Chapter 4

Sequences and Series

Josef Leydold - Bridging Course Mathematics - WS 2023/24

4 - Sequences and Series - 1 / 16

Sequences

A **sequence** is an enumerated collection of objects in which repetitions are allowed. These objects are called **members** or **terms** of the sequence.

In this chapter we are interested in sequences of numbers.

Formally a sequence is a special case of a map:

$$a: \mathbb{N} \to \mathbb{R}, n \mapsto a_n$$

Sequences are denoted by $(a_n)_{n=1}^{\infty}$ or just (a_n) for short.

An alternative notation used in literature is $\left\langle a_{n}\right\rangle _{n=1}^{\infty}.$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

4 - Sequences and Series - 2 / 16

Sequences

Sequences can be defined

- ▶ by enumerating of its terms,
- ▶ by a **formula**, or
- ▶ by recursion.

Each term is determined by its predecessor(s).

Enumeration: $(a_n) = (1, 3, 5, 7, 9, ...)$

Formula: $(a_n) = (2n - 1)$

Recursion: $a_1 = 1$, $a_{n+1} = a_n + 2$

Graphical Representation

A sequence (a_n) can by represented

(1) by drawing tuples (n, a_n) in the plane, or

(2) by drawing points on the number line.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

4 - Sequences and Series - 4 / 16

Properties

Properties of a sequence (a_n) :

Property

Definition

monotonically increasing

 $a_{n+1} \ge a_n$

for all $n \in \mathbb{N}$

monotonically decreasing

 $a_{n+1} \leq a_n$

 $a_{n+1} \cdot a_n < 0$ i.e. the sign changes

alternating bounded

 $|a_n| < M$

for some $M \in \mathbb{R}$

Sequence $(\frac{1}{n})$ is

- ► monotonically decreasing
- ▶ bounded, as for all $n \in \mathbb{N}$, $|a_n| = |1/n| \le M = 1$ (we could also choose M = 1000)
- but *not* alternating.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

4 - Sequences and Series - 5 / 16

Problem 4.1

Draw the first 10 elements of the following sequences. Which of these sequences are monotone, alternating, or bounded?

(a)
$$(n^2)_{n=1}^{\infty}$$

(b)
$$(n^{-2})_{n=1}^{\infty}$$

(c)
$$\left(\sin(\pi/n)\right)_{n=1}^{\infty}$$

(d)
$$a_1 = 1$$
, $a_{n+1} = 2a_n$

(e)
$$a_1 = 1$$
, $a_{n+1} = -\frac{1}{2}a_n$

Series

The sum of the first n terms of sequence $(a_i)_{i=1}^{\infty}$

$$s_n = \sum_{i=1}^n a_i$$

is called the n-th **partial sum** of the *sequence*.

The sequence (s_n) of all partial sums is called the **series** of the sequence.

The series of sequence $(a_i) = (2i-1)$ is

$$(s_n) = \left(\sum_{i=1}^n (2i-1)\right) = (1,4,9,16,25,\dots) = (n^2).$$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

4 - Sequences and Series - 7 / 16

Problem 4.2

Compute the first 5 partial sums of the following sequences:

- (a) 2n
- **(b)** $\frac{1}{2+n}$
- (c) $2^{n/10}$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

4 - Sequences and Series - 8 / 16

Arithmetic Sequence

Formula and recursion:

$$a_n = a_1 + (n-1) \cdot d$$

$$a_{n+1} = a_n + d$$

Differences of consecutive terms are constant:

$$a_{n+1} - a_n = d$$

Each term is the *arithmetic mean* of its neighboring terms:

$$a_n = \frac{1}{2}(a_{n+1} + a_{n-1})$$

Arithmetic series:

$$s_n = \frac{n}{2}(a_1 + a_n)$$

Geometric Sequence

Formula and recursion:

$$a_n = a_1 \cdot q^{n-1}$$

$$a_{n+1} = a_n \cdot q$$

Ratios of consecutive terms are constant:

$$\frac{a_{n+1}}{a_n} = q$$

Each term is the *geometric mean* of its neighboring terms:

$$a_n = \sqrt{a_{n+1} \cdot a_{n-1}}$$

Geometric series:

$$s_n = a_1 \cdot \frac{q^n - 1}{q - 1} \qquad \text{for } q \neq 1$$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

4 $\,-\,$ Sequences and Series $\,-\,$ 10 / 16

Sources of Errors

Indices of sequences may also start with 0 (instead of 1).

Beware!

Formulæ then are slightly changed.

Arithmetic sequence:

$$a_n = a_0 + n \cdot d$$
 and $s_n = \frac{n+1}{2}(a_0 + a_n)$

Geometric sequence:

$$a_n = a_0 \cdot q^n$$
 and $s_n = a_0 \cdot \frac{q^{n+1} - 1}{q - 1}$ (for $q \neq 1$)

Josef Leydold - Bridging Course Mathematics - WS 2023/24

4 - Sequences and Series - 11 / 16

Problem 4.3

We are given a geometric sequence (a_n) with $a_1=2$ and relative change 0.1, i.e., each term of the sequence is increased by 10% compared to its predecessor.

Give formula and term a_7 .

Problem 4.4

Compute the first 10 partial sums of the arithmetic series for

- (a) $a_1 = 0$ and d = 1,
- **(b)** $a_1 = 1$ and d = 2.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

4 - Sequences and Series - 13 / 16

Problem 4.5

Compute $\sum_{n=1}^{N} a_n$ for

- (a) N = 7 and $a_n = 3^{n-2}$
- **(b)** N = 7 and $a_n = 2(-1/4)^n$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

4 - Sequences and Series - 14 / 16

Applications of Geometric Sequences

See your favorite book /course on finance and accounting.

- ► sequence
- ► formula and recursion
- ► series and partial sums
- ► arithmetic and geometric sequence

Josef Leydold - Bridging Course Mathematics - WS 2023/24

4 - Sequences and Series - 16 / 16