Chapter 4

Vector Space

Real Vector Space

The set of all vectors **x** with *n* components is denoted by

$$\mathbb{R}^{n} = \left\{ \left. \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \right| x_{i} \in \mathbb{R}, 1 \leq i \leq n \right\}$$

It is *the* prototype example of an *n*-dimensional (real) vector space.

Definition:

A vector space \mathcal{V} is a *set* of objects which may be *added* together and *multiplied* by numbers, called *scalars*. Elements of a vector space are called **vectors**.

For details see course "Mathematics 1".

Example – Vector Space

The set of all 2×2 matrices

$$\mathbb{R}^{2 \times 2} = \left\{ \left. \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \right| a_{ij} \in \mathbb{R}, \ i, j \in \{1, 2\} \right\}$$

together with matrix addition and scalar multiplication forms a vector space.

Similarly the set of all $m \times n$ matrices

$$\mathbb{R}^{m \times n} = \left\{ \left. \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \right| a_{ij} \in \mathbb{R}, \ i = 1, \dots, m, \ j = 1, \dots, n \right\}$$

forms a vector space.

A More Abstract Example

Let $\mathcal{P}_n = \{\sum_{i=0}^n a_i x^i | a_i \in \mathbb{R}\}$ be the set of all polynomials in x of degree less than or equal to n.

Obviously we can multiply a polynomial by a scalar:

$$3 \cdot (4x^2 - 2x + 5) = 12x^2 - 6x + 15 \in \mathcal{P}_2$$

and add them point-wise:

$$(4x^2 - 2x + 5) + (-4x^2 + 5x - 2) = 3x + 3 \in \mathcal{P}_2$$

So for every $p(x), q(x) \in \mathcal{P}_n$ and $\alpha \in \mathbb{R}$ we find

$$\alpha p(x) \in \mathcal{P}_n$$
 and $p(x) + q(x) \in \mathcal{P}_n$.

Thus \mathcal{P}_n together with point-wise addition and scalar multiplication forms a vector space.

Linear Combination

Let $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{R}^n$ be vectors and $c_1, \ldots, c_k \in \mathbb{R}$ arbitrary numbers. Then we get a new vector by a **linear combination** of these vectors:

$$\mathbf{x} = c_1 \, \mathbf{v}_1 + \dots + c_k \, \mathbf{v}_k = \sum_{i=1}^k c_i \, \mathbf{v}_i$$

Let
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix}$, $\mathbf{v}_4 = \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix}$.

Then the following are linear combinations of vectors v_1 , v_2 , v_3 , and v_4 :

$$\mathbf{x} = 1 \, \mathbf{v}_1 + 0 \, \mathbf{v}_2 + 3 \, \mathbf{v}_3 - 2 \, \mathbf{v}_4 = (-3, -4, 3)^{\mathsf{T}}, \\ \mathbf{y} = -\mathbf{v}_1 + \mathbf{v}_2 - 2 \, \mathbf{v}_3 + 3 \, \mathbf{v}_4 = (4, 7, -2)^{\mathsf{T}}, \text{ and } \\ \mathbf{z} = 2 \, \mathbf{v}_1 - 2 \, \mathbf{v}_2 - 3 \, \mathbf{v}_3 + 0 \, \mathbf{v}_4 = (0, 0, 0)^{\mathsf{T}} = 0$$

Subspace

A **Subspace** S of a vector space V is a *subset* of V which itself forms a *vector space* (with the same rules for addition and scalar multiplication).

In order to verify that a *subset* $S \subseteq V$ is a *subspace* of V we have to verify that for all $\mathbf{x}, \mathbf{y} \in S$ and all $\alpha, \beta \in \mathbb{R}$

$$\alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{S}$$

We say that S is closed under linear combinations.

Equivalently: We have to verify that

(i) if
$$x, y \in S$$
, then $x + y \in S$; and

(ii) if
$$\mathbf{x} \in \mathcal{S}$$
 and $\alpha \in \mathbb{R}$, then $\alpha \mathbf{x} \in \mathcal{S}$.

Example – Subspace

$$\left\{ egin{pmatrix} x_1 \ x_2 \ 0 \end{pmatrix} : x_i \in \mathbb{R}, \, 1 \leq i \leq 2
ight\} \subset \mathbb{R}^3$$
 is a subspace of \mathbb{R}^3 .

$$\left\{ \mathbf{x} = \alpha \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} : \alpha \in \mathbb{R} \right\} \subset \mathbb{R}^3 \quad \text{is a subspace of } \mathbb{R}^3.$$

$$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_i \ge 0, \ 1 \le i \le 3 \right\} \subset \mathbb{R}^3 \quad \text{ is not a subspace of } \mathbb{R}^3.$$

Example – Homogeneous Linear Equation

Let **A** be an $m \times n$ matrix.

The solution set \mathcal{L} of the *homogeneous* linear equation

$$\mathbf{A}\mathbf{x} = 0$$

forms a subspace of \mathbb{R}^n :

Let $\mathbf{x}, \mathbf{y} \in \mathcal{L} \subseteq \mathbb{R}^n$, i.e., $\mathbf{A}\mathbf{x} = 0$ and $\mathbf{A}\mathbf{y} = 0$, and $\alpha, \beta \in \mathbb{R}$.

Then a straightforward computation yields

$$\mathbf{A}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathbf{A}\mathbf{x} + \beta \mathbf{A}\mathbf{y} = \alpha \mathbf{0} + \beta \mathbf{0} = \mathbf{0}$$

i.e., $\alpha \mathbf{x} + \beta \mathbf{y}$ solves the linear equation and hence $\alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{L}$. Therefore \mathcal{L} is a subspace of \mathbb{R}^n .

Example – Subspace

$$\left\{ \left. \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} \right| a_{ii} \in \mathbb{R}, \ i \in \{1, 2\} \right\} \quad \text{is a subspace of } \mathbb{R}^{2 \times 2}.$$

$$\left\{ egin{array}{cc} a & -b \ b & a \end{array} \middle| a,b \in \mathbb{R}
ight\}$$
 is a subspace of $\mathbb{R}^{2 imes 2}$.

 $\{ \mathbf{A} \in \mathbb{R}^{2 \times 2} | \mathbf{A} \text{ is invertible} \}$ is **not** a subspace of $\mathbb{R}^{2 \times 2}$.

Linear Span

The set of all *linear combinations* of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathcal{V}$

$$\operatorname{span}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k) = \left\{ \sum_{i=1}^k c_i \mathbf{v}_i \middle| c_i \in \mathbb{R}, \ i = 1,\ldots,k \right\}$$

forms a subspace of \mathcal{V} and is called the **linear span** of $\mathbf{v}_1, \ldots, \mathbf{v}_k$.

Linear Span

Let $\mathbf{x}, \mathbf{y} \in S = \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ and $\alpha, \beta \in \mathbb{R}$. Then there exist $a_i, b_i \in \mathbb{R}$, $i = 1, \dots, k$, such that

$$\mathbf{x} = \sum_{i=1}^k a_i \mathbf{v}_i$$
 and $\mathbf{y} = \sum_{i=1}^k b_i \mathbf{v}_i$.

But then

$$\alpha \mathbf{x} + \beta \mathbf{y} = \alpha \sum_{i=1}^{k} a_i \mathbf{v}_i + \beta \sum_{i=1}^{k} b_i \mathbf{v}_i = \sum_{i=1}^{k} \underbrace{(\alpha a_i + \beta b_i)}_{\in \mathbb{R}} \mathbf{v}_i \in \mathcal{S}$$

as the last summation is a linear combination of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Hence $S = \text{span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k)$ is a subspace of \mathcal{V} .

Example – Linear Span

Let
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix}$, $\mathbf{v}_4 = \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix}$

span $(\mathbf{v}_1) = \{c \, \mathbf{v}_1 : c \in \mathbb{R}\}$ is a straight line in \mathbb{R}^3 through the origin.

span $(\mathbf{v}_1, \mathbf{v}_2)$ is a plane in \mathbb{R}^3 through the origin.

$$\mathsf{span}\,(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)=\mathsf{span}\,(\mathbf{v}_1,\mathbf{v}_2)$$

 $\operatorname{span}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{v}_4) = \mathbb{R}^3.$

Linear Independency

Every vector $\mathbf{x} \in \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$ can be written as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$.

Let
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix}$, $\mathbf{v}_4 = \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix}$.
$$\mathbf{x} = \begin{pmatrix} -3 \\ -4 \\ 3 \end{pmatrix} = 1 \,\mathbf{v}_1 + 0 \,\mathbf{v}_2 + 3 \,\mathbf{v}_3 - 2 \,\mathbf{v}_4 = -1 \,\mathbf{v}_1 + 2 \,\mathbf{v}_2 + 6 \,\mathbf{v}_3 - 2 \,\mathbf{v}_4$$

The representation in this example is not unique!

Reason: $2\mathbf{v}_1 - 2\mathbf{v}_2 - 3\mathbf{v}_3 + 0\mathbf{v}_4 = 0$

One of the vectors seems to be needless: span $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4) = \text{span} (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4)$

Linear Independency

Vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are called **linearly independent** if the homogeneous system of equations

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k = 0$$

has the unique solution $c_1 = c_2 = \cdots = c_k = 0$. They are called **linearly dependent** if these equations have other (non-zero) solutions.

If vectors are linearly dependent then *some* vector (but *not* necessarily *each* of these!) can be written as a linear combination of the other vectors.

$$2 \mathbf{v}_1 - 2 \mathbf{v}_2 - 3 \mathbf{v}_3 + 0 \mathbf{v}_4 = 0 \quad \Leftrightarrow \quad \mathbf{v}_3 = \frac{2}{3} \mathbf{v}_1 - \frac{2}{3} \mathbf{v}_2$$

Hence $\operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) = \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2).$

Linear Independency

Determine linear (in)dependency

- (1) Create matrix $\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_k)$.
- (2) Transform V into row echelon form by means of Gaussian elimination.
- (3) Count the number of non-zero rows.
- (4) If this is equal to k (the number of vectors), then these vectors are linearly Independence.
 If it is smaller, then the vectors or linearly dependent.

This procedure checks whether the linear equation $\mathbf{V} \cdot \mathbf{c} = 0$ has a unique solution.

Example – Linearly Independent

Are the vectors

$$\mathbf{v}_1 = \begin{pmatrix} 3\\2\\2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1\\4\\1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 3\\1\\1 \end{pmatrix}$$

linearly independent?

(1) Create a matrix:

Example – Linearly Independent

(2) Transform:

$$\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 2 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 1 & -3 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 0 & -27 \end{pmatrix}$$

(3) We count 3 non-zero rows.

(4) The number of non-zero rows coincides with the number of vectors (= 3).

Thus the three vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are *linearly independent*.

Example – Linearly Dependent

Are vectors
$$\mathbf{v}_1 = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$

linearly independent?

(1) Create a matrix ... (2) and transform:

$$\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 5 & 5 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 10 & -3 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

(3) We count 2 non-zero rows.

(4) The number of non-zero rows (= 2) is less than the number of vectors (= 3).

Thus the three vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are *linearly dependent*.

Rank of a Matrix

The **rank** of matrix \mathbf{A} is the maximal number of linearly independent columns.

We have:

$$\mathsf{rank}(\mathbf{A}^\mathsf{T}) = \mathsf{rank}(\mathbf{A})$$

The rank of an $n \times k$ matrix is at most $\min(n, k)$.

An $n \times n$ matrix is called **regular**, if it has **full rank**, i.e. if rank(\mathbf{A}) = n.

Rank of a Matrix

Computation of the rank:

- (1) Transform matrix A into row echelon form by means of Gaussian elimination.
- (2) Then rank(A) is given by the number of non-zero rows.

$$\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 2 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 0 & -27 \end{pmatrix} \Rightarrow \operatorname{rank}(\mathbf{A}) = 3$$

$$\begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 10 & -3 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \operatorname{rank}(\mathbf{A}) = 2$$

Invertible and Regular

An $n \times n$ matrix **A** is *invertible*, if and only if it is *regular*.

The following
$$3 \times 3$$
 matrix $\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 2 & 1 & 1 \end{pmatrix}$ has full rank (3).

Thus it is regular and hence invertible.

The following
$$3 \times 3$$
 matrix $\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 5 & 5 & 4 \end{pmatrix}$ has only rank 2.

Thus it is not regular and hence singular (i.e., not invertible).

Basis

A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_d\}$ spans (or *generates*) a vector space \mathcal{V} , if

$$\operatorname{span}(\mathbf{v}_1,\ldots,\mathbf{v}_d) = \mathcal{V}$$

This set is thus called a **generating set** for the vector space.

If these vectors are *linearly independent*, then this set is called a **basis** of the vector space.

The basis of a vector space is not uniquely determined!

However, the number of vectors in a basis is uniquely determined. It is called the **dimension** of the vector space.

$$\dim(\mathcal{V}) = d$$

Characterizations of a Basis

There are several *equivalent* characterizations of a basis.

A basis B of vector space \mathcal{V} is a

- \blacktriangleright linearly independent generating set of ${\cal V}$
- minimal generating set of V
 (i.e., every proper subset of B does not span V)
- maximal linearly independent set (i.e., every proper superset of B is linearly dependent)

Example – Basis

The so called **canonical basis** of the \mathbb{R}^n consists of the *n* unit vectors:

$$B_0 = \{\mathbf{e}_1, \ldots, \mathbf{e}_n\} \subset \mathbb{R}^n$$

Thus we can conclude that

$$\dim(\mathbb{R}^n)=n$$

an that every basis of \mathbb{R}^n consists of *n* (linearly independent) vectors.

Another basis of the \mathbb{R}^3 :

$$\left\{ \begin{pmatrix} 3\\2\\2 \end{pmatrix}, \begin{pmatrix} 1\\4\\1 \end{pmatrix}, \begin{pmatrix} 3\\1\\1 \end{pmatrix} \right\}$$

Non-Example – Basis

The following are *not* bases of the \mathbb{R}^3 :

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} -2\\-2\\-2 \end{pmatrix}, \begin{pmatrix} -1\\0\\-3 \end{pmatrix} \right\}$$

is not linearly independent (because it has too many vectors).

$$\left\{ \begin{pmatrix} 3\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\4\\1 \end{pmatrix} \right\}$$

does not span \mathbb{R}^3 (because it has too few vectors).

Beware: Three vectors need not necessarily form a basis of \mathbb{R}^3 . They might be linearly dependent.

Example – Basis

The *canonical basis* of $\mathbb{R}^{2 \times 2}$ consists of the four matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \text{ and } \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

and hence

 $\dim(\mathbb{R}^{2\times 2})=4.$

Example – Basis

The simplest basis of vector space $\mathcal{P}_2 = \{\sum_{i=0}^2 a_i x^i | a_i \in \mathbb{R}\}$ is given by

$$\left\{1, x, x^2\right\}$$

and hence

 $dim(\mathcal{P}_2)=3$.

Coordinates of a Vector

Let $B = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a basis of vector space \mathcal{V} . Then for every $c_i \in \mathbb{R}$ we get a vector

$$\mathbf{x} = \sum_{i=1}^{n} c_i \mathbf{v}_i$$

On the other hand for a given vector \mathbf{x} we can find (unique) numbers $c_i(\mathbf{x}) \in \mathbb{R}$ such that

$$\mathbf{x} = \sum_{i=1}^n c_i(\mathbf{x}) \mathbf{v}_i$$

The numbers $c_i(\mathbf{x})$ are called the **coefficients** of \mathbf{x} w.r.t. basis B. The vector

$$\mathbf{c}(\mathbf{x}) = (c_1(\mathbf{x},\ldots,c_n(\mathbf{x})))$$

is called the **coefficient vector** of \mathbf{x} w.r.t. basis B.

Space of Coordinate Vectors

For a fixed basis *B* the coefficient vector $\mathbf{c}(\mathbf{x})$ of \mathbf{x} is unique and

$$\mathbf{c}(\mathbf{x}) \in \mathbb{R}^n = \mathbb{R}^{\dim(\mathcal{V})}$$

So we have a bijection

 $\mathcal{V} \to \mathbb{R}^n$, $\mathbf{x} \mapsto \mathbf{c}(\mathbf{x})$

with the nice (structure preserving) property

•
$$\mathbf{c}(\alpha \mathbf{x}) = \alpha \mathbf{c}(\mathbf{x})$$

• $\mathbf{c}(\mathbf{x} + \mathbf{y}) = \mathbf{c}(\mathbf{x}) + \mathbf{c}(\mathbf{y})$
for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}$ and all $\alpha \in \mathbb{R}$.

That is, instead of dealing with vectors in \mathcal{V} we can fix a basis B and do all computations with coefficient vectors in \mathbb{R}^n .

Thus every *n*-dimensional vector space \mathcal{V} is *isomorphic* to (i.e., looks like) an \mathbb{R}^n .

Coordinates of Vectors in \mathbb{R}^n

Let $B = {\mathbf{v}_1, ..., \mathbf{v}_n}$ be a basis of \mathbb{R}^n . We obtain the coordinate vector $\mathbf{c}(\mathbf{x})$ of $\mathbf{x} \in \mathbb{R}^n$ w.r.t. *B* by solving the linear equation

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n=\mathbf{x}$$
.

In matrix notation with $\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$:

$$\mathbf{V} \cdot \mathbf{c} = \mathbf{x} \qquad \Rightarrow \qquad \mathbf{c} = \mathbf{V}^{-1}\mathbf{x}$$

By construction V has full rank.

Observe that components x_1, \ldots, x_n of vector **x** can be seen as its coordinate w.r.t. the canonical basis.

Example – Coordinate Vector

Compute the coordinates **c** of
$$\mathbf{x} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

w.r.t. basis $B = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} \right\}$

We have to solve equation Vc = x:

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 3 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 2 & 3 & 3 & | & -1 \\ 3 & 5 & 6 & | & 2 \end{pmatrix}$$

Example – Coordinate Vector

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 2 & 3 & 3 & | & -1 \\ 3 & 5 & 6 & | & 2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & -3 \\ 0 & 2 & 3 & | & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & -3 \\ 0 & 0 & 1 & | & 5 \end{pmatrix}$$

Back substitution yields $c_1 = 4$, $c_2 = -8$ and $c_3 = 5$.

The coordinate vector of \mathbf{x} w.r.t. basis B is thus

$$\mathbf{c}(\mathbf{x}) = \begin{pmatrix} 4\\ -8\\ 5 \end{pmatrix}$$

Alternatively we could compute V^{-1} and get as $c = V^{-1}x$.

Change of Basis

Let \mathbf{c}_1 and \mathbf{c}_2 be the coordinate vectors of $\mathbf{x} \in \mathcal{V}$ w.r.t. bases $B_1 = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ and $B_2 = {\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n}$, resp.

Consequently $\mathbf{c}_2(\mathbf{x}) = \mathbf{W}^{-1}\mathbf{x} = \mathbf{W}^{-1}\mathbf{V}\mathbf{c}_1(\mathbf{x})$.

Such a transformation of a coordinate vector w.r.t. one basis into that of another one is called a **change of basis**.

Matrix

$$\mathbf{U} = \mathbf{W}^{-1}\mathbf{V}$$

is called the **transformation matrix** for this change from basis \mathcal{B}_1 to \mathcal{B}_2 .

Example – Change of Basis

Let

$$B_1 = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -2\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 3\\5\\6 \end{pmatrix} \right\} \text{ and } B_2 = \left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\3\\5 \end{pmatrix}, \begin{pmatrix} 1\\3\\6 \end{pmatrix} \right\}$$

two bases of \mathbb{R}^3 .

Transformation matrix for the change of basis from B_1 to B_2 : $\mathbf{U} = \mathbf{W}^{-1} \cdot \mathbf{V}.$

$$\mathbf{W} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 3 & 5 & 6 \end{pmatrix} \Rightarrow \mathbf{W}^{-1} = \begin{pmatrix} 3 & -1 & 0 \\ -3 & 3 & -1 \\ 1 & -2 & 1 \end{pmatrix}$$
$$\mathbf{V} = \begin{pmatrix} 1 & -2 & 3 \\ 1 & 1 & 5 \\ 1 & 1 & 6 \end{pmatrix}$$

Example – Change of Basis

Transformation matrix for the change of basis from B_1 to B_2 :

$$\mathbf{U} = \mathbf{W}^{-1} \cdot \mathbf{V} = \begin{pmatrix} 3 & -1 & 0 \\ -3 & 3 & -1 \\ 1 & -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 & 3 \\ 1 & 1 & 5 \\ 1 & 1 & 6 \end{pmatrix} = \begin{pmatrix} 2 & -7 & 4 \\ -1 & 8 & 0 \\ 0 & -3 & -1 \end{pmatrix}$$

Let $\mathbf{c}_1 = (3, 2, 1)^T$ be the coordinate vector of \mathbf{x} w.r.t. basis B_1 . Then the coordinate vector \mathbf{c}_2 w.r.t. basis B_2 is given by

$$\mathbf{c}_{2} = \mathbf{U}\mathbf{c}_{1} = \begin{pmatrix} 2 & -7 & 4 \\ -1 & 8 & 0 \\ 0 & -3 & -1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 13 \\ -7 \end{pmatrix}$$

Linear Map

A map φ from vector space $\mathcal V$ into $\mathcal W$

$$\varphi \colon \mathcal{V} \to \mathcal{W}, \ \mathbf{x} \mapsto \mathbf{y} = \varphi(\mathbf{x})$$

is called **linear**, if for all $x,y\in\mathcal{V}$ and $\alpha\in\mathbb{R}$

(i)
$$\varphi(\mathbf{x} + \mathbf{y}) = \varphi(\mathbf{x}) + \varphi(\mathbf{y})$$

(ii) $\varphi(\alpha \mathbf{x}) = \alpha \varphi(\mathbf{x})$

We already have seen such a map: $\mathcal{V} \to \mathbb{R}^n$, $\mathbf{x} \mapsto \mathbf{c}(\mathbf{x})$

Linear Map

Let A be an $m \times n$ matrix. Then map $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m, \mathbf{x} \mapsto \varphi_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x}$ is linear: $\varphi_{\mathbf{A}}(\mathbf{x} + \mathbf{y}) = \mathbf{A} \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{A} \cdot \mathbf{x} + \mathbf{A} \cdot \mathbf{y} = \varphi_{\mathbf{A}}(\mathbf{x}) + \varphi_{\mathbf{A}}(\mathbf{y})$ $\varphi_{\mathbf{A}}(\alpha \mathbf{x}) = \mathbf{A} \cdot (\alpha \mathbf{x}) = \alpha (\mathbf{A} \cdot \mathbf{x}) = \alpha \varphi_{\mathbf{A}}(\mathbf{x})$

Vice versa every linear map $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$ can be represented by an appropriate $m \times n$ matrix $\mathbf{A}_{\varphi} \colon \quad \varphi(\mathbf{x}) = \mathbf{A}_{\varphi} \mathbf{x}$.

Matrices represent all possible linear maps $\mathbb{R}^n \to \mathbb{R}^m$.

More generally they represent linear maps between any vector space once we have bases for these and do all computations with their coordinate vectors.

In this sense, *matrices "are" linear maps*.

Geometric Interpretation of Linear Maps

We have the following "elementary" maps:

- Iengthening / shortening in some direction
- shear in some direction
- ► *projection* into a subspace
- rotation
- ► *reflection* at a subspace

These maps can be combined into more complex ones.

Lengthening / Shortening

Map
$$\varphi \colon \mathbf{x} \mapsto \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \mathbf{x}$$

lengthens the *x*-coordinate by factor 2 and shortens the *y*-coordinate by factor $\frac{1}{2}$.

Shear

$$\mathsf{Map}\; \varphi \colon \mathbf{x} \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{x}$$

shears the rectangle into the *x*-coordinate.

Projection

$$\mathsf{Map}\;\varphi\colon \mathbf{x}\mapsto \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}\mathbf{x}$$

projects a point x orthogonally into the subspace generated by vector $(1,1)^{\mathsf{T}}$, i.e., span $((1,1)^{\mathsf{T}})$.

Rotation

Map
$$\varphi \colon \mathbf{x} \mapsto \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \mathbf{x}$$

rotates a point x clock-wise by 45° around the origin.

Reflection

$$\mathsf{Map} \ \varphi \colon \mathbf{x} \mapsto \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}$$

reflects a point \mathbf{x} at the y-axis.

Image and Kernel

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{x} \mapsto \varphi(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x}$ be a linear map.

The **image** of φ is a subspace of \mathbb{R}^m .

$$\mathsf{Im}(\varphi) = \{\varphi(\mathbf{v}) \colon \mathbf{v} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

The **kernel** (or **null space**) of φ is a subspace of \mathbb{R}^n .

$$\mathsf{Ker}(\varphi) = \{\mathbf{v} \in \mathbb{R}^n \colon \varphi(\mathbf{v}) = 0\} \subseteq \mathbb{R}^n$$

The kernel is the preimage of 0.

Image Im(A) and kernel Ker(A) of a matrix A are the respective image and kernel of the corresponding linear map.

Generating Set of the Image

Let $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$, $\mathbf{x} \in \mathbb{R}^n$ an arbitrary vector, and $\varphi(\mathbf{x}) = \mathbf{A}\mathbf{x}$.

We can write x as a linear combination of the canonical basis:

$$\mathbf{x} = \sum_{i=1}^n x_i \, \mathbf{e}_i$$

Recall that $Ae_i = a_i$. So we can write $\varphi(\mathbf{x})$ as a linear combination of the columns of **A**:

$$\varphi(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \sum_{i=1}^{n} x_i \, \mathbf{e}_i = \sum_{i=1}^{n} x_i \, \mathbf{A} \mathbf{e}_i = \sum_{i=1}^{n} x_i \, \mathbf{a}_i$$

That is, the columns \mathbf{a}_i of \mathbf{A} span (generate) $Im(\varphi)$.

Basis of the Kernel

Let
$$\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$$
 and $\varphi(\mathbf{x}) = \mathbf{A}\mathbf{x}$.

If $\mathbf{y}, \mathbf{z} \in \operatorname{Ker}(\varphi)$ and $\alpha, \beta \in \mathbb{R}$, then

$$\varphi(\alpha \mathbf{y} + \beta \mathbf{z}) = \alpha \varphi(\mathbf{y}) + \beta \varphi(\mathbf{z}) = \alpha 0 + \beta 0 = 0$$

Thus ${\rm Ker}(\varphi)$ is closed under linear combination, i.e., ${\rm Ker}(\varphi)$ is a subspace.

We obtain a basis of $\text{Ker}(\varphi)$ by solving the homogeneous linear equation $\mathbf{A} \cdot \mathbf{x} = 0$ by means of Gaussian elimination.

Dimension of Image and Kernel

Rank-nullity theorem:

$$\dim \mathcal{V} = \dim \operatorname{Im}(\varphi) + \dim \operatorname{Ker}(\varphi)$$

Example – Dimension of Image and Kern

Map
$$\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2, \ \mathbf{x} \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x}$$

projects a point \mathbf{x} orthogonally onto the x axis.

Linear Map and Rank

The *rank* of matrix $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ is (per definition) the dimension of span $(\mathbf{a}_1, \dots, \mathbf{a}_n)$.

Hence it is the dimension of the image of the corresponding linear map.

$$\dim \operatorname{Im}(\varphi_{\mathbf{A}}) = \operatorname{rank}(\mathbf{A})$$

The dimension of the solution set \mathcal{L} of a homogeneous linear equation $\mathbf{A} \mathbf{x} = 0$ is then the kernel of this map.

 $\dim \mathcal{L} = \dim \operatorname{Ker}(\varphi_{\mathbf{A}}) = \dim \mathbb{R}^n - \dim \operatorname{Im}(\varphi_{\mathbf{A}}) = n - \operatorname{rank}(\mathbf{A})$

Matrix Multiplication

By *multiplying* two matrices A and B we obtain the matrix of a *compound* linear map:

 $(\varphi_{\mathbf{A}} \circ \varphi_{\mathbf{B}})(\mathbf{x}) = \varphi_{\mathbf{A}}(\varphi_{\mathbf{B}}(\mathbf{x})) = \mathbf{A}(\mathbf{B}\,\mathbf{x}) = (\mathbf{A}\cdot\mathbf{B})\,\mathbf{x}$

This point of view implies:

$$\mathsf{rank}(\mathbf{A} \cdot \mathbf{B}) \le \min\left\{\mathsf{rank}(\mathbf{A}), \mathsf{rank}(\mathbf{B})\right\}$$

Non-Commutative Matrix Multiplication

Non-Commutative Matrix Multiplication

Inverse Matrix

The *inverse matrix* A^{-1} of A exists if and only if map $\varphi_A(x) = A x$ is one-to-one and onto, i.e., if and only if

$$\varphi_{\mathbf{A}}(\mathbf{x}) = x_1 \, \mathbf{a}_1 + \dots + x_n \, \mathbf{a}_n = 0 \quad \Leftrightarrow \quad \mathbf{x} = 0$$

i.e., if and only if A is *regular*.

From this point of view implies $(\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$

Similar Matrices

The basis of a vector space and thus the coordinates of a vector are not uniquely determined. Matrix \mathbf{A}_{φ} of a linear map $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ also depends on the chosen bases.

Let **A** be the matrix w.r.t. basis B_1 .

Which matrix represents linear map φ if we use basis B_2 instead?

Two $n \times n$ matrices **A** and **C** are called **similar**, if there exists a regular matrix **U** such that

$$\mathbf{C} = \mathbf{U}^{-1} \, \mathbf{A} \, \mathbf{U}$$

Summary

- vector space and subspace
- Inear independency and rank
- basis and dimension
- coordinate vector
- change of basis
- ► linear map
- ► image and kernel
- similar matrices