Chapter 1

Sets and Maps

Set

The notion of set is fundamental in modern mathematics.
We use a simple definition from naïve set theory:

A set is a collection of distinct objects.

An object a of a set A is called an element of the set. We write:

$$
a \in A
$$

Sets are defined by enumerating or a description of their elements within curly brackets $\{\ldots\}$.

$$
A=\{1,2,3,4,5,6\} \quad B=\{x \mid x \text { is an integer divisible by } 2\}
$$

Important Sets

Symbol	Description
\varnothing	empty set sometimes: $\}$
\mathbb{N}	natural numbers $\quad\{1,2,3, \ldots\}$
\mathbb{Z}	integers $\quad\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
\mathbf{Q}	rational numbers $\quad\left\{\left.\frac{k}{n} \right\rvert\, k, n \in \mathbb{Z}, n \neq 0\right\}$
\mathbb{R}	real numbers
$[a, b]$	closed interval $\quad\{x \in \mathbb{R} \mid a \leq x \leq b\}$
(a, b)	open interval ${ }^{a} \quad\{x \in \mathbb{R} \mid a<x<b\}$
$[a, b)$	half-open interval $\quad\{x \in \mathbb{R} \mid a \leq x<b\}$
\mathbb{C}	complex numbers $\quad\left\{a+b i \mid a, b \in \mathbb{R}, i^{2}=-1\right\}$

[^0]
Venn Diagram

We assume that all sets are subsets of some universal superset Ω.
Sets can be represented by Venn diagrams where Ω is a rectangle and sets are depicted as circles or ovals.

Subset and Superset

Set A is a subset of $B, A \subseteq B$, if each element of A is also an element of B, i.e., $\quad x \in A \Rightarrow x \in B$.

Vice versa, B is then called a superset of $A, B \supseteq A$
Set A is a proper subset of $B, A \subset B \quad$ (or: $A \varsubsetneqq B$),
if $A \subseteq B$ and $A \neq B$.

Problem 1.1

Which of the the following sets is a subset of

$$
A=\{x \mid x \in \mathbb{R} \text { and } 10<x<200\}
$$

(a) $\{x \mid x \in \mathbb{R}$ and $10<x \leq 200\}$
(b) $\left\{x \mid x \in \mathbb{R}\right.$ and $\left.x^{2}=121\right\}$
(c) $\{x \mid x \in \mathbb{R}$ and $4 \pi<x<\sqrt{181}\}$
(d) $\{x \mid x \in \mathbb{R}$ and $20<|x|<100\}$

Basic Set Operations

Symbol	Definition	Name
$A \cap B$	$\{x \mid x \in A$ and $x \in B\}$	intersection
$A \cup B$	$\{x \mid x \in A$ or $x \in B\}$	union
$A \backslash B$	$\{x \mid x \in A$ and $x \notin B\}$	set-theoretic difference ${ }^{a}$
\bar{A}	$\Omega \backslash A$	complement
${ }^{\text {a also: } A-B}$		

Two sets A and B are disjoint if $A \cap B=\varnothing$.

Basic Set Operations

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Problem 1.2

The set $\Omega=\{1,2,3,4,5,6,7,8,9,10\}$ has subsets $A=\{1,3,6,9\}$, $B=\{2,4,6,10\}$ and $C=\{3,6,7,9,10\}$.

Draw the Venn diagram and give the following sets:
(a) $A \cup C$
(b) $A \cap B$
(c) $A \backslash C$
(d) \bar{A}
(e) $(A \cup C) \cap B$
(f) $(\bar{A} \cup B) \backslash C$
(g) $\overline{(A \cup C)} \cap B$
(h) $(\bar{A} \backslash B) \cap(\bar{A} \backslash C)$
(i) $(A \cap B) \cup(A \cap C)$

Problem 1.3

Mark the following set in the corresponding Venn diagram:

$$
(A \cap \bar{B}) \cup(A \cap B)
$$

Rules for Basic Operations

Rule	Name
$A \cup A=A \cap A=A$	Idempotence
$A \cup \varnothing=A \quad$ and $A \cap \varnothing=\varnothing$	Identity
$(A \cup B) \cup C=A \cup(B \cup C)$ and	
$(A \cap B) \cap C=A \cap(B \cap C)$	Associativity
$A \cup B=B \cup A \quad$ and $A \cap B=B \cap A$	Commutativity
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ and	Distributivity
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	
$\bar{A} \cup A=\Omega \quad$ and $\quad \bar{A} \cap A=\varnothing$	and
$\bar{A}=A$	

De Morgan's Law

$$
\overline{(A \cup B)}=\bar{A} \cap \bar{B} \quad \text { and } \quad \overline{(A \cap B)}=\bar{A} \cup \bar{B}
$$

Problem 1.4

Simplify the following set-theoretic expression:

$$
(A \cap \bar{B}) \cup(A \cap B)
$$

Problem 1.5

Simplify the following set-theoretic expressions:
(a) $\overline{(A \cup B)} \cap \bar{B}$
(b) $(A \cup \bar{B}) \cap(A \cup B)$
(c) $((\bar{A} \cup \bar{B}) \cap(A \cap \bar{B})) \cap A$
(d) $(C \cup B) \cap \overline{(\bar{C} \cap \bar{B})} \cap(C \cup \bar{B})$

Cartesian Product

The set

$$
A \times B=\{(x, y) \mid x \in A, y \in B\}
$$

is called the Cartesian product of sets A and B.
Given two sets A and B the Cartesian product $A \times B$ is the set of all unique ordered pairs where the first element is from set A and the second element is from set B.

In general we have $A \times B \neq B \times A$.

Cartesian Product

The Cartesian product of $A=\{0,1\}$ and $B=\{2,3,4\}$ is

$$
A \times B=\{(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)\}
$$

$A \times B$	2	3	4
0	$(0,2)$	$(0,3)$	$(0,4)$
1	$(1,2)$	$(1,3)$	$(1,4)$

Cartesian Product

The Cartesian product of $A=[2,4]$ and $B=[1,3]$ is

$$
A \times B=\{(x, y) \mid x \in[2,4] \text { and } y \in[1,3]\}
$$

Problem 1.6

Describe the Cartesian products of
(a) $A=[0,1]$ and $P=\{2\}$.
(b) $A=[0,1]$ and $Q=\{(x, y): 0 \leq x, y \leq 1\}$.
(c) $A=[0,1]$ and $O=\{(x, y): 0<x, y<1\}$.
(d) $A=[0,1]$ and $C=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.
(e) $A=[0,1]$ and \mathbb{R}.
(f) $Q_{1}=\{(x, y): 0 \leq x, y \leq 1\}$ and $Q_{2}=\{(x, y): 0 \leq x, y \leq 1\}$.

A map (or mapping) f is defined by
(i) a domain D_{f},
(ii) a codomain (target set) W_{f} and
(iii) a rule, that maps each element of D to exactly one element of W.

$$
f: D \rightarrow W, \quad x \mapsto y=f(x)
$$

- x is called the independent variable, y the dependent variable.
- y is the image of x, x is the preimage of y.
- $f(x)$ is the function term, x is called the argument of f.
- $f(D)=\{y \in W: y=f(x)$ for some $x \in D\}$ is the image (or range) of f.
Other names: function, transformation

Problem 1.7

We are given map

$$
\varphi:[0, \infty) \rightarrow \mathbb{R}, x \mapsto y=x^{\alpha} \quad \text { for some } \alpha>0
$$

What are

- function name,
- domain,
- codomain,
- image (range),
- function term,
- argument,
- independent and dependent variable?

Injective • Surjective • Bijective

Each argument has exactly one image.
Each $y \in W$, however, may have any number of preimages.
Thus we can characterize maps by their possible number of preimages.

- A map f is called one-to-one (or injective), if each element in the codomain has at most one preimage.
- It is called onto (or surjective), if each element in the codomain has at least one preimage.
- It is called bijective, if it is both one-to-one and onto, i.e., if each element in the codomain has exactly one preimage.

Injections have the important property

$$
f(x) \neq f(y) \quad \Leftrightarrow \quad x \neq y
$$

Injective • Surjective • Bijective

Maps can be visualized by means of arrows.

one-to-one (not onto)

onto (not one-to-one)

one-to-one and onto (bijective)

Problem 1.8

Which of these diagrams represent maps?
Which of these maps are one-to-one, onto, both or neither?

(a)

(b)

(c)

(d)

Problem 1.9

Which of the following are proper definitions of mappings?
Which of the maps are one-to-one, onto, both or neither?
(a) $f:[0, \infty) \rightarrow \mathbb{R}, x \mapsto x^{2}$
(b) $f:[0, \infty) \rightarrow \mathbb{R}, x \mapsto x^{-2}$
(c) $f:[0, \infty) \rightarrow[0, \infty), x \mapsto x^{2}$
(d) $f:[0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x}$
(e) $f:[0, \infty) \rightarrow[0, \infty), x \mapsto \sqrt{x}$
(f) $f:[0, \infty) \rightarrow[0, \infty), x \mapsto\left\{y \in[0, \infty): x=y^{2}\right\}$

Problem 1.10

Let $\mathcal{P}_{n}=\left\{\sum_{i=0}^{n} a_{i} x^{i}: a_{i} \in \mathbb{R}\right\}$ be the set of all polynomials in x of degree less than or equal to n.

Which of the following are proper definitions of mappings? Which of the maps are one-to-one, onto, both or neither?
(a) $D: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}, p(x) \mapsto \frac{d p(x)}{d x} \quad$ (derivative of p)
(b) $D: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n-1}, \quad p(x) \mapsto \frac{d p(x)}{d x}$
(c) $D: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n-2}, p(x) \mapsto \frac{d p(x)}{d x}$

Function Composition

Let $f: D_{f} \rightarrow W_{f}$ and $g: D_{g} \rightarrow W_{g}$ be functions with $W_{f} \subseteq D_{g}$.
Function

$$
g \circ f: D_{f} \rightarrow W_{g}, x \mapsto(g \circ f)(x)=g(f(x))
$$

is called composite function.
(read: " g composed with f ", " g circle f ", or " g after f ")

Inverse Map

If $f: D_{f} \rightarrow W_{f}$ is a bijection, then every $y \in W_{f}$ can be uniquely mapped to its preimage $x \in D_{f}$.

Thus we get a map

$$
f^{-1}: W_{f} \rightarrow D_{f}, y \mapsto x=f^{-1}(y)
$$

which is called the inverse map of f
We obviously have for all $x \in D_{f}$ and $y \in W_{f}$,

$$
f^{-1}(f(x))=f^{-1}(y)=x \quad \text { and } \quad f\left(f^{-1}(y)\right)=f(x)=y
$$

Inverse Map

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Identity

The most elementary function is the identity map id, which maps its argument to itself, i.e.,

$$
\text { id: } D \rightarrow W=D, x \mapsto x
$$

Identity

The identity map has a similar role for compositions of functions as 1 has for multiplications of numbers:

$$
f \circ \mathrm{id}=f \quad \text { and } \quad \text { id } \circ f=f
$$

Moreover,

$$
f^{-1} \circ f=\mathrm{id}: D_{f} \rightarrow D_{f} \quad \text { and } \quad f \circ f^{-1}=\mathrm{id}: W_{f} \rightarrow W_{f}
$$

Real-valued Functions

Maps where domain and codomain are (subsets of) real numbers are called real-valued functions,

$$
f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x)
$$

and are the most important kind of functions.
The term function is often exclusively used for real-valued maps.
We will discuss such functions in more details later.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Summary

- sets, subsets and supersets
- Venn diagram
- basic set operations
- de Morgan's law
- Cartesian product
- maps
- one-to-one and onto
- inverse map and identity

[^0]: ${ }^{\text {a also: }}$] $a, b[$

