## Chapter 4

# **Vector Space**

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 1 / 55

### **Real Vector Space**

The set of all vectors  $\mathbf{x}$  with n components is denoted by

$$\mathbb{R}^{n} = \left\{ \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \middle| x_{i} \in \mathbb{R}, 1 \leq i \leq n \right\}$$

It is the prototype example of an n-dimensional (real) vector space.

#### **Definition:**

A **vector space** V is a *set* of objects which may be *added* together and *multiplied* by numbers, called *scalars*.

Elements of a vector space are called vectors.

For details see course "Mathematics 1".

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 2 / 55

## **Example – Vector Space**

The set of all  $2 \times 2$  matrices

$$\mathbb{R}^{2\times 2} = \left\{ \left. \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \right| a_{ij} \in \mathbb{R}, \ i, j \in \{1, 2\} \right\}$$

together with matrix addition and scalar multiplication forms a vector space.

Similarly the set of all  $m \times n$  matrices

$$\mathbb{R}^{m\times n} = \left\{ \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \middle| a_{ij} \in \mathbb{R}, i = 1, \dots, m, j = 1, \dots n \right\}$$

forms a vector space.

### **A More Abstract Example**

Let  $\mathcal{P}_n = \{\sum_{i=0}^n a_i x^i | a_i \in \mathbb{R}\}$  be the set of all polynomials in x of degree less than or equal to n.

Obviously we can multiply a polynomial by a scalar:

$$3 \cdot (4x^2 - 2x + 5) = 12x^2 - 6x + 15 \in \mathcal{P}_2$$

and add them point-wise:

$$(4x^2 - 2x + 5) + (-4x^2 + 5x - 2) = 3x + 3 \in \mathcal{P}_2$$

So for every  $p(x), q(x) \in \mathcal{P}_n$  and  $\alpha \in \mathbb{R}$  we find

$$\alpha p(x) \in \mathcal{P}_n$$
 and  $p(x) + q(x) \in \mathcal{P}_n$ .

Thus  $\mathcal{P}_n$  together with point-wise addition and scalar multiplication forms a vector space.

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 4 / 55

#### **Linear Combination**

Let  $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$  be vectors and  $c_1, \dots, c_k \in \mathbb{R}$  arbitrary numbers. Then we get a new vector by a **linear combination** of these vectors:

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k = \sum_{i=1}^k c_i \mathbf{v}_i$$

Let 
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
,  $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ ,  $\mathbf{v}_3 = \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix}$ ,  $\mathbf{v}_4 = \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix}$ .

Then the following are linear combinations of vectors  $v_1$ ,  $v_2$ ,  $v_3$ , and  $v_4$ :

$$\mathbf{x} = 1 \, \mathbf{v}_1 + 0 \, \mathbf{v}_2 + 3 \, \mathbf{v}_3 - 2 \, \mathbf{v}_4 = (-3, -4, 3)^\mathsf{T},$$
 $\mathbf{y} = -\mathbf{v}_1 + \mathbf{v}_2 - 2 \, \mathbf{v}_3 + 3 \, \mathbf{v}_4 = (4, 7, -2)^\mathsf{T},$  and  $\mathbf{z} = 2 \, \mathbf{v}_1 - 2 \, \mathbf{v}_2 - 3 \, \mathbf{v}_3 + 0 \, \mathbf{v}_4 = (0, 0, 0)^\mathsf{T} = 0$ 

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 5 / 55

## **Subspace**

A **Subspace** S of a vector space V is a *subset* of V which itself forms a *vector space* (with the same rules for addition and scalar multiplication).

In order to verify that a *subset*  $\mathcal{S} \subseteq \mathcal{V}$  is a *subspace* of  $\mathcal{V}$  we have to verify that for all  $\mathbf{x}, \mathbf{y} \in \mathcal{S}$  and all  $\alpha, \beta \in \mathbb{R}$ 

$$\alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{S}$$

We say that S is closed under linear combinations.

Equivalently: We have to verify that

(i) if 
$$x, y \in \mathcal{S}$$
, then  $x + y \in \mathcal{S}$ ; and

(ii) if 
$$\mathbf{x} \in \mathcal{S}$$
 and  $\alpha \in \mathbb{R}$ , then  $\alpha \mathbf{x} \in \mathcal{S}$ .

### Example - Subspace

$$\left\{\begin{pmatrix} x_1\\x_2\\0 \end{pmatrix}: x_i \in \mathbb{R},\, 1 \leq i \leq 2\right\} \subset \mathbb{R}^3 \quad \text{ is a subspace of } \mathbb{R}^3.$$

$$\left\{\mathbf{x}=\alpha\begin{pmatrix}1\\2\\3\end{pmatrix}:\alpha\in\mathbb{R}\right\}\subset\mathbb{R}^3\quad\text{is a subspace of }\mathbb{R}^3.$$

$$\left\{\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}: x_i \geq 0, \, 1 \leq i \leq 3 \right\} \subset \mathbb{R}^3 \quad \text{is not a subspace of } \mathbb{R}^3.$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 7 / 55

### **Example – Homogeneous Linear Equation**

Let **A** be an  $m \times n$  matrix.

The solution set  $\mathcal{L}$  of the *homogeneous* linear equation

$$\mathbf{A}\mathbf{x} = 0$$

forms a subspace of  $\mathbb{R}^n$ :

Let  $\mathbf{x}, \mathbf{y} \in \mathcal{L} \subseteq \mathbb{R}^n$ , i.e.,  $\mathbf{A}\mathbf{x} = 0$  and  $\mathbf{A}\mathbf{y} = 0$ , and  $\alpha, \beta \in \mathbb{R}$ .

Then a straightforward computation yields

$$\mathbf{A}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{A} \mathbf{y} = \alpha \mathbf{0} + \beta \mathbf{0} = 0$$

i.e.,  $\alpha \mathbf{x} + \beta \mathbf{y}$  solves the linear equation and hence  $\alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{L}$ .

Therefore  $\mathcal{L}$  is a subspace of  $\mathbb{R}^n$ .

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 8 / 55

## Example – Subspace

$$\left\{ \left. \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} \right| a_{ii} \in \mathbb{R}, \ i \in \{1,2\} \right\} \quad \text{is a subspace of } \mathbb{R}^{2 \times 2}.$$

$$\left\{ egin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| \ a,b \in \mathbb{R} 
ight\} \quad ext{is a subspace of } \mathbb{R}^{2 imes 2}.$$

 $\left\{\left.\mathbf{A} \in \mathbb{R}^{2\times 2}\right| \mathbf{A} \text{ is invertible}\right\} \quad \text{is } \mathbf{not} \text{ a subspace of } \mathbb{R}^{2\times 2}.$ 

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 9 / 55

### **Linear Span**

The set of all *linear combinations* of vectors  $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathcal{V}$ 

$$\operatorname{span}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k) = \left\{ \left. \sum_{i=1}^k c_i \mathbf{v}_i \right| c_i \in \mathbb{R}, \; i=1,\ldots,k \right\}$$

forms a subspace of V and is called the **linear span** of  $\mathbf{v}_1, \dots, \mathbf{v}_k$ .

Josef Levdold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 10 / 55

### Linear Span

Let  $\mathbf{x}, \mathbf{y} \in \mathcal{S} = \mathsf{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$  and  $\alpha, \beta \in \mathbb{R}$ .

Then there exist  $a_i, b_i \in \mathbb{R}$ , i = 1, ..., k, such that

$$\mathbf{x} = \sum_{i=1}^k a_i \mathbf{v}_i$$
 and  $\mathbf{y} = \sum_{i=1}^k b_i \mathbf{v}_i$ .

But then

$$\alpha \mathbf{x} + \beta \mathbf{y} = \alpha \sum_{i=1}^{k} a_i \mathbf{v}_i + \beta \sum_{i=1}^{k} b_i \mathbf{v}_i = \sum_{i=1}^{k} (\alpha a_i + \beta b_i) \mathbf{v}_i \in \mathcal{S}$$

as the last summation is a linear combination of vectors  $\mathbf{v}_1, \dots, \mathbf{v}_k$ .

Hence  $S = \text{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$  is a subspace of  $\mathcal{V}$ .

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 11 / 55

## Example – Linear Span

Let 
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
,  $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ ,  $\mathbf{v}_3 = \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix}$ ,  $\mathbf{v}_4 = \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix}$ .

span  $(\mathbf{v}_1) = \{c \ \mathbf{v}_1 \colon c \in \mathbb{R}\}$  is a straight line in  $\mathbb{R}^3$  through the origin.

span  $(\mathbf{v}_1, \mathbf{v}_2)$  is a plane in  $\mathbb{R}^3$  through the origin.

$$\operatorname{span}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3) = \operatorname{span}(\mathbf{v}_1,\mathbf{v}_2)$$

$$span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4) = \mathbb{R}^3.$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 12 / 55

### **Linear Independency**

Every vector  $\mathbf{x} \in \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$  can be written as a linear combination of  $\mathbf{v}_1, \dots, \mathbf{v}_k$ .

Let 
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
,  $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ ,  $\mathbf{v}_3 = \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix}$ ,  $\mathbf{v}_4 = \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix}$ .

$$\mathbf{x} = \begin{pmatrix} -3 \\ -4 \\ 3 \end{pmatrix} = 1 \mathbf{v}_1 + 0 \mathbf{v}_2 + 3 \mathbf{v}_3 - 2 \mathbf{v}_4 = -1 \mathbf{v}_1 + 2 \mathbf{v}_2 + 6 \mathbf{v}_3 - 2 \mathbf{v}_4$$

The representation in this example is not unique!

**Reason:** 
$$2\mathbf{v}_1 - 2\mathbf{v}_2 - 3\mathbf{v}_3 + 0\mathbf{v}_4 = 0$$

One of the vectors seems to be needless:

$$\operatorname{span}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{v}_4) = \operatorname{span}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_4)$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 13 / 55

### **Linear Independency**

Vectors  $\mathbf{v}_1, \dots, \mathbf{v}_k$  are called **linearly independent** if the homogeneous system of equations

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k = 0$$

has the unique solution  $c_1 = c_2 = \cdots = c_k = 0$ . They are called **linearly dependent** if these equations have other (non-zero) solutions.

If vectors are linearly dependent then *some* vector (but *not* necessarily *each* of these!) can be written as a linear combination of the other vectors.

$$2\mathbf{v}_1 - 2\mathbf{v}_2 - 3\mathbf{v}_3 + 0\mathbf{v}_4 = 0 \quad \Leftrightarrow \quad \mathbf{v}_3 = \frac{2}{3}\mathbf{v}_1 - \frac{2}{3}\mathbf{v}_2$$

Hence  $\operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) = \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2).$ 

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 14 / 55

## **Linear Independency**

#### Determine linear (in)dependency

- (1) Create matrix  $V = (v_1, \dots, v_k)$ .
- (2) Transform V into row echelon form by means of Gaussian elimination.
- (3) Count the number of non-zero rows.
- **(4)** If this is equal to *k* (the number of vectors), then these vectors are linearly Independence.

If it is smaller, then the vectors or linearly dependent.

This procedure checks whether the linear equation  ${\bf V}\cdot{\bf c}=0$  has a unique solution.

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 15 / 55

### **Example – Linearly Independent**

Are the vectors

$$\mathbf{v}_1 = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$

linearly independent?

(1) Create a matrix:

$$\left(\begin{array}{cccc}
3 & 1 & 3 \\
2 & 4 & 1 \\
2 & 1 & 1
\end{array}\right)$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 16 / 55

### **Example – Linearly Independent**

(2) Transform:

$$\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 2 & 1 & 1 \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 1 & -3 \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 0 & -27 \end{pmatrix}$$

- (3) We count 3 non-zero rows.
- (4) The number of non-zero rows coincides with the number of vectors (= 3).

Thus the three vectors  $\mathbf{v}_1$ ,  $\mathbf{v}_2$ , and  $\mathbf{v}_3$  are linearly independent.

Josef Leydold - Foundations of Mathematics - WS 2024/25

 $4\,-\,Vector\,Space\,-\,17\,/\,55$ 

## **Example – Linearly Dependent**

Are vectors 
$$\mathbf{v}_1 = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$$
,  $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$ ,  $\mathbf{v}_3 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$ 

linearly independent?

(1) Create a matrix . . . (2) and transform:

$$\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 5 & 5 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 10 & -3 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

- (3) We count 2 non-zero rows.
- (4) The number of non-zero rows (=2) is less than the number of vectors (=3).

Thus the three vectors  $\mathbf{v}_1$ ,  $\mathbf{v}_2$ , and  $\mathbf{v}_3$  are linearly dependent.

#### Rank of a Matrix

The **rank** of matrix **A** is the maximal number of linearly independent columns.

We have: 
$$rank(A^T) = rank(A)$$

The rank of an  $n \times k$  matrix is at most min(n, k).

An  $n \times n$  matrix is called **regular**, if it has **full rank**, i.e. if  $rank(\mathbf{A}) = n$ .

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 19 / 55

#### Rank of a Matrix

#### Computation of the rank:

- (1) Transform matrix A into row echelon form by means of Gaussian elimination.
- (2) Then rank(A) is given by the number of non-zero rows.

$$\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 2 & 1 & 1 \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 0 & -27 \end{pmatrix} \quad \Rightarrow \quad \mathrm{rank}(\mathbf{A}) = 3$$
 
$$\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 5 & 5 & 4 \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 0 & 0 \end{pmatrix} \quad \Rightarrow \quad \mathrm{rank}(\mathbf{A}) = 2$$

$$\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 5 & 5 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow rank(\mathbf{A}) = 2$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 20 / 55

## **Invertible and Regular**

An  $n \times n$  matrix **A** is *invertible*, if and only if it is *regular*.

The following 
$$3 \times 3$$
 matrix  $\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 2 & 1 & 1 \end{pmatrix}$  has full rank (3).

Thus it is regular and hence invertible.

The following 
$$3 \times 3$$
 matrix  $\begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 5 & 5 & 4 \end{pmatrix}$  has only rank 2.

Thus it is *not* regular and hence singular (i.e., not invertible).

#### **Basis**

A set of vectors  $\{\mathbf{v}_1, \dots, \mathbf{v}_d\}$  spans (or *generates*) a vector space  $\mathcal{V}$ , if

$$span(\mathbf{v}_1, \dots, \mathbf{v}_d) = \mathcal{V}$$

This set is thus called a generating set for the vector space.

If these vectors are *linearly independent*, then this set is called a **basis** of the vector space.

The basis of a vector space is not uniquely determined!

However, the number of vectors in a basis is uniquely determined. It is called the **dimension** of the vector space.

$$\dim(\mathcal{V}) = d$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 22 / 55

#### **Characterizations of a Basis**

There are several equivalent characterizations of a basis.

A basis B of vector space  $\mathcal V$  is a

- ightharpoonup linearly independent generating set of  $\mathcal V$
- minimal generating set of V

   (i.e., every proper subset of B does not span V)

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 23 / 55

## Example – Basis

The so called **canonical basis** of the  $\mathbb{R}^n$  consists of the n unit vectors:

$$B_0 = \{\mathbf{e}_1, \dots, \mathbf{e}_n\} \subset \mathbb{R}^n$$

Thus we can conclude that

$$\dim(\mathbb{R}^n) = n$$

an that every basis of  $\mathbb{R}^n$  consists of n (linearly independent) vectors.

Another basis of the  $\mathbb{R}^3$ :

$$\left\{ \begin{pmatrix} 3\\2\\2 \end{pmatrix}, \begin{pmatrix} 1\\4\\1 \end{pmatrix}, \begin{pmatrix} 3\\1\\1 \end{pmatrix} \right\}$$

### Non-Example - Basis

The following are *not* bases of the  $\mathbb{R}^3$ :

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} -2\\-2\\-2 \end{pmatrix}, \begin{pmatrix} -1\\0\\-3 \end{pmatrix} \right\}$$

is not linearly independent (because it has too many vectors).

$$\left\{ \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \right\}$$

does not span  $\mathbb{R}^3$  (because it has too few vectors).

**Beware:** Three vectors need not necessarily form a basis of  $\mathbb{R}^3$ . They might be linearly dependent.

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 25 / 55

### Example - Basis

The *canonical basis* of  $\mathbb{R}^{2\times 2}$  consists of the four matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
,  $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ ,  $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ , and  $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 

and hence

$$dim(\mathbb{R}^{2\times 2})=4.$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 26 / 55

## Example – Basis

The simplest basis of vector space  $\mathcal{P}_2=\{\sum_{i=0}^2 a_i x^i | a_i \in \mathbb{R}\}$  is given by

$$\{1, x, x^2\}$$

and hence

$$dim(\mathcal{P}_2)=3\;.$$

#### Coordinates of a Vector

Let  $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$  be a basis of vector space  $\mathcal{V}$ . Then for every  $c_i \in \mathbb{R}$  we get a vector

$$\mathbf{x} = \sum_{i=1}^{n} c_i \mathbf{v}_i$$

On the other hand for a given vector  $\mathbf{x}$  we can find (unique) numbers  $c_i(\mathbf{x}) \in \mathbb{R}$  such that

$$\mathbf{x} = \sum_{i=1}^{n} c_i(\mathbf{x}) \mathbf{v}_i$$

The numbers  $c_i(\mathbf{x})$  are called the **coefficients** of  $\mathbf{x}$  w.r.t. basis B. The vector

$$\mathbf{c}(\mathbf{x}) = (c_1(\mathbf{x}, \dots, c_n(\mathbf{x})))$$

is called the **coefficient vector** of x w.r.t. basis B.

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 28 / 55

### **Space of Coordinate Vectors**

For a fixed basis B the coefficient vector  $\mathbf{c}(\mathbf{x})$  of  $\mathbf{x}$  is unique and

$$\mathbf{c}(\mathbf{x}) \in \mathbb{R}^n = \mathbb{R}^{\dim(\mathcal{V})}$$
.

So we have a bijection

$$V \to \mathbb{R}^n$$
,  $\mathbf{x} \mapsto \mathbf{c}(\mathbf{x})$ 

with the nice (structure preserving) property

$$ightharpoonup c(\alpha \mathbf{x}) = \alpha \mathbf{c}(\mathbf{x})$$

$$c(x+y) = c(x) + c(y)$$

for all  $\mathbf{x}, \mathbf{y} \in \mathcal{V}$  and all  $\alpha \in \mathbb{R}$ .

That is, instead of dealing with vectors in  $\mathcal{V}$  we can fix a basis B and do all computations with coefficient vectors in  $\mathbb{R}^n$ .

Thus every n-dimensional vector space  $\mathcal{V}$  is *isomorphic* to (i.e., looks like) an  $\mathbb{R}^n$ .

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 29 / 55

#### Coordinates of Vectors in $\mathbb{R}^n$

Let  $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$  be a basis of  $\mathbb{R}^n$ .

We obtain the coordinate vector  $\mathbf{c}(\mathbf{x})$  of  $\mathbf{x} \in \mathbb{R}^n$  w.r.t. B by solving the linear equation

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n=\mathbf{x}$$
.

In matrix notation with  $V = (v_1, ..., v_n)$ :

$$\mathbf{V} \cdot \mathbf{c} = \mathbf{x} \qquad \Rightarrow \qquad \mathbf{c} = \mathbf{V}^{-1} \mathbf{x}$$

By construction V has full rank.

Observe that components  $x_1, \ldots, x_n$  of vector  $\mathbf{x}$  can be seen as its coordinate w.r.t. the canonical basis.

### **Example – Coordinate Vector**

Compute the coordinates  $\mathbf{c}$  of  $\mathbf{x} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ 

w.r.t. basis 
$$B = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} \right\}$$

We have to solve equation Vc = x:

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 3 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 3 & -1 \\ 3 & 5 & 6 & 2 \end{pmatrix}$$

Josef Levdold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 31 / 55

### **Example – Coordinate Vector**

Back substitution yields  $c_1 = 4$ ,  $c_2 = -8$  and  $c_3 = 5$ .

The coordinate vector of x w.r.t. basis B is thus

$$\mathbf{c}(\mathbf{x}) = \begin{pmatrix} 4 \\ -8 \\ 5 \end{pmatrix}$$

Alternatively we could compute  $V^{-1}$  and get as  $c = V^{-1}x$ .

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 32 / 55

## **Change of Basis**

Let  $c_1$  and  $c_2$  be the coordinate vectors of  $\mathbf{x} \in \mathcal{V}$  w.r.t. bases  $B_1 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  and  $B_2 = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ , resp.

Consequently 
$$c_2(x) = W^{-1}x = W^{-1}Vc_1(x)$$
 .

Such a transformation of a coordinate vector w.r.t. one basis into that of another one is called a **change of basis**.

Matrix

$$\mathbf{U} = \mathbf{W}^{-1}\mathbf{V}$$

is called the **transformation matrix** for this change from basis  $\mathcal{B}_1$  to  $\mathcal{B}_2$ .

### **Example – Change of Basis**

$$B_1 = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -2\\1\\1 \end{pmatrix}, \begin{pmatrix} 3\\5\\6 \end{pmatrix} \right\} \text{ and } B_2 = \left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\3\\5 \end{pmatrix}, \begin{pmatrix} 1\\3\\6 \end{pmatrix} \right\}$$

two bases of  $\mathbb{R}^3$ .

Transformation matrix for the change of basis from  $B_1$  to  $B_2$ :  $\mathbf{U} = \mathbf{W}^{-1} \cdot \mathbf{V}$ .

$$\mathbf{W} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 3 & 5 & 6 \end{pmatrix} \qquad \Rightarrow \qquad \mathbf{W}^{-1} = \begin{pmatrix} 3 & -1 & 0 \\ -3 & 3 & -1 \\ 1 & -2 & 1 \end{pmatrix}$$

$$\mathbf{V} = \begin{pmatrix} 1 & -2 & 3 \\ 1 & 1 & 5 \\ 1 & 1 & 6 \end{pmatrix}$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 34 / 55

### **Example - Change of Basis**

Transformation matrix for the change of basis from  $B_1$  to  $B_2$ :

$$\mathbf{U} = \mathbf{W}^{-1} \cdot \mathbf{V} = \begin{pmatrix} 3 & -1 & 0 \\ -3 & 3 & -1 \\ 1 & -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 & 3 \\ 1 & 1 & 5 \\ 1 & 1 & 6 \end{pmatrix} = \begin{pmatrix} 2 & -7 & 4 \\ -1 & 8 & 0 \\ 0 & -3 & -1 \end{pmatrix}$$

Let  $\mathbf{c}_1 = (3, 2, 1)^\mathsf{T}$  be the coordinate vector of  $\mathbf{x}$  w.r.t. basis  $B_1$ . Then the coordinate vector  $\mathbf{c}_2$  w.r.t. basis  $B_2$  is given by

$$\mathbf{c}_2 = \mathbf{U}\mathbf{c}_1 = \begin{pmatrix} 2 & -7 & 4 \\ -1 & 8 & 0 \\ 0 & -3 & -1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 13 \\ -7 \end{pmatrix}$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 35 / 55

## **Linear Map**

A map  $\varphi$  from vector space  $\mathcal V$  into  $\mathcal W$ 

$$\varphi \colon \mathcal{V} \to \mathcal{W}, \ \mathbf{x} \mapsto \mathbf{v} = \varphi(\mathbf{x})$$

is called **linear**, if for all  $\mathbf{x}, \mathbf{y} \in \mathcal{V}$  and  $\alpha \in \mathbb{R}$ 

(i) 
$$\varphi(\mathbf{x} + \mathbf{y}) = \varphi(\mathbf{x}) + \varphi(\mathbf{y})$$

(ii) 
$$\varphi(\alpha \mathbf{x}) = \alpha \varphi(\mathbf{x})$$

We already have seen such a map:  $\mathcal{V} \to \mathbb{R}^n$ ,  $\mathbf{x} \mapsto \mathbf{c}(\mathbf{x})$ 

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 36 / 55

#### **Linear Map**

Let **A** be an  $m \times n$  matrix. Then map

 $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$ ,  $\mathbf{x} \mapsto \varphi_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x}$  is linear:

$$\varphi_{\mathbf{A}}(\mathbf{x} + \mathbf{y}) = \mathbf{A} \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{A} \cdot \mathbf{x} + \mathbf{A} \cdot \mathbf{y} = \varphi_{\mathbf{A}}(\mathbf{x}) + \varphi_{\mathbf{A}}(\mathbf{y})$$
$$\varphi_{\mathbf{A}}(\alpha \mathbf{x}) = \mathbf{A} \cdot (\alpha \mathbf{x}) = \alpha (\mathbf{A} \cdot \mathbf{x}) = \alpha \varphi_{\mathbf{A}}(\mathbf{x})$$

Vice versa every linear map  $\varphi\colon \mathbb{R}^n \to \mathbb{R}^m$  can be represented by an appropriate  $m \times n$  matrix  $\mathbf{A}_{\varphi}$ :  $\varphi(\mathbf{x}) = \mathbf{A}_{\varphi} \mathbf{x}$ .

Matrices represent all possible linear maps  $\mathbb{R}^n \to \mathbb{R}^m$ .

More generally they represent linear maps between any vector space once we have bases for these and do all computations with their coordinate vectors.

In this sense, matrices "are" linear maps.

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 37 / 55

### **Geometric Interpretation of Linear Maps**

We have the following "elementary" maps:

- ► lengthening / shortening in some direction
- ► shear in some direction
- ► projection into a subspace
- rotation
- ► reflection at a subspace

These maps can be combined into more complex ones.

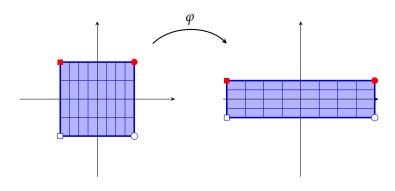
Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 38 / 55

## Lengthening / Shortening

Map 
$$\varphi \colon \mathbf{x} \mapsto \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \mathbf{x}$$

lengthens the *x*-coordinate by factor 2 and shortens the *y*-coordinate by factor  $\frac{1}{2}$ .



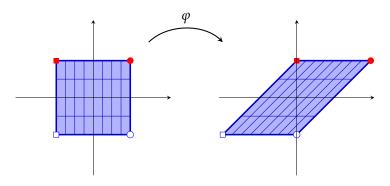
Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 39 / 55

#### Shear

Map 
$$\varphi \colon \mathbf{x} \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{x}$$

shears the rectangle into the x-coordinate.



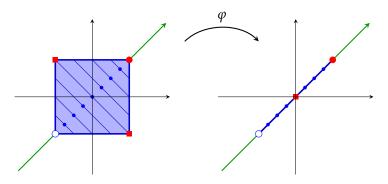
Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 40 / 55

### **Projection**

Map 
$$\varphi \colon \mathbf{x} \mapsto \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \mathbf{x}$$

projects a point x orthogonally into the subspace generated by vector  $(1,1)^T$ , i.e., span  $\left((1,1)^T\right)$ .



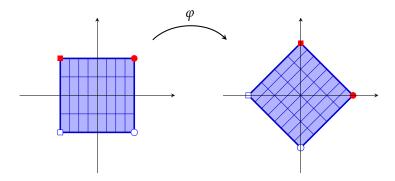
Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 41 / 55

#### **Rotation**

$$\mathsf{Map}\; \varphi \colon \mathbf{x} \mapsto \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \mathbf{x}$$

rotates a point x clock-wise by 45° around the origin.



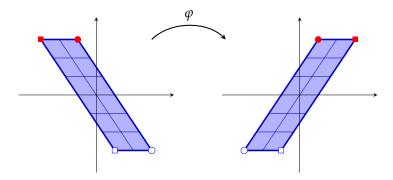
Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 42 / 55

#### Reflection

Map 
$$\varphi \colon \mathbf{x} \mapsto \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}$$

reflects a point x at the y-axis.



Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 43 / 55

### **Image and Kernel**

Let  $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$ ,  $\mathbf{x} \mapsto \varphi(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x}$  be a linear map.

The **image** of  $\varphi$  is a subspace of  $\mathbb{R}^m$ .

$$\mathsf{Im}(\varphi) = \{ \varphi(\mathbf{v}) \colon \mathbf{v} \in \mathbb{R}^n \} \subseteq \mathbb{R}^m$$

The **kernel** (or **null space**) of  $\varphi$  is a subspace of  $\mathbb{R}^n$ .

$$\mathsf{Ker}(\varphi) = \{\mathbf{v} \in \mathbb{R}^n \colon \varphi(\mathbf{v}) = 0\} \subseteq \mathbb{R}^n$$

The kernel is the preimage of 0.

Image Im(A) and kernel Ker(A) of a matrix A are the respective image and kernel of the corresponding linear map.

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 44 / 55

## Generating Set of the Image

Let  $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ ,  $\mathbf{x} \in \mathbb{R}^n$  an arbitrary vector, and  $\varphi(\mathbf{x}) = \mathbf{A}\mathbf{x}$ .

We can write x as a linear combination of the canonical basis:

$$\mathbf{x} = \sum_{i=1}^{n} x_i \, \mathbf{e}_i$$

Recall that  $Ae_i = a_i$ .

So we can write  $\varphi(\mathbf{x})$  as a linear combination of the columns of  $\mathbf{A}$ :

$$\varphi(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \sum_{i=1}^{n} x_i \, \mathbf{e}_i = \sum_{i=1}^{n} x_i \, \mathbf{A} \mathbf{e}_i = \sum_{i=1}^{n} x_i \, \mathbf{a}_i$$

That is, the columns  $\mathbf{a}_i$  of  $\mathbf{A}$  span (generate)  $\text{Im}(\varphi)$ .

#### **Basis of the Kernel**

Let 
$$A = (a_1, \ldots, a_n)$$
 and  $\varphi(x) = Ax$ .

If  $\mathbf{y}, \mathbf{z} \in \mathsf{Ker}(\varphi)$  and  $\alpha, \beta \in \mathbb{R}$ , then

$$\varphi(\alpha \mathbf{y} + \beta \mathbf{z}) = \alpha \varphi(\mathbf{y}) + \beta \varphi(\mathbf{z}) = \alpha 0 + \beta 0 = 0$$

Thus  $\mathrm{Ker}(\varphi)$  is closed under linear combination, i.e.,  $\mathrm{Ker}(\varphi)$  is a subspace.

We obtain a basis of  ${\rm Ker}(\varphi)$  by solving the homogeneous linear equation  ${\bf A}\cdot{\bf x}=0$  by means of Gaussian elimination.

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 46 / 55

## **Dimension of Image and Kernel**

Rank-nullity theorem:

$$\dim \mathcal{V} = \dim \operatorname{Im}(\varphi) + \dim \operatorname{Ker}(\varphi)$$

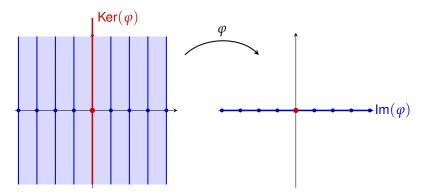
Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 47 / 55

## Example – Dimension of Image and Kern

Map 
$$arphi\colon \mathbb{R}^2 o \mathbb{R}^2$$
,  $\mathbf{x}\mapsto egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}\mathbf{x}$ 

projects a point x orthogonally onto the x axis.



 $\dim \mathbb{R}^2 = 2$ ,  $\dim \operatorname{Ker}(\varphi) = 1$ 

 $\dim \operatorname{Im}(\varphi) = 1$ 

Josef Leydold - Foundations of Mathematics - WS 2024/25

#### **Linear Map and Rank**

The *rank* of matrix  $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$  is (per definition) the dimension of  $\mathrm{span}(\mathbf{a}_1, \dots, \mathbf{a}_n)$ .

Hence it is the dimension of the image of the corresponding linear map.

$$\dim\operatorname{Im}(\varphi_{\mathbf{A}})=\operatorname{rank}(\mathbf{A})$$

The dimension of the solution set  $\mathcal{L}$  of a homogeneous linear equation  $\mathbf{A}\,\mathbf{x}=0$  is then the kernel of this map.

$$\dim \mathcal{L} = \dim \operatorname{Ker}(\varphi_{\mathbf{A}}) = \dim \mathbb{R}^n - \dim \operatorname{Im}(\varphi_{\mathbf{A}}) = n - \operatorname{rank}(\mathbf{A})$$

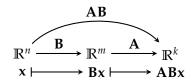
Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 49 / 55

### **Matrix Multiplication**

By multiplying two matrices A and B we obtain the matrix of a compound linear map:

$$(\varphi_{\mathbf{A}} \circ \varphi_{\mathbf{B}})(\mathbf{x}) = \varphi_{\mathbf{A}}(\varphi_{\mathbf{B}}(\mathbf{x})) = \mathbf{A}(\mathbf{B}\mathbf{x}) = (\mathbf{A} \cdot \mathbf{B})\mathbf{x}$$



This point of view implies:

$$\mathsf{rank}(\mathbf{A}\cdot\mathbf{B}) \leq \min\left\{\mathsf{rank}(\mathbf{A}),\mathsf{rank}(\mathbf{B})\right\}$$

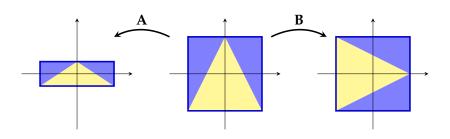
Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 50 / 55

## **Non-Commutative Matrix Multiplication**

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$$
 represents a shortening of the *y*-coordinate.

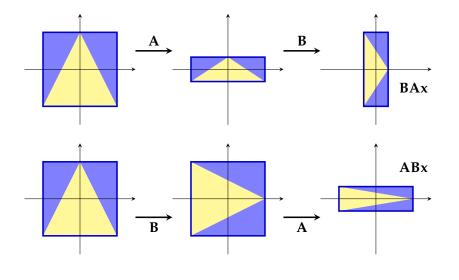
$$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 represents a clock-wise rotation about 90°.



Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 51 / 55

## **Non-Commutative Matrix Multiplication**



Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 52 / 55

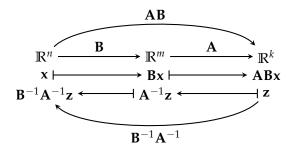
#### **Inverse Matrix**

The *inverse matrix*  ${\bf A}^{-1}$  of  ${\bf A}$  exists if and only if map  $\varphi_{\bf A}({\bf x})={\bf A}\,{\bf x}$  is one-to-one and onto, i.e., if and only if

$$\varphi_{\mathbf{A}}(\mathbf{x}) = x_1 \, \mathbf{a}_1 + \dots + x_n \, \mathbf{a}_n = 0 \quad \Leftrightarrow \quad \mathbf{x} = 0$$

i.e., if and only if A is regular.

From this point of view implies  $(\mathbf{A}\cdot\mathbf{B})^{-1}=\mathbf{B}^{-1}\cdot\mathbf{A}^{-1}$ 



Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 53 / 55

#### **Similar Matrices**

The basis of a vector space and thus the coordinates of a vector are not uniquely determined. Matrix  $\mathbf{A}_{\varphi}$  of a linear map  $\varphi\colon \mathbb{R}^n \to \mathbb{R}^n$  also depends on the chosen bases.

Let A be the matrix w.r.t. basis  $B_1$ .

Which matrix represents linear map  $\varphi$  if we use basis  $B_2$  instead?

basis 
$$B_1$$
  $\mathbf{U} \mathbf{x} \stackrel{\mathbf{A}}{\longrightarrow} \mathbf{A} \mathbf{U} \mathbf{x}$   $\mathbf{U} \uparrow \qquad \qquad \downarrow \mathbf{U}^{-1}$  and thus  $\mathbf{C} \mathbf{x} = \mathbf{U}^{-1} \mathbf{A} \mathbf{U} \mathbf{x}$  basis  $B_2$   $\mathbf{x} \stackrel{\mathbf{C}}{\longrightarrow} \mathbf{U}^{-1} \mathbf{A} \mathbf{U} \mathbf{x}$ 

Two  $n \times n$  matrices  ${\bf A}$  and  ${\bf C}$  are called **similar**, if there exists a regular matrix  ${\bf U}$  such that

$$\mathbf{C} = \mathbf{U}^{-1} \mathbf{A} \mathbf{U}$$

## Summary

- ► vector space and subspace
- ► linear independency and rank
- ▶ basis and dimension
- ▶ coordinate vector
- ► change of basis
- ► linear map
- ► image and kernel
- ► similar matrices

Josef Leydold - Foundations of Mathematics - WS 2024/25

4 - Vector Space - 55 / 55