Chapter 4 Sequences and Series	Sequences A sequence is an enumerated collection of objects in which repetitions are allowed. These objects are called members or terms of the sequence. In this chapter we are interested in sequences of numbers. Formally a sequence is a special case of a map: $a: \mathbb{N} \rightarrow \mathbb{R}, n \mapsto a_{n}$ Sequences are denoted by $\left(a_{n}\right)_{n=1}^{\infty}$ or just $\left(a_{n}\right)$ for short. An alternative notation used in literature is $\left\langle a_{n}\right\rangle_{n=1}^{\infty}$.
Joseft Leyold - Bridging Couse Manemaics - ws 202324 4 - Sequences and Series - $1 / 16$	Joset Levold - Bridging Couse Manemaics - ws 202324 4 - Sequences and Series - $2 / 16$
Sequences Sequences can be defined - by enumerating of its terms, - by a formula, or - by recursion. Each term is determined by its predecessor(s). Enumeration: $\quad\left(a_{n}\right)=(1,3,5,7,9, \ldots)$ Formula: $\quad\left(a_{n}\right)=(2 n-1)$ Recursion: $\quad a_{1}=1, a_{n+1}=a_{n}+2$	Graphical Representation A sequence $\left(a_{n}\right)$ can by represented (1) by drawing tuples $\left(n, a_{n}\right)$ in the plane, or (2) by drawing points on the number line.
Josefl everold - Bridging Course Manemaics - Ws 202324	
Properties	Problem 4.1 Draw the first 10 elements of the following sequences. Which of these sequences are monotone, alternating, or bounded? (a) $\left(n^{2}\right)_{n=1}^{\infty}$ (b) $\left(n^{-2}\right)_{n=1}^{\infty}$ (c) $(\sin (\pi / n))_{n=1}^{\infty}$ (d) $a_{1}=1, a_{n+1}=2 a_{n}$ (e) $a_{1}=1, a_{n+1}=-\frac{1}{2} a_{n}$
	Joset Levodold - Bridging Couse Manemaics - ws 202324 4 - Sequereses and Series -6/16
Series The sum of the first n terms of sequence $\left(a_{i}\right)_{i=1}^{\infty}$ $s_{n}=\sum_{i=1}^{n} a_{i}$ is called the n-th partial sum of the sequence. The sequence $\left(s_{n}\right)$ of all partial sums is called the series of the sequence. The series of sequence $\left(a_{i}\right)=(2 i-1)$ is $\left(s_{n}\right)=\left(\sum_{i=1}^{n}(2 i-1)\right)=(1,4,9,16,25, \ldots)=\left(n^{2}\right) .$	Problem 4.2 Compute the first 5 partial sums of the following sequences: (a) $2 n$ (b) $\frac{1}{2+n}$ (c) $2^{n / 10}$
	Joset Levold - Bridging Couse Manemaics - Ws 202324 4-Sequences and Series -8/16

Arithmetic Sequence

Formula and recursion:

$$
a_{n}=a_{1}+(n-1) \cdot d \quad a_{n+1}=a_{n}+d
$$

Differences of consecutive terms are constant:

$$
a_{n+1}-a_{n}=d
$$

Each term is the arithmetic mean of its neighboring terms:

$$
a_{n}=\frac{1}{2}\left(a_{n+1}+a_{n-1}\right)
$$

Arithmetic series:

$$
s_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$\qquad s_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
Josefteydold - Bridging Course Mathematics - ws $2023 / 24$
Sources of Errors
Indices of sequences may also start with 0 (instead of 1).
Beware!
Formulæ then are slightly changed.
Arithmetic sequence:
$\qquad a_{n}=a_{0}+n \cdot d \quad$ and $\quad s_{n}=\frac{n+1}{2}\left(a_{0}+a_{n}\right)$

Geometric sequence:

$$
a_{n}=a_{0} \cdot q^{n} \quad \text { and } \quad s_{n}=a_{0} \cdot \frac{q^{n+1}-1}{q-1} \quad(\text { for } q \neq 1)
$$

4 - Sequences and Series - 11/16

Problem 4.4

Compute the first 10 partial sums of the arithmetic series for
(a) $a_{1}=0$ and $d=1$,
(b) $a_{1}=1$ and $d=2$.

