
Chapter 9

Derivatives
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Difference Quotient∗

Let f : R→ R be some function. Then the ratio

∆ f
∆x

=
f (x0 + ∆x)− f (x0)

∆x
=

f (x)− f (x0)

x− x0

is called difference quotient.

x

f (x)

x0 x

∆x

∆ f

secant

(x0, f (x0))

(x, f (x))
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Differential Quotient∗

If the limit

lim
∆x→0

f (x0 + ∆x)− f (x0)

∆x
= lim

x→x0

f (x)− f (x0)

x− x0

exists, then function f is called differentiable at x0. This limit is then
called differential quotient or (first) derivative of function f at x0.

We write

f ′(x0) or
d f
dx

∣∣∣∣
x=x0

Function f is called differentiable, if it is differentiable at each point of its
domain.
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Slope of Tangent∗

▶ The differential quotient gives the slope of the tangent to the graph
of function f (x) at x0.

x

f (x)

secants

x0

1

f ′(x0)

tangent
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Marginal Function∗

▶ Instantaneous change of function f .
▶ “Marginal function” (as in marginal utility )

x

f (x)

x0
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Existence of Differential Quotient∗

Function f is differentiable at all points, where we can draw the tangent
(with finite slope) uniquely to the graph.

Function f is not differentiable at all points where this is not possible.

In particular these are
▶ jump discontinuities
▶ “kinks” in the graph of the function
▶ vertical tangents
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Computation of the Differential Quotient∗

We can compute a differential quotient by determining the limit of the
difference quotient.

Let f (x) = x2. The we find for the first derivative

f ′(x0) = lim
h→0

(x0 + h)2 − x0
2

h

= lim
h→0

x0
2 + 2 x0 h + h2 − x0

2

h

= lim
h→0

2 x0 h + h2

h
= lim

h→0
(2 x0 + h)

= 2 x0
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Derivative of a Function∗

Function

f ′ : D → R, x 7→ f ′(x) =
d f
dx

∣∣∣∣
x

is called the first derivative of function f .
Its domain D is the set of all points where the differential quotient
(i.e., the limit of the difference quotient) exists.
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Derivatives of Elementary Functions∗

f (x) f ′(x)

c 0

xα α · xα−1

ex ex

ln(x)
1
x

sin(x) cos(x)

cos(x) − sin(x)
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Computation Rules for Derivatives∗

▶ (c · f (x))′ = c · f ′(x)

▶ ( f (x) + g(x))′ = f ′(x) + g′(x) Summation rule

▶ ( f (x) · g(x))′ = f ′(x) · g(x) + f (x) · g′(x) Product rule

▶ ( f (g(x)))′ = f ′(g(x)) · g′(x) Chain rule

▶

(
f (x)
g(x)

)′
=

f ′(x) · g(x)− f (x) · g′(x)
(g(x))2 Quotient rule
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Example – Computation Rules for Derivatives∗

(
3 x3 + 2 x− 4

)′
= 3 · 3 · x2 + 2 · 1− 0 = 9 x2 + 2

(
ex · x2)′ = (ex)′ · x2 + ex ·

(
x2)′ = ex · x2 + ex · 2 x

(
(3 x2 + 1)2)′ = 2 (3 x2 + 1) · 6 x

(√
x
)′
=
(

x
1
2

)′
= 1

2 · x−
1
2 = 1

2
√

x

(ax)′ =
(

eln(a)·x
)′

= eln(a)·x · ln(a) = ax ln(a)

(
1 + x2

1− x3

)′
=

2x · (1− x3)− (1 + x2) · 3x2

(1− x3)2
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Higher Order Derivatives∗

We can compute derivatives of the derivative of a function.

Thus we obtain the

▶ second derivative f ′′(x) of function f ,

▶ third derivative f ′′′(x), etc.,

▶ n-th derivative f (n)(x).

Other notations:

▶ f ′′(x) =
d2 f
dx2 (x) =

(
d

dx

)2

f (x)

▶ f (n)(x) =
dn f
dxn (x) =

(
d

dx

)n

f (x)
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Example – Higher Order Derivatives∗

The first five derivatives of function

f (x) = x4 + 2x2 + 5x− 3

are

f ′(x) = (x4 + 2x2 + 5x− 3)′ = 4x3 + 4x + 5
f ′′(x) = (4x3 + 4x + 5)′ = 12x2 + 4
f ′′′(x) = (12x2 + 4)′ = 24x
f ıv(x) = (24x)′ = 24
f v(x) = 0
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Marginal Change∗

We can estimate the derivative f ′(x0) approximately by means of the
difference quotient with small change ∆x:

f ′(x0) = lim
∆x→0

f (x0 + ∆x)− f (x0)

∆x
≈ ∆ f

∆x

Vice verse we can estimate the change ∆ f of f for small changes ∆x
approximately by the first derivative of f :

∆ f = f (x0 + ∆x)− f (x0) ≈ f ′(x0) · ∆x

Beware:
▶ f ′(x0) · ∆x is a linear function in ∆x.
▶ It is the best possible approximation of f by a linear function

around x0.
▶ This approximation is useful only for “small” values of ∆x.
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Differential∗

The approximation

∆ f = f (x0 + ∆x)− f (x0) ≈ f ′(x0) · ∆x

becomes exact if ∆x (and thus ∆ f ) becomes infinitesimally small.
We then write dx and d f instead of ∆x and ∆ f , resp.

d f = f ′(x0) dx

Symbols d f and dx are called the differentials of function f and the
independent variable x, resp.
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Differential∗

Differential d f can be seen as a linear function in dx.
We can use it to compute f approximately around x0.

f (x0 + dx) ≈ f (x0) + d f

Let f (x) = ex.

Differential of f at point x0 = 1:
d f = f ′(1) dx = e1 dx

Approximation of f (1.1) by means of this differential:
∆x = (x0 + dx)− x0 = 1.1− 1 = 0.1

f (1.1) ≈ f (1) + d f = e + e · 0.1 ≈ 2.99

Exact value: f (1.1) = 3.004166 . . .
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Elasticity∗

The first derivative of a function gives absolute rate of change of f at x0.
Hence it depends on the scales used for argument and function values.

However, often relative rates of change are more appropriate.

We obtain scale invariance and relative rate of changes by

change of function value relative to value of function

change of argument relative to value of argument

and thus

lim
∆x→0

f (x+∆x)− f (x)
f (x)
∆x
x

= lim
∆x→0

f (x + ∆x)− f (x)
∆x

· x
f (x)

= f ′(x) · x
f (x)
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Elasticity∗

Expression

ε f (x) = x · f ′(x)
f (x)

is called the elasticity of f at point x.

Let f (x) = 3 e2x. Then

ε f (x) = x · f ′(x)
f (x)

= x · 6 e2x

3 e2x = 2 x

Let f (x) = β xα. Then

ε f (x) = x · f ′(x)
f (x)

= x · β α xα−1

β xα
= α
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Elasticity II∗

The relative rate of change of f can be expressed as

ln( f (x))′ =
f ′(x)
f (x)

What happens if we compute the derivative of ln( f (x)) w.r.t. ln(x)?

Let v = ln(x) ⇔ x = ev

Derivation by means of the chain rule yields:

d(ln( f (x)))
d(ln(x))

=
d(ln( f (ev)))

dv
=

f ′(ev)

f (ev)
ev =

f ′(x)
f (x)

x = ε f (x)

ε f (x) =
d(ln( f (x)))

d(ln(x))
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Elasticity II∗

We can use the chain rule formally in the following way:

Let
▶ u = ln(y),
▶ y = f (x),
▶ x = ev ⇔ v = ln(x)

Then we find

d(ln f )
d(ln x)

=
du
dv

=
du
dy
· dy

dx
· dx

dv
=

1
y
· f ′(x) · ev =

f ′(x)
f (x)

x
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Elastic Functions∗

A Function f is called

▶ elastic in x, if
∣∣ ε f (x)

∣∣ > 1
▶ 1-elastic in x, if

∣∣ ε f (x)
∣∣ = 1

▶ inelastic in x, if
∣∣ ε f (x)

∣∣ < 1

For elastic functions we then have:
The value of the function changes relatively faster than the value of the
argument.

Function f (x) = 3 e2x is [ ε f (x) = 2 x ]

▶ 1-elastic, for x = − 1
2 and x = 1

2 ;

▶ inelastic, for − 1
2 < x < 1

2 ;

▶ elastic, for x < − 1
2 or x > 1

2 .
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Source of Errors

Beware!
Function f is elastic if the absolute value of the elasticity is greater
than 1.
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Elastic Demand∗

Let q(p) be an elastic demand function, where p is the price.
We have: p > 0, q > 0, and q′ < 0 (q is decreasing). Hence

εq(p) = p · q′(p)
q(p)

< −1

What happens to the revenue (= price × selling)?

u′(p) = (p · q(p))′ = 1 · q(p) + p · q′(p)

= q(p) · (1 + p · q′(p)
q(p)︸ ︷︷ ︸

=εq<−1

)

< 0

In other words, the revenue decreases if we raise prices.
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Partial Derivative∗

We investigate the rate of change of function f (x1, . . . , xn), when
variable xi changes and the other variables remain fixed.
Limit

∂ f
∂xi

= lim
∆xi→0

f (. . . , xi + ∆xi, . . .)− f (. . . , xi, . . .)
∆xi

is called the (first) partial derivative of f w.r.t. xi.

Other notations for partial derivative ∂ f
∂xi

:

▶ fxi(x) (derivative w.r.t. variable xi)

▶ fi(x) (derivative w.r.t. the i-th variable)

▶ f ′i (x) (i-th component of the gradient)
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Computation of Partial Derivatives∗

We obtain partial derivatives ∂ f
∂xi

by applying the rules for univariate
functions for variable xi while we treat all other variables as constants.

First partial derivatives of

f (x1, x2) = sin(2 x1) · cos(x2)

fx1 = 2 · cos(2 x1) · cos(x2)︸ ︷︷ ︸
treated as constant

fx2 = sin(2 x1)︸ ︷︷ ︸
treated as constant

·(− sin(x2))
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Higher Order Partial Derivatives∗

We can compute partial derivatives of partial derivatives analogously to
their univariate counterparts and obtain
higher order partial derivatives:

∂2 f
∂xk∂xi

(x) and
∂2 f
∂x2

i
(x)

Other notations for partial derivative ∂2 f
∂xk∂xi

(x):

▶ fxixk(x) (derivative w.r.t. variables xi and xk)

▶ fik(x) (derivative w.r.t. the i-th and k-th variable)

▶ f ′′ik(x) (component of the Hessian matrix with index ik)
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Higher Order Partial Derivatives∗

If all second order partial derivatives exists and are continuous, then
the order of differentiation does not matter (Schwarz’s theorem):

∂2 f
∂xk∂xi

(x) =
∂2 f

∂xi∂xk
(x)

Remark: Practically all differentiable functions in economic models have
this property.
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Example – Higher Order Partial Derivatives∗

Compute the first and second order partial derivatives of

f (x, y) = x2 + 3 x y

First order partial derivatives:

fx = 2 x + 3 y fy = 0 + 3 x

Second order partial derivatives:

fxx = 2 fxy = 3
fyx = 3 fyy = 0
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Gradient

We collect all first order partial derivatives into a (row) vector which is
called the gradient at point x.

∇ f (x) = ( fx1(x), . . . , fxn(x))

▶ read: “gradient of f ” or “nabla f ”.

▶ Other notation: f ′(x)

▶ Alternatively the gradient can also be a column vector.

▶ The gradient is the analog of the first derivative of univariate
functions.
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Properties of the Gradient

▶ The gradient of f always points in the direction of
steepest ascent.

▶ Its length is equal to the slope at this point.
▶ The gradient is normal (i.e. in right angle) to the corresponding

contour line (level set).

∇ f
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Example – Gradient

Compute the gradient of

f (x, y) = x2 + 3 x y

at point x = (3, 2).

fx = 2 x + 3 y
fy = 0 + 3 x

∇ f (x) = (2x + 3y, 3x)

∇ f (3, 2) = (12, 9)
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Directional Derivative

We obtain partial derivative ∂ f
∂xi

by differentiating the univariate function
g(t) = f (x1, . . . , xi + t, . . . , xn) = f (x + t · h)
with h = ei at point t = 0:

∂ f
∂xi

(x) =
dg
dt

∣∣∣∣
t=0

=
d
dt

f (x + t · h)
∣∣∣∣
t=0

∂ f
∂x1

∂ f
∂x2

x
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Directional Derivative

Generalization:
We obtain the directional derivative ∂ f

∂h along h with length 1 by
differentiating the univariate function g(t) = f (x + t · h)
at point t = 0:

∂ f
∂h

(x) =
dg
dt

∣∣∣∣
t=0

=
d
dt

f (x + t · h)
∣∣∣∣
t=0

∂ f
∂h

hx

The directional derivative
describes the change of f ,
if we move x in direction h.
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Directional Derivative

We have (for ∥h∥ = 1):

∂ f
∂h

(x) = fx1(x) · h1 + · · ·+ fxn(x) · hn = ∇ f (x) · h

If h does not have norm 1, we first have to normalize first:

∂ f
∂h

(x) = ∇ f (x) · h
∥h∥
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Example – Directional Derivative

Compute the directional derivative of

f (x1, x2) = x2
1 + 3 x1 x2

along h =

(
1
−2

)
at x =

(
3
2

)
.

Norm of h:
∥h∥ =

√
hT h =

√
12 + (−2)2 =

√
5

Directional derivative:

∂ f
∂h

(x) = ∇ f (x) · h
∥h∥ =

1√
5
(12, 9) ·

(
1
−2

)
= − 6√

5
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Total Differential

We want to approximate a function f by some linear function such that
the approximation error is as small as possible:

f (x + h)− f (x) ≈ fx1(x) h1 + . . . + fxn(x) hn = ∇ f (x) · h

The approximation becomes exact if h (and thus ∆ f ) becomes
infinitesimally small.

The linear function

d f = fx1(x) dx1 + . . . + fxn(x) dxn =
n

∑
i=1

fxi dxi = ∇ f (x) · dx

is called the total Differential of f at x.
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Example – Total Differential

Compute the total differential of

f (x1, x2) = x2
1 + 3 x1 x2

at x = (3, 2).

d f = fx1(3, 2) dx1 + fx2(3, 2) dx2 = 12 dx1 + 9 dx2

Approximation of f (3.1, 1.8) by means of the total differential:

f (3.1, 1.8) ≈ f (3; 2) + d f
= 27 + 12 · 0.1 + 9 · (−0.2) = 26.40

Exact value: f (3.1, 1.8) = 26.35

h = (x + h)− x =

(
3.1
1.8

)
−
(

3
2

)
=

(
0.1
−0.2

)
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Hessian Matrix

Let f (x) = f (x1, . . . , xn) be two times differentiable. Then matrix

H f (x) =




fx1x1(x) fx1x2(x) . . . fx1xn(x)
fx2x1(x) fx2x2(x) . . . fx2xn(x)

...
...

. . .
...

fxnx1(x) fxnx2(x) . . . fxnxn(x)




is called the Hessian matrix of f at x.

▶ The Hessian matrix is symmetric, i.e., fxixk(x) = fxkxi(x).

▶ Other notation: f ′′(x)

▶ The Hessian matrix is the analog of the second derivative of
univariate functions.
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Example – Hessian Matrix

Compute the Hessian matrix of

f (x, y) = x2 + 3 x y

at point x = (1, 2).

Second order partial derivatives:

fxx = 2 fxy = 3
fyx = 3 fyy = 0

Hessian matrix:

H f (x, y) =

(
fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

)
=

(
2 3
3 0

)
= H f (1, 2)
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Differentiability

Theorem:
A function f : R→ R is differentiable at x0 if and only if there exists a
linear map ℓ which approximates f in x0 in an optimal way:

lim
h→0

|( f (x0 + h)− f (x0))− ℓ(h)|
|h| = 0

Obviously ℓ(h) = f ′(x0) · h.

Definition:
A function f : Rn → Rm is differentiable at x0 if there exists a
linear map ℓ which approximates f in x0 in an optimal way:

lim
h→0

∥(f(x0 + h)− f(x0))− ℓ(h)∥
∥h∥ = 0

Function ℓ(h) = J · h is called the total derivative of f.
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Jacobian Matrix

Let f : Rn → Rm, x 7→ y = f(x) =




f1(x1, . . . , xn)
...

fm(x1, . . . , xn)




The m× n matrix

Df(x0) = f′(x0) =




∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

. . . ∂ fm
∂xn




is called the Jacobian matrix of f at point x0.

It is the generalization of derivatives (and gradients) for vector-valued
functions.
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Jacobian Matrix

For f : Rn → R the Jacobian matrix is the gradient of f :

D f (x0) = ∇ f (x0)

For vector-valued functions the Jacobian matrix can be written as

Df(x0) =




∇ f1(x0)
...

∇ fm(x0)



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Example – Jacobian Matrix

▶ f (x) = f (x1, x2) = exp(−x2
1 − x2

2)

D f (x) =
(

∂ f
∂x1

, ∂ f
∂x2

)
= ∇ f (x)

=
(
−2 x1 exp(−x2

1 − x2
2),−2 x2 exp(−x2

1 − x2
2)
)

▶ f(x) = f(x1, x2) =

(
f1(x1, x2)

f2(x1, x2)

)
=

(
x2

1 + x2
2

x2
1 − x2

2

)

Df(x) =

( ∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

)
=

(
2 x1 2 x2

2 x1 −2 x2

)

▶ s(t) =

(
s1(t)
s2(t)

)
=

(
cos(t)
sin(t)

)

Ds(t) =

(
ds1
dt
ds2
dt

)
=

(
− sin(t)
cos(t)

)
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Chain Rule

Let f : Rn → Rm and g : Rm → Rk. Then

(g ◦ f)′(x) = g′(f(x)) · f′(x)

f(x, y) =

(
ex

ey

)
g(x, y) =

(
x2 + y2

x2 − y2

)

f′(x, y) =

(
ex 0
0 ey

)
g′(x, y) =

(
2 x 2 y
2 x −2 y

)

(g ◦ f)′(x) = g′(f(x)) · f′(x) =
(

2 ex 2 ey

2 ex −2 ey

)
·
(

ex 0
0 ey

)

=

(
2 e2x 2 e2y

2 e2x −2 e2y

)
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Example – Directional Derivative

We can derive the formula for the directional derivative of f : Rn → R

along h (with ∥h∥ = 1) at x0 by means of the chain rule:

Let s(t) be a path through x0 along h, i.e.,

s : R→ Rn, t 7→ x0 + th .

Then
f ′(s(0)) = f ′(x0) = ∇ f (x0)

s′(0) = h

and hence

∂ f
∂h

= ( f ◦ s)′(0) = f ′(s(0)) · s′(0) = ∇ f (x0) · h .

Josef Leydold – Foundations of Mathematics – WS 2024/25 9 – Derivatives – 45 / 51



Example – Indirect Dependency

Let f (x1, x2, t) where x1(t) and x2(t) also depend on t.
What is the total derivative of f w.r.t. t?

Chain rule:

Let x : R→ R3, t 7→




x1(t)
x2(t)

t




d f
dt

= ( f ◦ x)′(t) = f ′(x(t)) · x′(t)

= ∇ f (x(t)) ·




x′1(t)
x′2(t)

1


=( fx1(x(t)), fx2(x(t)), ft(x(t)) ·




x′1(t)
x′2(t)

1




= fx1(x(t)) · x′1(t) + fx2(x(t)) · x′2(t) + ft(x(t))

= fx1(x1, x2, t) · x′1(t) + fx2(x1, x2, t) · x′2(t) + ft(x1, x2, t)
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L’Hôpital’s Rule

Suppose we want to compute

lim
x→x0

f (x)
g(x)

and find
lim

x→x0
f (x) = lim

x→x0
g(x) = 0 (or = ±∞)

However, expressions like 0
0 or ∞

∞ are not defined.

(You must not reduce the fraction by 0 or ∞!)
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L’Hôpital’s Rule

If lim
x→x0

f (x) = lim
x→x0

g(x) = 0 (or = ∞ or = −∞), then

lim
x→x0

f (x)
g(x)

= lim
x→x0

f ′(x)
g′(x)

Assumption: f and g are differentiable in x0.

This formula is called l’Hôpital’s rule (also spelled as l’Hospital’s rule).
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Example – L’Hôpital’s Rule

lim
x→2

x3 − 7 x + 6
x2 − x− 2

= lim
x→2

3 x2 − 7
2 x− 1

=
5
3

lim
x→∞

ln x
x2 = lim

x→∞

1
x

2 x
= lim

x→∞

1
2 x2 = 0

lim
x→0

x− ln(1 + x)
x2 = lim

x→0

1− (1 + x)−1

2 x
= lim

x→0

(1 + x)−2

2
=

1
2
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Example – L’Hôpital’s Rule

L’Hôpital’s rule can be applied iteratively:

lim
x→0

ex − x− 1
x2 = lim

x→0

ex − 1
2x

= lim
x→0

ex

2
=

1
2
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Summary

▶ difference quotient and differential quotient
▶ differential quotient and derivative
▶ derivatives of elementary functions
▶ differentiation rules
▶ higher order derivatives
▶ total differential
▶ elasticity
▶ partial derivatives
▶ gradient and Hessian matrix
▶ Jacobian matrix and chain rule
▶ l’Hôpital’s rule

Josef Leydold – Foundations of Mathematics – WS 2024/25 9 – Derivatives – 51 / 51


