\lim _{n \rightarrow \infty}\left(a_{n} \cdot c_{n}\right)=0$ provided $a=0$
(6) $\lim _{n \rightarrow \infty} a_{n}^{k}=a^{k}$

Rules for Limits

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(2+\frac{3}{n^{2}}\right)=2+3 \underbrace{\lim _{n \rightarrow \infty} n^{-2}}_{=0}=2+3 \cdot 0=2 \\
& \lim _{n \rightarrow \infty}\left(2^{-n} \cdot n^{-1}\right)=\lim _{n \rightarrow \infty} \frac{n^{-1}}{2^{n}}=0 \\
& \lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{2-\frac{3}{n^{2}}}=\frac{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)}{\lim _{n \rightarrow \infty}\left(2-\frac{3}{n^{2}}\right)}=\frac{1}{2}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \underbrace{\sin (n)}_{\text {bounded }} \cdot \underbrace{\frac{1}{n^{2}}}_{\rightarrow 0}=0
$$

Rules for Limits / Rational Terms

Important!

When we apply these rules we have to take care that we never obtain expressions of the form $\frac{0}{0}, \frac{\infty}{\infty}$, or $0 \cdot \infty$.
These expressions are not defined!

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}+1}{n^{2}-1}=\frac{\lim _{n \rightarrow \infty} 3 n^{2}+1}{\lim _{n \rightarrow \infty} n^{2}-1}=\frac{\infty}{\infty} \quad(\text { not defined })
$$

Trick: Reduce the fraction by the largest power in its denominator.

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}+1}{n^{2}-1}=\lim _{n \rightarrow \infty} \frac{\eta^{2}}{\not y^{2}} \cdot \frac{3+n^{-2}}{1-n^{-2}}=\frac{\lim _{n \rightarrow \infty} 3+n^{-2}}{\lim _{n \rightarrow \infty} 1-n^{-2}}=\frac{3}{1}=3
$$

Euler's Number

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e=2.7182818284590 \ldots
$$

This limit is very important in many applications including finance (continuous compounding).

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n / x}\right)^{n} \\
& =\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m x} \quad\left(m=\frac{n}{x}\right) \\
& =\left(\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}\right)^{x}=e^{x}
\end{aligned}
$$

Problem 6.1

Compute the following limits:
(a) $\lim _{n \rightarrow \infty}\left(7+\left(\frac{1}{2}\right)^{n}\right)$
(b) $\lim _{n \rightarrow \infty}\left(\frac{2 n^{3}-6 n^{2}+3 n-1}{7 n^{3}-16}\right)$
(c) $\lim _{n \rightarrow \infty}\left(n^{2}-(-1)^{n} n^{3}\right)$
(d) $\lim _{n \rightarrow \infty}\left(\frac{n^{2}+1}{n+1}\right)$
(e) $\lim _{n \rightarrow \infty}\left(\frac{n \bmod 10}{(-2)^{n}}\right)$
$a \bmod b$ is the remainder after integer division, e.g., $17 \bmod 5=2$ and $12 \bmod 4=0$.

Problem 6.2

Compute the following limits:
(a) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n x}$
(b) $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$
(c) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n x}\right)^{n}$

Limit of a Function

What happens with the value of a function f, if the argument x tends to some value x_{0} (which need not belong to the domain of f)?

Function

$$
f(x)=\frac{x^{2}-1}{x-1}
$$

is not defined in $x=1$.
By factorizing and reducing we get function

$$
g(x)=x+1= \begin{cases}f(x), & \text { if } x \neq 1 \\ 2, & \text { if } x=1\end{cases}
$$

Limit of a Function

Suppose we approach argument $x_{0}=1$.
Then the value of function $f(x)=\frac{x^{2}-1}{x-1}$ tends to 2 .

We say:
$f(x)$ converges to 2 when x tends to 1 and write:

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2
$$

Limit of a Function

Formal definition:

If sequence $\left(f\left(x_{n}\right)\right)_{n=1}^{\infty}$ of function values converges to number y_{0} for every convergent sequence $\left(x_{n}\right)_{n=1}^{\infty} \rightarrow x_{0}$ of arguments, then y_{0} is called the limit of f as x approaches x_{0}.

We write

$$
\lim _{x \rightarrow x_{0}} f(x)=y_{0} \quad \text { or } \quad f(x) \rightarrow y_{0} \text { for } x \rightarrow x_{0}
$$

x_{0} need not belong to the domain of f.
y_{0} need not belong to the codomain of f.

Rules for Limits

Rules for limits of functions are analogous to rules for sequences.
Let $\lim _{x \rightarrow x_{0}} f(x)=a$ and $\lim _{x \rightarrow x_{0}} g(x)=b$.
(1) $\lim _{x \rightarrow x_{0}}(c \cdot f(x)+d)=c \cdot a+d$
(2) $\lim _{x \rightarrow x_{0}}(f(x)+g(x))=a+b$
(3) $\lim _{x \rightarrow x_{0}}(f(x) \cdot g(x))=a \cdot b$
(4) $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{a}{b}$
for $b \neq 0$
(5) $\lim _{x \rightarrow x_{0}}(f(x))^{k}=a^{k}$ for $k \in \mathbb{N}$

How to Find Limits?

The following recipe is suitable for "simple" functions:

1. Draw the graph of the function.
2. Mark x_{0} on the x-axis.
3. Follow the graph with your pencil until we reach x_{0} starting from right of x_{0}.
4. The y-coordinate of your pencil in this point is then the so called right-handed limit of f as x approaches x_{0} (from above):

$$
\lim _{x \rightarrow x_{0}^{+}} f(x) . \quad \text { (Other notations: } \lim _{x \downarrow x_{0}} f(x) \text { or } \lim _{x \searrow x_{0}} f(x) \text {) }
$$

5. Analogously we get the left-handed limit of f as x approaches x_{0} (from below): $\lim _{x \rightarrow x_{0}^{-}} f(x)$.
6. If both limits coincide, then the limit exists and we have

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)
$$

How to Find Limits?

$$
\begin{aligned}
& f(x) \\
& \lim _{x \rightarrow 1^{+}} f(x) \\
& \hline \lim _{x \rightarrow 1^{-}} f(x) \\
& \hline 1
\end{aligned}
$$

$0.5=\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)=1.5$
i.e., the limit of f at $x_{0}=1$ does not exist.

The limits at other points, however, do exist, e.g. $\lim _{x \rightarrow 0} f(x)=1$.

How to Find Limits?

The only difference is to above is the function value at $x_{0}=0$.
Nevertheless, the limit does exist:

$$
\lim _{x \rightarrow 0^{-}} f(x)=1=\lim _{x \rightarrow 0^{+}} f(x) \Rightarrow \lim _{x \rightarrow 0} f(x)=1 .
$$

Unbounded Function

It may happen that $f(x)$ tends to ∞ (or $-\infty$) if x tends to x_{0}.
We then write (by abuse of notation):

$$
\lim _{x \rightarrow x_{0}} f(x)=\infty
$$

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

Limit as $x \rightarrow \infty$

By abuse of language we can define the limit analogously for $x_{0}=\infty$ and $x_{0}=-\infty$, resp.

Limit

$$
\lim _{x \rightarrow \infty} f(x)
$$

exists, if $f(x)$ converges whenever x tends to infinity.

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{1}{x^{2}}=0
$$

Problem 6.3

Draw the graph of function

$$
f(x)= \begin{cases}-\frac{x^{2}}{2}, & \text { for } x \leq-2 \\ x+1, & \text { for }-2<x<2 \\ \frac{x^{2}}{2}, & \text { for } x \geq 2\end{cases}
$$

and determine $\lim _{x \rightarrow x_{0}^{+}} f(x), \lim _{x \rightarrow x_{0}^{-}} f(x)$, and $\lim _{x \rightarrow x_{0}} f(x)$
for $x_{0}=-2,0$ and 2 :

$$
\begin{array}{cll}
\lim _{x \rightarrow-2^{+}} f(x) & \lim _{x \rightarrow-2^{-}} f(x) & \lim _{x \rightarrow-2} f(x) \\
\lim _{x \rightarrow 0^{+}} f(x) & \lim _{x \rightarrow 0^{-}} f(x) & \lim _{x \rightarrow 0} f(x) \\
\lim _{x \rightarrow 2^{+}} f(x) & \lim _{x \rightarrow 2^{-}} f(x) & \lim _{x \rightarrow 2} f(x)
\end{array}
$$

Problem 6.4

Determine the following left-handed and right-handed limits:
(a) $\lim _{x \rightarrow 0^{-}} f(x)$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x) \\
& \quad \text { for } f(x)= \begin{cases}1, & \text { for } x \neq 0 \\
0, & \text { for } x=0\end{cases}
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0^{-}} \frac{1}{x}$

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}
$$

(c) $\lim _{x \rightarrow 1^{-}} x$

$$
\lim _{x \rightarrow 1^{+}} x
$$

Problem 6.5

Determine the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{1}{x+1}$
(b) $\lim _{x \rightarrow 0} x^{2}$
(c) $\lim _{x \rightarrow \infty} \ln (x)$
(d) $\lim _{x \rightarrow 0} \ln |x|$
(e) $\lim _{x \rightarrow \infty} \frac{x+1}{x-1}$

Problem 6.6

Determine
(a) $\lim _{x \rightarrow 1^{+}} \frac{x^{3 / 2}-1}{x^{3}-1}$
(b) $\lim _{x \rightarrow-2^{-}} \frac{\sqrt{\left|x^{2}-4\right|^{2}}}{x+2}$
(c) $\lim _{x \rightarrow 0^{-}}\lfloor x\rfloor$
(d) $\lim _{x \rightarrow 1^{+}} \frac{x-1}{\sqrt{x-1}}$

Remark: $\lfloor x\rfloor$ is the largest integer less than or equal to x.

Problem 6.7

Determine

(a) $\lim _{x \rightarrow 2^{+}} \frac{2 x^{2}-3 x-2}{|x-2|}$
(b) $\lim _{x \rightarrow 2^{-}} \frac{2 x^{2}-3 x-2}{|x-2|}$
(c) $\lim _{x \rightarrow-2^{+}} \frac{|x+2|^{3 / 2}}{2+x}$
(d) $\lim _{x \rightarrow 1^{-}} \frac{x+1}{x^{2}-1}$
(e) $\lim _{x \rightarrow-7^{+}} \frac{2|x+7|}{x^{2}+4 x-21}$

Problem 6.8

Compute

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

for
(a) $f(x)=x$
(b) $f(x)=x^{2}$
(c) $f(x)=x^{3}$
(d) $f(x)=x^{n}$, for $n \in \mathbb{N}$.

L'Hôpital's Rule

Suppose we want to compute

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}
$$

and find

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=0 \quad(\text { or }= \pm \infty)
$$

However, expressions like $\frac{0}{0}$ or $\frac{\infty}{\infty}$ are not defined.
(You must not reduce the fraction by 0 or $\infty!$)

L'Hôpital's Rule

If $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=0$ (or $=\infty$ or $=-\infty$), then

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Assumption: f and g are differentiable in x_{0}.
This formula is called l'Hôpital's rule (also written as l'Hospital's rule).

L'Hôpital's Rule

$$
\lim _{x \rightarrow 2} \frac{x^{3}-7 x+6}{x^{2}-x-2}=\lim _{x \rightarrow 2} \frac{3 x^{2}-7}{2 x-1}=\frac{5}{3}
$$

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{2 x}=\lim _{x \rightarrow \infty} \frac{1}{2 x^{2}}=0
$$

$$
\lim _{x \rightarrow 0} \frac{x-\ln (1+x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{1-(1+x)^{-1}}{2 x}=\lim _{x \rightarrow 0} \frac{(1+x)^{-2}}{2}=\frac{1}{2}
$$

L'Hôpital's Rule

L'Hôpital's rule can be applied iteratively:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}=\lim _{x \rightarrow 0} \frac{e^{x}}{2}=\frac{1}{2}
$$

Problem 6.9

Compute the following limits:
(a) $\lim _{x \rightarrow 4} \frac{x^{2}-2 x-8}{x^{3}-2 x^{2}-11 x+12}$
(b) $\lim _{x \rightarrow-1} \frac{x^{2}-2 x-8}{x^{3}-2 x^{2}-11 x+12}$
(c) $\lim _{x \rightarrow 2} \frac{x^{3}-5 x^{2}+8 x-4}{x^{3}-3 x^{2}+4}$
(d) $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}$
(e) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(f) $\lim _{x \rightarrow \infty} x \ln (x)$

Problem 6.10

If we apply l'Hôpital's rule on the following limit we obtain

$$
\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}-x-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{3 x^{2}+2 x-1}{2 x}=\lim _{x \rightarrow 1} \frac{6 x+2}{2}=4 .
$$

However, the correct value for the limit is 2 .
Why does l'Hôpital's rule not work for this problem?
How do you get the correct value?

Continuous Functions

We may observe that we can draw the graph of a function without removing the pencil from paper. We call such functions continuous.

For some other functions we have to remove the pencil. At such points the function has a jump discontinuity.

continuous

jump discontinuity at $x=1$

Continuous Functions

Formal Definition:

Function $f: D \rightarrow \mathbb{R}$ is called continuous at $x_{0} \in D$, if

1. $\lim _{x \rightarrow x_{0}} f(x)$ exists, and
2. $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$

The function is called continuous if it is continuous at all points of its domain.

Note that continuity is a local property of a function.

Discontinuous Function

Not continuous in $x=1$ as $\lim _{x \rightarrow 1} f(x)$ does not exist.
So f is not a continuous function.
However, it is still continuous in all $x \in \mathbb{R} \backslash\{1\}$.
For example at $x=0, \lim _{x \rightarrow 0} f(x)$ does exist and $\lim _{x \rightarrow 0} f(x)=1=f(0)$.

Discontinuous Function

Not continuous in all $x=0$, either. $\lim _{x \rightarrow 0} f(x)=1$ does exist but $\lim _{x \rightarrow 0} f(x) \neq f(0)$.
So f is not a continuous function.
However, it is still continuous in all $x \in \mathbb{R} \backslash\{0,1\}$.

Recipe for "Nice" Functions

(1) Draw the graph of the given function.
(2) At all points of the domain, where we have to remove the pencil from paper the function is not continuous.
(3) At all other points of the domain (where we need not remove the pencil) the function is continuous.

$$
f(x)= \begin{cases}1, & \text { for } x<0, \\ 1-\frac{x^{2}}{2}, & \text { for } 0 \leq x<1, \\ \frac{x}{2}+1, & \text { for } x \geq 1 .\end{cases}
$$

f is continuous
except at point $x=1$.

Discontinuous Function

Function f is continuous except at points $x=0$ and $x=1$.

Problem 6.11

Draw the graph of function

$$
f(x)= \begin{cases}-\frac{x^{2}}{2}, & \text { for } x \leq-2 \\ x+1, & \text { for }-2<x<2 \\ \frac{x^{2}}{2}, & \text { for } x \geq 2\end{cases}
$$

and compute $\lim _{x \rightarrow x_{0}^{+}} f(x), \lim _{x \rightarrow x_{0}^{-}} f(x)$, and $\lim _{x \rightarrow x_{0}} f(x)$
for $x_{0}=-2,0$, and 2 .
Is function f continuous at these points?

Problem 6.12

Determine the left and right-handed limits of function

$$
f(x)= \begin{cases}x^{2}+1, & \text { for } x>0 \\ 0, & \text { for } x=0 \\ -x^{2}-1, & \text { for } x<0\end{cases}
$$

at $x_{0}=0$.
Is function f continuous at this point?
Is function f differentiable at this point?

Problem 6.13

Is function

$$
f(x)= \begin{cases}x+1, & \text { for } x \leq 1 \\ \frac{x}{2}+\frac{3}{2}, & \text { for } x>1\end{cases}
$$

continuous at $x_{0}=1$?
Is it differentiable at $x_{0}=1$?
Compute the limit of f at $x_{0}=1$.

Problem 6.14

Sketch the graphs of the following functions.
Which of these are continuous (on its domain)?
(a) $D=\mathbb{R}, f(x)=x$
(b) $D=\mathbb{R}, f(x)=3 x+1$
(c) $D=\mathbb{R}, f(x)=e^{-x}-1$
(d) $D=\mathbb{R}, f(x)=|x|$
(e) $D=\mathbb{R}^{+}, f(x)=\ln (x)$
(f) $D=\mathbb{R}, f(x)=\lfloor x\rfloor$
(g) $D=\mathbb{R}, f(x)= \begin{cases}1, & \text { for } x \leq 0, \\ x+1, & \text { for } 0<x \leq 2, \\ x^{2}, & \text { for } x>2 .\end{cases}$

Remark: $\lfloor x\rfloor$ is the largest integer less than or equal to x.

Problem 6.15

Sketch the graph of

$$
f(x)=\frac{1}{x} .
$$

Is it continuous?

Problem 6.16

Determine a value for h, such that function

$$
f(x)= \begin{cases}x^{2}+2 h x, & \text { for } x \leq 2 \\ 3 x-h, & \text { for } x>2\end{cases}
$$

is continuous.

Limits of Continuous Functions

If function f is known to be continuous, then its $\operatorname{limit} \lim _{x \rightarrow x_{0}} f(x)$ exists for all $x_{0} \in D_{f}$ and we obviously find

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

Polynomials are always continuous. Hence

$$
\lim _{x \rightarrow 2} 3 x^{2}-4 x+5=3 \cdot 2^{2}-4 \cdot 2+5=9
$$

Summary

- limit of a sequence
- limit of a function
- convergent and divergent
- Euler's number
- rules for limits
- l'Hôpital's rule
- continuous functions

