

Basic Set Operations

Josef Leydold - Bridging Course Mathematics - WS 2023/24

Problem 1.4	
Simplify the following set-theoretic expression:	
$(A \cap \overline{B}) \cup (A \cap B)$	
Josef Leydold - Bridging Course Mathematics - WS 2023/24	1 - Sets and Maps - 13 / 32
Problem 1.5	
Simplify the following set-theoretic expressions:	
(a) $\overline{(A \cup B)} \cap \overline{B}$	
(b) $(A \cup \overline{B}) \cap (A \cup B)$	
(c) $((\overline{A} \cup \overline{B}) \cap \overline{(A \cap \overline{B})}) \cap A$	
(d) $(C \cup B) \cap \overline{(\overline{C} \cap \overline{B})} \cap (C \cup \overline{B})$	
Josef Leydold – Bridging Course Mathematics – WS 2023/24	1 - Sets and Maps - 14 / 32
Cartesian Product	
The set	
$A \times B = \{(x, y) x \in A, y \in B\}$	
is called the Cartesian product of sets A and B .	
Given two sets A and B the Cartesian product $A \times B$ is the set of all unique ordered pairs where the first element is from set A and the	
second element is from set B .	
In general we have $A \times B \neq B \times A$.	
locof Loudold - Pridaing Course Mathematics - WS 2002/24	1 Soto and Mana 15/22

(f) $Q_1 = \{(x, y) : 0 \le x, y \le 1\}$ and $Q_2 = \{(x, y) : 0 \le x, y \le 1\}$.

(e) A = [0, 1] and \mathbb{R} .

Josef Leydold - Bridging Course Mathematics - WS 2023/24

1 - Sets and Maps - 21 / 32

Problem 1.10

Let $\mathcal{P}_n = \{\sum_{i=0}^n a_i x^i : a_i \in \mathbb{R}\}$ be the set of all polynomials in x of degree less than or equal to n.

Which of the following are proper definitions of mappings? Which of the maps are one-to-one, onto, both or neither?

(a) $D: \mathcal{P}_n \to \mathcal{P}_n, \ p(x) \mapsto \frac{dp(x)}{dx}$ (derivative of p)

(b)
$$D: \mathcal{P}_n \to \mathcal{P}_{n-1}, \ p(x) \mapsto \frac{dp(x)}{dx}$$

(c)
$$D: \mathcal{P}_n \to \mathcal{P}_{n-2}, \ p(x) \mapsto \frac{dp(x)}{dx}$$

Function Composition

Let $f: D_f \to W_f$ and $g: D_g \to W_g$ be functions with $W_f \subseteq D_g$. Function

 $g \circ f \colon D_f \to W_g, \ x \mapsto (g \circ f)(x) = g(f(x))$

is called **composite function**.

Josef Leydold - Bridging Course Mathematics - WS 2023/24

(read: "g composed with f", "g circle f", or "g after f")

1 - Sets and Maps - 26 / 32

1 - Sets and Maps - 25 / 32

Inverse Map

If $f: D_f \to W_f$ is a **bijection**, then every $y \in W_f$ can be uniquely mapped to its preimage $x \in D_f$.

Thus we get a map

Josef Leydold - Bridging Course Mathematics - WS 2023/24

 $f^{-1}\colon W_f \to D_f, \ y \mapsto x = f^{-1}(y)$

which is called the **inverse map** of f.

We obviously have for all $x \in D_f$ and $y \in W_f$,

$$f^{-1}(f(x)) = f^{-1}(y) = x$$
 and $f(f^{-1}(y)) = f(x) = y$.

