
Chapter 4

Vector Space
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Real Vector Space

The set of all vectors x with n components is denoted by

Rn =








x1
...

xn




∣∣∣∣∣∣∣∣
xi ∈ R, 1 ≤ i ≤ n





It is the prototype example of an n-dimensional (real) vector space.

Definition:
A vector space V is a set of objects which may be added together and
multiplied by numbers, called scalars.
Elements of a vector space are called vectors.

For details see course “Mathematics 1”.
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Example – Vector Space

The set of all 2× 2 matrices

R2×2 =

{(
a11 a12

a21 a22

)∣∣∣∣∣ aij ∈ R, i, j ∈ {1, 2}
}

together with matrix addition and scalar multiplication forms a vector
space.

Similarly the set of all m× n matrices

Rm×n =








a11 . . . a1n
...

. . .
...

am1 . . . amn




∣∣∣∣∣∣∣∣
aij ∈ R, i = 1, . . . , m, j = 1, . . . n





forms a vector space.
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A More Abstract Example

Let Pn = {∑n
i=0 aixi|ai ∈ R} be the set of all polynomials in x of

degree less than or equal to n.

Obviously we can multiply a polynomial by a scalar:

3 · (4x2 − 2x + 5) = 12x2 − 6x + 15 ∈ P2

and add them point-wise:

(4x2 − 2x + 5) + (−4x2 + 5x− 2) = 3x + 3 ∈ P2

So for every p(x), q(x) ∈ Pn and α ∈ R we find

αp(x) ∈ Pn and p(x) + q(x) ∈ Pn .

Thus Pn together with point-wise addition and scalar multiplication
forms a vector space.

Josef Leydold – Foundations of Mathematics – WS 2024/25 4 – Vector Space – 4 / 55



Linear Combination

Let v1, . . . , vk ∈ Rn be vectors and c1, . . . , ck ∈ R arbitrary numbers.
Then we get a new vector by a linear combination of these vectors:

x = c1 v1 + · · ·+ ck vk =
k

∑
i=1

ci vi

Let v1 =




1
2
3


, v2 =




4
5
6


, v3 =



−2
−2
−2


, v4 =



−1
0
−3


.

Then the following are linear combinations of vectors v1, v2, v3, and v4:

x = 1 v1 + 0 v2 + 3 v3 − 2 v4 = (−3,−4, 3)T,

y = −v1 + v2 − 2 v3 + 3 v4 = (4, 7,−2)T, and

z = 2 v1 − 2 v2 − 3 v3 + 0 v4 = (0, 0, 0)T = 0
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Subspace

A Subspace S of a vector space V is a subset of V which itself forms a
vector space (with the same rules for addition and scalar multiplication).

In order to verify that a subset S ⊆ V is a subspace of V we have to
verify that for all x, y ∈ S and all α, β ∈ R

αx + βy ∈ S

We say that S is closed under linear combinations.

Equivalently: We have to verify that

(i) if x, y ∈ S , then x + y ∈ S ; and

(ii) if x ∈ S and α ∈ R, then αx ∈ S .
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Example – Subspace








x1

x2

0


 : xi ∈ R, 1 ≤ i ≤ 2




⊂ R3 is a subspace of R3.





x = α




1
2
3


 : α ∈ R




⊂ R3 is a subspace of R3.








x1

x2

x3


 : xi ≥ 0, 1 ≤ i ≤ 3




⊂ R3 is not a subspace of R3.
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Example – Homogeneous Linear Equation

Let A be an m× n matrix.
The solution set L of the homogeneous linear equation

Ax = 0

forms a subspace of Rn:

Let x, y ∈ L ⊆ Rn, i.e., Ax = 0 and Ay = 0, and α, β ∈ R.

Then a straightforward computation yields

A(αx + βy) = αAx + βAy = α0 + β0 = 0

i.e., αx + βy solves the linear equation and hence αx + βy ∈ L.

Therefore L is a subspace of Rn.
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Example – Subspace

{(
a11 0
0 a22

)∣∣∣∣∣ aii ∈ R, i ∈ {1, 2}
}

is a subspace of R2×2.

{(
a −b
b a

)∣∣∣∣∣ a, b ∈ R

}
is a subspace of R2×2.

{
A ∈ R2×2

∣∣A is invertible
}

is not a subspace of R2×2.
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Linear Span

The set of all linear combinations of vectors v1, . . . , vk ∈ V

span(v1, v2, . . . , vk) =

{
k

∑
i=1

civi

∣∣∣∣∣ ci ∈ R, i = 1, . . . , k

}

forms a subspace of V and is called the linear span of v1, . . . , vk.
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Linear Span

Let x, y ∈ S = span(v1, v2, . . . , vk) and α, β ∈ R.

Then there exist ai, bi ∈ R, i = 1, . . . , k, such that

x =
k

∑
i=1

aivi and y =
k

∑
i=1

bivi .

But then

αx + βy = α
k

∑
i=1

aivi + β
k

∑
i=1

bivi =
k

∑
i=1

(αai + βbi)︸ ︷︷ ︸
∈R

vi ∈ S

as the last summation is a linear combination of vectors v1, . . . , vk.

Hence S = span(v1, v2, . . . , vk) is a subspace of V .
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Example – Linear Span

Let v1 =




1
2
3


, v2 =




4
5
6


, v3 =



−2
−2
−2


, v4 =



−1
0
−3


.

span (v1) = {c v1 : c ∈ R} is a straight line in R3 through the origin.

span (v1, v2) is a plane in R3 through the origin.

span (v1, v2, v3) = span (v1, v2)

span(v1, v2, v3, v4) = R3.
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Linear Independency

Every vector x ∈ span(v1, . . . , vk) can be written as a linear
combination of v1, . . . , vk.

Let v1 =




1
2
3


, v2 =




4
5
6


, v3 =



−2
−2
−2


, v4 =



−1
0
−3


.

x =



−3
−4
3


 = 1 v1 + 0 v2 + 3 v3− 2 v4 = −1 v1 + 2 v2 + 6 v3− 2 v4

The representation in this example is not unique!

Reason: 2 v1 − 2 v2 − 3 v3 + 0 v4 = 0
One of the vectors seems to be needless:

span (v1, v2, v3, v4) = span (v1, v2, v4)
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Linear Independency

Vectors v1, . . . , vk are called linearly independent if the
homogeneous system of equations

c1 v1 + c2 v2 + · · ·+ ck vk = 0

has the unique solution c1 = c2 = · · · = ck = 0. They are called
linearly dependent if these equations have other (non-zero) solutions.

If vectors are linearly dependent then some vector (but not necessarily
each of these!) can be written as a linear combination of the other
vectors.

2 v1 − 2 v2 − 3 v3 + 0 v4 = 0 ⇔ v3 = 2
3 v1 − 2

3 v2

Hence span(v1, v2, v3) = span(v1, v2).
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Linear Independency

Determine linear (in)dependency

(1) Create matrix V = (v1, . . . , vk).

(2) Transform V into row echelon form by means of Gaussian
elimination.

(3) Count the number of non-zero rows.

(4) If this is equal to k (the number of vectors),
then these vectors are linearly Independence.

If it is smaller, then the vectors or linearly dependent.

This procedure checks whether the linear equation V · c = 0 has a
unique solution.
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Example – Linearly Independent

Are the vectors

v1 =




3
2
2


 , v2 =




1
4
1


 , v3 =




3
1
1




linearly independent?

(1) Create a matrix: 


3 1 3
2 4 1
2 1 1



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Example – Linearly Independent

(2) Transform:




3 1 3
2 4 1
2 1 1


 ⇝




3 1 3
0 10 −3
0 1 −3


 ⇝




3 1 3
0 10 −3
0 0 −27




(3) We count 3 non-zero rows.

(4) The number of non-zero rows coincides with
the number of vectors (= 3).

Thus the three vectors v1, v2, and v3 are linearly independent.
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Example – Linearly Dependent

Are vectors v1 =




3
2
5


 , v2 =




1
4
5


 , v3 =




3
1
4




linearly independent?

(1) Create a matrix . . . (2) and transform:




3 1 3
2 4 1
5 5 4


 ⇝




3 1 3
0 10 −3
0 10 −3


 ⇝




3 1 3
0 10 −3
0 0 0




(3) We count 2 non-zero rows.

(4) The number of non-zero rows (= 2) is less than the number of
vectors (= 3).

Thus the three vectors v1, v2, and v3 are linearly dependent.
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Rank of a Matrix

The rank of matrix A is the maximal number of linearly independent
columns.

We have: rank(AT) = rank(A)

The rank of an n× k matrix is at most min(n, k).

An n× n matrix is called regular, if it has full rank,
i.e. if rank(A) = n.
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Rank of a Matrix

Computation of the rank:

(1) Transform matrix A into row echelon form by means of
Gaussian elimination.

(2) Then rank(A) is given by the number of non-zero rows.




3 1 3
2 4 1
2 1 1


 ⇝




3 1 3
0 10 −3
0 0 −27


 ⇒ rank(A) = 3




3 1 3
2 4 1
5 5 4


 ⇝




3 1 3
0 10 −3
0 0 0


 ⇒ rank(A) = 2
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Invertible and Regular

An n× n matrix A is invertible, if and only if it is regular.

The following 3× 3 matrix




3 1 3
2 4 1
2 1 1


 has full rank (3).

Thus it is regular and hence invertible.

The following 3× 3 matrix




3 1 3
2 4 1
5 5 4


 has only rank 2.

Thus it is not regular and hence singular (i.e., not invertible).
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Basis

A set of vectors {v1, . . . , vd} spans (or generates) a vector space V , if

span(v1, . . . , vd) = V

This set is thus called a generating set for the vector space.

If these vectors are linearly independent, then this set is called a basis
of the vector space.

The basis of a vector space is not uniquely determined!

However, the number of vectors in a basis is uniquely determined.
It is called the dimension of the vector space.

dim(V) = d
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Characterizations of a Basis

There are several equivalent characterizations of a basis.

A basis B of vector space V is a

▶ linearly independent generating set of V
▶ minimal generating set of V

(i.e., every proper subset of B does not span V )

▶ maximal linearly independent set
(i.e., every proper superset of B is linearly dependent)
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Example – Basis

The so called canonical basis of the Rn consists of the n unit vectors:

B0 = {e1, . . . , en} ⊂ Rn

Thus we can conclude that

dim(Rn) = n

an that every basis of Rn consists of n (linearly independent) vectors.

Another basis of the R3:







3
2
2


 ,




1
4
1


 ,




3
1
1








Josef Leydold – Foundations of Mathematics – WS 2024/25 4 – Vector Space – 24 / 55



Non-Example – Basis

The following are not bases of the R3:








1
2
3


 ,




4
5
6


 ,



−2
−2
−2


 ,



−1
0
−3








is not linearly independent (because it has too many vectors).








3
2
3


 ,




2
4
1








does not span R3 (because it has too few vectors).

Beware: Three vectors need not necessarily form a basis of R3.
They might be linearly dependent.
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Example – Basis

The canonical basis of R2×2 consists of the four matrices
(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
, and

(
0 0
0 1

)

and hence
dim(R2×2) = 4 .
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Example – Basis

The simplest basis of vector space P2 = {∑2
i=0 aixi|ai ∈ R} is given

by

{
1, x, x2}

and hence
dim(P2) = 3 .
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Coordinates of a Vector

Let B = {v1, . . . , vn} be a basis of vector space V .
Then for every ci ∈ R we get a vector

x =
n

∑
i=1

civi

On the other hand for a given vector x we can find (unique) numbers
ci(x) ∈ R such that

x =
n

∑
i=1

ci(x)vi

The numbers ci(x) are called the coefficients of x w.r.t. basis B.
The vector

c(x) = (c1(x, . . . , cn(x))

is called the coefficient vector of x w.r.t. basis B.
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Space of Coordinate Vectors

For a fixed basis B the coefficient vector c(x) of x is unique and

c(x) ∈ Rn = Rdim(V) .

So we have a bijection

V → Rn, x 7→ c(x)

with the nice (structure preserving) property
▶ c(αx) = αc(x)
▶ c(x + y) = c(x) + c(y)

for all x, y ∈ V and all α ∈ R.

That is, instead of dealing with vectors in V we can fix a basis B and do
all computations with coefficient vectors in Rn.

Thus every n-dimensional vector space V is isomorphic to (i.e., looks
like) an Rn.
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Coordinates of Vectors in Rn

Let B = {v1, . . . , vn} be a basis of Rn.
We obtain the coordinate vector c(x) of x ∈ Rn w.r.t. B by solving the
linear equation

c1v1 + c2v2 + · · ·+ cnvn = x .

In matrix notation with V = (v1, . . . , vn):

V · c = x ⇒ c = V−1x

By construction V has full rank.

Observe that components x1, . . . , xn of vector x can be seen as its
coordinate w.r.t. the canonical basis.
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Example – Coordinate Vector

Compute the coordinates c of x =




1
−1
2




w.r.t. basis B =








1
2
3


 ,




1
3
5


 ,




1
3
6








We have to solve equation Vc = x:




1 1 1
2 3 3
3 5 6


 ·




c1

c2

c3


 =




1
−1
2


 ⇝




1 1 1 1
2 3 3 −1
3 5 6 2



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Example – Coordinate Vector




1 1 1 1
2 3 3 −1
3 5 6 2


 ⇝




1 1 1 1
0 1 1 −3
0 2 3 −1


 ⇝




1 1 1 1
0 1 1 −3
0 0 1 5




Back substitution yields c1 = 4, c2 = −8 and c3 = 5.

The coordinate vector of x w.r.t. basis B is thus

c(x) =




4
−8
5




Alternatively we could compute V−1 and get as c = V−1x.
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Change of Basis

Let c1 and c2 be the coordinate vectors of x ∈ V w.r.t. bases
B1 = {v1, v2, . . . , vn} and B2 = {w1, w2, . . . , wn}, resp.

Consequently c2(x) = W−1x = W−1Vc1(x) .

Such a transformation of a coordinate vector w.r.t. one basis into that of
another one is called a change of basis.

Matrix

U = W−1V

is called the transformation matrix for this change from basis B1 to
B2.
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Example – Change of Basis

Let

B1 =








1
1
1


 ,



−2
1
1


 ,




3
5
6








and B2 =








1
2
3


 ,




1
3
5


 ,




1
3
6








two bases of R3.

Transformation matrix for the change of basis from B1 to B2:
U = W−1 ·V.

W =




1 1 1
2 3 3
3 5 6


 ⇒ W−1 =




3 −1 0
−3 3 −1
1 −2 1




V =




1 −2 3
1 1 5
1 1 6



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Example – Change of Basis

Transformation matrix for the change of basis from B1 to B2:

U = W−1 ·V =




3 −1 0
−3 3 −1
1 −2 1


 ·




1 −2 3
1 1 5
1 1 6


 =




2 −7 4
−1 8 0
0 −3 −1




Let c1 = (3, 2, 1)T be the coordinate vector of x w.r.t. basis B1.
Then the coordinate vector c2 w.r.t. basis B2 is given by

c2 = Uc1 =




2 −7 4
−1 8 0
0 −3 −1


 ·




3
2
1


 =



−4
13
−7



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Linear Map

A map φ from vector space V intoW

φ : V → W , x 7→ y = φ(x)

is called linear, if for all x, y ∈ V and α ∈ R

(i) φ(x + y) = φ(x) + φ(y)
(ii) φ(α x) = α φ(x)

We already have seen such a map: V → Rn, x 7→ c(x)
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Linear Map

Let A be an m× n matrix. Then map
φ : Rn → Rm, x 7→ φA(x) = A · x is linear:

φA(x + y) = A · (x + y) = A · x + A · y = φA(x) + φA(y)

φA(α x) = A · (α x) = α (A · x) = α φA(x)

Vice versa every linear map φ : Rn → Rm can be represented by an
appropriate m× n matrix Aφ: φ(x) = Aφ x.

Matrices represent all possible linear maps Rn → Rm.

More generally they represent linear maps between any vector space
once we have bases for these and do all computations with their
coordinate vectors.

In this sense, matrices “are” linear maps.
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Geometric Interpretation of Linear Maps

We have the following “elementary” maps:
▶ lengthening / shortening in some direction
▶ shear in some direction
▶ projection into a subspace
▶ rotation
▶ reflection at a subspace

These maps can be combined into more complex ones.
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Lengthening / Shortening

Map φ : x 7→
(

2 0
0 1

2

)
x

lengthens the x-coordinate by factor 2 and
shortens the y-coordinate by factor 1

2 .

φ
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Shear

Map φ : x 7→
(

1 1
0 1

)
x

shears the rectangle into the x-coordinate.

φ
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Projection

Map φ : x 7→
(

1
2

1
2

1
2

1
2

)
x

projects a point x orthogonally into the subspace generated by vector
(1, 1)T, i.e., span

(
(1, 1)T

)
.

φ
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Rotation

Map φ : x 7→
( √

2
2

√
2

2
−
√

2
2

√
2

2

)
x

rotates a point x clock-wise by 45° around the origin.

φ
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Reflection

Map φ : x 7→
(
−1 0
0 1

)
x

reflects a point x at the y-axis.

φ
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Image and Kernel

Let φ : Rn → Rm, x 7→ φ(x) = A · x be a linear map.

The image of φ is a subspace of Rm.

Im(φ) = {φ(v) : v ∈ Rn} ⊆ Rm

The kernel (or null space) of φ is a subspace of Rn.

Ker(φ) = {v ∈ Rn : φ(v) = 0} ⊆ Rn

The kernel is the preimage of 0.

Image Im(A) and kernel Ker(A) of a matrix A are the respective
image and kernel of the corresponding linear map.
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Generating Set of the Image

Let A = (a1, . . . , an), x ∈ Rn an arbitrary vector, and φ(x) = Ax.

We can write x as a linear combination of the canonical basis:

x =
n

∑
i=1

xi ei

Recall that Aei = ai.
So we can write φ(x) as a linear combination of the columns of A:

φ(x) = A · x = A ·
n

∑
i=1

xi ei =
n

∑
i=1

xi Aei =
n

∑
i=1

xi ai

That is, the columns ai of A span (generate) Im(φ).
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Basis of the Kernel

Let A = (a1, . . . , an) and φ(x) = Ax.

If y, z ∈ Ker(φ) and α, β ∈ R, then

φ(αy + βz) = αφ(y) + βφ(z) = α0 + β0 = 0

Thus Ker(φ) is closed under linear combination,
i.e., Ker(φ) is a subspace.

We obtain a basis of Ker(φ) by solving the homogeneous linear
equation A · x = 0 by means of Gaussian elimination.
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Dimension of Image and Kernel

Rank-nullity theorem:

dimV = dim Im(φ) + dim Ker(φ)
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Example – Dimension of Image and Kern

Map φ : R2 → R2, x 7→
(

1 0
0 0

)
x

projects a point x orthogonally onto the x axis.

Ker(φ)
φ

Im(φ)

dim R2 = 2, dim Ker(φ) = 1 dim Im(φ) = 1
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Linear Map and Rank

The rank of matrix A = (a1, . . . , an) is (per definition) the dimension of
span(a1, . . . , an).

Hence it is the dimension of the image of the corresponding linear map.

dim Im(φA) = rank(A)

The dimension of the solution set L of a homogeneous linear equation
A x = 0 is then the kernel of this map.

dimL = dim Ker(φA) = dim Rn − dim Im(φA) = n− rank(A)
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Matrix Multiplication

By multiplying two matrices A and B we obtain the matrix of a
compound linear map:

(φA ◦ φB)(x) = φA(φB(x)) = A (B x) = (A · B) x

Rn Rm
RkB A

AB

x Bx ABx

This point of view implies:

rank(A · B) ≤ min {rank(A), rank(B)}
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Non-Commutative Matrix Multiplication

A =

(
1 0
0 1

3

)
represents a shortening of the y-coordinate.

B =

(
0 1
−1 0

)
represents a clock-wise rotation about 90°.

A B
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Non-Commutative Matrix Multiplication

A B

BAx

B A

ABx
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Inverse Matrix

The inverse matrix A−1 of A exists if and only if map φA(x) = A x is
one-to-one and onto, i.e., if and only if

φA(x) = x1 a1 + · · ·+ xn an = 0 ⇔ x = 0

i.e., if and only ifA is regular.

From this point of view implies (A · B)−1 = B−1 ·A−1

Rn Rm
RkB A

AB

x Bx ABx
B−1A−1z A−1z z

B−1A−1
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Similar Matrices

The basis of a vector space and thus the coordinates of a vector are not
uniquely determined. Matrix Aφ of a linear map φ : Rn → Rn also
depends on the chosen bases.
Let A be the matrix w.r.t. basis B1.
Which matrix represents linear map φ if we use basis B2 instead?

basis B1 U x A−→ A U x

U
x yU−1

basis B2 x C−→ U−1 A U x

and thus C x = U−1 A U x

Two n× n matrices A and C are called similar, if there exists a regular
matrix U such that

C = U−1 A U
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Summary

▶ vector space and subspace
▶ linear independency and rank
▶ basis and dimension
▶ coordinate vector
▶ change of basis
▶ linear map
▶ image and kernel
▶ similar matrices
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