Chapter 6

Eigenvalues

Closed Leontief Model

In a closed Leontief input-output-model consumption and production coincide, i.e.,

$$\mathbf{V} \cdot \mathbf{x} = \mathbf{x} = 1 \cdot \mathbf{x}$$

Is this possible for the given technology matrix V?

This is a special case of a so called eigenvalue problem.

Eigenvalue and Eigenvector

A vector $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq 0$, is called **eigenvector** of an $n \times n$ matrix \mathbf{A} corresponding to **eigenvalue** $\lambda \in \mathbb{R}$, if

$$\mathbf{A} \cdot \mathbf{x} = \lambda \cdot \mathbf{x}$$

The eigenvalues of matrix A are all numbers λ for which an eigenvector does exist.

Example – Eigenvalue and Eigenvector

For a 3×3 diagonal matrix we find

$$\mathbf{A} \cdot \mathbf{e}_1 = \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{11} \\ 0 \\ 0 \end{pmatrix} = a_{11} \cdot \mathbf{e}_1$$

Thus e_1 is a eigenvector corresponding to eigenvalue $\lambda = a_{11}$.

Analogously we find for an $n \times n$ diagonal matrix

$$\mathbf{A} \cdot \mathbf{e}_i = a_{ii} \cdot \mathbf{e}_i$$

So the eigenvalue of a diagonal matrix are its diagonal elements with unit vectors e_i as the corresponding eigenvectors.

Computation of Eigenvalues

In order to find eigenvectors of an $n \times n$ matrix \mathbf{A} we have to solve equation

$$\mathbf{A} \mathbf{x} = \lambda \mathbf{x} = \lambda \mathbf{I} \mathbf{x} \quad \Leftrightarrow \quad (\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = 0.$$

If $(\mathbf{A} - \lambda \mathbf{I})$ is invertible then we get

$$\mathbf{x} = (\mathbf{A} - \lambda \mathbf{I})^{-1} 0 = 0.$$

However, $\mathbf{x} = 0$ cannot be an eigenvector (by definition) and hence λ cannot be an eigenvalue.

Thus λ is an *eigenvalue* of **A** if and only if $(\mathbf{A} - \lambda \mathbf{I})$ is *not invertible*, i.e., if and only if

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Example – Eigenvalues

Compute the eigenvalues of matrix $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$.

We have to find all $\lambda \in \mathbb{R}$ where $|\mathbf{A} - \lambda \mathbf{I}|$ vanishes.

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{vmatrix} = \begin{vmatrix} \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \end{vmatrix} = \begin{vmatrix} 1 - \lambda & -2 \\ 1 & 4 - \lambda \end{vmatrix} = \lambda^2 - 5\lambda + 6 = 0.$$

The roots of this quadratic equation are

$$\lambda_1 = 2$$
 and $\lambda_2 = 3$.

Thus matrix \mathbf{A} has eigenvalues 2 and 3.

Characteristic Polynomial

For an $n \times n$ matrix **A**

$$\det(\mathbf{A} - \lambda \mathbf{I})$$

is a polynomial of degree n in λ .

It is called the **characteristic polynomial** of matrix **A**.

The eigenvalues are then the roots of the characteristic polynomial.

For that reason eigenvalues and eigenvectors are sometimes called the characteristic roots and characteristic vectors, resp., of \mathbf{A} .

The set of all eigenvalues of A is called the *spectrum* of A. *Spectral methods* make use of eigenvalues.

Remark:

It may happen that characteristic roots are complex ($\lambda \in \mathbb{C}$). These are then called *complex eigenvalues*.

Computation of Eigenvectors

Eigenvectors \mathbf{x} corresponding to a *known* eigenvalue λ_0 can be computed by solving linear equation $(\mathbf{A} - \lambda_0 \mathbf{I})\mathbf{x} = 0$.

Eigenvectors of
$${f A}=\begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$$
 corresponding to $\lambda_1=2$:

$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{x} = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Gaussian elimination yields: $x_2 = \alpha$ and $x_1 = -2\alpha$

$$\mathbf{v}_1 = lpha egin{pmatrix} -2 \ 1 \end{pmatrix} \qquad ext{for an } lpha \in \mathbb{R} \setminus \{0\}.$$

Eigenspace

If x is an eigenvector corresponding to eigenvalue λ , then each multiple αx is an eigenvector, too:

$$\mathbf{A} \cdot (\alpha \mathbf{x}) = \alpha (\mathbf{A} \cdot \mathbf{x}) = \alpha \lambda \cdot \mathbf{x} = \lambda \cdot (\alpha \mathbf{x})$$

If x and y are eigenvectors corresponding to the same eigenvalue λ , then x + y is an eigenvector, too:

$$\mathbf{A} \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{A} \cdot \mathbf{x} + \mathbf{A} \cdot \mathbf{y} = \lambda \cdot \mathbf{x} + \lambda \cdot \mathbf{y} = \lambda \cdot (\mathbf{x} + \mathbf{y})$$

The set of all eigenvectors corresponding to eigenvalue λ (including zero vector 0) is thus a *subspace* of \mathbb{R}^n and is called the **eigenspace** corresponding to λ .

Computer programs return bases of eigenspaces.

(Beware: Bases are not uniquely determined!)

Example – Eigenspace

Let
$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$$
.

Eigenvector corresponding to eigenvalue $\lambda_1=2$: $\mathbf{v}_1=\begin{pmatrix} -2\\1 \end{pmatrix}$

Eigenvector corresponding to eigenvalue $\lambda_2 = 3$: $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

Eigenvectors corresponding to eigenvalue λ_i are all non-vanishing (i.e., non-zero) multiples of \mathbf{v}_i .

Computer programs often return normalized eigenvectors:

$$\mathbf{v}_1 = \begin{pmatrix} -rac{2}{\sqrt{5}} \\ rac{1}{\sqrt{5}} \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} -rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} \end{pmatrix}$

Example

Eigenvalues and Eigenvectors of
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 6 & 2 \end{pmatrix}$$
.

Create the characteristic polynomial and compute its roots:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 0 & 1 \\ 0 & 3 - \lambda & 1 \\ 0 & 6 & 2 - \lambda \end{vmatrix} = (2 - \lambda) \cdot \lambda \cdot (\lambda - 5) = 0$$

Eigenvalues:

$$\lambda_1 = 2$$
, $\lambda_2 = 0$, and $\lambda_3 = 5$.

Example

Eigenvector(s) corresponding to eigenvalue $\lambda_3 = 5$:

$$(\mathbf{A} - \lambda_3 \mathbf{I}) \mathbf{x} = \begin{pmatrix} (2-5) & 0 & 1 \\ 0 & (3-5) & 1 \\ 0 & 6 & (2-5) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Gaussian elimination yields

$$\left(\begin{array}{ccc|c}
-3 & 0 & 1 & 0 \\
0 & -2 & 1 & 0 \\
0 & 6 & -3 & 0
\end{array}\right) \quad \rightsquigarrow \quad \left(\begin{array}{ccc|c}
-3 & 0 & 1 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Thus $x_3=\alpha$, $x_2=\frac{1}{2}\alpha$, and $x_1=\frac{1}{3}\alpha$ for arbitrary $\alpha\in\mathbb{R}\setminus\{0\}$. Eigenvector $\mathbf{v}_3=(2,3,6)^\mathsf{T}$.

Example

Eigenvector corresponding to

$$\lambda_1 = 2 \colon \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\lambda_2 = 0: \mathbf{v}_2 = \begin{pmatrix} -3 \\ -2 \\ 6 \end{pmatrix}$$

$$\lambda_3 = 5 \colon \mathbf{v}_3 = \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}$$

Eigenvectors corresponding to eigenvalue λ_i are all non-vanishing multiples of \mathbf{v}_i .

Properties of Eigenvalues

- **1.** A and A^T have the same eigenvalues.
- **2.** Let **A** and **B** be $n \times n$ -matrices. Then $\mathbf{A} \cdot \mathbf{B}$ and $\mathbf{B} \cdot \mathbf{A}$ have the same eigenvalues.
- **3.** If x is an eigenvector of A corresponding to λ , then x is an eigenvector of A^k corresponding to eigenvalue λ^k .
- **4.** If \mathbf{x} is an eigenvector of regular matrix \mathbf{A} corresponding to λ , then \mathbf{x} is an eigenvector of \mathbf{A}^{-1} corresponding to eigenvalue $\frac{1}{\lambda}$.

Properties of Eigenvalues

5. The product of all eigenvalues λ_i of an $n \times n$ matrix **A** is equal to the determinant of **A**:

$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

This implies:

A is regular if and only if all its eigenvalues are non-zero.

6. The sum of all eigenvalues λ_i of an $n \times n$ matrix **A** is equal to the sum of the diagonal elements of **A** (called the **trace** of **A**).

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_{i}$$

Eigenvalues of Similar Matrices

Let **U** be a transformation matrix and $\mathbf{C} = \mathbf{U}^{-1} \mathbf{A} \mathbf{U}$.

If x is an eigenvector of A corresponding to eigenvalue λ , then $U^{-1}x$ is an eigenvector of C corresponding to λ :

$$\mathbf{C} \cdot (\mathbf{U}^{-1}\mathbf{x}) = (\mathbf{U}^{-1}\mathbf{A}\mathbf{U})\mathbf{U}^{-1}\mathbf{x} = \mathbf{U}^{-1}\mathbf{A}\mathbf{x} = \mathbf{U}^{-1}\lambda\mathbf{x} = \lambda \cdot (\mathbf{U}^{-1}\mathbf{x})$$

Similar matrices A and C have the same eigenvalues and (if we consider change of basis) the same eigenvectors.

We want to choose a basis such that the matrix that represents the given linear map becomes as simple as possible.

The simplest matrices are *diagonal matrices*.

Can we find a basis where the corresponding linear map is represented by a diagonal matrix?

Unfortunately not in the general case. But ...

Symmetric Matrix

An $n \times n$ matrix **A** is called **symmetric**, if $\mathbf{A}^{\mathsf{T}} = \mathbf{A}$.

For a *symmetric* matrix **A** we find:

- ightharpoonup All n eigenvalues are real.
- ► Eigenvectors \mathbf{u}_i corresponding to distinct eigenvalues λ_i are orthogonal (i.e., $\mathbf{u}_i^\mathsf{T} \cdot \mathbf{u}_j = 0$ if $i \neq j$).
- There exists an **orthonormal basis** $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ (i.e. the vectors \mathbf{u}_i are normalized and mutually orthogonal) that consists of eigenvectors of \mathbf{A} ,

Matrix $U = (u_1, ..., u_n)$ is then an **orthogonal matrix**:

$$\mathbf{U}^{\mathsf{T}} \cdot \mathbf{U} = \mathbf{I} \quad \Leftrightarrow \quad \mathbf{U}^{-1} = \mathbf{U}^{\mathsf{T}}$$

Diagonalization

For the i-th unit vector \mathbf{e}_i we find

$$\mathbf{U}^\mathsf{T} \mathbf{A} \mathbf{U} \cdot \mathbf{e}_i = \mathbf{U}^\mathsf{T} \mathbf{A} \mathbf{u}_i = \mathbf{U}^\mathsf{T} \lambda_i \mathbf{u}_i = \lambda_i \mathbf{U}^\mathsf{T} \mathbf{u}_i = \lambda_i \cdot \mathbf{e}_i$$

and thus

$$\mathbf{U}^{\mathsf{T}} \mathbf{A} \mathbf{U} = \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Every symmetric matrix **A** becomes a diagonal matrix with the eigenvalues of **A** as its entries if we use the orthonormal basis of eigenvectors.

This procedure is called **diagonalization** of matrix **A**.

Example – Diagonalization

We want to diagonalize
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
.

Eigenvalues

$$\lambda_1 = -1$$
 and $\lambda_2 = 3$

with respective normalized eigenvectors

$$\mathbf{u}_1 = \begin{pmatrix} -rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} \end{pmatrix}$$
 and $\mathbf{u}_2 = \begin{pmatrix} rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} \end{pmatrix}$

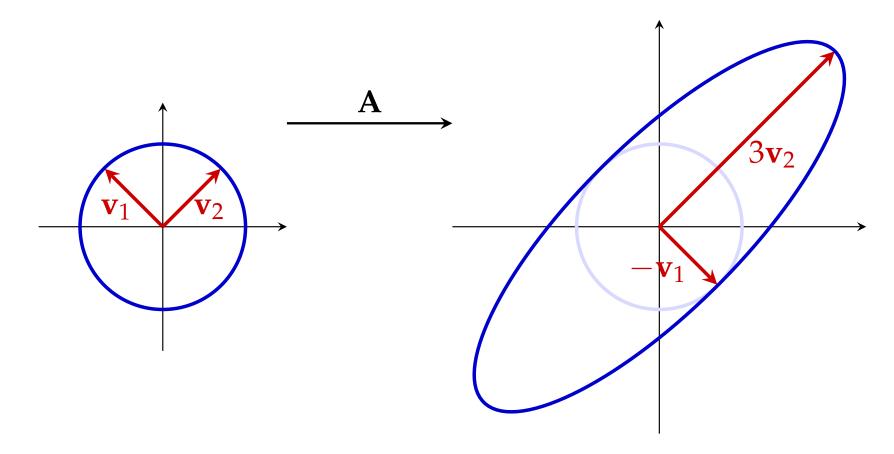
With respect to basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ matrix \mathbf{A} becomes diagonal matrix

$$\begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$$

A Geometric Interpretation I

Function $\mathbf{x}\mapsto \mathbf{A}\mathbf{x}=\begin{pmatrix}1&2\\2&1\end{pmatrix}\mathbf{x}$ maps the unit circle in \mathbb{R}^2 into an ellipsis.

The two semi-axes of the ellipsis are given by $\lambda_1 \mathbf{v}_1$ and $\lambda_2 \mathbf{v}_2$, resp.



Quadratic Form

Let A be a *symmetric matrix*. Then function

$$q_{\mathbf{A}} \colon \mathbb{R}^n \to \mathbb{R}, \ \mathbf{x} \mapsto q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \cdot \mathbf{A} \cdot \mathbf{x}$$

is called a quadratic form.

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
. Then
$$q_{\mathbf{A}}(\mathbf{x}) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}^{\mathsf{T}} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1^2 + 2x_2^2 + 3x_3^2$$

Example – Quadratic Form

In general we find for $n \times n$ matrix $\mathbf{A} = (a_{ij})$:

$$q_{\mathbf{A}}(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j$$

$$q_{\mathbf{A}}(\mathbf{x}) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}^{\mathsf{T}} \cdot \begin{pmatrix} 1 & 1 & -2 \\ 1 & 2 & 3 \\ -2 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}^{\mathsf{T}} \cdot \begin{pmatrix} x_1 + x_2 - 2x_3 \\ x_1 + 2x_2 + 3x_3 \\ -2x_1 + 3x_2 + x_3 \end{pmatrix}$$

$$= x_1^2 + 2x_1x_2 - 4x_1x_3 + 2x_2^2 + 6x_2x_3 + x_3^2$$

Definiteness

A quadratic form q_A is called

- **positive definite**, if for all $\mathbf{x} \neq 0$, $q_{\mathbf{A}}(\mathbf{x}) > 0$.
- **positive semidefinite**, if for all x, $q_{\mathbf{A}}(x) \ge 0$.
- ▶ negative definite, if for all $x \neq 0$, $q_A(x) < 0$.
- ▶ negative semidefinite, if for all x, $q_A(x) \le 0$.
- ▶ indefinite in all other cases.

A matrix **A** is called *positive* (negative) *definite* (semidefinite), if the corresponding quadratic form is *positive* (negative) *definite* (semidefinite).

Definiteness

Every symmetric matrix is *diagonalizable*. Let $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be the orthonormal basis of eigenvectors of \mathbf{A} . Then for every \mathbf{x} :

$$\mathbf{x} = \sum_{i=1}^{n} c_i(\mathbf{x}) \mathbf{u}_i = \mathbf{U} \mathbf{c}(\mathbf{x})$$

 $\mathbf{U} = (\mathbf{u}_1, \dots, \mathbf{u}_n)$ is the transformation matrix for the orthonormal basis, \mathbf{c} the corresponding coefficient vector.

So if **D** is the diagonal matrix of eigenvalues λ_i of **A** we find

$$q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \cdot \mathbf{A} \cdot \mathbf{x} = (\mathbf{U}\mathbf{c})^{\mathsf{T}} \cdot \mathbf{A} \cdot \mathbf{U}\mathbf{c} = \mathbf{c}^{\mathsf{T}} \cdot \mathbf{U}^{\mathsf{T}}\mathbf{A}\mathbf{U} \cdot \mathbf{c} = \mathbf{c}^{\mathsf{T}} \cdot \mathbf{D} \cdot \mathbf{c}$$

and thus

$$q_{\mathbf{A}}(\mathbf{x}) = \sum_{i=1}^{n} c_i^2(\mathbf{x}) \lambda_i$$

Definiteness and Eigenvalues

Equation $q_{\mathbf{A}}(\mathbf{x}) = \sum_{i=1}^{n} c_i^2(\mathbf{x}) \lambda_i$ immediately implies:

Let λ_i be the eigenvalues of symmetric matrix **A**. Then **A** (the quadratic form $q_{\mathbf{A}}$) is

- ightharpoonup positive definite, if all $\lambda_i > 0$.
- ightharpoonup positive semidefinite, if all $\lambda_i \geq 0$.
- ightharpoonup negative definite, if all $\lambda_i < 0$.
- ightharpoonup negative semidefinite, if all $\lambda_i \leq 0$.
- ▶ *indefinite*, if there exist $\lambda_i > 0$ and $\lambda_j < 0$.

Example – Definiteness and Eigenvalues

► The eigenvalues of $\begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$ are $\lambda_1 = 6$ and $\lambda_2 = 1$.

Thus the matrix is positive definite.

The eigenvalues of $\begin{pmatrix} 5 & -1 & 4 \\ -1 & 2 & 1 \\ 4 & 1 & 5 \end{pmatrix}$ are

 $\lambda_1 = 0$, $\lambda_2 = 3$, and $\lambda_3 = 9$. The matrix is positive semidefinite.

The eigenvalues of $\begin{pmatrix} 7 & -5 & 4 \\ -5 & 7 & 4 \\ 4 & 4 & -2 \end{pmatrix}$ are

 $\lambda_1 = -6$, $\lambda_2 = 6$ and $\lambda_3 = 12$. Thus the matrix is indefinite.

Leading Principle Minors

The definiteness of a matrix can also be determined by means of minors.

Let $\mathbf{A} = (a_{ij})$ be a symmetric $n \times n$ matrix. Then the determinant of submatrix

$$A_k = \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{vmatrix}$$

is called the k-th **leading principle minor** of \mathbf{A} .

Leading Principle Minors and Definiteness

A symmetric Matrix A is

- ightharpoonup positive definite, if and only if all $A_k > 0$.
- ▶ negative definite, if and only if $(-1)^k A_k > 0$ for all k.
- ightharpoonup indefinite, if $|\mathbf{A}| \neq 0$ and none of the two cases holds.

- $(-1)^k A_k > 0$ means that
 - $ightharpoonup A_1, A_3, A_5, \ldots < 0$, and
 - $ightharpoonup A_2, A_4, A_6, \ldots > 0.$

Example – Leading Principle Minors

Definiteness of matrix

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

$$A_1 = \det(a_{11}) = a_{11} = 2 > 0$$

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix} \qquad A_1 = \det(a_{11}) = a_{11} = 2 > 0$$
$$A_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 5 > 0$$

$$A_3 = |\mathbf{A}| = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{vmatrix} = 8 > 0$$

A and $q_{\mathbf{A}}$ are positive definite.

Example – Leading Principle Minors

Definiteness of matrix

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 1 & -2 \\ 1 & 2 & 3 \\ -2 & 3 & 1 \end{array} \right)$$

$$A_1 = \det(a_{11}) = a_{11} = 1 > 0$$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & -2 \\ 1 & 2 & 3 \\ -2 & 3 & 1 \end{pmatrix} \qquad A_1 = \det(a_{11}) = a_{11} = 1 > 0$$

$$A_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 > 0$$

$$A_3 = |\mathbf{A}| = \begin{vmatrix} 1 & 1 & -2 \\ 1 & 2 & 3 \\ -2 & 3 & 1 \end{vmatrix} = -28 < 0$$

A and $q_{\mathbf{A}}$ are indefinite.

Principle Minors

Unfortunately the condition for semidefiniteness is more tedious.

Let $\mathbf{A} = (a_{ij})$ be a symmetric $n \times n$ matrix.

Then the determinant of submatrix

$$A_{i_1,...,i_k} = \begin{vmatrix} a_{i_1,i_1} & \dots & a_{i_1,i_k} \\ \vdots & \ddots & \vdots \\ a_{i_k,i_1} & \dots & a_{i_k,i_k} \end{vmatrix} \qquad 1 \le i_1 < \dots < i_k \le n.$$

is called a **principle minor** of order k of A.

Principle Minors and Semidefiniteness

A symmetric matrix A is

- ightharpoonup positive semidefinite, if and only if all $A_{i_1,...,i_k} \geq 0$.
- ▶ negative semidefinite, if and only if $(-1)^k A_{i_1,...,i_k} \ge 0$ for all k.
- ▶ indefinite in all other cases.

$$(-1)^k A_{i_1,\ldots,i_k} \geq 0$$
 means that

- $ightharpoonup A_{i_1,...,i_k} \geq 0$, if k is even, and
- $ightharpoonup A_{i_1,...,i_k} \leq 0$, if k is odd.

Example – Principle Minors

Definiteness of matrix

$$\mathbf{A} = \left(egin{array}{ccc} 5 & -1 & 4 \ -1 & 2 & 1 \ 4 & 1 & 5 \end{array}
ight)$$

The matrix is positive semidefinite. (But not positive definite!)

Definiteness of matrix
$$A_1 = 5$$
 principle minors of order 1:
$$A_1 = 5 \geq 0$$

$$A_2 = 2 \geq 0$$

$$A_3 = 5 \geq 0$$
 principle minors of order 2:
$$A_1 = 5 \leq 0$$

$$A_2 = 2 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 2 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 2 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 2 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 2 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 2 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 2 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 2 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 2 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 2 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_1 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_2 = 5 \leq 0$$

$$A_3 = 5 \leq 0$$

$$A_4 = 5 \leq 0$$

$$A_4 = 5 \leq 0$$

$$A_5 = 5$$

$$A_{1,2} = \begin{vmatrix} 5 & -1 \\ -1 & 2 \end{vmatrix} = 9 \ge 0$$

$$A_{1,3} = \begin{vmatrix} 5 & 4 \\ 4 & 5 \end{vmatrix} = 9 \ge 0$$

$$A_{2,3} = \begin{vmatrix} 2 & 1 \\ 1 & 5 \end{vmatrix} = 9 \ge 0$$

principle minors of order 3:

$$A_{1,2,3} = |\mathbf{A}| = 0 \ge 0$$

Example – Principle Minors

Definiteness of matrix

$$\mathbf{A} = \begin{pmatrix} -5 & 1 & -4 \\ 1 & -2 & -1 \\ -4 & -1 & -5 \end{pmatrix}$$

The matrix is negative semidefinite. (But not negative definite!) principle minors of order 1:

$$A = \begin{pmatrix} -5 & 1 & -4 \\ 1 & -2 & -1 \\ -4 & -1 & -5 \end{pmatrix}$$
 $A_1 = -5 \leq 0$ $A_2 = -2 \leq 0$ $A_3 = -5 \leq 0$ principle minors of order 2:

$$A_{1,2} = \begin{vmatrix} -5 & 1 \\ 1 & -2 \end{vmatrix} = 9 \ge 0$$

$$A_{1,3} = \begin{vmatrix} -5 & -4 \\ -4 & -5 \end{vmatrix} = 9 \ge 0$$

$$A_{2,3} = \begin{vmatrix} -2 & -1 \\ -1 & -5 \end{vmatrix} = 9 \ge 0$$

principle minors of order 3:

$$A_{1,2,3} = |\mathbf{A}| = 0 \leq 0$$

Leading Principle Minors and Semidefiniteness

Obviously every positive definite matrix is also positive semidefinite (but not necessarily the other way round).

Matrix

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

is positive definite as all leading principle minors are positive (see above).

Therefore **A** is also positive semidefinite.

In this case there is no need to compute the non-leading principle minors.

Recipe for Semidefiniteness

Recipe for finding semidefiniteness of matrix A:

- 1. Compute all *leading principle minors*:
 - ► If the condition for positive definiteness holds, then
 A is *positive definite* and thus positive semidefinite.
 - ► Else if the condition for negative definiteness holds, then A is *negative definite* and thus negative semidefinite.
 - ► Else if $det(A) \neq 0$, then A is *indefinite*.
- **2.** Else also compute all *non-leading principle minors*:
 - ► If the condition for positive semidefiniteness holds, then A is *positive semidefinite*.
 - ► Else **if** the condition for negative semidefiniteness holds, then A is *negative semidefinite*.
 - ► Else

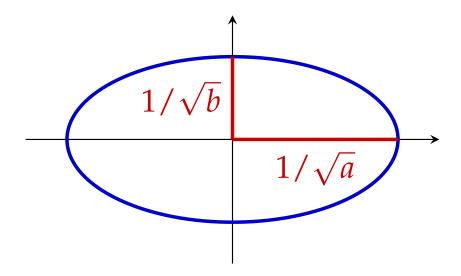
A is indefinite.

Ellipse

Equation

$$ax^2 + by^2 = 1$$
, $a, b > 0$

describes an ellipse in canonical form.



The semi-axes have length $\frac{1}{\sqrt{a}}$ and $\frac{1}{\sqrt{b}}$, resp.

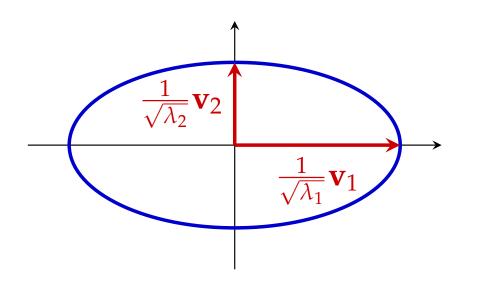
A Geometric Interpretation II

Term $ax^2 + by^2$ is a quadratic form with matrix

$$\mathbf{A} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

It has eigenvalues and normalized eigenvectors

$$\lambda_1 = a$$
 with $\mathbf{v}_1 = \mathbf{e}_1$ and $\lambda_2 = b$ with $\mathbf{v}_2 = \mathbf{e}_2$.



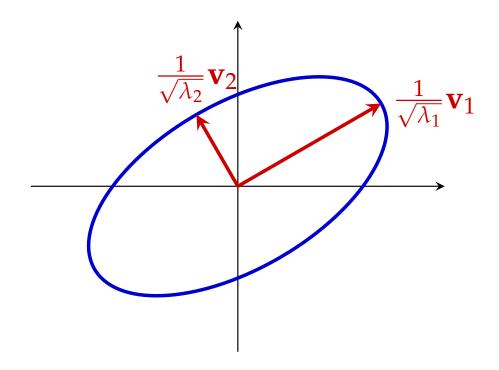
These eigenvectors coincide with the semi-axes of the ellipse.

A Geometric Interpretation II

Now let $\bf A$ be a symmetric 2×2 matrix with *positive* eigenvalues. Equation

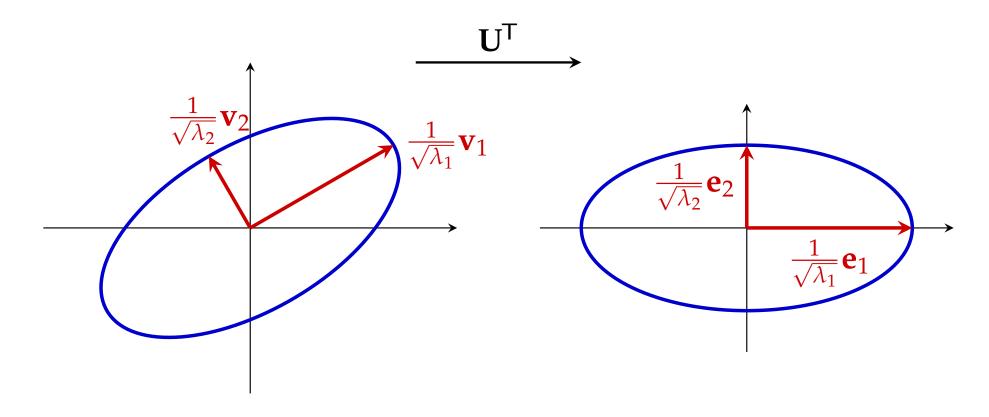
$$\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} = 1$$

describes an *ellipse* where the semi-axes (*principle axes*) coincide with the *normalized* eigenvectors of A.



A Geometric Interpretation II

By a change of basis from $\{e_1, e_2\}$ to $\{v_1, v_2\}$ using transformation $U = (v_1, v_2)$ this ellipse is rotated into canonical form.



(That is, we diagonalize matrix A.)

An Application in Statistics

Suppose we have n observations of k metric attributes X_1, \ldots, X_k which we combine into a vector:

$$\mathbf{x}_i = (x_{i1}, \dots, x_{ik}) \in \mathbb{R}^k$$

The arithmetic mean then is given by

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i = (\overline{x}_1, \dots, \overline{x}_k)$$

The total sum of squares is a measure for the statistical dispersion

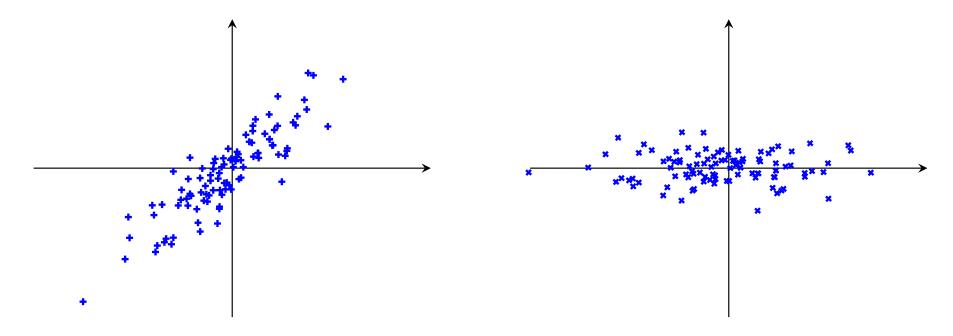
$$TSS = \sum_{i=1}^{n} ||\mathbf{x}_i - \overline{\mathbf{x}}||^2 = \sum_{j=1}^{k} \left(\sum_{i=1}^{n} |x_{ij} - \overline{x}_j|^2 \right) = \sum_{j=1}^{k} TSS_j$$

It can be computed component-wise.

An Application in Statistics

A change of basis by means of an *orthogonal* matrix does not change TSS.

However, it changes the contributions of each of the components.



Can we find a basis such that a few components contribute much more to the TSS than the remaining ones?

Principle Component Analysis (PCA)

Assumptions:

► The data are approximately *multinormal* distributed.

Procedure:

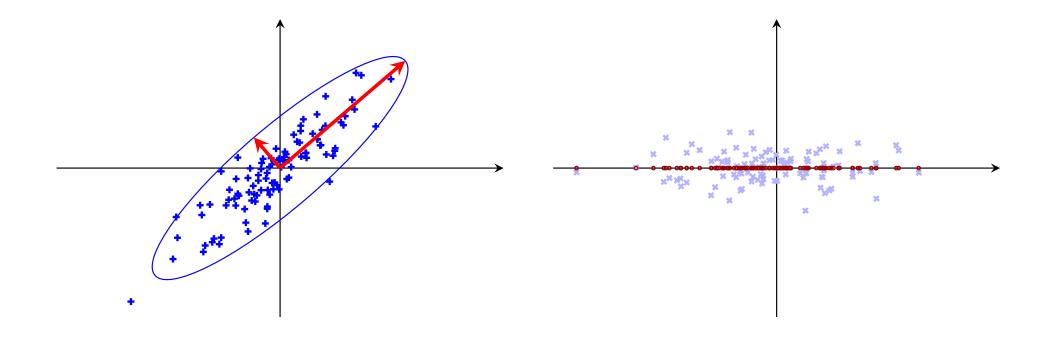
- **1.** Compute the covariance matrix Σ .
- 2. Compute all eigenvalues and normalized eigenvectors of Σ .
- 3. Sort eigenvalues such that

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$$
.

- **4.** Use corresponding eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ as new basis.
- **5.** The contribution of the first m components in this basis to TSS is

$$\frac{\sum_{j=1}^{m} \mathrm{TSS}j}{\sum_{j=1}^{k} \mathrm{TSS}j} \approx \frac{\sum_{j=1}^{m} \lambda_{j}}{\sum_{j=1}^{k} \lambda_{j}}.$$

Principle Component Analysis (PCA)



By means of PCA it is possible to reduce the number of dimensions without reducing the TSS substantially.

Summary

- eigenvalues and eigenvectors
- characteristic polynomial
- eigenspace
- properties of eigenvalues
- symmetric matrices and diagonalization
- quadratic forms
- definitness
- principle minors
- principle component analysis