
Chapter 6

Eigenvalues
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Closed Leontief Model

In a closed Leontief input-output-model consumption and production
coincide, i.e.,

V · x = x = 1 · x
Is this possible for the given technology matrix V?

This is a special case of a so called eigenvalue problem.
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Eigenvalue and Eigenvector

A vector x ∈ Rn, x ̸= 0, is called eigenvector of an n× n matrix A
corresponding to eigenvalue λ ∈ R, if

A · x = λ · x

The eigenvalues of matrix A are all numbers λ for which an eigenvector
does exist.
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Example – Eigenvalue and Eigenvector

For a 3× 3 diagonal matrix we find

A · e1 =




a11 0 0
0 a22 0
0 0 a33


 ·




1
0
0


 =




a11

0
0


 = a11 · e1

Thus e1 is a eigenvector corresponding to eigenvalue λ = a11.

Analogously we find for an n× n diagonal matrix

A · ei = aii · ei

So the eigenvalue of a diagonal matrix are its diagonal elements with
unit vectors ei as the corresponding eigenvectors.
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Computation of Eigenvalues

In order to find eigenvectors of an n× n matrix A we have to solve
equation

A x = λx = λIx ⇔ (A− λI)x = 0 .

If (A− λI) is invertible then we get

x = (A− λI)−10 = 0 .

However, x = 0 cannot be an eigenvector (by definition)
and hence λ cannot be an eigenvalue.

Thus λ is an eigenvalue of A if and only if (A− λI) is not invertible,
i.e., if and only if

det(A− λI) = 0
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Example – Eigenvalues

Compute the eigenvalues of matrix A =

(
1 −2
1 4

)
.

We have to find all λ ∈ R where |A− λI| vanishes.

det(A− λI) =

∣∣∣∣∣

(
1 −2
1 4

)
− λ

(
1 0
0 1

)∣∣∣∣∣ =∣∣∣∣∣

(
1 −2
1 4

)
−
(

λ 0
0 λ

)∣∣∣∣∣ =
∣∣∣∣∣
1− λ −2

1 4− λ

∣∣∣∣∣ = λ2 − 5λ + 6 = 0.

The roots of this quadratic equation are

λ1 = 2 and λ2 = 3.

Thus matrix A has eigenvalues 2 and 3.
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Characteristic Polynomial

For an n× n matrix A
det(A− λI)

is a polynomial of degree n in λ.
It is called the characteristic polynomial of matrix A.

The eigenvalues are then the roots of the characteristic polynomial.

For that reason eigenvalues and eigenvectors are sometimes called the
characteristic roots and characteristic vectors, resp., of A.

The set of all eigenvalues of A is called the spectrum of A.
Spectral methods make use of eigenvalues.

Remark:
It may happen that characteristic roots are complex (λ ∈ C).
These are then called complex eigenvalues.
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Computation of Eigenvectors

Eigenvectors x corresponding to a known eigenvalue λ0 can be
computed by solving linear equation (A− λ0I)x = 0.

Eigenvectors of A =

(
1 −2
1 4

)
corresponding to λ1 = 2:

(A− λ1I)x =

(
−1 −2
1 2

)(
x1

x2

)
=

(
0
0

)

Gaussian elimination yields: x2 = α and x1 = −2α

v1 = α

(
−2
1

)
for an α ∈ R \ {0}.
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Eigenspace

If x is an eigenvector corresponding to eigenvalue λ, then each multiple
αx is an eigenvector, too:

A · (αx) = α(A · x) = αλ · x = λ · (αx)

If x and y are eigenvectors corresponding to the same eigenvalue λ,
then x + y is an eigenvector, too:

A · (x + y) = A · x + A · y = λ · x + λ · y = λ · (x + y)

The set of all eigenvectors corresponding to eigenvalue λ (including
zero vector 0) is thus a subspace of Rn and is called the eigenspace
corresponding to λ.

Computer programs return bases of eigenspaces.
(Beware: Bases are not uniquely determined!)
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Example – Eigenspace

Let A =

(
1 −2
1 4

)
.

Eigenvector corresponding to eigenvalue λ1 = 2: v1 =

(
−2
1

)

Eigenvector corresponding to eigenvalue λ2 = 3: v2 =

(
−1
1

)

Eigenvectors corresponding to eigenvalue λi are all non-vanishing (i.e.,
non-zero) multiples of vi.

Computer programs often return normalized eigenvectors:

v1 =

(
− 2√

5
1√
5

)
and v2 =

(
− 1√

2
1√
2

)
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Example

Eigenvalues and Eigenvectors of A =




2 0 1
0 3 1
0 6 2


 .

Create the characteristic polynomial and compute its roots:

det(A− λI) =

∣∣∣∣∣∣∣

2− λ 0 1
0 3− λ 1
0 6 2− λ

∣∣∣∣∣∣∣
= (2− λ) · λ · (λ− 5) = 0

Eigenvalues:
λ1 = 2, λ2 = 0, and λ3 = 5 .
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Example

Eigenvector(s) corresponding to eigenvalue λ3 = 5:

(A− λ3I)x =



(2− 5) 0 1

0 (3− 5) 1
0 6 (2− 5)







x1

x2

x3


 = 0

Gaussian elimination yields



−3 0 1 0

0 −2 1 0
0 6 −3 0


 ⇝



−3 0 1 0

0 −2 1 0
0 0 0 0




Thus x3 = α, x2 = 1
2 α, and x1 = 1

3 α for arbitrary α ∈ R \ {0}.
Eigenvector v3 = (2, 3, 6)T.
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Example

Eigenvector corresponding to

▶ λ1 = 2: v1 =




1
0
0




▶ λ2 = 0: v2 =



−3
−2
6




▶ λ3 = 5: v3 =




2
3
6




Eigenvectors corresponding to eigenvalue λi are all non-vanishing
multiples of vi.
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Properties of Eigenvalues

1. A and AT have the same eigenvalues.

2. Let A and B be n× n-matrices.
Then A · B and B ·A have the same eigenvalues.

3. If x is an eigenvector of A corresponding to λ,
then x is an eigenvector of Ak corresponding to eigenvalue λk.

4. If x is an eigenvector of regular matrix A corresponding to λ,
then x is an eigenvector of A−1 corresponding to eigenvalue 1

λ .
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Properties of Eigenvalues

5. The product of all eigenvalues λi of an n× n matrix A is equal to
the determinant of A:

det(A) =
n

∏
i=1

λi

This implies:
A is regular if and only if all its eigenvalues are non-zero.

6. The sum of all eigenvalues λi of an n× n matrix A is equal to the
sum of the diagonal elements of A (called the trace of A).

tr(A) =
n

∑
i=1

aii =
n

∑
i=1

λi
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Eigenvalues of Similar Matrices

Let U be a transformation matrix and C = U−1 A U.

If x is an eigenvector of A corresponding to eigenvalue λ,
then U−1x is an eigenvector of C corresponding to λ:

C · (U−1x) = (U−1AU)U−1x = U−1Ax = U−1λx = λ · (U−1x)

Similar matrices A and C have the same eigenvalues and (if we
consider change of basis) the same eigenvectors.

We want to choose a basis such that the matrix that represents the
given linear map becomes as simple as possible.
The simplest matrices are diagonal matrices.

Can we find a basis where the corresponding linear map is represented
by a diagonal matrix?

Unfortunately not in the general case. But . . .
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Symmetric Matrix

An n× n matrix A is called symmetric, if AT = A .

For a symmetric matrix A we find:

▶ All n eigenvalues are real.

▶ Eigenvectors ui corresponding to distinct eigenvalues λi are
orthogonal (i.e., uT

i · uj = 0 if i ̸= j).

▶ There exists an orthonormal basis {u1, . . . , un} (i.e. the vectors
ui are normalized and mutually orthogonal) that consists of
eigenvectors of A,

Matrix U = (u1, . . . , un) is then an orthogonal matrix:

UT ·U = I ⇔ U−1 = UT
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Diagonalization

For the i-th unit vector ei we find

UT A U · ei = UT A ui = UT λi ui = λi UT ui = λi · ei

and thus

UT A U = D =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn




Every symmetric matrix A becomes a diagonal matrix with the
eigenvalues of A as its entries if we use the orthonormal basis of
eigenvectors.

This procedure is called diagonalization of matrix A.

Josef Leydold – Foundations of Mathematics – WS 2024/25 6 – Eigenvalues – 18 / 45

Example – Diagonalization

We want to diagonalize A =

(
1 2
2 1

)
.

Eigenvalues
λ1 = −1 and λ2 = 3

with respective normalized eigenvectors

u1 =

(
− 1√

2
1√
2

)
and u2 =

(
1√
2

1√
2

)

With respect to basis {u1, u2} matrix A becomes diagonal matrix
(
−1 0
0 3

)

Josef Leydold – Foundations of Mathematics – WS 2024/25 6 – Eigenvalues – 19 / 45

A Geometric Interpretation I

Function x 7→ Ax =

(
1 2
2 1

)
x maps the unit circle in R2 into an

ellipsis.
The two semi-axes of the ellipsis are given by λ1v1 and λ2v2, resp.

v1 v2

A

−v1

3v2
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Quadratic Form

Let A be a symmetric matrix. Then function

qA : Rn → R, x 7→ qA(x) = xT ·A · x

is called a quadratic form.

Let A =




1 0 0
0 2 0
0 0 3


. Then

qA(x) =




x1

x2

x3




T

·




1 0 0
0 2 0
0 0 3


 ·




x1

x2

x3


 = x2

1 + 2 x2
2 + 3 x2

3
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Example – Quadratic Form

In general we find for n× n matrix A = (aij):

qA(x) =
n

∑
i=1

n

∑
j=1

aij xixj

qA(x) =




x1

x2

x3




T

·




1 1 −2
1 2 3
−2 3 1


 ·




x1

x2

x3




=




x1

x2

x3




T

·




x1 + x2 − 2x3

x1 + 2x2 + 3x3

−2x1 + 3x2 + x3




= x2
1 + 2x1x2 − 4x1x3 + 2x2

2 + 6x2x3 + x2
3
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Definiteness

A quadratic form qA is called

▶ positive definite, if for all x ̸= 0, qA(x) > 0.
▶ positive semidefinite, if for all x, qA(x) ≥ 0.

▶ negative definite, if for all x ̸= 0, qA(x) < 0.
▶ negative semidefinite, if for all x, qA(x) ≤ 0.

▶ indefinite in all other cases.

A matrix A is called positive (negative) definite (semidefinite), if the
corresponding quadratic form is positive (negative) definite
(semidefinite).
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Definiteness

Every symmetric matrix is diagonalizable. Let {u1, . . . , un} be the
orthonormal basis of eigenvectors of A. Then for every x:

x =
n

∑
i=1

ci(x)ui = Uc(x)

U = (u1, . . . , un) is the transformation matrix for the orthonormal
basis, c the corresponding coefficient vector.

So if D is the diagonal matrix of eigenvalues λi of A we find

qA(x) = xT ·A · x = (Uc)T ·A ·Uc = cT ·UTAU · c = cT ·D · c

and thus

qA(x) =
n

∑
i=1

c2
i (x)λi
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Definiteness and Eigenvalues

Equation qA(x) = ∑n
i=1 c2

i (x)λi immediately implies:

Let λi be the eigenvalues of symmetric matrix A.
Then A (the quadratic form qA) is
▶ positive definite, if all λi > 0.
▶ positive semidefinite, if all λi ≥ 0.

▶ negative definite, if all λi < 0.
▶ negative semidefinite, if all λi ≤ 0.

▶ indefinite, if there exist λi > 0 and λj < 0.
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Example – Definiteness and Eigenvalues

▶ The eigenvalues of

(
2 −2
−2 5

)
are λ1 = 6 and λ2 = 1.

Thus the matrix is positive definite.

▶ The eigenvalues of




5 −1 4
−1 2 1
4 1 5


 are

λ1 = 0, λ2 = 3, and λ3 = 9. The matrix is positive semidefinite.

▶ The eigenvalues of




7 −5 4
−5 7 4
4 4 −2


 are

λ1 = −6, λ2 = 6 and λ3 = 12. Thus the matrix is indefinite.
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Leading Principle Minors

The definiteness of a matrix can also be determined by means of
minors.

Let A = (aij) be a symmetric n× n matrix.
Then the determinant of submatrix

Ak =

∣∣∣∣∣∣∣∣

a11 . . . a1k
...

. . .
...

ak1 . . . akk

∣∣∣∣∣∣∣∣

is called the k-th leading principle minor of A.
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Leading Principle Minors and Definiteness

A symmetric Matrix A is

▶ positive definite, if and only if all Ak > 0.

▶ negative definite, if and only if (−1)k Ak > 0 for all k.

▶ indefinite, if |A| ̸= 0 and none of the two cases holds.

(−1)k Ak > 0 means that
▶ A1, A3, A5, . . . < 0, and
▶ A2, A4, A6, . . . > 0.
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Example – Leading Principle Minors

Definiteness of matrix

A =




2 1 0
1 3 −1
0 −1 2




A and qA are positive
definite.

A1 = det(a11) = a11 = 2 > 0

A2 =

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣ =
∣∣∣∣∣
2 1
1 3

∣∣∣∣∣ = 5 > 0

A3 = |A| =

∣∣∣∣∣∣∣

2 1 0
1 3 −1
0 −1 2

∣∣∣∣∣∣∣
= 8 > 0
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Example – Leading Principle Minors

Definiteness of matrix

A =




1 1 −2
1 2 3
−2 3 1




A and qA are indefinite.

A1 = det(a11) = a11 = 1 > 0

A2 =

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣ =
∣∣∣∣∣
1 1
1 2

∣∣∣∣∣ = 1 > 0

A3 = |A| =

∣∣∣∣∣∣∣

1 1 −2
1 2 3
−2 3 1

∣∣∣∣∣∣∣
= −28 < 0
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Principle Minors

Unfortunately the condition for semidefiniteness is more tedious.

Let A = (aij) be a symmetric n× n matrix.
Then the determinant of submatrix

Ai1,...,ik =

∣∣∣∣∣∣∣∣

ai1,i1 . . . ai1,ik
...

. . .
...

aik ,i1 . . . aik ,ik

∣∣∣∣∣∣∣∣
1 ≤ i1 < . . . < ik ≤ n.

is called a principle minor of order k of A.
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Principle Minors and Semidefiniteness

A symmetric matrix A is

▶ positive semidefinite, if and only if all Ai1,...,ik ≥ 0.

▶ negative semidefinite, if and only if (−1)k Ai1,...,ik ≥ 0 for all k.

▶ indefinite in all other cases.

(−1)k Ai1,...,ik ≥ 0 means that
▶ Ai1,...,ik ≥ 0, if k is even, and
▶ Ai1,...,ik ≤ 0, if k is odd.
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Example – Principle Minors

Definiteness of matrix

A =




5 −1 4
−1 2 1
4 1 5




The matrix is
positive semidefinite.

(But not positive definite!)

principle minors of order 1:
A1 = 5 ≥ 0 A2 = 2 ≥ 0
A3 = 5 ≥ 0

principle minors of order 2:

A1,2 =

∣∣∣∣∣
5 −1
−1 2

∣∣∣∣∣ = 9 ≥ 0

A1,3 =

∣∣∣∣∣
5 4
4 5

∣∣∣∣∣ = 9 ≥ 0

A2,3 =

∣∣∣∣∣
2 1
1 5

∣∣∣∣∣ = 9 ≥ 0

principle minors of order 3:
A1,2,3 = |A| = 0 ≥ 0
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Example – Principle Minors

Definiteness of matrix

A =



−5 1 −4
1 −2 −1
−4 −1 −5




The matrix is
negative semidefinite.

(But not negative definite!)

principle minors of order 1:
A1 = −5 ≤ 0 A2 = −2 ≤ 0
A3 = −5 ≤ 0

principle minors of order 2:

A1,2 =

∣∣∣∣∣
−5 1
1 −2

∣∣∣∣∣ = 9 ≥ 0

A1,3 =

∣∣∣∣∣
−5 −4
−4 −5

∣∣∣∣∣ = 9 ≥ 0

A2,3 =

∣∣∣∣∣
−2 −1
−1 −5

∣∣∣∣∣ = 9 ≥ 0

principle minors of order 3:
A1,2,3 = |A| = 0 ≤ 0
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Leading Principle Minors and Semidefiniteness

Obviously every positive definite matrix is also positive semidefinite
(but not necessarily the other way round).

Matrix

A =




2 1 0
1 3 −1
0 −1 2




is positive definite as all leading principle minors are positive
(see above).

Therefore A is also positive semidefinite.

In this case there is no need to compute the non-leading principle
minors.
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Recipe for Semidefiniteness

Recipe for finding semidefiniteness of matrix A:

1. Compute all leading principle minors:
▶ If the condition for positive definiteness holds, then

A is positive definite and thus positive semidefinite.
▶ Else if the condition for negative definiteness holds, then

A is negative definite and thus negative semidefinite.
▶ Else if det(A) ̸= 0, then

A is indefinite.

2. Else also compute all non-leading principle minors:
▶ If the condition for positive semidefiniteness holds, then

A is positive semidefinite.
▶ Else if the condition for negative semidefiniteness holds, then

A is negative semidefinite.
▶ Else

A is indefinite.
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Ellipse

Equation
ax2 + by2 = 1 , a, b > 0

describes an ellipse in canonical form.

1/
√

b

1/
√

a

The semi-axes have length 1√
a and 1√

b
, resp.
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A Geometric Interpretation II

Term ax2 + by2 is a quadratic form with matrix

A =

(
a 0
0 b

)

It has eigenvalues and normalized eigenvectors

λ1 = a with v1 = e1 and λ2 = b with v2 = e2 .

1√
λ2

v2

1√
λ1

v1

These eigenvectors coincide with
the semi-axes of the ellipse.
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A Geometric Interpretation II

Now let A be a symmetric 2× 2 matrix with positive eigenvalues.
Equation

xTAx = 1

describes an ellipse where the semi-axes (principle axes) coincide with
the normalized eigenvectors of A.

1√
λ2

v2 1√
λ1

v1
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A Geometric Interpretation II

By a change of basis from {e1, e2} to {v1, v2} using transformation
U = (v1, v2) this ellipse is rotated into canonical form.

1√
λ2

v2 1√
λ1

v1

UT

1√
λ2

e2

1√
λ1

e1

(That is, we diagonalize matrix A.)
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An Application in Statistics

Suppose we have n observations of k metric attributes X1, . . . , Xk
which we combine into a vector:

xi = (xi1, . . . , xik) ∈ Rk

The arithmetic mean then is given by

x =
1
n

n

∑
i=1

xi = (x1, . . . , xk)

The total sum of squares is a measure for the statistical dispersion

TSS =
n

∑
i=1
∥xi − x∥2 =

k

∑
j=1

(
n

∑
i=1
|xij − xj|2

)
=

k

∑
j=1

TSSj

It can be computed component-wise.
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An Application in Statistics

A change of basis by means of an orthogonal matrix does not change
TSS.

However, it changes the contributions of each of the components.

Can we find a basis such that a few components contribute much more
to the TSS than the remaining ones?
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Principle Component Analysis (PCA)

Assumptions:
▶ The data are approximately multinormal distributed.

Procedure:

1. Compute the covariance matrix Σ.

2. Compute all eigenvalues and normalized eigenvectors of Σ.

3. Sort eigenvalues such that

λ1 ≥ λ2 ≥ . . . ≥ λk .

4. Use corresponding eigenvectors v1, . . . , vk as new basis.

5. The contribution of the first m components in this basis to TSS is

∑m
j=1 TSSj

∑k
j=1 TSSj

≈ ∑m
j=1 λj

∑k
j=1 λj

.

Josef Leydold – Foundations of Mathematics – WS 2024/25 6 – Eigenvalues – 43 / 45

Principle Component Analysis (PCA)

By means of PCA it is possible to reduce the number of dimensions
without reducing the TSS substantially.
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Summary

▶ eigenvalues and eigenvectors
▶ characteristic polynomial
▶ eigenspace
▶ properties of eigenvalues
▶ symmetric matrices and diagonalization
▶ quadratic forms
▶ definitness
▶ principle minors
▶ principle component analysis
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