| Chapter 3 <br> Equations and Inequalities | Equation <br> We get an equation by equating two terms. $\text { I.h.s. }=\text { r.h.s. }$ <br> - Domain: <br> Intersection of domains of all involved terms restricted to a feasible region (e.g., non-negative numbers). <br> - Solution set: <br> Set of all objects from the domain that solve the equation(s). |
| :---: | :---: |
|  |  |
| Transform into Equivalent Equation <br> Idea: <br> The equation is transformed into an equivalent but simpler equation, <br> i.e., one with the same solution set. <br> - Add or subtract a number or term on both sides of the equation. <br> - Multiply or divide by a non-zero number or term on both sides of the equation. <br> - Take the logarithm or antilogarithm on both sides. <br> A useful strategy is to isolate the unknown quantity on one side of the equation. | Sources of Errors <br> Beware! <br> These operations may change the domain of the equation. <br> This may or may not alter the solution set. <br> In particular this happens if a rational term is reduced or expanded by a factor that contains the unknown. <br> Important! <br> Verify that both sides are strictly positive before taking the logarithm. <br> Beware! <br> Any term that contains the unknown may vanish (become 0). <br> - Multiplication may result in an additional but invalid "solution". <br> - Division may eliminate a valid solution. |
|  |  |
| Non-equivalent Domains <br> Equation $\frac{(x-1)(x+1)}{x-1}=1$ <br> can be transformed into the seemingly equivalent equation $x+1=1$ <br> by reducing the rational term by factor $(x-1)$. <br> However, the latter has domain $\mathbb{R}$ <br> while the given equation has domain $\mathbb{R} \backslash\{1\}$. <br> Fortunately, the solution set $L=\{0\}$ remains unchanged by this transtormation. | Multiplication <br> By multiplication of $\frac{x^{2}+x-2}{x-1}=1$ <br> by $(x-1)$ we get $x^{2}+x-2=x-1$ <br> with solution set $L=\{-1,1\}$. <br> However, $x=1$ is not in the domain of $\frac{x^{2}+x-2}{x-1}$ and thus not a valid solution of our equation. |
|  |  |
| Division <br> If we divide both sides of equation $(x-1)(x-2)=0 \quad \text { (solution set } L=\{1,2\})$ <br> by $(x-1)$ we obtain equation $x-2=0 \quad \text { (solution set } L=\{2\})$ <br> Thus solution $x=1$ has been "lost" by this division. | Division <br> Important! <br> We need a case-by-case analysis when we divide by some term that contains an unknown: <br> Case 1: Division is allowed (the divisor is non-zero). <br> Case 2: Division is forbidden (the divisor is zero). <br> Find all solutions of $(x-1)(x-2)=0$ : <br> Case $x-1 \neq 0$ : <br> By division we get equation $x-2=0$ with solution $x_{1}=2$. <br> Case $x-1=0$ : <br> This implies solution $x_{2}=1$. <br> We shortly will discuss a better method for finding roots. |
|  |  |

## Division

## Factorization

System of two equations in two unknowns
Factorizing a term can be a suitable method for finding roots (points where a term vanishes).

$$
\left\{\begin{array}{l}
x y-x=0 \\
x^{2}+y^{2}=2
\end{array}\right.
$$

The first equation $\quad x y-x=x \cdot(y-1)=0 \quad$ implies

$$
x=0 \quad \text { or } \quad y-1=0 \quad \text { (or both). }
$$

Substituting into the second equation then gives $x= \pm 1$.
Seemingly solution set: $L=\{(-1,1),(1,1)\}$.
Case $x=0: \quad y= \pm \sqrt{2}$
However: Division is only allowed if $x \neq 0$.
Case $y-1=0: \quad y=1$ and $x= \pm 1$.
Solution set $L=\{(-1,1),(1,1),(0, \sqrt{2}),(0,-\sqrt{2})\}$.
$x=0$ also satisfies the first equation (for every $y$ ).
Correct solution set: $L=\{(-1,1),(1,1),(0, \sqrt{2}),(0,-\sqrt{2})\}$.
Josef Leydold - Bridging Course Mathematics - WS 2023/24 3 - Equations and Inequalities - $9 / 49$

## Verification

## Linear Equation

Linear equations only contain linear terms and can (almost) always be solved.

Express annuity $R$ from the formula for the present value

$$
B_{n}=R \cdot \frac{q^{n}-1}{q^{n}(q-1)} .
$$

As $R$ is to the power 1 only we have a linear equation which can be solved by dividing by (non-zero) constant $\frac{q^{n}-1}{q^{n}(q-1)}$ :

$$
R=B_{n} \cdot \frac{q^{n}(q-1)}{q^{n}-1}
$$

If a (homework or exam) problem asks for verification of a given solution, then simply substitute into the equation.
There is no need to solve the equation from scratch.
Josef Leydold - Bridging Course Mathematics - WS 2023/24 3 - Equations and Inequalities - 11/49

## Equation with Absolute Value

An equation with absolute value can be seen as an abbreviation for a system of two (or more) equations:

$$
|x|=1 \Leftrightarrow x=1 \text { or }-x=1
$$

Find all solutions of $\quad|2 x-3|=|x+1|$.
Union of the respective solutions of the two equations

$$
\begin{aligned}
(2 x-3) & =(x+1) & & \Rightarrow x=4 \\
-(2 x-3) & =(x+1) & & \Rightarrow x=\frac{2}{3}
\end{aligned}
$$

(Equations $-(2 x-3)=-(x+1)$ and $(2 x-3)=-(x+1)$
are equivalent to the above ones.)
We thus find solution set: $L=\left\{\frac{2}{3}, 4\right\}$.
Josef Leydold - Bridging Course Mathematics - WS 2023/24 $\quad 3$ - Equations and Inequalities - $13 / 49$

## Equation with Exponents

Equations where the unknown is an exponent can (sometimes) be solved by taking the logarithm:

- Isolate the term with the unknown on one side of the equation.
- Take the logarithm on both sides.

Solve equation $2^{x}=32$.
By taking the logarithm we obtain

$$
\begin{array}{ll} 
& 2^{x}=32 \\
\Leftrightarrow & \ln \left(2^{x}\right)=\ln (32) \\
\Leftrightarrow & x \ln (2)=\ln (32) \\
\Leftrightarrow & x=\frac{\ln (32)}{\ln (2)}=5
\end{array}
$$

Solution set: $L=\{5\}$.

## Problem 3.1

Solve the following equations:
(a) $|x(x-2)|=1$
(b) $|x+1|=\frac{1}{|x-1|}$
(c) $\left|\frac{x^{2}-1}{x+1}\right|=2$
Josef Leydold - Bridging Course Mathematics - WS 2023/24 $\quad 3$ - Equations and Inequalities - 14/49

## Equation with Exponents

Compute the term $n$ of a loan over $K$ monetary units and accumulation factor $q$ from formula

$$
X=K \cdot q^{n} \frac{q-1}{q^{n}-1}
$$

for installment $X$.

$$
\begin{array}{rlrl}
X & =K \cdot q^{n} \frac{q-1}{q^{n}-1} & & \mid \cdot\left(q^{n}-1\right) \\
X\left(q^{n}-1\right) & =K q^{n}(q-1) & & \mid-K q^{n}(q-1) \\
q^{n}(X-K(q-1))-X & =0 & & \mid+X \\
q^{n}(X-K(q-1)) & =X & & \mid:(X-K(q-1)) \\
q^{n} & =\frac{X}{X-K(q-1)} & & \ln \\
n \ln (q) & =\ln (X)-\ln (X-K(q-1)) & \mid: \ln (q) \\
n & =\frac{\ln (X)-\ln (X-K(q-1))}{\ln (q)} & &
\end{array}
$$

## Equation with logarithms

Equations which contain (just) the logarithm of the unknown can (sometimes) be solved by taking the antilogarithm.

We get solution of $\ln (x+1)=0$ by:

$$
\begin{array}{ll} 
& \ln (x+1)=0 \\
\Leftrightarrow & e^{\ln (x+1)}=e^{0} \\
\Leftrightarrow & x+1=1 \\
\Leftrightarrow & x=0
\end{array}
$$

Solution set: $L=\{0\}$.

## Problem 3.2

Solve the following equations:
(a) $2^{x}=3^{x-1}$
(b) $3^{2-x}=4^{\frac{x}{2}}$
(c) $2^{x} 5^{2 x}=10^{x+2}$
(d) $2 \cdot 10^{x-2}=0.1^{3 x}$
(e) $\frac{1}{2^{x+1}}=0.2^{x} 10^{4}$
(f) $\left(3^{x}\right)^{2}=4 \cdot 5^{3 x}$

## Josef Leydold - Bridging Course Mathematics - WS 2023/24

## Problem 3.3

Function

$$
\cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

is called the hyperbolic cosine.
Find all solutions of

$$
\cosh (x)=a
$$

Hint: Use auxiliary variable $y=e^{x}$. Then the equation simplifies to $\left(y+\frac{1}{y}\right) / 2=a$.

## Problem 3.4

Solve the following equation:

$$
\ln \left(x^{2}\left(x-\frac{7}{4}\right)+\left(\frac{x}{4}+1\right)^{2}\right)=0
$$

## Equation with Roots

We can solve an equation with roots by squaring or taking a power of both sides.

We get the solution of $\sqrt[3]{x-1}=2$ by taking the third power:

$$
\sqrt[3]{x-1}=2 \quad \Leftrightarrow \quad x-1=2^{3} \quad \Leftrightarrow \quad x=9
$$

## Josef Leydold - Bridging Course Mathematics - WS 2023/24

## Square Root

Solve equation $\sqrt{x-1}=1-\sqrt{x-4}$.
Domain is $D=\{x \mid x \geq 4\}$.
Squaring yields

$$
\begin{array}{rlrl}
\sqrt{x-1} & =1-\sqrt{x-4} & & \left.\right|^{2} \\
x-1 & =1-2 \cdot \sqrt{x-4}+(x-4) & |-x+3 \quad|: 2 \\
1 & =-\sqrt{x-4} & & \left.\right|^{2} \\
1 & =x-4 & & \\
x & =5 &
\end{array}
$$

However, substitution gives $\sqrt{5-1}=1-\sqrt{5-4} \quad \Leftrightarrow \quad 2=0$, which is false. Thus we get solution set $L=\varnothing$.

## Square Root

Solve equation $\sqrt{x-1}=1+\sqrt{x-4}$.
Domain is $D=\{x \mid x \geq 4\}$.
Squaring yields

$$
\begin{array}{rlrl}
\sqrt{x-1} & =1+\sqrt{x-4} & & \left.\right|^{2} \\
x-1 & =1+2 \cdot \sqrt{x-4}+(x-4) & & |-x+3 \quad|: 2 \\
1 & =\sqrt{x-4} & & \left.\right|^{2} \\
1 & =x-4 & & \\
x & =5 &
\end{array}
$$

Now, verification yields $\sqrt{5-1}=1+\sqrt{5-4} \quad \Leftrightarrow \quad 2=2$, which is a true statement. Thus we get non-empty solution $L=\{5\}$.

|  |  |  |
| :--- | :--- | :--- |
| Josef Leydold - Bridging Course Mathematics - WS 2023/24 | 3 - Equations and Inequalities $-25 / 49$ |  |

## Quadratic Equation

A quadratic equation is one of the form

$$
a x^{2}+b x+c=0 \quad \text { Solution: } \quad x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

or in standard form

$$
x^{2}+p x+q=0 \quad \text { Solution: } \quad x_{1,2}=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2}-q}
$$

## Problem 3.5

Solve the following equations:
(a) $\sqrt{x+3}=x+1$
(b) $\sqrt{x-2}=\sqrt{x+1}-1$

## Josef Leydold - Bridging Course Mathematics - ws 2023/24

## Roots of Polynomials

Quadratic equations are a special case of algebraic equations (polynomial equations)

$$
P_{n}(x)=0
$$

where $P_{n}(x)$ is a polynomial of degree $n$.
There exist closed form solutions for algebraic equations of degree 3 (cubic equations) and 4 , resp. However, these are rather tedious.

For polynomials of degree 5 or higher no general formula does exist.
Josef Leydold - Bridging Course Mathematics - WS 2023/24 3 - Equations and Inequalities - $27 / 49$

## Roots of Polynomials

A polynomial equation can be solved by reducing its degree recursively.

1. Search for a root $x_{1}$ of $P_{n}(x)$
(e.g. by trial and error, by means of Vieta's formulas,
or by means of Newton's method)
2. We obtain linear factor $\left(x-x_{1}\right)$ of $P_{n}(X)$.
3. By division $P_{n}(x):\left(x-x_{1}\right)$
we get a polynomial $P_{n-1}(x)$ of degree $n-1$.
4. If $n-1=2$, solve the resulting quadratic equation.

Otherwise goto Step 1.

## Roots of Polynomials

Find all solutions of

$$
x^{3}-6 x^{2}+11 x-6=0
$$

By educated guess we find solution $x_{1}=1$.
Division by the linear factor $(x-1)$ yields

$$
\left(x^{3}-6 x^{2}+11 x-6\right):(x-1)=x^{2}-5 x+6
$$

Quadratic equation $x^{2}-5 x+6=0$ has solutions $x_{2}=2$ and $x_{3}=3$.
The solution set is thus $L=\{1,2,3\}$.
Josef Leydold - Bridging Course Mathematics - WS 2023/24 $\quad 3$ - Equations and Inequalities - $30 / 49$

## Roots of Products

A product of two (or more) terms $f(x) \cdot g(x)$ is zero if and only if at least one factor is zero:

$$
f(x)=0 \quad \text { or } \quad g(x)=0 \quad \text { (or both). }
$$

Equation $x^{2} \cdot(x-1) \cdot e^{x}=0$ is satisfied if

- $x^{2}=0 \quad(\Rightarrow x=0)$, or
- $x-1=0 \quad(\Rightarrow x=1)$, or
- $e^{x}=0 \quad$ (no solution).

Thus we have solution set $L=\{0,1\}$.

## Roots of Products

## Important!

If a polynomial is already factorized one should resist to expand this expression.

The roots of polynomial

$$
(x-1) \cdot(x+2) \cdot(x-3)=0
$$

are obviously $1,-2$ and 3 .
Roots of the expanded expression

$$
x^{3}-2 x^{2}-5 x+6=0
$$

are hard to find.

## Problem 3.6

## Problem 3.7

Compute all roots and decompose into linear factors:
(a) $f(x)=x^{2}+4 x+3$
(b) $f(x)=3 x^{2}-9 x+2$
(c) $f(x)=x^{3}-x$
(d) $f(x)=x^{3}-2 x^{2}+x$
(e) $f(x)=\left(x^{2}-1\right)(x-1)^{2}$

Solve with respect to $x$ and with respect to $y$ :
(a) $x y+x-y=0$
(b) $3 x y+2 x-4 y=1$
(c) $x^{2}-y^{2}+x+y=0$
(d) $x^{2} y+x y^{2}-x-y=0$
(e) $x^{2}+y^{2}+2 x y=4$
(f) $9 x^{2}+y^{2}+6 x y=25$
(g) $4 x^{2}+9 y^{2}=36$
(h) $4 x^{2}-9 y^{2}=36$
(i) $\sqrt{x}+\sqrt{y}=1$
Josef Leydold - Bridging Course Mathematics - WS 2023/24 3 - Equations and Inequalities - 33 /49

## Problem 3.8

Solve with respect to $x$ and with respect to $y$ :
(a) $x y^{2}+y x^{2}=6$
(b) $x y^{2}+\left(x^{2}-1\right) y-x=0$
(c) $\frac{x}{x+y}=\frac{y}{x-y}$
(d) $\frac{y}{y+x}=\frac{y-x}{y+x^{2}}$
(e) $\frac{1}{y-1}=\frac{y+x}{2 y+1}$
(f) $\frac{y x}{y+x}=\frac{1}{y}$
(g) $(y+2 x)^{2}=\frac{1}{1+x}+4 x^{2}$
(h) $y^{2}-3 x y+\left(2 x^{2}+x-1\right)=0$
(i) $\frac{y}{x+2 y}=\frac{2 x}{x+y}$

Problem 3.9

Find constants $a, b$ and $c$ such that the following equations hold for all $x$ in the corresponding domains:
(a) $\frac{x}{1+x}-\frac{2}{2-x}=-\frac{2 a+b x+c x^{2}}{2+x-x^{2}}$
(b) $\frac{x^{2}+2 x}{x+2}-\frac{x^{2}+3}{x+3}=\frac{a(x-b)}{x+c}$

## Transform into Equivalent Inequality

Idea:
The inequality is transformed into an equivalent but simpler inequality. Ideally we try to isolate the unknown on one side of the inequality.

## Beware!

If we multiply an inequality by some negative number, then the direction of the inequality symbol is reverted.
Thus we need a case analysis:

- Case: term is greater than zero: Direction of inequality symbol is not revert.
- Case: term is less than zero:

Direction of inequality symbol is revert.

- Case: term is equal to zero: Multiplication or division is forbidden!

Josef Leydold - Bridging Course Mathematics - WS 2023/24

## Sources of Errors

Inequalities with polynomials cannot be directly solved by transformations.

## Important!

One must not simply replace the equality sign " $=$ " in the formula for quadratic equations by an inequality symbols.

We want to find all solutions of

$$
x^{2}-3 x+2 \leq 0
$$

Invalid approach: $\quad x_{1,2} \leq \frac{3}{2} \pm \sqrt{\frac{9}{4}-2}=\frac{3}{2} \pm \frac{1}{2}$
and thus $x \leq 1$ (and $x \leq 2$ ) which would imply "solution" set $L=(-\infty, 1]$.
However, $0 \in L$ but violates the inequality as $2 \not \leq 0$.

Solution set is the interval $L=[-1,2)$.

## Inequalities with Polynomials

1. Move all terms on the I.h.s. and obtain an expression of the form $T(x) \leq 0 \quad$ (and $T(x)<0$, resp.).
2. Compute all roots $x_{1}<\ldots<x_{k}$ of $T(x)$, i.e., solve equation $T(x)=0$ as we would with any polynomial as described above.
3. These roots decompose the domain into intervals $I_{j}$. These are open if the inequality is strict (with $<$ or $>$ ), and closed otherwise.

In each of these intervals the inequality now holds either in all or in none of its points.
4. Select some point $z_{j} \in I_{j}$ which is not on the boundary If $z_{j}$ satisfies the corresponding strict inequality,
then $I_{j}$ belongs to the solution set, else none of its points.
Josef Leydold - Bridging Course Mathematics - ws 2023/24
Continuous Terms
The above principle also works for inequalities where all terms are
continuous.

If there is any point where $T(x)$ is not continuous, then we also have to use this point for decomposing the domain into intervals.

Furthermore, we have to take care when the domain of the inequality is a union of two or more disjoint intervals.


Solution set is $L=[-1,1] \cup(2, \infty)$.

## Inequalities with Polynomials

Find all solutions of

$$
x^{2}-3 x+2 \leq 0 .
$$

The solutions of $x^{2}-3 x+2=0$ are $x_{1}=1$ and $x_{2}=2$.
We obtain three intervals and check by means of three points $\left(0, \frac{3}{2}\right.$, and 3) whether the inequality is satisfied in each of these

$$
\begin{array}{lrl}
(-\infty, 1] & \text { not satisfied: } & 0^{2}-3 \cdot 0+2=2 \not \leq 0 \\
{[1,2]} & \text { satisfied: } & \left(\frac{3}{2}\right)^{2}-3 \cdot \frac{3}{2}+2=-\frac{1}{4}<0 \\
{[2, \infty)} & \text { not satisfied: } & 3^{2}-3 \cdot 3+2=2 \not \leq 0
\end{array}
$$

Solution set is $L=[1,2]$

## Jsef Leydold - Brideing Course Matrentics - ws 20232

## Continuous Terms

Find all solutions of inequality

$$
\frac{x^{2}+x-3}{x-2} \geq 1
$$

Its domain is the union of two intervals: $(-\infty, 2) \cup(2, \infty)$.
We find for the solutions of the equation $\frac{x^{2}+x-3}{x-2}=1$ :

$$
\frac{x^{2}+x-3}{x-2}=1 \Leftrightarrow x^{2}+x-3=x-2 \Leftrightarrow x^{2}-1=0
$$

and thus $x_{1}=-1, x_{2}=1$.
So we get four intervals:

$$
(-\infty,-1],[-1,1],[1,2) \text { and }(2, \infty) .
$$

## Inequalities with Absolute Values

Inequalities with absolute values can be solved by the above procedure
However, we also can see such an inequality as a system of two (or more) inequalities

$$
\begin{array}{lll}
|x|<1 & \Leftrightarrow & x<1 \text { and } x>-1 \\
|x|>1 & \Leftrightarrow & x>1 \text { or } x<-1
\end{array}
$$

Josef Leydold - Bridging Course Mathematics - WS 2023/24 $\quad 3$ - Equations and Inequalities $-46 / 49$

## Problem 3.11

Solve the following inequalities:
(a) $7 \leq|12 x+1|$
(b) $\frac{x+4}{x+2}<2$
(c) $\frac{3(4-x)}{x-5} \leq 2$
(d) $25<(-2 x+3)^{2} \leq 50$
(e) $42 \leq|12 x+6|<72$
(f) $5 \leq \frac{(x+4)^{2}}{|x+4|} \leq 10$

## Summary

- equations and inequalities
- domain and solution set
- transformation into equivalent problem
- possible errors with multiplication and division
- equations with powers and roots
- equations with polynomials and absolute values
- roots of polynomials
- equations with exponents and logarithms
- method for solving inequalities

