Chapter 2 Terms	Term A mathematical expression like $B=R \cdot \frac{q^{n}-1}{q^{n}(q-1)} \quad \text { or } \quad(x+1)(x-1)=x^{2}-1$ contains symbols which denote mathematical objects. These symbols and compositions of symbols are called terms. Terms can be - numbers, - constants (symbols, which represent fixed values), - variables (which are placeholders for arbitrary values), and - compositions of terms.
Joseft Leydold - Bridging Course Mathematics - Ws 202324 $\quad 2-$ Terms - 1/63	Josef Leydold - Bridging Course Matematics - WS 202324 ${ }^{\text {a }}$ - Terms - 2163
Domain We have to take care that a term may not be defined for some values of its variables. $\frac{1}{x-1}$ is only defined for $x \in \mathbb{R} \backslash\{1\}$. $\sqrt{x+1}$ is only defined for $x \geq-1$. The set of values for which a term is defined is called the domain of the term.	Sigma Notation Sums with many terms that can be generated by some rule can be represented in a compact form called summation or sigma notation. $\sum_{n=1}^{6} a_{n}=a_{1}+a_{2}+\cdots+a_{6}$ ```\(a_{n} \quad \ldots\) formula for the terms \\ \(n\)... index of summation \\ 1 ... first value of index \(n\) \\ \(6 \ldots\) last value of \(n\)``` The expression is read as the "sum of a_{n} as n goes from 1 to 6 ." First and last value can (and often are) given by symbols.
Josef Lleydold - Bridging Course Mathematics - Ws 202324 2-Terms - 3/63	Josef Leydold - Bridging Course Matematics - ws 202324
Sigma Notation The sum of the first 10 integers greater than 2 can be written in both notations as $\sum_{i=1}^{10}(2+i)=(2+1)+(2+2)+(2+3)+\cdots+(2+10)$ The sigma notation can be seen as a convenient shortcut of the long expression on the r.h.s. It also avoids ambiguity caused by the ellipsis ". . ." that might look like an IQ test rather than an exact mathematical expression.	Sigma Notation - Rules Keep in mind that all the usual rules for multiplication and addition (associativity, commutativity, distributivity) apply: - $\sum_{i=1}^{n} a_{i}=\sum_{k=1}^{n} a_{k}$ - $\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)$ - $\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}$
Joseft Leydold - Bridging Course Mathemaics - Ws 202324 $\quad 2-$ Terms - 5/63	Josef Leydold - Bridging Cours Matematics - ws 202324
Sigma Notation - Rules Simplify $\sum_{i=2}^{n}\left(a_{i}+b_{i}\right)^{2}-\sum_{j=2}^{n} a_{j}^{2}-\sum_{k=2}^{n} b_{k}^{2}$ Solution: $\begin{aligned} & =\sum_{i=2}^{n}\left(a_{i}+b_{i}\right)^{2}-\sum_{i=2}^{n} a_{i}^{2}-\sum_{i=2}^{n} b_{i}^{2} \\ & =\sum_{i=2}^{n}\left(\left(a_{i}+b_{i}\right)^{2}-a_{i}^{2}-b_{i}^{2}\right) \\ & =\sum_{i=2}^{n} 2 a_{i} b_{i} \\ & =2 \sum_{i=2}^{n} a_{i} b_{i} \end{aligned}$	Problem 2.1 Which of the following expressions is equal to the summation $\sum_{i=2}^{10} 5(i+3) ?$ (a) $5(2+3+4+\ldots+9+10+3)$ (b) $5(2+3+3+3+4+3+5+3+6+3+\ldots+10+3)$ (c) $5(2+3+4+\ldots+9+10)+5 \cdot 3$ (d) $5(2+3+4+\ldots+9+10)+9 \cdot 5 \cdot 3$

Problem 2.2

Compute and simplify:
(a) $\sum_{i=0}^{5} a^{i} b^{5-i}$
(b) $\quad \sum_{i=1}^{5}\left(a_{i}-a_{i+1}\right)$
(c) $\sum_{i=1}^{n}\left(a_{i}-a_{i+1}\right)$

Remark: The sum in (c) is a so called telescoping sum.

Problem 2.3

Simplify the following summations:
(a) $\sum_{i=1}^{n} a_{i}^{2}+\sum_{j=1}^{n} b_{j}^{2}-\sum_{k=1}^{n}\left(a_{k}-b_{k}\right)^{2}$
(b) $\sum_{i=1}^{n}\left(a_{i} b_{n-i+1}-a_{n-i+1} b_{i}\right)$
(c) $\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{2}+\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)^{2}$
(d) $\sum_{j=0}^{n-1} x_{j}-\sum_{i=1}^{n} x_{i}$

Josef Leydold - Bridging Course Mathematics - Ws 2023/24

Problem 2.4 /2

Verify

$$
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2}
$$

for
(a) $n=2$,
(b) $n=3$,
(c) $n \geq 2$ arbitrary.

Hint: Show that

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}-\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)=0
$$

which requires to read data $\left(x_{i}\right)$ only once.

Problem 2.4

Arithmetic mean ("average")

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

and variance

$$
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

are important location and dispersion parameters in statistics.
Variance σ^{2} can be computed by means of formula

$$
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}
$$

Josef Leydold - Bridging Course Mathemaics - WS 202324

Problem 2.5

Let μ be the "true" value of a metric variate and $\left\{x_{i}\right\}$ the results of some measurement with stochastic errors. Then

$$
M S E=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

is called the mean square error of sample $\left\{x_{i}\right\}$.
Verify:

$$
M S E=\sigma^{2}+(\bar{x}-\mu)^{2}
$$

i.e., the MSE is the sum of

- the variance of the measurement (dispersion), and
- the squared deviation of the sample mean from μ (bias).

Absolute value

The absolute value (or modulus) $|x|$ of a number x is its distance from origin 0 on the number line:

$$
|x|= \begin{cases}x, & \text { for } x \geq 0 \\ -x, & \text { for } x<0\end{cases}
$$

$|5|=5$ and $|-3|=-(-3)=3$.

We have

$$
|x| \cdot|y|=|x \cdot y|
$$

Josef Leydold - Bridging Course Mathematics - ws 2023/24 2 - Terms - 13/63

Problem 2.6

Find simple equivalent formulas for the following expressions without using absolute values:
(a) $\left|x^{2}+1\right|$
(b) $|x| \cdot x^{3}$

Find simpler expressions by means of absolute values:
(c) $\begin{cases}x^{2}, & \text { for } x \geq 0, \\ -x^{2}, & \text { for } x<0\end{cases}$
(d) $\left\{\begin{array}{ll}x^{\alpha}, & \text { for } x>0, \\ -(-x)^{\alpha} & \text { for } x<0,\end{array} \quad\right.$ for some fixed $\alpha \in \mathbb{R}$.

Power

The n-th power of x is defined by

$$
x^{n}=\underbrace{x \cdot x \cdot \ldots \cdot x}_{n \text { factors }}
$$

- x is the basis, and
- n is the exponent of x^{n}.

Expression x^{n} is read as " x raised to the n-th power", " x raised to the power of n ", or "the n-th power of x ".
Example: $3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=243$
For negative exponents we define:

$$
x^{-n}=\frac{1}{x^{n}}
$$

Polynomial

A polynomial is a sum of (one or more) monomials.
The degree of a polynomial is the maximum degree among its monomials.
$4 x^{2} y^{3}-2 x^{3} y+4 x+7 y \quad$ is a polynomial of degree 5 .

Polynomials in one variable (in sigma notation):

$$
P(x)=\sum_{i=0}^{n} a_{i} x^{i}=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where x is the variable and $a_{i} \in \mathbb{R}$ are constants.

Problem 2.8

Which of the following expressions are monomials or polynomials?
What is their degree?
Assume that x, y, and z are variables and all other symbols represent constants.
(a) x^{2}
(b) $x^{2 / 3}$
(c) $2 x^{2}+3 x y+4 y^{2}$
(d) $\left(2 x^{2}+3 x y+4 y^{2}\right)\left(x^{2}-z^{2}\right)$
(e) $(x-a)(y-b)(z+1)$
(f) $x \sqrt{y}-\sqrt{x} y$
(g) $a b+c$
(h) $x \sqrt{a}-\sqrt{b} y$

Binomial Theorem

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

is called the binomial coefficient (read: " n choose k ") and

$$
n!=1 \cdot 2 \cdot \ldots \cdot n
$$

denotes the factorial of n (read: " n-factorial").
For convenience we set $0!=1$

Binomial Coefficient

Note:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\binom{n}{n-k}
$$

Computation:

$$
\binom{n}{k}=\frac{n \cdot(n-1) \cdot \ldots \cdot(n-k+1)}{k \cdot(k-1) \cdot \ldots \cdot 1}
$$

$\binom{n}{k}$ is the number of ways to choose an (unordered) subset of k elements from a fixed set of n elements.

Josef Leydold - Bridging Course Mathematics - ws 202324 $2-$ Terms - 27/63	Josef Leydold - Bridging Course Mathematics - ws 2023224 2 - Terms - 28/63
Binomial Theorem $\begin{aligned} & (x+y)^{2}=\binom{2}{0} x^{2}+\binom{2}{1} x y+\binom{2}{2} y^{2}=x^{2}+2 x y+y^{2} \\ & (x+y)^{3}=\binom{3}{0} x^{3}+\binom{3}{1} x^{2} y+\binom{3}{2} x y^{2}+\binom{3}{3} y^{3} \\ & =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \end{aligned}$	Problem 2.9 Compute (a) $(x+y)^{4}$ (b) $(x+y)^{5}$ by means of the binomial theorem.
Josef Leydold - Bridging Course Mathematics - ws 2023/24 $2-$ Terms - 29/63	Josef Leydold - Bridging Course Mathematics - ws 202324 $\quad 2-$ Terms - 30/63
Problem 2.10 Show by means of the binomial theorem that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$ Hint: Use $1+1=2$.	Multiplication The product of two polynomials of degree n and m, resp., is a polynomial of degree $n+m$. $\begin{aligned} \left(2 x^{2}+3 x-5\right) \cdot & \left(x^{3}-2 x+1\right)= \\ = & 2 x^{2} \cdot x^{3}+2 x^{2} \cdot(-2 x)+2 x^{2} \cdot 1 \\ & +3 x \cdot x^{3}+3 x \cdot(-2 x)+3 x \cdot 1 \\ & +(-5) \cdot x^{3}+(-5) \cdot(-2 x)+(-5) \cdot 1 \\ = & 2 x^{5}+3 x^{4}-9 x^{3}-4 x^{2}+13 x-5 \end{aligned}$
Josef Leydold - Bridging Course Mathematics - ws 202324 $2-$ Terms - $31 / 63$	Josef Leydold - Bridging Course Mathematics - ws 202324 $2-$ Terms - $32 / 63$

Problem 2.11

Simplify the following expressions:
(a) $(x+h)^{2}-(x-h)^{2}$
(b) $(a+b) c-(a+b c)$
(c) $(A-B)\left(A^{2}+A B+B^{2}\right)$
(d) $(x+y)^{4}-(x-y)^{4}$

Division

Polynomials can be divided similarly to the division of integers.

$$
\begin{aligned}
& \left(x^{3}+x^{2}+0 x-2\right):(x-1)=x^{2}+2 x+2 \\
& x^{2} \cdot(x-1) \longrightarrow \frac{x^{3}-x^{2}}{2 x^{2}}+0 x \\
& 2 x \cdot(x-1) \longrightarrow \quad \frac{2 x^{2}-2 x}{2 x-2} \\
& 2 \cdot(x-1) \longrightarrow \quad \frac{2 x-2}{0} \\
& \text { We thus yield } \quad x^{3}+x^{2}-2=(x-1) \cdot\left(x^{2}+2 x+2\right) \text {. } \\
& \text { If the divisor is not a factor of the dividend, then we obtain a remainder. }
\end{aligned}
$$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Factorization

The factorization

$$
\left(x^{2}-y^{2}\right)=(x+y) \cdot(x-y)
$$

or equivalently

$$
(x-y)=(\sqrt{x}+\sqrt{y}) \cdot(\sqrt{x}-\sqrt{y})
$$

can be very useful.

Memorize it!

These products can be easily verified by multiplying their factors.
Josef Leydold - Bridging Course Mathematics - WS 2023/24 $\quad 2$ - Terms - 35/63

The "Ausmultiplizierreflex"

Important!

Factorizing a polynomial is often very hard
while multiplying its factors is fast and easy.
(The RSA public key encryption is based on this idea.)

Beware!

A factorized expression contains more information than their expanded counterpart.

In my experience many students have an acquired "Ausmultiplizierreflex":
Instantaneously (and without thinking) they multiply all factors (which often turns a simple problem into a difficult one).

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Linear Term

A polynomial of degree 1 is called a linear term.

- $a+b x+y+a c$ is a linear term in x and y, if a, b and c are constants.
- $x y+x+y$ is not linear, as $x y$ has degree 2 .

Linear Factor

A factor (polynomial) of degree 1 is called a linear factor.
A polynomial in one variable x with root x_{1} has linear factor $\left(x-x_{1}\right)$.
If a polynomial in x of degree n,

$$
P(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

has n real roots $x_{1}, x_{2}, \ldots, x_{n}$, then it can be written as the product of the n linear factors $\left(x-x_{i}\right)$:

$$
P(x)=a_{n} \prod_{i=1}^{n}\left(x-x_{i}\right)
$$

(This is a special case of the Fundamental Theorem of Algebra.)

Problem 2.12 (a) Give a polynomial in x of degree 4 with roots $-1,2,3$, and 4 . (b) What is the set of all such polynomials? (c) Can such a polynomial have other roots?	Rational Term A rational term is one of the form $\frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomials called numerator and denominator, resp. Alternatively one can write $P(x) / Q(x)$. The domain of a rational term is \mathbb{R} without the roots of the denominator. $\frac{x^{2}+x-4}{x^{3}+5}$ is a rational term with domain $\mathbb{R} \backslash\{-\sqrt[3]{5}\}$. Beware! The expression $\frac{0}{0}$ is not defined.
Calculation Rule for Fractions and Rational Terms Let $b, c, e \neq 0$. $\begin{aligned} \frac{c \cdot a}{c \cdot b} & =\frac{a}{b} & & \text { Reduce } \\ \frac{a}{b} & =\frac{c \cdot a}{c \cdot b} & & \text { Expand } \\ \frac{a}{b} \cdot \frac{d}{c} & =\frac{a \cdot d}{b \cdot c} & & \text { Multiplying } \\ \frac{a}{b}: \frac{e}{c} & =\frac{a}{b} \cdot \frac{c}{e} & & \text { Dividing } \\ \frac{\frac{a}{b}}{\frac{e}{c}} & =\frac{a \cdot c}{b \cdot e} & & \text { Compound fraction } \end{aligned}$	Calculation Rule for Fractions and Rational Terms Let $b, c \neq 0$. $\begin{array}{ll} \frac{a}{b}+\frac{d}{b}=\frac{a+d}{b} & \text { Addition with common denominator } \\ \frac{a}{b}+\frac{d}{c}=\frac{a \cdot c+d \cdot b}{b \cdot c} & \text { Addition } \end{array}$ Very important! Really! You have to expand fractions such that they have a common denominator before you add them!
Calculation Rule for Fractions and Rational Terms $\begin{aligned} & -\frac{x^{2}-1}{x+1}=\frac{(x+1)(x-1)}{x+1}=x-1 \\ & -\frac{4 x^{3}+2 x^{2}}{2 x y}=\frac{2 x^{2}(2 x+1)}{2 x y}=\frac{x(2 x+1)}{y} \\ & -\frac{x+1}{x-1}+\frac{x-1}{x+1}=\frac{(x+1)^{2}+(x-1)^{2}}{(x-1)(x+1)} \\ & \quad=\frac{x^{2}+2 x+1+x^{2}-2 x+1}{(x-1)(x+1)}=2 \frac{x^{2}+1}{x^{2}-1} \end{aligned}$	Calculation Rule for Fractions and Rational Terms I want to stress at this point that there happen a lot of mistakes in calculations that involve rational terms. The following examples of such fallacies are collected from students' exams.
Sources of Errors Very Important! Really! $\begin{array}{lll} \frac{a+c}{b+c} & \text { is not equal to } & \frac{a}{b} \\ \frac{x}{a}+\frac{y}{b} & \text { is not equal to } & \frac{x+y}{a+b} \\ \frac{a}{b+c} & \text { is not equal to } & \frac{a}{b}+\frac{a}{c} \\ \frac{x+2}{y+2} \neq \frac{x}{y} & \frac{1}{2}+\frac{1}{3} \neq \frac{1}{5} . \\ \frac{1}{x^{2}+y^{2}} \neq \frac{1}{x^{2}}+\frac{1}{y^{2}} & \end{array}$	Problem 2.13 Simplify the following expressions: (a) $\frac{1}{1+x}+\frac{1}{x-1}$ (b) $\frac{s}{s t^{2}-t^{3}}-\frac{1}{s^{2}-s t}-\frac{1}{t^{2}}$ (c) $\frac{\frac{1}{x}+\frac{1}{y}}{x y+x z+y(z-x)}$ (d) $\frac{\frac{x+y}{y}}{\frac{x-y}{x}}+\frac{\frac{x+y}{x}}{\frac{x-y}{y}}$
Joset Leyodold - Bridging Couse Matemaics - Ws 203224 $\quad 2-$ Tems - 47/63	

Problem 2.14

Factorize and reduce the fractions:
(a) $\frac{1-x^{2}}{1-x}$
(b) $\frac{1+x^{2}}{1-x}$
(c) $\frac{x^{3}-x^{4}}{1-x}$
(d) $\frac{x^{3}-x^{5}}{1-x}$
(e) $\frac{x^{2}-x^{6}}{1-x}$
(f) $\frac{1-x^{3}}{1-x}$
Josef Leydold - Bridging Course Mathematics - Ws 2023/24

Problem 2.16

Simplify the following expressions:
(a) $\frac{x^{\frac{1}{4}}-y^{\frac{1}{3}}}{x^{\frac{1}{8}}+y^{\frac{1}{6}}}$
(b) $\frac{\sqrt{x}-4}{x^{\frac{1}{4}}-2}$
(c) $\frac{\frac{2}{x^{-\frac{1}{7}}}}{x^{-\frac{7}{2}}}$

Problem 2.15

Simplify the following expressions:
(a) $y(x y+x+1)-\frac{x^{2} y^{2}-1}{x-\frac{1}{y}}$
(b) $\frac{\frac{x^{2}+y}{2 x+1}}{\frac{2 x y}{2 x+y}}$
(c) $\frac{\frac{a}{x}-\frac{b}{x+1}}{\frac{a}{x+1}+\frac{b}{x}}$
(d) $\frac{2 x^{2} y-4 x y^{2}}{x^{2}-4 y^{2}}+\frac{x^{2}}{x+2 y}$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Problem 2.17

Simplify the following expressions:
(a) $\frac{(\sqrt{x}+y)^{\frac{1}{3}}}{x^{\frac{1}{6}}}$
(b) $\frac{1}{3 \sqrt{x}-1} \cdot \frac{1}{1+\frac{1}{3 \sqrt{x}}} \cdot \frac{1}{\sqrt{x}}$
(c) $\frac{(x y)^{\frac{1}{6}}-3}{(x y)^{\frac{1}{3}}-9}$
(d) $\frac{x-y}{\sqrt{x}-\sqrt{y}}$

	Josef Leydold - Bridging Course Mathematics - WS 2023/24	$2-$ Terms - 51/63

Exponential Function

- Power function
$(0, \infty) \rightarrow(0, \infty), x \mapsto x^{\alpha} \quad$ for some fixed exponent $\alpha \in \mathbb{R}$

- Exponential function

$\mathbb{R} \rightarrow(0, \infty), x \mapsto a^{x} \quad$ for some fixed basis $a \in(0, \infty)$

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Exponent and Logarithm

- $\log _{10}(100)=2, \quad$ as $10^{2}=100$
- $\log _{10}\left(\frac{1}{1000}\right)=-3, \quad$ as $10^{-3}=\frac{1}{1000}$
- $\log _{2}(8)=3, \quad$ as $2^{3}=8$
$-\log _{\sqrt{2}}(16)=8, \quad$ as $\sqrt{2}^{8}=2^{8 / 2}=2^{4}=16$

Calculations with Exponent and Logarithm

Conversion formula:

$$
a^{x}=e^{x \ln (a)} \quad \log _{a}(x)=\frac{\ln (x)}{\ln (a)}
$$

$\log _{2}(123)=\frac{\ln (123)}{\ln (2)} \approx \frac{4.812184}{0.6931472}=6.942515$
$3^{7}=e^{7 \ln (3)}$

Implicit Basis	
Important:	
In this case the basis is (should be) implicitly given by book or article.	
In mathematics: natural logarithm financial mathematics, programs like R, Mathem	
In applied sciences: common logarithm economics, pocket calculator, Excel,	
Problem 2.18	
Compute without a calculator:	
(a) $\log _{2}(2)$	(f) $\log _{2}\left(\frac{1}{4}\right)$
(b) $\log _{2}(4)$	(g) $\log _{2}(\sqrt{2})$
(c) $\log _{2}(16)$	(h) $\log _{2}\left(\frac{1}{\sqrt{2}}\right)$
(d) $\log _{2}(0)$	
(e) $\log _{2}(1)$	(i) $\log _{2}(-4)$

Calculation Rules for Exponent and Logarithm

$$
\begin{array}{ll}
a^{x+y}=a^{x} \cdot a^{y} & \log _{a}(x \cdot y)=\log _{a}(x)+\log _{a}(y) \\
a^{x-y}=\frac{a^{x}}{a^{y}} & \log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y) \\
\left(a^{x}\right)^{y}=a^{x \cdot y} & \log _{a}\left(x^{\beta}\right)=\beta \cdot \log _{a}(x) \\
(a \cdot b)^{x}=a^{x} \cdot b^{x} & \\
a^{\log _{a}(x)}=x & \log _{a}\left(a^{x}\right)=x \\
a^{0}=1 & \log _{a}(1)=0
\end{array}
$$

$\log _{a}(x)$ has (as real-valued function) domain $x>0$!

Jsef Leydold - Bridging Course Mathematics - WS 2023/2

Problem 2.19

Compute without a calculator:
(a) $\log _{10}(300)$
(b) $\log _{10}\left(3^{10}\right)$

Use $\log _{10}(3)=0.47712$.

Summary

- sigma notation
- absolute value
- powers and roots
- monomials and polynomials
- binomial theorem
- multiplication, factorization, and linear factors
- trap door "Ausmultiplizierreflex"
- fractions, rational terms and many fallacies
- exponent and logarithm

