Chapter 5 Real Functions	Real Function Real functions are maps where both domain and codomain are (unions of) intervals in \mathbb{R}. Often only function terms are given but neither domain nor codomain. Then domain and codomain are implicitly given as following: Domain of the function is the largest sensible subset of the domain of the function terms (i.e., where the terms are defined). - Codomain is the image (range) of the function $f(D)=\left\{y \mid y=f(x) \text { for an } x \in D_{f}\right\} .$
Josef Leydold - Bridging Course Mathemaics - ws 202324 5- Real funcions - $1 / 67$	Josef Leydold - Bridging Course Matematics - Ws 2023/24 5 - Real Functions - $2 / 67$
Implicit Domain Production function $f(x)=\sqrt{x}$ is an abbreviation for $f:[0, \infty) \rightarrow[0, \infty), x \mapsto f(x)=\sqrt{x}$ (There are no negative amounts of goods. Moreover, \sqrt{x} is not real for $x<0$.) Its derivative $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ is an abbreviation for $f^{\prime}:(0, \infty) \rightarrow(0, \infty), x \mapsto f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ (Note the open interval $(0, \infty) ; \frac{1}{2 \sqrt{x}}$ is not defined for $x=0$.)	Problem 5.1 Give the largest possible domain of the following functions? (a) $h(x)=\frac{x-1}{x-2}$ (b) $D(p)=\frac{2 p+3}{p-1}$ (c) $f(x)=\sqrt{x-2}$ (d) $g(t)=\frac{1}{\sqrt{2 t-3}}$ (e) $f(x)=2-\sqrt{9-x^{2}}$ (f) $f(x)=1-x^{3}$ (g) $f(x)=2-\|x\|$
Josef Leydold - Bridging Course Mathemaics - ws 202324 5-Real Funcions - $3 / 67$	Josef Leydold - Bridging Course Matematics - ws 2023/24 5 - Real Functions - 4/67
Problem 5.2 Give the largest possible domain of the following functions? (a) $f(x)=\frac{\|x-3\|}{x-3}$ (b) $f(x)=\ln (1+x)$ (c) $f(x)=\ln \left(1+x^{2}\right)$ (d) $f(x)=\ln \left(1-x^{2}\right)$ (e) $f(x)=\exp \left(-x^{2}\right)$ (f) $f(x)=\left(e^{x}-1\right) / x$	Graph of a Function Each tuple $(x, f(x))$ corresponds to a point in the $x y$-plane. The set of all these points forms a curve called the graph of function f. $\mathcal{G}_{f}=\left\{(x, y) \mid x \in D_{f}, y=f(x)\right\}$ Graphs can be used to visualize functions. They allow to detect many properties of the given function.
Josef Leydold - Bridging Course Mathemaics - ws 202324 5- 5 - Real Funcions - $5 / 67$	Josef Leydold - Bridging Course Matemaics - Ws 2023/24 5 - Real Functions - $6 / 67$
How to Draw a Graph 1. Get an idea about the possible shape of the graph. One should be able to sketch graphs of elementary functions by heart. 2. Find an appropriate range for the x-axis. (It should show a characteristic detail of the graph.) 3. Create a table of function values and draw the corresponding points into the $x y$-plane. If known, use characteristic points like local extrema or inflection points. 4. Check if the curve can be constructed from the drawn points. If not add adapted points to your table of function values. 5. Fit the curve of the graph through given points in a proper way.	How to Draw a Graph Graph of function $f(x)=x-\ln x$ Table of values:

Sources of Errors

Most frequent errors when drawing function graphs:

- Table of values is too small:

It is not possible to construct the curve from the computed function values.

- Important points are ignored:

Ideally extrema and inflection points should be known and used.

- Range for x and y-axes not suitable:

The graph is tiny or important details vanish in the "noise" of handwritten lines (or pixel size in case of a computer program).

Sources of Errors

Graph of function $f(x)=\frac{1}{3} x^{3}-x$ in interval $[-2,2]$:

Josef Leydold - Bridging Course Mathematics - ws 2023/24
Sources of Errors
Graph of $f(x)=x^{3}$ has slope 0 in $x=0$:

Sources of Errors

Function $f(x)=\exp \left(\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right)$ has a local maximum in $x=-1$:

Sources of Errors

Graph of function $f(x)=\frac{1}{3} x^{3}-x$ in interval $[-2,2]$:

Josef Leydold - Bridging Course Mathematics - WS 2023/24
5-Real Functions - 13/67

Extrema and Inflection Points

Graph of function $f(x)=\frac{1}{15}\left(3 x^{5}-20 x^{3}\right)$:

Josef Leydold - Bridging Course Mathematics - WS 2023/2

Sources of Errors

It is important that one already has an idea of the shape of the function graph before drawing the curve.
Even a graph drawn by means of a computer program can differ significantly from the true curve.

Josef Leydold - Bridging Course Mathematics - WS 2023/24 5 - Real Functions - $17 / 67$

Piece-wise Defined Functions

The function term can be defined differently in subintervals of the domain.

At the boundary points of these subintervals we have to mark which points belong to the graph and which do not:

- (belongs) and \circ (does not belong).

Sketch of a Function Graph

Often a sketch of the graph is sufficient. Then the exact function values are not so important. Axes may not have scales.

However, it is important that the sketch clearly shows all characteristic details of the graph (like extrema or important function values).

Sketches can also be drawn like a caricature:
They stress prominent parts and properties of the function.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Problem 5.3

Draw the graph of function

$$
f(x)=-x^{4}+2 x^{2}
$$

in interval $[-2,2]$.

Joser Leydold - Bridging Course Mathemaics - WS 2023/24

 5-Real Functions - $20 / 67$
Problem 5.5

Draw the graph of function

$$
f(x)=\frac{x-1}{|x-1|}
$$

in interval $[-2,2]$.

osef Leydold - Bridging Course Mathematics - WS 2023/24

Problem 5.6

Draw the graph of function

$$
f(x)=\sqrt{\left|1-x^{2}\right|}
$$

in interval $[-2,2]$.

Bijectivity

Recall that each argument has exactly one image and that the number of preimages of an element in the codomain can vary.
Thus we can characterize maps by their possible number of preimages.

- A map f is called one-to-one (or injective), if each element in the codomain has at most one preimage.
- It is called onto (or surjective), if each element in the codomain has at least one preimage.
- It is called bijective, if it is both one-to-one and onto, i.e., if each element in the codomain has exactly one preimage.

Also recall that a function has an inverse if and only if it is one-to-one and onto (i.e., bijective).

A Simple Horizontal Test How can we determine whether a real function is one-to-one or onto? l.e., how many preimage may a $y \in W_{f}$ have? (1) Draw the graph of the given function. (2) Mark some $y \in W$ on the y-axis and draw a line parallel to the x-axis (horizontal) through this point. (3) The number of intersection points of horizontal line and graph coincides with the number of preimages of y. (4) Repeat Steps (2) and (3) for a representative set of y-values. (5) Interpretation: If all horizontal lines intersect the graph in (a) at most one point, then f is one-to-one; (b) at least one point, then f is onto; (c) exactly one point, then f is bijective.	Example $f:[-1,2] \rightarrow \mathbb{R}, x \mapsto x^{2}$ - is not one-to-one; - is not onto. $f:[0,2] \rightarrow \mathbb{R}, x \mapsto x^{2}$ is one-to-one; - is not onto. $f:[0,2] \rightarrow[0,4], x \mapsto x^{2}$ is one-to-one and onto. Beware! Domain and codomain are part of the function!
Joseft Leydold - Bridging Couse Mathenaics - Ws 202324 5 - Real Functions -25667	
Problem 5.7 Draw the graphs of the following functions and determine whether these functions are one-to-one or onto (or both). (a) $f:[-2,2] \rightarrow \mathbb{R}, x \mapsto 2 x+1$ (b) $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, x \mapsto \frac{1}{x}$ (c) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{3}$ (d) $f:[2,6] \rightarrow \mathbb{R}, x \mapsto(x-4)^{2}-1$ (e) $f:[2,6] \rightarrow[-1,3], x \mapsto(x-4)^{2}-1$ (f) $f:[4,6] \rightarrow[-1,3], x \mapsto(x-4)^{2}-1$	Function Composition Let $f: D_{f} \rightarrow W_{f}$ and $g: D_{g} \rightarrow W_{g}$ be functions with $W_{f} \subseteq D_{g}$. $g \circ f: D_{f} \rightarrow W_{g}, x \mapsto(g \circ f)(x)=g(f(x))$ is called composite function. (read: " g composed with f ", " g circle f ", or " g after f ") Let $\begin{aligned} & g: \mathbb{R} \rightarrow[0, \infty), x \mapsto g(x)=x^{2}, \\ & f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x)=3 x-2 . \end{aligned}$ $\begin{array}{ll} \text { Then } & (g \circ f): \mathbb{R} \rightarrow[0, \infty), \\ & x \mapsto(g \circ f)(x)=g(f(x))=g(3 x-2)=(3 x-2)^{2} \\ \text { and } & (f \circ g): \mathbb{R} \rightarrow \mathbb{R}, \\ & x \mapsto(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=3 x^{2}-2 \end{array}$ Then
Josefl Leydold - Bridging Couse Mathenaics - ws 202324 5 - Real Funcions - 27/67	Josefl leyold - Bridiging Cusse Matemaics - Ws 202324 5
Problem 5.8 Let $f(x)=x^{2}+2 x-1$ and $g(x)=1+\|x\|^{\frac{3}{2}}$. Compute (a) $(f \circ g)(4)$ (b) $(f \circ g)(-9)$ (c) $(g \circ f)(0)$ (d) $(g \circ f)(-1)$	Problem 5.9 Determine $f \circ g$ and $g \circ f$. What are the domains of $f, g, f \circ g$ and $g \circ f$? (a) $f(x)=x^{2}, \quad g(x)=1+x$ (b) $f(x)=\sqrt{x}+1, \quad g(x)=x^{2}$ (c) $f(x)=\frac{1}{x+1}, \quad g(x)=\sqrt{x}+1$ (d) $f(x)=2+\sqrt{x}, \quad g(x)=(x-2)^{2}$ (e) $f(x)=x^{2}+2, \quad g(x)=x-3$ (f) $f(x)=\frac{1}{1+x^{2}}, \quad g(x)=\frac{1}{x}$ (g) $f(x)=\ln (x), \quad g(x)=\exp \left(x^{2}\right)$ (h) $f(x)=\ln (x-1), \quad g(x)=x^{3}+1$
Inverse Function If $f: D_{f} \rightarrow W_{f}$ is a bijection, then there exists a so called inverse function $f^{-1}: W_{f} \rightarrow D_{f}, y \mapsto x=f^{-1}(y)$ with the property $f^{-1} \circ f=\mathrm{id} \text { and } f \circ f^{-1}=\mathrm{id}$ We get the function term of the inverse by interchanging the roles of argument x and image y.	Example We get the term for the inverse function by expressing x as function of y We need the inverse function of $y=f(x)=2 x-1$ By rearranging we obtain $y=2 x-1 \quad \Leftrightarrow \quad y+1=2 x \quad \Leftrightarrow \quad \frac{1}{2}(y+1)=x$ Thus the term of the inverse function is $\quad f^{-1}(y)=\frac{1}{2}(y+1)$. Arguments are usually denoted by x. So we write $f^{-1}(x)=\frac{1}{2}(x+1)$ The inverse function of $f(x)=x^{3}$ is $f^{-1}(x)=\sqrt[3]{x}$.
Joset Leydod - Bridging Couse Natemaics - Ws 202324 5 - Real Funcions -	

Geometric Interpretation

Interchanging of x and y corresponds to reflection across the median between x and y-axis.

(Graph of function $f(x)=x^{3}$ and its inverse.)

Problem 5.10

Find the inverse function of

$$
f(x)=\ln (1+x)
$$

Draw the graphs of f and f^{-1}.

Josef Leydold - Bridging Course Mathematics - WS 2023/24	5 - Real Functions - $33 / 67$	

Linear Function and Absolute Value

- Linear function

- Absolute value (or modulus)

$$
f(x)=|x|= \begin{cases}x & \text { for } x \geq 0 \\ -x & \text { for } x<0\end{cases}
$$

Josef Leydold - Bridging Course Mathematics - WS 2023/24 5-Real Functions - $35 / 67$

Power Function

Power function with integer exponents:

$$
f: x \mapsto x^{n}, \quad n \in \mathbb{Z} \quad D= \begin{cases}\mathbb{R} & \text { for } n \geq 0 \\ \mathbb{R} \backslash\{0\} & \text { for } n<0\end{cases}
$$

Problem 5.12

Draw (sketch) the graph of power function

$$
f(x)=x^{n}
$$

in interval $[0,2]$ for

$$
n=-4,-2,-1,-\frac{1}{2}, 0, \frac{1}{4}, \frac{1}{2}, 1,2,3,4 .
$$

Problem 5.11

Draw the graph of function

$$
f(x)=2 x+1
$$

in interval $[-2,2]$.
Hint: Two points and a ruler are sufficient.

Power Function

Power function with real exponents

$$
f: x \mapsto x^{\alpha} \quad \alpha \in \mathbb{R} \quad D= \begin{cases}{[0, \infty)} & \text { for } \alpha \geq 0 \\ (0, \infty) & \text { for } \alpha<0\end{cases}
$$

Tof Levdld - Bridging Course Mathematics - WS 202324

Polynomial and Rational Functions

- Polynomial of degree n :

$$
f(x)=\sum_{k=0}^{n} a_{k} x^{k}
$$

$a_{i} \in \mathbb{R}$, for $i=1, \ldots, n, \quad a_{n} \neq 0$.

- Rational Function:

$$
D \rightarrow \mathbb{R}, \quad x \mapsto \frac{p(x)}{q(x)}
$$

$p(x)$ and $q(x)$ are polynomials
$D=\mathbb{R} \backslash\{$ roots of $q\}$

Problem 5.13
Draw (sketch) the graphs of the following functions in interval $[-2,2]$:
(a) $f(x)=\frac{x}{x^{2}+1}$
(b) $f(x)=\frac{x}{x^{2}-1}$
(c) $f(x)=\frac{x^{2}}{x^{2}+1}$
(d) $f(x)=\frac{x^{2}}{x^{2}-1}$
$f(x)=\frac{x^{2}-1}{}$
Josef Leydold - Bridging Course Mathematics - ws 2023/24 5-Real Functions - 41/67

Problem 5.14

Draw (sketch) the graph of the following functions:
(a) $f(x)=e^{x}$
(b) $f(x)=3^{x}$
(c) $f(x)=e^{-x}$
(d) $f(x)=e^{x^{2}}$
(e) $f(x)=e^{-x^{2}}$
(f) $f(x)=e^{-1 / x^{2}}$
(g) $\cosh (x)=\left(e^{x}+e^{-x}\right) / 2$
(h) $\sinh (x)=\left(e^{x}-e^{-x}\right) / 2$

Josef Leydold - Bridging Course Mathematics - WS 2023/24	5 - Real Functions - 43/67

Problem 5.15

Draw (sketch) the graph of the following functions:
(a) $f(x)=\ln (x)$
(b) $f(x)=\ln (x+1)$
(c) $f(x)=\ln \left(\frac{1}{x}\right)$
(d) $f(x)=\log _{10}(x)$
(e) $f(x)=\log _{10}(10 x)$
(f) $f(x)=(\ln (x))^{2}$

Exponential Function

- Exponential function:

$$
\mathbb{R} \rightarrow \mathbb{R}^{+}, \quad x \mapsto \exp (x)=e^{x}
$$

$$
\overline{e=2,7182818 \ldots \quad \text { Euler's number }}
$$

- Generalized exponential function:

$$
\mathbb{R} \rightarrow \mathbb{R}^{+}, \quad x \mapsto a^{x} \quad a>0
$$

Josef Leydold - Bridging Course Mathematics - Ws 2023/24

Logarithm Function

- Logarithm:

Inverse of exponential function.

$$
\mathbb{R}^{+} \rightarrow \mathbb{R}, \quad x \mapsto \log (x)=\ln (x)
$$

- Generalized Logarithm to basis a :

$$
\mathbb{R}^{+} \rightarrow \mathbb{R}, \quad x \mapsto \log _{a}(x)
$$

Trigonometric Functions

- Sine:

$$
\mathbb{R} \rightarrow[-1,1], x \mapsto \sin (x)
$$

- Cosine:

$$
\mathbb{R} \rightarrow[-1,1], x \mapsto \cos (x)
$$

Beware!

These functions use radian for their arguments, i.e., angles are measured by means of the length of arcs on the unit circle and not by degrees. A right angle then corresponds to $x=\pi / 2$.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Sine and Cosine

Important formulas:

Periodic: For all $k \in \mathbb{Z}$,

$$
\begin{aligned}
& \sin (x+2 k \pi)=\sin (x) \\
& \cos (x+2 k \pi)=\cos (x)
\end{aligned}
$$

Relation between sin and cos:

$$
\sin ^{2}(x)+\cos ^{2}(x)=1
$$

Problem 5.16

Assign the following functions to the graphs $1-18$:
(a) $f(x)=x^{2}$
(b) $f(x)=\frac{x}{x+1}$
(c) $f(x)=\frac{1}{x+1}$
(d) $f(x)=\sqrt{x}$
(e) $f(x)=x^{3}-3 x^{2}+2 x$
(f) $f(x)=\sqrt{\left|2 x-x^{2}\right|}$
(g) $f(x)=-x^{2}-2 x$
(h) $f(x)=\left(x^{3}-3 x^{2}+2 x\right) \operatorname{sgn}(1-x)+1$ $(\operatorname{sgn}(x)=1$ if $x \geq 0$ and -1 otherwise.)

Problem 5.16/2
(i) $f(x)=e^{x}$
(j) $f(x)=e^{x / 2}$
(k) $f(x)=e^{2 x}$
(I) $f(x)=2^{x}$
(m) $f(x)=\ln (x)$
(n) $f(x)=\log _{10}(x)$
(o) $f(x)=\log _{2}(x)$
(p) $f(x)=\sqrt{4-x^{2}}$
(q) $f(x)=1-|x|$
(r) $f(x)=\prod_{k=-1}^{2}(x+k)$

Problem 5.16/4

Multivariate Function

A function of several variables (or multivariate function) is a function with more than one argument which evaluates to a real number.

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \mapsto f(\mathbf{x})=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Arguments x_{i} are the variables of function f.

$$
f(x, y)=\exp \left(-x^{2}-2 y^{2}\right)
$$

is a bivariate function in variables x and y.

$$
p\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{1} x_{2}-x_{2}^{2}+5 x_{1} x_{3}-2 x_{2} x_{3}
$$

is a function in the three variables x_{1}, x_{2}, and x_{3}.

Josef Leydold - Bridging Course Mathematics - WS 2023/24
 5-Real Functions - $53 / 67$

Graphs of Bivariate Functions

Bivariate functions (i.e., of two variables) can be visualized by its graph:

$$
\mathcal{G}_{f}=\{(x, y, z) \mid z=f(x, y) \text { for } x, y \in \mathbb{R}\}
$$

It can be seen as the two-dimensional surface of a three-dimensional landscape.

The notion of graph exists analogously for functions of three or more variables.

$$
\mathcal{G}_{f}=\left\{(\mathbf{x}, y) \mid y=f(\mathbf{x}) \text { for an } \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

However, it can hardly be used to visualize such functions.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Graphs of Bivariate Functions

Contour Lines of Bivariate Functions

Let $c \in \mathbb{R}$ be fixed. Then the set of all points (x, y) in the real plane with $f(x, y)=c$ is called contour line of function f.
Function f is constant on each of its contour lines.
Other names:

- Indifference curve
- Isoquant
- Level set (is a generalization of a contour line for functions of any number of variables.)

A collection of contour lines can be seen as a kind of "hiking map" for the "landscape" of the function.

Contour Lines of Bivariate Functions

contour lines

$$
f(x, y)=e^{-x^{2}-2 y^{2}}
$$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Indifference Curves

Indifference curves are determined by an equation

$$
F(x, y)=0
$$

We can (try to) draw such curves by expressing one of the variables as function of the other one
(i.e., solve the equation w.r.t. one of the two variables).

So we may get an univariate function. The graph of this function coincides with the indifference curve.
We then draw the graph of this univariate function by the method described above.

Josef Leydold - Bridging Course Mathematics - Ws 2023/24	5 - Real Functions - $59 / 67$

CES-Function

We want to draw indifference curve

$$
x^{\frac{1}{3}} y^{\frac{2}{3}}=1, \quad x, y>0
$$

Expressing x by y yields:

$$
x=\frac{1}{y^{2}}
$$

Alternatively we can express y by x :

$$
y=\frac{1}{\sqrt{x}}
$$

CES-Function

We want to draw indifference curve

$$
\left(x^{\frac{1}{2}}+y^{\frac{1}{2}}\right)^{2}=4, \quad x, y>0
$$

Expressing x by y yields:

$$
y=\left(2-x^{\frac{1}{2}}\right)^{2}
$$

(Take care about the domain of this curve!)

Josef Leydold - Bridging Course Mathematics - WS 2023/24

5 - Real Functions - $61 / 67$

Problem 5.18

Draw the following indifference curves:
(a) $x+y^{2}-1=0$
(b) $x^{2}+y^{2}-1=0$
(c) $x^{2}-y^{2}-1=0$
Josef Leydold - Bridging Course Mathematics - ws 2023/24 $\quad 5$ - Real Functions - $62 / 67$

Paths

A function

$$
s: \mathbb{R} \rightarrow \mathbb{R}^{n}, t \mapsto s(t)=\left(\begin{array}{c}
s_{1}(t) \\
\vdots \\
s_{n}(t)
\end{array}\right)
$$

is called a path in \mathbb{R}^{n}.
Variable t is often interpreted as time.

$$
[0, \infty) \rightarrow \mathbb{R}^{2}, t \mapsto\binom{\cos (t)}{\sin (t)}
$$

Problem 5.19

Sketch the graphs of the following paths:
(a) $s:[0, \infty) \rightarrow \mathbb{R}^{2}, t \mapsto\binom{\cos (t)}{\sin (t)}$
(b) $s:[0, \infty) \rightarrow \mathbb{R}^{2}, t \mapsto\binom{\cos (2 \pi t)}{\sin (2 \pi t)}$
(c) $s:[0, \infty) \rightarrow \mathbb{R}^{2}, t \mapsto\binom{t \cos (2 \pi t)}{t \sin (2 \pi t)}$

Vector-valued Function

Generalized vector-valued function:
$\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{x} \mapsto \mathbf{y}=\mathbf{f}(\mathbf{x})=\left(\begin{array}{c}f_{1}(\mathbf{x}) \\ \vdots \\ f_{m}(\mathbf{x})\end{array}\right)=\left(\begin{array}{c}f_{1}\left(x_{1}, \ldots, x_{n}\right) \\ \vdots \\ f_{m}\left(x_{1}, \ldots, x_{n}\right)\end{array}\right)$
Univariate functions:
$\mathbb{R} \rightarrow \mathbb{R}, x \mapsto y=x^{2}$

- Multivariate functions:

$$
\mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \mapsto y=x_{1}^{2}+x_{2}^{2}
$$

- Paths:
$[0,1) \rightarrow \mathbb{R}^{n}, s \mapsto\left(s, s^{2}\right)^{t}$
- Linear maps:

$$
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{x} \mapsto \mathbf{y}=\mathbf{A x} \quad \mathbf{A} \ldots m \times n \text {-Matrix }
$$

Summary

- real functions
- implicit domain
- graph of a function
- sources of errors
- piece-wise defined functions
- one-to-one and onto
- function composition
- inverse function
- elementary functions
- multivariate functions
- paths
- vector-valued functions

